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On the zero capillarity limit for the Euler-Korteweg system

Corentin Audiard *, Marc-Antoine Vassenet�

February 10, 2025

Abstract

We study the Euler-Korteweg equations with a weak capillarity tensor. It formally
converges to the Euler equations in the zero capillarity limit. Our aim is two-fold : first
we prove rigorously this limit in Rd, d ≥ 1, and obtain a more precise BKW expansion of
the solution, second we initiate the study of the problem on the half space. In this case
we obtain a priori estimates for the solutions that degenerate as the capillary coefficient
converges to zero, and we explain this degeneracy with the construction of a (formal) BKW
expansion that exhibits boundary layers.
The results on the full space extend and improve a classical result of Grenier (1998) on the
semi-classical limit of nonlinear Schrödinger equations.
The analysis on the half space is restricted to the case of quantum fluids with irrotational
velocity.

Résumé

1 Introduction

The Euler-Korteweg system is a modification of the compressible Euler equations that adds a
capillary tensor in the momentum equation

∂tρε + div(ρεuε) = 0,
∂tuε + uε · ∇uε +∇g(ρε) = ε2∇

(
K(ρε)∆ρε +

1
2K

′(ρε)|∇ρε|2
)
,

(ρ, u)|t=0 = (ρ0, u0).
(x, t) ∈ Ω× [0, T ] (1.1)

The term ε2K is the capillary coefficient. We are interested in the study of the limit ε → 0,
where we recover formally the usual Euler equations.

∂tρ+ div(ρu) = 0,
∂tu+ u · ∇u+∇g(ρ) = 0,
(ρ, u)|t=0 = (ρ0, u0).

(x, t) ∈ Ω× [0, T ] (1.2)
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1 INTRODUCTION 2

We consider solutions of the form ρ = ρ∞ + r, with (r, u) ∈ C([0, T ], Hn+1 ×Hn), n large, ρ∞
is a constant such that g′(ρ∞) > 0, and u ∈ C([0, T ], Hn). Their (local) existence for fixed ε
is known since the work of Benzoni, Danchin and Descombes [5].
Given (ρ0, u0) smooth, we study the convergence of smooth solutions of (1.1) to the solution
of (1.2). We consider two geometric settings : Ω = Rd and Ω = Rd−1 × R+∗ := Rd

+. Precise
statements are given later, but our results for these two cases are significantly different and
can be broadly summarized as follows :

1. In the full space case, we prove the existence of a time interval independent of ε on which
the solutions of (1.1) converge to the solution of the Euler equations (“approximate
solution”), with explicit rate of convergence. Moreover, thanks to BKW analysis, we
obtain a higher order expansion of the approximate solution with arbitrarily high order
of convergence.

2. In the half space case, with boundary condition ρ|xd=0 = 1, ud|xd=0 = 0, we obtain a
priori estimates of the solution that degenerate as ε → 0. This feature is explained by
the construction of an approximate solution which features terms varying rapidly in a
“boundary layer” of size ε near xd = 0, this explains the divergence of the higher order
Hn norms of the solution as ε→ 0.

A discussion on other choices of boundary conditions that can be found in the litterature, and
the associated BKW expansion, is provided at the end of the article, section 4.5.

Link with the Schrödinger equation There is an abundant litterature on the analysis of
perturbations of hyperbolic problems, the problem studied here has most striking similarities
with the semi-classical limit for the nonlinear Schrödinger equation

iε∂tψε +
ε2

2
∆ψε = g(|ψε|2)ψ. (1.3)

Indeed the Madelung transform ψε =
√
ρεe

iφε/ε allows to formally reformulate (1.3) as the
so-called quantum Euler system

∂tρε + div(ρεuε) = 0,

∂tuε + uε · ∇uε +∇g(ρε) =
ε2

4
∇
(
∆ρε
ρε

− |∇ρε|2

2ρ2ε

)
,

(1.4)

we recognize (1.1) with K(ρ) = 1/(4ρ).

The Schrödinger equation on the full space The rigorous analysis of the semi-
classical limit for (1.3) was initiated by Gérard [11], who proved the convergence to the Euler
system in periodic, analytic settings. This was later extended to the Sobolev framework by
Grenier [14] thanks to a change of variable (different from the Madelung transform) which al-
lowed to reformulate (1.3) as a symmetrizable hyperbolic system with a dispersive perturbation
which commutes with the symmetrizer. His main result is1 :

1The exact statement in [14] is slightly different, for the convenience of the reader we rephrase it in a way
which is simpler for comparison in our settings.
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Theorem 1.1 (Grenier ’98). Let ψε solution of (1.3) with, for some J ∈ N, ψε|t=0 =
a0(x, ε)e

iφ0(x,ε)/ε), a0 =
∑J

0 ε
jaj0(x) + εJrJε (x) , φ0 =

∑J
j=0 ε

jφj
0 + εJδJε . Assume

f ′ > 0, lim
ε→0

∥(rJ , δJ)∥Hs(Rd) = 0 for some s > 2N + 2 + d/2.

Then there exists T > 0 such that ψε has the form ψε = aεe
iφε/ε on [0, T ] × Rd, and there

exists functions a :=
∑J

j=0 ε
jaj complex valued, φ =

∑J
0 ε

jφj defined on [0, T ] × Rd given by
the BKW method such that

∥(aε − a, φε − φ)∥L∞([0,T ],Hs−2J−2−d/2) = o(εJ).

This fundamental result received several extensions : addition of a subquadratic potential
(Carles [9]), solutions that do not cancel at infinity (Alazard and Carles [2]), a degenerate non-
linearity with f ′(0) = 0 (Alazard-Carles [1] with some technical limitations on the regularity,
later lifted by Chiron and Rousset [10]). In all the results mentioned, the fluid formulation
(1.4) is never used for the proof of convergence. Rather the authors work either directly on
the Schrödinger equation, or on the equations satisfied by aε, φε, where aε is complex valued.
This is a key feature since it allows to work on equations that have a better structure (less
nonlinear, more skew-symmetric).

The Schrödinger equation on a domain This case is significantly more involved since
the boundary conditions of (1.3) are in general not compatible with those of the limit system
(1.2). The construction of approximate solution through a BKW expansion then requires to
add corrector terms that are rapidly varying, see section 4.2 for details. When the spatial
domain is the exterior of a smooth compact set in dimension 2, Lin and Zhang [18] proved
the convergence of the fluid variables of (1.3) with g(ρ) = ρ − 1 (Gross-Pitaevskii equation),
∂nψε|∂Ω = 0 (Neumann boundary condition) to the solution of the Euler equation (1.2):

(ρε, uε) := (|ψε|2, εIm(ψε∇ψε)) → (ρ, ρu), in L∞([0, T ], L2 × L1
loc).

The proof is fundamentally different from the argument of Grenier as it merely uses a modu-
lated energy

Hε(ψε, ρ, u) =

∫
Ω
|(ε∇− iu)ψε|2 + (|ψε|2 − ρ)2dx,

it does not extend to higher order of convergence or smoother functional settings.
When the domain is the half space R2×R+∗, arbitrarily precise approximate solutions (ρapp, φapp)
and high order of convergence were obtained by Chiron and Rousset [10] thanks to difficult
energy estimates on the error e−iφapp/εψε −

√
ρapp. In particular, the skew symmetric nature

of the linearized operator

i
ε

2
∆ + uapp · ∇+

div(uapp)

2

played a key role.
For Dirichlet boundary conditions ψε|xd=0 = 0, the analysis is even more difficult as the
amplitude of the boundary layer terms is O(1) (instead of O(ε) for Neumann conditions), Gui
and Zhang managed to push further the analysis from [10] to obtain results similar to the
Neumann case, with the restriction that data are small (but with smallness independent of ε).



1 INTRODUCTION 4

The general case of the Euler-Korteweg system There are several reasons to study the
Euler-Korteweg system. It includes the physically relevant Schrödinger equation, but more
importantly it has also been widely considered with other capillarity coefficients. For example,
in the framework of weak solutions, with techics similar to the modulated energy estimates,
Bresch, Gisclon, and Lacroix-Violet [8] studied the case K(ρ) proportional to ρs, s ∈ R,
Giesselmann, Lattanzio and Tzavaras [12] considered constant and general positive capillar-
ity coefficient K. A conditional convergence result of weak solutions of the Euler-Korteweg
system (1.1) to the Euler equations (1.2) was deduced from these methods by Giesselmann
and Tzavaras [13], under ad hoc regularity assumptions on the solutions, and special algebraic
relations for K and g. To our knowledge the existence of global weak solutions for the Euler-
Korteweg system with general capillarity is still an open problem. Other relevant capillary
coefficients such as 1 + κ/(ρ− 1), κ > 0 appear in the framework of quasi-linear Schrödinger
equations (e.g. [17]).
When the spatial domain is an open set different from Rd, another motivation to consider
the fluid formulation of the Schrödinger equation is the study of the boundary value problem
where one prescribes on the boundary the physical quantities ρ|∂Ω and u · n|∂Ω. This is con-
sidered as the physically relevant boundary conditions for quantum fluids, see [19] section 2.1.
Indeed since we have ρ = |ψ|2, u = Im(ψ∇ψ)/|ψ|2, the boundary conditions on the original
Schrödinger variable are highly nonlinear, and make the analysis quite difficult. The analysis
on the half space is the subject of section 4.
Finally, another important point is that the analysis of the semi-classical limit for the Schrödinger
equation is restricted to the case of irrotational velocity fields : curl(u) = 0. This limitation is
lifted here by working directly on the fluid formulation, to the price of more technical energy
estimates.
It should be noted that the convergence of solutions of (1.1) to solutions of other models
(Burgers, KdV, Kadomtsev-Petviashvili) in the long wave regimes was studied by Benzoni and
Chiron [6], the analysis relied notably on an improvement of the energy estimates introduced
in [5], quite similar to proposition 3.2.

Main results When the spatial domain is Rd, we obtain the existence of arbritrarily
precise approximate solution, and their convergence as ε→ 0 to the exact solution :

Proposition 1.2 (Existence of an approximate solution). Let Ω = Rd, N ∈ N, n > d/2+ 3+
[3N/2], [·] the integer part, ρ∞ > 0, data (rk0 , u

k
0) ∈ Hnk , 0 ≤ k ≤ N , with nk = n − [3k/2],

0 ≤ k ≤ N , and such that g′ ◦ (ρ∞ + r00) ≥ c > 0.
There exists ε0 > 0 and T > 0 such that for 0 < ε < ε0, there exists an approximate solution
(ρapp − ρ∞, u

app) :=
∑N

0 εk(rk, uk), (rk, uk) given by the BKW expansion, solution of
∂tρ+ div(ρu) = e1,
∂tu+ u · ∇u+∇g = ε2∇(K∆ρ+ 1

2K
′|∇ρ|2) + e2,

(ρ− ρ∞, u)|t=0 =
∑N

k=0 ε
k(rk0 , u

k
0),

with

∥(e1, e2)∥CT (H
nN−1 ×HnN−3)

= O(εN+1), (1.5)

inf
(x,t)∈Rd×[0,T ]

min(g′(ρapp), ρapp)) ≥ α/2. (1.6)
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Theorem 1.3 (Convergence of the approximate solution). Consider (ρε, uε) solution of the
Euler-Korteweg system

∂tρε + div(ρεuε) = 0,
∂tuε + uε · ∇uε +∇g = ε2∇(K∆ρε +

1
2K

′|∇ρε|2),
(ρε − ρ∞, uε)|t=0 =

∑N
k=0 ε

k(rk0 , u
k
0),

with for any 0 ≤ k ≤ N, (rk0 , u
k
0) ∈ Hn−[3k/2], n > d/2 + 4 + [3N/2].

Let (ρapp, uapp) ∈ C
(
[0, T ], (ρ∞ + Hn+1−[3N/2]) × Hn−[3N/2]

)
given by Proposition 1.2. For ε

small enough, and n− [3N/2]− 3 even, the exact solution (ρε, uε) exists on [0, T ] and satisfies

∥(ρε − ρapp, uε − uapp)∥L∞([0,T ],Hn−[3N/2]−3) = O
(
εN+1

)
.

Remark The restriction “n− [3N/2]− 3 even” is purely technical and related to our choice
of energy for simplicity of the proof. The restriction can be lifted by using a bit of pseudo-
differential calculus as in [5], and replaced by the sharper condition n > d/2+ 4+ [3N/2] with
n real rather than an integer.

When the spatial domain is Rd
+, our results are not as complete : even the derivation of energy

estimates requires to work in the special case K(ρ) = 1/ρ. Arbitrarily precise approximate
solutions in the sense of Proposition 1.2 exist, but the convergence to the exact solution is still
open. For consistency in section 4, we construct the approximate solution in the special case
K = 1/ρ, but this part can be easily generalized to generalK. On the other hand irrotationality
is an important simplification. For technical simplicity, we do not track the precise regularity
assumptions in this case (instead we work with smooth functions) and we restrict the analysis
to an irrotational velocity. In order to take into account the fast variation of the solution near
the boundary, we introduce the notation x = (x′, xd) ∈ Rd−1×R+∗. The use of a capital letter
for a function F generically means that it writes as F (x, t) = F̃ (x′, xd/ε, t).
As usual for boundary value problems, the smoothness of the data is not enough to ensure the
smoothness of the solution, we refer to section 4 for a description of the additional compatibility
conditions, and 2 for the functional settings.

Proposition 1.4 (Approximate solution as a two scale expansion). Assume K(ρ) = 1/ρ.
Let N ∈ N, (rk0 , uk0)0,≤k≤N ∈ H∞(Rd

+) satisfying the compatibility conditions, and (uk0)0≤k≤N

irrotational.
There exists ε > 0 and T > 0 such that for 0 < ε < ε0, there exists an approximate solution
(ρapp − ρ∞, u

app) =
∑N

0 εk(rk + Rk, uk + Uk), where Rk(x, t) = R̃k(x′, xd/ε, t), U
k = ∇Φk,

Φk(x, t) = Φ̃k(x′, xd/ε, t), and Φ0 = Φ1 = 0, solution of
∂tρ+ div(ρu) = e1 + E1,
∂tu+ u · ∇u+∇g = ε2∇(K∆ρ+ 1

2K
′|∇ρ|2) + e2 + E2,

(ρ− a, u)|t=0 =
∑N

k=0 ε
k(rk0 , u

k
0),

with for any n > 0, ∥(e1, e2)∥CTHn = O(εN+1), and E1 = Ẽ1(x
′, xd/ε) (respectively E2) is

O(εN+1) in ET , respectively O(εN ).

In the rest of the paper, we shall assume ρ∞ = 1. This can always be done with the change
of unknown ρ = ρ∞ρ̃, since it preserves the assumption g′(1) > 0.
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Plan of the paper Section 2 is devoted to basic notations and reminder on Sobolev spaces.
Section 3 is focused on the proof of theorem 1.3 : we first prove uniform energy estimates
which imply that the solution of the Euler-Korteweg system (1.1) remains smooth on a time
interval independent of ε, then we prove a general “drift estimate” on the difference between
an exact and an approximate solution. The construction of an approximate solution by BKW
expansion is described in section 3.3, the convergence of the approximate solution to the exact
solution is then a direct consequence of the general “drift estimate”.
In section 4, we initiate the analysis of the boundary value problem on a half space for (1.1) with
boundary conditions u|xd=0 ·ed = 0, ρ|xd=0 = 1. We first prove non optimal energy estimates on
the solution that degenerate2 as ε→ 0. Then (section 4.2 and after), as a possible explanation
for the blow up of high Hs norms in the limit ε → 0, we construct a BKW expansion with
boundary layer terms that are smooth functions of xd/ε. In concluding remarks (section 4.5),
we compare the effect on the boundary layers of other choices of boundary conditions.

2 Notations, functional settings

We denote A ≲ B when there exists a constant C such that A ≤ CB. The possible dependance
of C with respect to some parameters will always be clear in whenever the notation is used.

Differential calculus A multi-index is generically denoted α ∈ Nd, its order is |α| =
∑d

1 αk,
the derivative of order α is ∂α := ∂α1

1 · · · ∂αd
d .

The gradient of a vector field is the matrix

∇u = (∂iuj)1≤i,j≤d.

Irrotational and solenoidal vector fields We denote Q, respectively P, the projector on
irrotational, respectively solenoidal, vector fields :

Q = ∆−1∇div, P = I−Q.

They are continuous self-adjoint projectors on L2(Rd). We underline that ∆Q and ∆P are
differential operators, in particular for f a smooth function and any n ≥ 1, the commutator
[∆nP, f ] is a differential operator of order 2n− 1, while if f is not smooth we can use the mild
estimates to bound ∥[∆nP, f ]g∥2 ≲ ∥f∥H2n∥g∥W 1,∞ + ∥f∥W 1,∞∥g∥H2n−1 .
The following simple identities will be often used without mention :

Q∇ = ∇, P∇ = 0, div = divQ, divP = 0.

Functional spaces For s ∈ R (though we will only use s nonnegative integer), the Hs spaces
are defined as

Hs(Rd) = {f ∈ L2 :

∫
(1 + |ξ|2)s|f̂(ξ)|2dξ <∞}.

2We point out that even for ε = 1, this is a new result.
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Of course, when s is an integer, they coincide with the set of L2 functions that have distribu-
tional derivatives in L2 up to order s. Due to their even higher simplicity, we shall in particular
use the H2n spaces for n integer, that are equivalently defined as

H2n(Rd) = {f ∈ L2 : ∆nf ∈ L2},

with equivalent norm ∥f∥2 + ∥∆nf |2.
The space ET is the set of functions smooth and exponentially decaying in the xd variable:

ET = {F ∈ H∞(Rd
+ × [0, T ]),∃ γ > 0 : ∀ j ∈ N, eγxd∂jdF ∈ L∞(R+

xd
, H∞(Rd−1 × [0, T ]))}.

There is no natural norm on ET , so in proposition 1.4 by Eε = O(εN ), we mean that there
exists γ independent of ε such that for any n ∈ N,∑

j≤n

∥eγxd∂jdEε∥L∞(R+
xd

,Hn(Rd−1×[0,T ])) = O(εN ).

We recall a few standard properties of Sobolev spaces (see e.g. [4]):

Proposition 2.1. Sobolev embedding : For 0 < s < d/2, Hs ↪→ Lp, p = 2d
d−2s .

For s > d/2, s /∈ d/2 + N, Hs ↪→ C
s−d/2
b .

Gagliardo-Nirenberg type estimates :

∀ |α|+ |β| ≤ k ∈ N, ∥DαfDβg∥2 ≲ ∥f∥∞∥g∥Hk + ∥f∥Hk∥g∥∞.

Composition rules : for F smooth on some interval I, F (0) = 0, u ∈ Hn ∩ L∞, n ∈ N,
Im(u) ⊂ I.

∥F (u)∥Hn ≤ C(∥u∥∞)∥u∥Hn .

A simple consequence of proposition 2.1 is that for |α| + |β| = n + 1, n > d/2 + 1,
1 ≤ min(|α|, |β|),

∥∂αf∂βg∥2 ≲ ∥f∥W 1,∞∥g∥Hn + ∥f∥Hn∥g∥W 1,∞ ≲ ∥f∥Hn∥g∥Hn .

In particular, we will frequently use the mild estimate : for n > d/2 + 1,

∀α ∈ Nd, |α| = n : ∂α(f∇g) = f(∂α∇g)+R, ∥R∥2 ≲ ∥f∥W 1,∞∥g∥Hn+∥f∥Hn∥g∥W 1,∞ . (2.1)

3 Analysis on the whole space

3.1 Energy estimates and the time of existence

We remind that thanks to the change of variable ρ → ρ∞ρ we assume ρ∞ = 1. Energy
estimates for the Euler-Korteweg system have been derived in numerous settings, including
the case with a small parameter [6]. We include here for completeness a self contained proof
more in the spirit of [3] that does not use pseudo-differential calculus.
It relies on the following reformulation (due to Frédéric Coquel) : set w = ε

√
K/ρ∇ρ = ∇l

where l(ρ) = ε
∫ √

K/ρdρ, l(1) = 0, so that ∇l = w. Then

∂tl + u · w + ε
√
ρKdivu = 0.
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Set a =
√
ρK, z = u+ iw, after some computations

∂tz + u · ∇z + i∇z · w + g′(ρ)∇ρ+ iε∇(adivz) = 0. (3.1)

The hierarchy of modified energies is the following

∀n ∈ N, En(ρ, u) =
1

2

∫
a2nρ|Q∆nz|2 + |P(θn∆nz|)2 + g′a2n|∆n(ρ− 1)|2dx,

where θn is a function of ρ such that 1
2((θn)

2)′ = φn

a

√
K/ρ, that we will choose positive on

a suitable interval. Heuristically, the first two terms in En control (∇ρ, u) in H2n, but this
control degenerates as ε→ 0, which is why we incorporate the third lower order term.
The weights a2nρ be guessed from the case n = 0, where the conserved energy is

∫
ρ|z|2/2 +

G(ρ)dx, and at first order G(ρ) = g′(ρ)(ρ − 1)2/2. For n > 0, one adds the weight an for
commutation with the differential operator ∇(adiv·).
The following lemma is elementary, a proof can be found in [3], end of appendix A:

Lemma 3.1. Assume there exists some α > 0 such that Im(ρ) ⊂ I ⊂ [α, 1/α[, ∥ρ∥W 1,∞ ≤ α−1

and ∀ s ∈ I, g′(s) ≥ α > 0. Choose θn such that θn|I ≥ α, then there exists cα, Cα > 0 such
that

cα(∥z∥2H2n + ∥ρ− 1∥H2n)2 ≤ E0 + En ≤ Cα(∥z∥2H2n + ∥ρ− 1∥H2n)2,

In what follows, we denote En(t) = En(ρ(t), u(t)), (ρ, u) solution of the Euler-Korteweg system.
For conciseness in the computations, we define

φn(ρ) := a2nρ, ψn(ρ) := a2ng′(ρ). (3.2)

Proposition 3.2. Let (ρ0−1, u0) ∈ H2n+1×H2n, 2n > d/2+1, (ρ−1, u) ∈ C([0, T [, H2n+1×
H2n) the unique local solution of (1.1).
Assume that for some T ′ ≤ T , α > 0, ρ(Rd × [0, T ′]) ⊂ I ⊂ [α,∞[, such that g′|I ≥ α, then we
have for t ∈ [0, T ′[, k ≤ n

dEk

dt
≤ C(∥u∥∞, ∥ρ∥W 1,∞ , α)(∥z∥H2k + ∥ρ− 1∥H2k)2(∥u∥W 1,∞ + ∥ρ∥W 2,∞). (3.3)

In particular the following holds :

1. If Im(ρ0) ⊂ I ′ ⊂ [2α,∞], such that on I ′, g′ ≥ 2α, then the solution exists on some
time interval [0, T1], T1 independent of ε, (ρ − 1, u) ∈ CT1(H

2n × H2n) with bounds
independent of ε, and there exists an interval I1 ⊂ [α,∞[ on which g′ ≥ α such that
ρ([0, T1]× Rd) ⊂ I1, .

2. In the limit ∥(z0, ρ0 − 1)∥H2n×H2n → 0, there exists c > 0 such that the time of existence
is bounded from below by c/∥(z0, ρ0 − 1)∥H2n×H2n.

Proof. If the estimate (3.3) is true, the other points follow from the usual bootstrap argument
(combined with lemma 3.1), so we focus on (3.3). Note also that the existence result of
Benzoni-Danchin-Descombes implies the smoothness of the solutions, hence up to a standard
approximation argument we can assume that the solution (ρ, u) is as smooth as needed for the
computations.
In the following computations, R denotes generically a term which is controlled by the right
hand side in (3.3). We shall use very often (2.1) without mention, e.g. to replace Q∆n(u · ∇z)
by u · ∇(Q∆nz) plus terms that can be absorbed in R. Let us differentiate the three terms in
En.
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Computation of D1 :=
d
2dt

∫
Rd a

2nρ|Q∆nz|2dx

D1 = Re

∫
Rd

−φn∆
nQ (u · ∇z + i∇z · w + iε∇(adivz) +∇g)∆nQz dx

= Im

∫
Rd

φn (∇(∆nz) · w + εQ∆n∇(adivz)) ·Q∆nz︸ ︷︷ ︸
I1

−φng
′(Q∆n∇ρ) ·Q∆nu︸ ︷︷ ︸

I2

dx

−Re

∫
Rd

φn (u · ∇(Q∆nz)) ·Q∆nzdx+R.

We have Re((u·∇Q∆nz)·Q∆nz) = u·∇|Q∆nz|2, hence with an integration by parts we include
this term in R. In order to bound I1, we first point out that the factor ε in εQ∆n∇(adivz) is
essential, indeed it implies thanks to (2.1)

εQ∆n∇(adivz) = ∇(a∆ndivz + 2n∇a ·∆n−1∇divz) +R, ∥R∥2 ≤ C(α)∥z∥W 1,∞∥z∥H2n ,

We now bound I1:

I1 = Im

∫
Rd

φn

(
∇∆nz · w + ε∇

(
a∆ndivz + 2n∇a · ∇∆n−1divz

))
Q∆nz dx+R

= Im

∫
Rd

φn (∇∆nz · w) ·Q∆nz − ε (a∆ndivz + 2n∇a ·Q∆nz)) div(φnQ∆nz) dx+R

= Im

∫
Rd

−φn (∆
nz · w) divQ∆nz + εdivQ∆nz(−a∇φn + 2nφn∇a) ·Q∆nz dx.

We use −aφ′
n + 2nφna

′ = −a(a2n + 2nρa2n−1a′) + 2nρa2na′ = −φn

√
K/ρ to obtain

I1 = Im

∫
Rd

−φn (∆
nz · w) divQ∆nz − φn(divQ∆nz)(w ·Q∆nz) dx+R

= Im

∫
Rd

−φn(P∆nz · w)div(Q∆nz) dx+R.

This contains a loss of derivatives, which will be cancelled later thanks to the derivative of the
solenoidal term in the energy.

Compensation of I2 Note that without further computation the term I2 is already without
loss of derivatives, but with a loss in ε. Using div(ρu) = ρdiv(Qu) + u · ∇ρ we find

I2 +
d

2dt

∫
Rd
ψn|∆n(ρ− 1)|2dx =

∫
−φng

′∆n∇ρ ·Q∆nu− ψn∆
nρ∆n(u · ∇ρ+ ρdivQu)dx

=

∫
−φng

′∆n∇ρ ·Q∆nu+ ψn∇∆nρ · (Q∆nu)ρ

−ψnu · ∇∆nρ∆nρ dx+R

=

∫
(−φng

′ + ψnρ)∆
n∇ρ ·Q∆nu+ div(ψnu)

|∆nρ|2

2
dx+R

= R,

indeed thanks to definition (3.2), we have −φng
′ + ψnρ = 0.

To summarize,

d

2dt

∫
Rd

φn|Q∆nz|2 + ψn|∆n(ρ− 1)|2dx = Im

∫
Rd

−φn(P∆nz · w)div(Q∆nz) dx+R. (3.4)
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Computation of D2 =
d
2dt

∫
Rd |P(θn∆nz)|2dx. We use P∇ = 0,

D2 = −Re

∫
Rd

P (θn∆
n(u · ∇z + i∇z · w + iε∇(adivz) +∇g)) · P(θn∆nz) dx

= −Re

∫
Rd

(
u · ∇(Pθn∆nz) + iεθn∇(2n∇a ·∆nQz + a∆ndivQz)

+θng
′∆n∇ρ

)
· P(θn∆nz) dx.

With the usual integration by parts, we find

Re

∫
Rd

(u · ∇(θn∆
nz)) · Pθn∆nzdx = R,

∫
Rd

(θn∇∆nz · w) · P(θn∆nz)dx = −
∫
Rd

(θn∆
nz · w)divP(θn∆nz)dx+R = R.

We deduce

D2 = Im

∫
Rd

εθn∇(2n∇a ·∆nQz + a∆ndivQz) · P(θn∆nz)dx+R

= −
∫
Rd

ε(2n∇a ·∆nQz + a∆ndivQz)∇θn · P(θn∆nz)dx+R

= −
∫
Rd

ε(adivQ∆nz)θ′n∇ρ · P(θn∆nz)dx+R.

We can replace Pθn∆nz by θnP∆nz up to terms of order 2n − 1, which are then absorbed in
R with an integration by parts, this leads to

D2 = −
∫
Rd

ε(adivQ∆nz)θnθ
′
n∇ρ · P(∆nz)dx+R. (3.5)

Conclusion Using (3.4) and(3.5)we obtain

dEn

dt
= Im

∫
Rd

−φn(P∆nz · w)div(Q∆nz) + a

√
ρ

K
θnθ

′
n(P∆nz · w)divQ∆nz dx+R,

= R,

indeed the definition of θn ensures θnθ
′
na

√
ρ/K − φn = 0.

Remark 1. Note that in the limit ε→ 0, we recover the usual time of existence for quasi-linear
hyperbolic equations, with blow up criterion on ∥(ρ− 1, u)∥W 1,∞ .

3.2 Difference estimates

Consider a smooth approximate solution (ρ1, u1), ρ1 bounded away from 0, satisfying{
∂tρ1 + div(ρ1u1) = e1,
∂tu1 + u1 · ∇u1 +∇g(ρ1) = ε2∇

(
K(ρ1)∆ρ1 +

1
2K

′(ρ1)|∇ρ1|2
)
+ e2,

(3.6)
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(e1, e2) some functions assumed to be smooth , say H∞.
Set generically f1 for a function evaluated at ρ1, u1, in particular as previously l1 = l(ρ1) ∂tl1 + u1 · w1 + εa1divu1 = ε

√
K1

ρ1
e1,

∂tu1 + u1 · ∇u1 +∇g(ρ1) = ε∇(a1divw1) + e2,

(3.7)

Set also generically f̃ = f −f1, in particular ũ = u−u1, r̃ = ρ−ρ1, w̃ = w−w1. The equation
on z1 is

∂tz1 + u1 · ∇z1 + i∇z1 · w1 + g′1∇ρ1 + iε∇(a1divz1) = e3. (3.8)

where e3 = e2 + iε∇
(√

K1
ρ1
e1

)
the difference equations on r̃, z̃ are


∂tr̃ + div(ρũ+ r̃u1) = −e1,
∂tz̃ + u · ∇z̃ + i∇z̃ · w + g′∇r̃ + iε∇(adivz̃) = −ũ · ∇z1 − i∇z1 · w̃ − g̃′∇r1

+iε∇(ãdivz1)− e3.

(3.9)

In the same spirit as the previous section, we define the energies

Ẽn =
1

2

∫
ρa2n|Q∆nz̃|2 + |P(θn∆nz̃)|2 + a2ng′(ρ)|∆nr̃|2dx.

The analog of lemma 3.1 is true :

Lemma 3.3. Assume there exists some α > 0 such that Im(ρ) ⊂ I ⊂ [α, 1/α[, ∥ρ∥W 1,∞ ≤ α
and ∀ a ∈ I, g′(a) ≥ α > 0. Choose θn such that θn|I ≥ α, then there exists cα, Cα > 0 such
that

cα(∥z̃∥2H2n + ∥r̃∥H2n)2 ≤ E0 + En ≤ Cα(∥z̃∥2H2n + ∥r̃∥H2n)2,

Proposition 3.4. Let 2n > d/2 + 1, (ρ− 1, u) ∈ CTH(H2n+1 ×H2n) given by the first point
of proposition 3.2, (ρ1, u1) an approximate solution in CT (H

2n+3 ×H2n+2), ρ1 ≥ α, then for
k ≤ n

dẼn

dt
≤ C(∥z̃, z1, εz1∥H2n×H2n+1×H2n+2 + ∥r̃∥H2n + ∥r1∥H2n , α)∥(∥z̃∥H2n + ∥r̃∥H2n)2

+∥e2∥2H2n + ∥(e1, ε∇e1)∥2(H2n)2 . (3.10)

Proof. This is a rather straightforward modification of the proof of estimate (3.3). For con-
ciseness we only sketch the computations for the irrotational case, Qz = z : performing similar
computations as for energy estimates, we obtain, with R a term that is controlled by the right
hand side of (3.10):

dẼn

dt
= R− Re

∫
φn∆

n
(
ũ · ∇z1 + i∇z1 · w̃ + g̃′∇r1 + iε∇(ãdivz1)− e3

)
∆nz̃

−
∫
a2nρg′∇∆nr̃ ·∆nũ−

∫
a2ng′∆nr̃∆n (div(ρũ+ r̃u1)− e1) .
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A first observation is that all terms of the first line can easily be absorbed in R, for example
Re

∫
iεφn∆

n∇(ãdivz1) · z̃ is roughly bounded by C∥r̃∥L∞∥εz1∥H2n+2∥z∥H2n .
For the second line, using ∆nr̃∇∆nr̃ = 1

2∇(∆nr̃)2 and integration by parts, we find∫
a2nρg′∇∆nr̃ ·∆nũ+ a2ng′∆nr̃∆ndiv(ρũ+ r̃u1) = R+

∫
a2nρg′∇∆nr̃ · ũ∆nρ

+a2ng′∆nr̃ (u1 · ∇∆nr̃ + (∆ndivu1)r̃)

= R+

∫
a2nρg′∇∆nr̃ · ũ∆nr1,

once again this last term is taken care of with an integration by part.

3.3 BKW analysis and convergence

This part can be done exactly as in previous works on the Schrödinger equation (see for example
[10] section 3.2, or [14]), so we only recall the basic facts.
Write formally r = ρ− 1, ρ = 1+ r0 +

∑∞
1 εkrk, u =

∑∞
0 εkuk, and plug this ansatz in (1.1).

We obtain at rank 0 and 1{
∂tρ

0 + div(ρ0u0) = 0,
∂tu

0 + u0 · ∇u0 +∇
(
g(ρ0)

)
= 0,

{
∂tr

1 + div(r1u0 + ρ0u1) = 0,
∂tu

1 + u1 · ∇u0 + u0 · ∇u1 +∇
(
g′(ρ0)r1

)
= 0,

(3.11)
and generically the equation or rank k is the linearization of the equation at order 0 with some
source terms depending on the lower order terms (rj , uj)0≤j≤k−1{

∂tr
k + div(rku0 + ρ0uk) = fk1 ,

∂tu
k + u0 · ∇uk + uk · ∇u0 +∇

(
g′(ρ0)rk

)
= fk2 .

(3.12)

More precisely, fk1 = −div

 ∑
0<j,l, j+l=k

rjul

 involves derivatives of order at most 1 of terms

(rj , uj)j≤k−1, while f
k
2 involves similar terms and derivatives up to order 3 of terms (rj)0≤j≤k−2.

It is less easy to write, but the main term for counting loss of derivatives is clearlyK(ρ0)∇∆rk−2.
Unsurprisingly, the system of rank 0 is the Euler equations, that are well known to be sym-
metrizable (with symmetrizer diag(g′(ρ0)/ρ0, 1 · · · , 1)), higher order equations are the lin-
earization of the Euler equations near (ρ0, u0), with forcing terms. The following result of
well-posedness for symmetrizable hyperbolic systems is standard ([7], [4] theorem 4.15):

Theorem 3.5. For initial data (ρ00 − 1, u00) ∈ Hn, n > d/2 + 1, Im(ρ0) ⊂ I ⊂ [2α,∞[, with
g′|I ≥ 2α > 0. There exists a time T (ρ00, u

0
0) such that system (3.11) has a unique solution in

∩n
j=0C

j([0, T ], Hn−j), with inf [0,T ]×Rd min(ρ0, g′(ρ0)) ≥ α.

For any k ≥ 1, data (rk0 , u
k
0) ∈ Hn(Rd), n > p > d/2 + 1 and forcing terms (fk1 , f

k
2 ) ∈

Hp([0, T ] × Rd), the system (3.12) has a unique solution in ∩p
j=0C

j([0, T ], Hp−j), with T the

time of existence of (ρ0, u0), it satisfies

∥(rk, uk)∥∩p
j=0C

j([0,T ],Hp−j) ≤ C(∥(r00, u00)∥Hp , α)
(
∥(rk0 , uk0)∥Hn + ∥(fk1 , fk2 )∥∩p

j=0C
jHp−j

)
.
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As a consequence of this result and composition/product rules in Sobolev spaces, we may
now state a precise version of proposition 1.2:

Corollary 3.6. Let N ∈ N. For n > d/2+1+[3N/2], [·] the integer part, data (rk0 , u
k
0) ∈ Hnk ,

0 ≤ k ≤ N , with nk = n− [3k/2], 0 ≤ k ≤ N , there exists solutions of the systems (3.11),(3.12)
up to order N , with (rk, uk) ∈ ∩nk

j=0C
j([0, T ], Hnk−j).

If moreover n > d/2 + 3 + [3N/2], there exists ε0 > 0 such that for 0 < ε < ε0 the function
(ρapp, uapp) := (ρ0, u0)+

∑N
1 εk(rk, uk) is an approximate solution of the Euler-Korteweg system

as in (3.6) with

∥(e1, e2)∥CT (H
nN−1 ×HnN−3)

= O(εN+1), (3.13)

inf
(x,t)∈Rd×[0,T ]

min(g′(ρapp), ρapp)) ≥ α/2. (3.14)

Proof. The proof is an immediate application of theorem 3.5 and composition rules in Sobolev
spaces, so we only underline two points. First it is necessary to choose ε small enough in
order to ensure inequality (3.14). Second, the numerology : as pointed out previously, (fk1 , f

k
2 )

are functions that contain first order derivatives of (rk−1, uk−1) and third order derivatives of
rk−2. Hence (r0, u0) ∈ ∩n

j=0C
j
TH

n−j , (r1, u1) ∈ ∩n−1
j=0C

j
TH

n−j−1, then as fk2 contains third

order derivatives of ρ0, we have (r2, u2) ∈ ∩n−3
j=0C

j
TH

n−j−3, the proof is ended by induction.
For the estimate of (e1, e2), it suffices to observe that the worst terms in e1 are derivatives of
order one of (ρN , uN ), while the worst term in e2 is a derivative of third order of ρN .

Remark 2. The result is a bit better for N = 0, as (ρ0, u0) is an approximate solution of order
2 if (r10, u

1
0) = 0. This is in particular the case if the initial data is simply of the form (ρ0, u0).

Putting together corollary 3.6 and proposition 3.4, we can now prove the main result.

Proof of theorem 1.3. We apply proposition 3.4 on the difference (r̃, ũ) = (ρ− ρapp, u− uapp),
and for 0 ≤ n ≤ (nN − 3)/2. Thanks to the bounds on the approximate solution, we obtain

∥z̃(t)∥2HnN−3 + ∥r̃∥2HnN−3 ≤
∫ t

0
C(∥z̃∥HnN−3 + ∥r̃∥HnN−3 , α)

(
∥z̃∥2HnN−3 + ∥r̃∥2HnN−3

)
(s) ds

+O(εN+1).

Gronwall’s lemma ensures that, as long as ∥z̃∥HnN−3 + ∥r̃∥HnN−3 = O(1) and g′(ρ), ρ are
bounded away from 0, we have

∥z̃(t)∥2HnN−3 + ∥r̃(t)∥2HnN−3 ≤ C(α)εN+1. (3.15)

For ε small enough a standard bootstrap argument ensures that on [0, T ] the solution exists
with g′(ρ), ρ bounded away from 0 and (3.15) holds. In particular, we have ∥ρ−ρapp∥CTHnN−3 =

O(εN+1), and ∥ũ∥CTHnN−3 = ∥Re(z̃)∥CTHnN−3 = O(εN+1).

4 Analysis on the half space

The case of the half space is more intricate. Even for ε = 1, there are no well-posedness results
for the boundary value problem for the Euler-Korteweg system. Our aim in this section is to
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initiate the analysis of the problem, by first deriving a priori estimates, and then performing
a formal BKW expansion of the -hypothetical solution- to give an intuition of the effect of
a boundary in the limit ε → 0. We restrict the analysis to the case of the quantum Euler
equation, that is K(ρ) = 1/ρ.

A reminder on compatibilty conditions For boundary value problems, this is most easily
done in general abstract setting : consider a problem of the form

∂tU = F (U),
CU |xd=0 = 0,
U |t=0 = U0,

where F is a smooth function of U and its space derivatives. C is a constant rectangular matrix
(for our problem, U = (ρ, ut)t, C = (e1, ed+1)

t. Obviously, by continuity we have

0 = CU |xd=0,t=0 = CU0|xd=0,

this is the compatibility condition of order 0. By differentiation in time of CU |xd=0 = 0 and use
of the pde, we obtain the compatibility condition of order 1: 0 = C∂tU |xd=t=0 = CF (U0)|xd=0,
the sequence of higher order compatibility condition is obtained by iteration of the differenta-
tion in time and use of ∂tU = F .
In our settings, where F and U0 depend on ε, there is a further manipulation : sorting by
powers of ε, for each compatibility condition of a fixed order we obtain a hierarchy of condi-
tions, for example if U0 =

∑
εkUk

0 , the compatibility condition of order 0 implies for any k,
CUk

0 |xd=0 = 0, the hierarchy of compatibility conditions of order 1 is then obtained by Taylor
expansion of the relation CF (

∑
εkUk

0 ) = 0, and so on.
There exists non trivial data that satisfy the compatibility conditions at all orders, for example
(r0, u0) ∈ C∞

c (Rd−1 × R+∗).

4.1 A priori estimates on the half space

In this section we derive a priori estimates for irrotational solutions of the Euler-Korteweg
system in the half space in the special case of quantum hydrodynamics K = 1/ρ:

∂tρ+ div(ρu) = 0,

∂tu+ u · ∇u+∇g(ρ) = ε2∇
(
∆ρ
ρ − |∇ρ|2

2ρ2

)
,

(ρ, u)|t=0 = (ρ0, u),
(ρ, u3)|z=0 = (1, 0).

(x′, z) ∈ Rd−1 × R+, t ≥ 0. (4.1)

This leads to a major simplification, indeed the main order term for the reformulated system
on z = u+ iε∇ρ/ρ becomes linear :

∂tz + u · ∇z + i∇z · w +∇g + iε∆z = 0, with w =
ε∇ρ
ρ
. (4.2)

Nonetheless, the analysis of the boundary value problem is quite intricate : when carrying the
energy method as in the full space, boundary terms coming from integration by parts must be
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tracked, moreover the problem becomes characteristic in the limit ε→ 0, this causes the energy
estimates to be non uniform in ε. Let x = (x′, xd). Regularity in the tangential variables (t, x′)
is handled differently from the regularity in the normal variable xd, accordingly we introduce
the following functionals (abusively written as norms) : for z defined on [0, T ]× Rd−1 × R+,

∥z(t)∥Xn =
∑

2α0+
∑d

1 αk≤n

∥∂αz(t)∥L2 ,

∥z(t)∥Xn
tan

=
∑

2α0+
∑d−1

1 αk≤n

∥∂αz(t)∥L2 .

In the same spirit as the full space, we define the following energies : for any tangential
multi-index α = (α0, · · · , αd−1) ∈ Nd,

Eα(t) =
1

2

∫
Rd
+

ρ|∂αz|2 + g′(ρ)|∂αρ|2dx.

It will be used numerous times without mention that due to the boundary conditions, for any
tangential derivative

∂αρ|xd=0 = 0, ∂αud|xd=0 = 0.

Our main result here is :

Lemma 4.1. If (ρ, u) is a smooth, bounded away from 0, solution of (4.1), then for n ∈ N,
2n > d/2 + 1, ∑

2α0+α1+···+αd−1≤2n

d

dt
Eα(t) ≤ C(∥∇z∥∞ + ∥∇ρ∥∞)∥z∥2X2n (4.3)

with C = C(∥ρ∥∞ + ∥ρ∥−1
∞ , ∥∇z∥∞ + 1) a continuous function.

Moreover for 0 ≤ j ≤ n there exists a continuous function Fj

∥∂2jd z∥X2(n−j)
tan

≲
Fj(∥u∥X2n

tan
)

ε4n
(4.4)

Remark 3. Independently of the limit ε → 0, the estimates are the first step toward a well-
posedness result similar to the one from [5] in the full space case. We expect that standard
existence methods from the field of quasi-linear hyperbolic boundary value problems (e.g. [7]
chapter 11: existence for the linearized system with a duality argument, then an iteration
scheme) can be tracted to our settings, since the higher order dispersive part is linear, but a
detailed proof is beyond the aim of this section.

Proof. We recall the reformulated equations (4.2) :

∂tz + u · ∇z + i∇z · w +∇g + iε∇div(z) = 0.
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We perform the same computations as for Proposition 3.2, but we have to check the cancellation
of boundary terms. As a warm up, we prove the conservation of energy

d

dt

∫
Rd−1×R+

ρ|z|2 +G(ρ)dx = 0, where G′ = g.

Indeed, denoting n = −ed the outward normal

d

dt

∫
Rd−1×R+

ρ|z|2

2
+G(ρ)dx =

∫
Rd−1×R+

−div(ρu)|z|2

2

+Re

(
ρ
(
− u · ∇z − i∇z · w −∇g − iε∇div(z)

)
z

)
−g(ρ)div(ρu)dx

=

∫
Rd−1

−
(
|z|2

2
+ g

)
ρu · n + Im(ρdiv(z)z · n) dx′

−Im

∫
Rd−1×R+

ρ(∇z · w) · z − εdiv(z)∇ρ · z dx.

The first integral cancels, indeed u · n = −ud = 0, and

−Im
(
ρdiv(z)z · n

)
= ρdiv(w)ud − ρdiv(u)wd = −ρdiv(u)wd,

and we have from the equation of mass conservation on the boundary:

0 = (∂tρ+ div(ρu))|xd=0 = div(u) + u · ∇ρ = div(u).

To cancel the second integral, we use ρw = ε∇ρ, and the boundary conditions ud|xd=0 = 0,
wi|xd=0 = 0, 1 ≤ i ≤ d− 1:

Im

∫
Rd−1×R+

ρ(∇z · w) · z − εdiv(z)∇ρ · z dx = Im ε

∫
Rd−1×R+

∂izj∂jρzi − ∂jρzj∂izi dx

= −Im

∫
Rd−1×R+

ρ(zjwj∂izi + zjwj∂izi) dx

−Im

∫
Rd−1×R+

zj(∂i∂jρ)zi dx

−Im

∫
Rd−1

z · wzd dx′

=

∫
Rd−1

−(u · w)wd + |w|2ud dx′ = 0.

The higher order estimates are similar : if ∂α = ∂α0
t ∂α1

1 · · · ∂αd−1

d−1 contains only tangential
derivatives, we denote fα := ∂αf and we have

∂tzα + u · ∇zα + i(∇zα) · w + ∂α∇g + iε∇(divzα) = C,

where C is a quadratic commutator term that contains derivatives of order at most |α| of z.
We differentiate Eα, and denote R a generic term which has a L2 bound of the form C(∥ρ∥∞+



4 ANALYSIS ON THE HALF SPACE 17

∥ρ−1∥∞)(∥∇z∥∞+∥∇ρ∥∞)∥(z(t)∥2H2n , as in the statement of the lemma. Thanks to Gagliardo-
Nirenberg type inequality (2.1) we find

d

dt
Eα(t) =

∫
Rd
+

ε Im
(
(∇zα · ∇ρ)zα − div(zα)∇ρ · zα

)
− ρ(∂α∇g) · uα − g′ρα∂

αdiv(ρu)dx+R

+εIm

∫
∂Rd

+

ρdiv(zα)zα · eddx′.

As for the conservation of energy, we have Im
(
div(zα)zα · ed

)
= −div(uα)wα,d = 0, so after

integration by parts

d

dt
Eα(t) = ε

∫
∂Rd

+

uα · ∇ρwα,d dx

−
∫
Rd
+

ρg′∇ρα · uα + g′ραdiv(ρuα + uρα)dx+R

=

∫
∂Rd

+

g′ραρuα,d +

∫
Rd
+

g′u · ∇(ρα)
2

2
dx+R

= −
∫
∂Rd

+

g′ud
(ρα)

2

2
dx′ +R = R.

This is (4.3).
Now to control normal derivatives, we shall use the equation to prove inductively

∀ j ≤ n, ∥∂2jd z∥X2(n−j)
tan

≲
F (∥u∥X2n

tan
)

ε4j
, (4.5)

where F is a generic smooth function that cancels at 0.
Denote ∆′ =

∑d−1
1 ∂2i the tangential laplacian, we use noncharacteristicity :

∂2dz = −∆′z + i
∂tz

ε
+
i

ε
(u · ∇z + i∇z · w +∇g). (4.6)

To bound ∥∂2dz∥X2n−2
tan

we crudely bound ∥−∆′z+ i∂tz/ε∥X2n−2
tan

≲ ∥z(t)∥X2n
tan
/ε. The nonlinear

terms are estimated with Gagliardo-Nirenberg type inequalities, for conciseness we focus on
the worst term ud∂d∂

αz, with ∂α a tangential derivative of order 2n− 2. We use the following
interpolation inequality

∀ k ∈ N∗, ∥f ′∥L2(R+) ≲ ∥f∥1−1/k
L2(R+)

∥f (k)∥1/k
L2(R+)

. (4.7)

The inequality is easy when the domain is R instead of R+, it is deduced from this case by
using extension operators. Applying this to ud∂dz we find for some C,C1 > 0 and fixed (x′, t):

1

ε
∥ud∂d∂αz(x′, ·, t)∥L2(Rd

+) ≤ ∥ud∥∞∥∂α∂dz∥L2 ≤ C

ε
(∥z∥L2∥∂dz∥L2)1/2∥z∥1/2

L2 ∥∂α∂2dz∥
1/2
L2(R+)

≤ C1

ε
∥z∥5/4

L2 ∥∂2dz∥
3/4

X2n−2
tan

≤ C4
1

4ε4
∥z∥5L2 +

3

4
∥∂2dz∥X2n−2

tan
.
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Thanks to Sobolev’s embedding, ∥∥z∥5L2(R+)∥L2(Rd−1) ≲ ∥z∥5
X2n

tan
.

We may now proceed to the induction : assume (4.5) is true for 1 ≤ j ≤ k − 1. To estimate
∂α∂2kd z, ∂α a tangential derivative of order 2n− 2k, we use equation (4.6) and we focus on the
estimate of ∥ud∂2k−1

d ∂αz/ε∥, ∂α tangential of order 2n− 2k:

1

ε
∥ud∂2k−1

d ∂αz∥L2(R+) ≲
1

ε
∥z∥1/2

L2 ∥∂dz∥
1/2
L2 ∥∂2kd ∂αz∥1/22 ∥∂2k−2

d ∂αz∥1/22 ,

we deduce for any C > 0

1

ε
∥ud∂2k−1

d ∂αz∥L2(Rd
+) ≤

C ′

ε2
∥z∥L∞(Rd−1,L2(R+)∥∂dz∥L∞L2∥∂2k−2

d z∥X2n−2k
tan (Rd

+) +
∥∂2kd z∥X2n−2k

tan

C
.

Note that from Sobolev’s embedding and interpolation

∥∂dz∥L∞L2 ≲ ∥∂2dz∥
1/2

X2n−2
tan

∥z∥1/2
X2n

tan
≤ F (∥z∥X2n

tan
)/ε2,

we conclude

1

ε
∥ud∂2k−1

d ∂αz∥L2(Rd
+) ≤

F (∥z∥X2n
tan

)

ε4k
+

∥∂2kd z∥X2n−2k
tan

C
.

Choosing C large enough, we can absorb
∥∂2k

d z∥
X2n−2k

tan
C in the left hand side and complete the

induction.

A rough estimate on the time of existence The bounds from lemma 4.1 require a
L∞ bound on ρ to be “self closing”, it is easily obtained (on very short time scale) as fol-
lows : apply the method of characteristics to the equation of mass conservation : for any
α > 0, | infRd

+
(ρ(t)) − inf ρ0| + | supRd

+
(ρ(t)) − sup ρ0| ≤ α on a time interval [0, T ] such that∫ t

0 ∥divu∥∞ ds ≤ ln(1 + α/2) .

∀ j > d/2− 1, ∥f∥L∞(Rd
+) ≲ (∥f∥

Xj
tan

∥∂df∥Xj
tan

)1/2.

Denoting E2n,tan =
∑

2α0+α1+···αd−1
Eα, we use lemma 4.1 and Sobolev’s embedding

d

dt
E2n,tan(t) ≲ C(ρ∥∞ + ∥ρ−1∥∞)(∥(∇z,∇ρ)∥X2n−2

tan
∥(∇∂dz,∇∂dρ)∥X2n−2

tan
)1/2∥z∥2X2n ,

∥∂2jd z∥X2n−j
tan

≲
1

ε4j
F (∥z∥X2n

tan
), 1 ≤ j ≤ n.

hence there exists a continuous function F1 such that

d

dt
E2n,tan(t) ≲ C(ρ∥∞ + ∥ρ−1∥∞)

F1(∥z∥X2n
tan

)

ε8n+3
,

∥∂2jd z∥X2n−j
tan

≲
1

ε4j
F (∥z∥X2n

tan
), 1 ≤ j ≤ n.

Of course, ∥z(t)∥2
X2n

tan
∼ E2n,tan(t) with constants depending on ∥ρ∥∞, ∥1/ρ∥∞. It is now clear

that on a timescale O(ε8n+3), the bounds are self-closing.
This is not relevant in the limit ε→ 0, nevertheless for ε = O(1) we recover an estimate similar
to the Rd case.
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4.2 BKW expansion : notations

The estimates from the previous section are only obtained on a very short time interval, with a
rapid growth of the norm of derivatives in the normal direction. A common explanation is that
in the limit ε→ 0, the boundary conditions of the formal limit problem are not compatible with
the one of the original one. Here the limit problem is the Euler equation with non penetration
boundary condition : 

∂tρ+ div(ρu) = 0, (x, t) ∈ Rd
+ × R+

t ,
∂tu+ u · ∇u+∇g(ρ) = 0, (x, t) ∈ Rd

+ × R+
t

u · ed = 0, (x, t) ∈ (∂Rd
+)× R+

t .

The solutions of this problem do not satisfy the boundary condition ρ∂Rd
+×R+

t
= 1, even if the

initial data do, hence the presence of boundary layers is expected, leading to the growth of the
Sobolev norms of the solution.
It is therefore natural to consider of a formal expansion in ε similarly to the full space case, but
with the addition of correctors rapidly varying in xd. As is common, we search an approximate
solution (ρa, ua), with ua = ∇ϕa irrotational, in the form of a two scale expansion

ρa(x, t) = 1 +
N∑
0

εnrn(x, t) + εnRn(x′, xd/ε, t),

ϕa(x, t) =
N∑
0

εn(ϕn(x, t) + Φn(x′, xd/ε, t)).

We shall denote ρ0 = 1 + r0.
The terms (Rn,Φn) are the so-called boundary layer terms, they will belong to the set ET , we
recall its definition:

ET = {F ∈ H∞(Rd
+ × [0, T ]),∃ γ > 0 : ∀ j ∈ N, eγxd∂jdF ∈ L∞(R+

xd
, H∞(Rd−1 × [0, T ]))}.

The terms (rn, ϕn) are the interior terms. Since we work with the potential ϕn, it is convenient
to introduce the integrated version of (1.1) ∂tρ+ div(ρ∇ϕ) = 0, (x, t) ∈ Rd

+ × R+
t ,

∂tϕ+ |∇ϕ|2/2 + g(ρ) = ε2
(
∆ρ

ρ
− 1

2ρ2
|∇ρ|2

)
, (x, t) ∈ Rd

+ × R+
t .

(4.8)

In the following, we denote f = f |xd=0.

4.3 The cascade of equations for the BKW expansion

The usual way to obtain equations for (Rn,Φn), (rn, ϕn) is to split the analysis between xd
large with respect to ε, where the boundary layer terms are neglected and we have to solve
evolutionary equations on (rn, ϕn), and conversely for xd small we obtain ordinary differential
equations on the correctors (Rn,Φn). An important tool is the following observation (see
Grenier-Guès [15]) : for φ smooth, (a,B) ∈ H∞ × E

f(a(x) +B(x′, xd/ε)) = f(a(x)) + f(a(x′, 0) +B(x′, xd/ε) + εR, R ∈ ET . (4.9)
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Inserting the ansatz in (1.1), and sorting by powers in ε, it is readily seen that Φ0 = 0, indeed
the power ε−2 in the (integrated) momentum equation gives

(∂dΦ
0)2 = 0 ⇒ Φ0 = 0.

The first equations for the inner domain are
∂tr

0 + div(r0∇ϕ0) = 0,
∂tϕ

0 + 1
2 |∇ϕ

0|2 + g(r0) = 0,
∂dϕ

0|xd=0 = 0.
(4.10)

The next equations for the boundary layer are obtained using ∂dϕ
0 = 0

(1 + r0 +R0)∂2dΦ
1 + (∂dΦ

1 + ∂dϕ
0)∂dR

0 = 0,
∂2dR

0

1 +R0 + r0
− 1

2

(1 + ∂dR
0)2

(R0 + r0)2
= ∂dΦ

1∂dϕ
0 +

1

2
(∂dΦ

1)2 + g(1 +R0 + r0),

R0|xd=0 + r0 = 0.

⇔


(1 + r0 +R0)∂2dΦ

1 + (∂dΦ
1)∂dR

0 = 0,
∂2dR

0

1 +R0 + r0
− 1

2

(∂dR
0)2

(1 +R0 + r0)2
=

1

2
(∂dΦ

1)2 + g(1 +R0 + r0),

R0|xd=0 + r0 = 0,

(4.11)

Similarly to the full space case, the higher order equations for the interior terms are

∀ k ≥ 1,


∂tr

k + div(ρ0∇ϕk ++rk∇ϕ0) = fk1 ,
∂tϕ

k +∇ϕ0 · ∇ϕk + g′(ρ0)rk = fk2 ,
∂dϕ

k|xd=0 + ∂dΦ
k+1|xd=0 = 0.

(4.12)

where fk1 , f
k
2 only depend on (∇ϕj , rj)j≤k−1) and their derivatives.

The higher order boundary layer equations are
∂d((R

0 + ρ0)∂dΦ
k+2) = F k

1 , mass, order εk,

∂2d(R
k)

ρ0 +R0
− ∂dR

k∂dR
0

(ρ0 +R0)2
= g′(ρ0 +R0)Rk + F k

2 , momentum, order εk,

Rk|xd=0 = rk.

(4.13)

where F 1
k , respectively F

2
k , depends on (Φj)j≤k+1, (R

j , rj , φj)j≤k, respectively (Rj)j≤k−1, (Φ
j , rj , φj)j≤k,

and are exponentially fast decaying. We underline here that it is important for solvability that
F k
1 does not depend on Rk+1, this is due to the fact that Φ0 = Φ1 = ∂dφ

0 = 0.

4.4 Solvability of the BKW expansion

The order in which we solve the equations is as follows

Φk+1 → (φk, rk) → Rk → Φk+2 · · ·

The existence of the expansion will be a consequence of the following three lemmas :
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Lemma 4.2 (Inner expansion). For smooth initial data (ρ00, φ
0
0) ∈ (1+H∞)×H∞ that satisfy

the compatibility conditions, there exists a time T > 0 and a unique smooth solution such that
(ρ0 − 1,∇φ0) ∈ C([0, T ], H∞) to (4.10).
For such (r0, φ0), T , and (r0, φ0) that satisfy the compatibility conditions, the linear problem

∀ k ≥ 1,


∂tr + div(ρ0∇ϕ+ r∇ϕ0) = f1 ∈ H∞([0, T ]× Rd

+),
∂tϕ+∇ϕ0 · ∇ϕ+ g′(ρ0)r = f2 ∈ H∞([0, T ]× Rd

+),
∂dϕ|xd=0 = b(x′, t) ∈ H∞([0, T ]× Rd−1),
(φ, r)|t=0 = (φ0, r0) ∈ H∞(Rd

+),

(4.14)

has a unique solution with (∇ϕ, r)H∞([0, T ]× Rd
+).

Proof. Define u0 = ∇φ0, and take the gradient of the second equation. The new system is the
Euler equations with non penetration boundary condition. The existence of a smooth solution
is due to Schochet [21]. Then we obtain φ0 simply with the formula

φ0 = φ0(t = 0) +

∫ t

0
|u0|2/2 + g(ρ)ds.

The system (4.14) is a hyperbolic maximal dissipative problem, the general solvability can be
found in [20], as for the smoothness of solution the method of proof of Schochet3 works also
in this case.

Lemma 4.3 (Boundary layer, first order). There exists T > 0 such that the system (4.11) has
a unique solution

Φ1 = 0, R0 ∈ ET .

Proof. By integration of the first equation and decay at infinity, (R0 + r0)∂dΦ
1 = 0, hence

Φ1 = 0 provided R0 + r0 ̸= 0.
The second equation rewrites

1√
ρ0 +R0

∂2d

√
ρ0 +R0 = g(r0 +R0) + ∂tφ

0 + |∇φ0)|2/2 = g(ρ0 +R0)− g(ρ0).

Setting A0 =
√
ρ0 +R0, this rewrites

∂2dA
0 = A0

(
g((A0)2)− g(ρ0)

)
:= f(A0), with A0|xd=0 = ρ0 +R0|xd=0 = 1.

Note that f ′(
√
ρ0) = 2ρ0g′(ρ0) > 0 if ρ0(x′, t) = 1 + r0 is close enough to 1, so standard

ODE arguments ensure for any x′, t the existence of A0 converging exponentially fast to 0 with
(A0)2(x′, 0, t) = 1. By continuity of ρ0 and the compatibility condition ρ0(x′, 0, 0) = 1, this is
true on some time interval [0, T ], T small enough.

3The problem is characteristic, but near the boundary one can trade tangential regularity to estimate
∂dud, ∂dr, then the regularity of (uj)1≤j<d−1 is obtained by considering curl(u), which also satisfies a dissi-
pative hyperbolic system.
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Lemma 4.4. For F1, F2 in ET , the problems

∂d((R
0 + ρ0)∂dΦ) = F1,

and 
∂2d(R)

ρ0 +R0
− ∂dR∂dR

0

(ρ0 +R0)2
= g′(ρ0 +R0)R+ F2,

R|xd=0 + r = 0.

have unique smooth solutions R,Φ in ET .

Proof. From the first equation we get

∂dΦ
k(x′, xd, t) = (R0 + ρ0)−1

∫ xd

∞
F1(x

′, r, t)dr.

Since the right hand side belongs to ET , another integration gives the unique solution in ET .
Note that the decay at infinity of Φ does not allow to prescribe its value at xd = 0.
Now R satisfies :  ∂d

(
∂dR

ρ0 +R0

)
= g′(ρ0 +R0)R+ F2,

R|xd=0 + r = 1.

This is a boundary value problem of the form (aX ′)′(s) = bX(s) + F (s), with a, b > 0, and F
exponentially decaying. The existence of an exponentially decaying solution is a direct conse-
quence of the change of unknown X̃ = eαsX -with some α small enough- and an application
of Lax-Milgram theorem.

To summarize, from (Φj)j≤k, (R
j , φj , rj)j≤k−1, we obtain Φk+1 by solving the first ODE

in (4.13) (lemma 4.4). Given Φk+1 the boundary condition in (4.12) is well-defined so we get
(φk, rk) with lemma 4.2, then from rk+1 we get the boundary condition to compute Rk+1 in
(4.13), using again lemma 4.4.

4.5 Comparison with other boundary conditions

Previous works adressed (for the nonlinear Schrödinger equation) the case of Dirichlet bound-
ary conditions φ|xd=0 = 0, ρ|xd=0 = 1 (Gui-Zhang [16]), and the case of Neumann boundary
conditions φ|xd=0 = 0, ρ|xd=0 = 1 (Chiron-Rousset [10]). Following this terminology, we la-
bel the boundary conditions considered here as “mixed Dirichlet-Neumann” The hierarchy of
corrector terms is as follows :

1. Dirichlet : R0 ̸= 0, Φ1 ̸= 0. Existence of the BKW expansion at any order for small
smooth data.

2. Neumann : R0 = Φ1 = Φ2 = 0, R1 ̸= 0, Φ3 ̸= 0. Existence of the BKW expansion at
any order for smooth data.

3. Mixed boundary conditions : Φ1 = 0, R0 ̸= 0, Φ2 ̸= 0. Existence of the BKW expansion
at any order for smooth data.
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The justification that Φ2 ̸= 0 in our case is merely a computation : the equation satisfied by
Φ2 is

∂d
(
(ρ0 +R0(xd))∂dΦ

2(xd))
)
= −∂d

(
R0(xd)xd∂

2
dφ

)
= F 2

1 ,

and F 2
1 is not zero.

Hence the first boundary layer term for the velocity is small for the mixed boundary conditions,
but not as small as in the Neumann case. While the mixed boundary conditions seem to lie in
between Dirichlet and Neumann in term of the strength of the boundary layers, it has similar
difficulty to Dirichlet since it contains R0 as a O(1) boundary layer term. More importantly,
the boundary conditions have no simple expression in the Schrödinger formulation. The use of
the Schrödinger formulation is a key point for the convergence analysis in both [16] and [10],
and this is what prevents us so far from proving the convergence of the BKW expansion to the
exact solution.
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