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Abstract
Biopsy information and protein Prostate-Specific Antigen (PSA) levels are the most robust information available to oncolo-
gists worldwide to diagnose and decide therapies for prostate cancer patients. However, prostate cancer presents a high 
risk of recurrence, and the technologies used to evaluate it demand more complex resources. This paper aims to predict 
Biochemical Recurrence (BCR) based on Whole Slide Images (WSI) of biopsies, Gleason scores, and PSA levels. A U-net 
model was used to segment phenotypic features and trained on images from the Prostate Cancer Grade Assessment 
(PANDA) database to segment tumorous regions from pre-processed and scored WSI of biopsies. Then, the model was 
tested on data from publicly available repositories achieving an Intersection over Union of 87%. Tissue features, Gleason 
scores, and PSA levels provided high accuracy and precision in classifying patients according to their risk of presenting 
recurrence, for any Gleason score sampled. The trained classifier model demonstrated a 79.2% relative accuracy, and a 
precision of 69.7% for patients experiencing recurrences before 24 months. Our results provide a robust, cost-efficient 
approach using already available information to predict the risk of BCR.

Keywords  Prostate cancer · Biochemical recurrence · U-Net architecture · Gleason score · Whole slide histopathology 
image · Hematoxylin and Eosin staining

1  Introduction

Prostate cancer diagnosis and treatment strategies are based on the architecture of tissue structures such as the Gleason 
score, and the blood levels of the protein Prostate-Specific Antigen (PSA). Biopsies and PSA levels are reliable technolo-
gies for oncologists due to their clinical utility [1]. Alternatives with higher specificity based on RNA biomarkers have 
emerged [2] but are expensive and require a temperature-controlled supply chain of reagents, specialized equipment, 
and skilled personnel.

Monitoring after therapy and during remission reveals that about 30% of men will experience biochemical recurrence 
(BCR) with diverse response approaches available [3]. However, in Latin America (LA), access to pathologists remains 
challenging [4], which hinders the early detection of recurrence increases the overall mortality rate, and broadens the 
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unequal access to cancer screening and follow-up [5]. Proposed molecular strategies [6] and investigations related to 
MRI images and Quantitative Ultrasound to predict clinical outcomes in prostate cancer patients [7, 8] offer valuable 
insights, yet their clinical implementation remains limited. The use of Whole Slide Imaging (WSI) to predict breast can-
cer recurrence has shown promising results [9], with an area under the receiver operating characteristic curve of 0.776, 
emphasizing the importance of using histological images for recurrence prediction in other cancers were glandular 
tissue structures are critical.

Therefore, we evaluated using Hematoxylin and Eosin (H&E) stained WSI from biopsies—the time-tested and cost-
effective technology for characterizing solid tumors—to predict BCR in prostate cancer. The emergence of digital pathol-
ogy has harnessed advanced artificial intelligence (AI) methods to analyze histological images, offering opportunities for 
enhanced diagnostic capabilities [10]. Given the shortage of experienced healthcare providers, cancer control in limited 
resource areas is overall inadequate and deficient [11]. Integrating AI methods into medical practices can improve per-
sonalized medicine by boosting clinical evidence and patient-clinician interaction in regions with limited resources [12].

Artificial Neural Networks (ANN) are commonly used for medical imaging segmentation research. For instance, Noor-
bakhsh et al. [13] trained a Convolutional Neural Network (CNN) model on 27,815 histological slides from 23 cancer 
types to highlight shared and distinct spatial behaviors within tumors across different cancers. Xu et al. [14] proposed 
an algorithm that segments glands in histological images using three CNN-based channels: Foreground–background 
segmentation, gland boundary detection, and gland localization. However, segmenting prostate glands has always been 
challenging due to their inherent heterogeneity and notable variation in appearance. Ren et al. [15] employed a CNN 
model with a superpixel segmentation method and obtained a glandular segmentation accuracy of 0.83. Nonetheless, 
these approaches only work well on clearly defined gland contours and single lumina. To address these issues, Salvi 
et al. [16] combined active contour and CNN to segment prostate glands in histological images, achieving a precision 
of 0.91, and detecting prostate glands with discontinuous and absent lumina. In addition, Qiu et al. [17] developed a 
pyramid semantic parsing network. Still, it was focused predominantly on a binary classification between non-tumorous 
and tumorous regions and performed poorly on contiguous glands or clusters of nuclei. Therefore, a model capable of 
validation using diverse databases, with a large dataset for robust training and testing, is needed to avoid overfitting 
and achieve an efficiently trained model.

Recently, deep learning models have been used to predict the presence of biomarkers, such as gene expression status, 
within segmented tissues of interest in histological images. These models also predict patient responses to treatments 
[18] and even their survival probability after surgery [19]. Nonetheless, most prognostic and diagnostic approaches only 
focus on final accuracy scores, neglecting the morphological features responsible for clinical manifestations. Foroughi 
pour et al. showed the relevance of correlating H&E-derived CNN features to biological phenotypes, whether these fea-
tures are specific to individual cancer types, or multiple cancers, especially in related tissue types [20].

Previous attempts to use WSI to predict the biochemical recurrence in prostate cancer focused on patients with high 
Gleason scores [21–23] but did not address the need to include and understand the role of morphological features in 
the recurrence. Certain methods [24] emphasize the anatomical features responsible for the recurrence through a CNN; 
however, the complex structure makes it unsuitable for clinical use in institutions with limited computational resources.

In this study, phenotype characteristics including morphology and spatial arrangement of prostate glands, are col-
lected from histological images, through an accessible and easy-to-operate U-net model. Then, these characteristics are 
processed to create a classifier for patient’s stratification based on their risk of recurrence by investigating informative 
regions within class labels. We propose using WSI regions of interest and a cost-effective deep learning model to seg-
ment lumen, glands, and nuclei, as well as their respective features, from low Gleason to more disorganized phenotypes, 
reflecting that higher Gleason scores correspond to less organized glandular structures.

2 � Materials and methods

2.1 � Dataset

The deep learning model U-net was trained and tested with whole slide H&E-stained prostate pathology images from 
two distinct sources. The training set was constructed from prostate biopsies obtained from the Prostate Cancer Grade 
Assessment (PANDA) Challenge (https://​www.​kaggle.​com/​compe​titio​ns/​prost​ate-​cancer-​grade-​asses​sment), hosted 
by Kaggle Inc., and accepted for the MICCAI 2020 conference. Diagnostic slides for the testing set were sourced from 
The Cancer Genome Atlas (TCGA) web portal (https://​www.​cancer.​gov/​tcga). In this study, 800 WSI were employed for 
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the training process, while 500 WSI for testing. Within the TCGA dataset, each WSI was accompanied by Gleason pattern 
masks and the ground truths Gleason scores were also provided by TCGA based on patient reports. WSI images were 
equipped with corresponding masks graded by multiple pathologists and associated Gleason scores from the PANDA 
dataset. The training dataset included 200 patients graded with a Gleason score of 6, 200 with a Gleason score of 7, 150 
with a Gleason score of 8, 150 with a Gleason score of 9, and 100 with a Gleason score of 10. Most of the WSI in the PANDA 
dataset correspond to patients with Gleason 6 and 7. However, when building the model, it was necessary to have a bal-
anced dataset to warrant the reproducibility of the model. Therefore, we picked WSI including 200 patients graded with 
a Gleason score of 6, 200 with a Gleason score of 7, 150 with a Gleason score of 8, 150 with a Gleason score of 9, and 100 
with a Gleason score of 10. A complete list of the data files used from the PANDA dataset is detailed in Supplementary 
Data. The patients are selected randomly according to their Gleason score, where one patient coincides with one WSI. 
The testing dataset consisted of the 500 WSI from the TCGA web portal (Table 1). In addition to these datasets, another 
dataset comprising 110 H&E-stained images consisting solely of nuclei, from the 2018 Data Science Bowl Competition 
(https://​www.​kaggle.​com/c/​data-​scien​ce-​bowl-​2018), was used as an isolated experiment in the training process to 
verify epithelial cell segmentation. Furthermore, as a reference standard, ground truths were obtained from an experi-
enced oncologist, outlining glands, lumen, and nuclei for 230 tiles varying from Gleason 6 to 10. The data and images 
downloaded from public databases are available in Supplementary Materials.

The subsequent BCR classification tasks were trained and tested on 150 patients only from the TCGA dataset. 
Amongst the 500 TCGA patients, 99 patients present BCR, from whom 71 with the selected genes. To balance the set, 
79 patients without BCR were randomly chosen with similar disease-free time. The ensuing set is divided into 10 k-fold 
cross-validations.

2.2 � Whole slide image preprocessing

The average file size of a WSI exceeds 1 GB, primarily due to its large image size. To address this, we utilize the process 
from Deron Eriksson’s Github repository “python-wsi-preprocessing” (https://​github.​com/​deron​eriks​son/​python-​wsi-​
prepr​ocess​ing), initially developed for the TUPAC16 challenge [25]. First, the image size is reduced by dividing the height 
and width by 32. Starting with an initial image size, for example, 85656x71305 pixels, we obtain a scaled-down image 
of 2676x2228 pixels. Additionally, to not hinder the detection of phenotypic features, disturbances like pen-marked 
annotations are removed. The data undergoes a combination of filters to isolate the tissue and discard the background, 
like tissue segmentation filtering.

To deal with the domain shift between different datasets, a histogram equalization algorithm is applied to adjust 
the contrast between the distinct sets and staining variability. Then, the filtered slides are split into tiles, and the 
same tiles are resized. Once sliced, a score is assigned to each tile according to color characteristics and tissue per-
centage to select the tiles with the highest score for analysis. The scoring formula considered the tissue percentage, 
the saturation value, the ratio between hematoxylin and eosin staining, and the quantity of tissue (to give more 
weight to tiles with more tissue). This score is then compared by superposing the obtained scoring heatmap with 
the PANDA masks (Figure 1). To keep only the tiles with tumorous tissue, five tiles were retrieved by WSI/patient with 
a size of 2048x2048 pixels, to enclose most segmented carcinoma while discarding background and stroma, which 
could otherwise add noise to the diagnosis process.

Variations in the staining process or digital scanning can affect the color intensities of the images and subse-
quently cause stain disparity between the tiles, potentially affecting future segmentation results. The collected tiles 

Table 1   UNET dataset 
structure for phenotype 
segmentation models

Organ segmenta-
tion

Training Testing

Glands PANDA: 200 WSI (Gleason 6) + 200 WSI (Gleason 7) + 150 WSI (Glea-
son 8) + 150 WSI (Gleason 9) + 100 WSI (Gleason 10)

TCGA: All of 
the 500 WSI 
(Gleason 6 
to 10)

Nuclei 2018 Data Science Bowl: 77 H&E images 2018 Data 
Science 
Bowl: 33 
H&E images

https://www.kaggle.com/c/data-science-bowl-2018
https://github.com/deroneriksson/python-wsi-preprocessing
https://github.com/deroneriksson/python-wsi-preprocessing
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were color-normalized using the Reinhard method from the HistomicsTK library to prevent artifacts. This method 
transforms the color characteristics of each tile into a specific grade or standard defined by the mean and standard 
deviation of the target image. By applying the color conditions from the target image (displayed in Figure 2) to a 
source image (tile), a normalized image is produced, as depicted in Figure 2.

2.3 � Application of the U‑net model to segment phenotypic components from H&E images

We adopted the U-net model proposed by Ronneberger et al. [26] (Figure 3). This model provides a high-speed and 
high-accuracy method suitable for detecting and enhancing organized and disorganized tissue structure. These sets 
(after the preprocessing step) are transferred into Hierarchical Data Format files (HDF5) since they can efficiently 
support complex and heterogeneous data.

The U-Net model architecture, as depicted in Figure 1, comprises encoder and decoder paths. It initiates with a channel 
depth of 32 at the first level and progressively doubles this depth in five subsequent stages, ultimately reaching 1024 at 
the bottom level. This channel depth is then reduced back to 32 in the decoder part.

The model consists of six consecutive levels in each path, featuring a sequence of operations: 3 × 3 convolutions 
(represented by green arrows) followed by rectified linear units (ReLU), 2 × 2 max pooling (red arrows), up-convolution 

Fig. 1   Tiles retrieved from 
the same image. a Whole 
Slide Image from PANDA set. 
b Corresponding mask from 
the PANDA set highlighting 
the tumorous region. c Tiles 
scoring heatmap from scoring 
formula with the overlaid 
mask. High tissue percentages 
(≥ 80%) are shown with green 
tiles, medium tissue per-
centages (≥ 10% and < 80%) 
with yellow tiles, low tissue 
percentages (> 0% and < 10%) 
with orange tiles, and no tis-
sue (0%) is represented with 
red tiles

Fig. 2   Color staining variance 
and normalization architec-
ture
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(light blue arrows), and feature concatenation (light yellow rectangles). The last layer employs a 1 × 1 convolution (purple 
arrow) to generate a single feature map representing the prediction results. Because of the large image sizes of 2048 × 
2048 pixels, six levels were chosen in the U-Net model to avoid overlooking small phenotype elements by the architecture.

The model was implemented with an SGD optimizer, a learning rate of 0.1, a weight decay of 0.0005, and a momentum 
of 0.9. For each model, datasets were shuffled and divided into 90% training and 10% testing. During the training and 
testing phases, data augmentation was performed by horizontal and vertical flips, random cropping, and rotation. The 
model was evaluated during the training and testing phase with Binary Cross Entropy, tracing incorrect labeling of the 
data label, accuracy, and Binary Intersection over Union (IoU) metrics. The IoU was calculated using the formula: IoU = 
true − positives/(true − positives + false − positives + false − negatives).

Also, the segmentation results were compared to contours defined by an experienced oncologist. This involved quan-
tifying false positive (FP), true positive (TP), false negative (FN), and true negative (TN) outcomes concerning the ground 
truth contour. True positives (TP) corresponded to areas segmented as glandular by our approach, which were also 
considered glandular in the ground truth. True negatives (TN) were regions labeled as background by our method and 
the ground truth. Conversely, false negatives (FN) covered areas not segmented by our approach but designated as 
part of the gland by the ground truth. False positives (FP) indicated regions identified as glands solely by our approach. 
The segmentation accuracy was quantified using the IoU, with a value of 1 representing a perfect match between the 
ground truth and our model’s predictions. The model was trained for two days on a laptop with an Intel Core i5 processor.

2.3.1 � Segmentation of the glands

The U-net model underwent 100 training epochs, using the 4000 tiles from the 800 WSI and their matching masks, stored 
as HDF5 files. Individual tiles are associated with their corresponding BCR label and Gleason score. Consequently, this 
model can identify glands across different cancer stages, ranging from Gleason score 6 to Gleason score 10, with an 
accuracy of 85% when evaluated on 2500 tiles from the TCGA testing set. Figure 4 illustrates an example of the segmenta-
tion results. Ground truth masks were compared with predicted masks using a confusion matrix. From their dispositions, 
prostate glands can be displayed in adjacency, and won’t be distinguished independently by the model. Glands will then 
be reconstructed from the suspected lumen and by color intensity.

Fig. 3   U-net architecture to segment phenotypic components from WSI
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2.3.2 � Segmentation of the nuclei

The same U-net architecture was used to segment nuclei in the small dataset of 110 images (Table 1). The model was 
trained on 60 H&E-stained images and validated with 50 histological samples. Data augmentation was applied to a subset 
of the training samples, including rotation, shifting, and deformation using a displacement vector [26]. The displacement 
result was then sampled by Gaussian distribution and computed using bicubic interpolation. The U-net model, trained 
to identify and segment the nuclei, was tested on H&E-stained and solely Hematoxylin-stained images (Figure 5). The 
Hematoxylin-stained images were generated through a color deconvolution process applied to each of the 110 H&E-
stained images. Although the Hematoxylin model exhibits a slightly lower accuracy of 76% compared to the 83% accuracy 
of the H&E model, it emphasizes the segmentation of darker stained nuclei.

While these results are moderately accurate, subsequent processes like gland separation and reconstruction depend 
on precise nuclei segmentation. Recognizing this, the focus turns to resolving merged nuclei, involving the separation of 
nuclei recognized as one (Figure 5). A Distance Transform Watershed approach [27] was used to segment round objects 
like nuclei. The outcomes of this process, illustrating the successful separation of previously merged nuclei, and indicat-
ing a reduction in nuclei area, are shown in Figure 5. Nonetheless, due to the relatively stable nuclei size, nuclei density 
can be calculated based on the number of instances within the slide.

2.3.2.1  Detection of the lumina  Lumina differs from the rest of the carcinoma based on color characteristics. Nonethe-
less, the previously mentioned datasets do not contain slides with detailed lumen contours as seen in Figure 6. Condi-
tions are applied to the post-model segmented glands to highlight the lumina while discarding artifacts with similar 
color characteristics.

The U-net model was trained to detect the lumen inside the glands, by considering them part of the background and 
creating a new contour inside the glands. The location of the lumen is crucial when distinguishing the lumen from the 
background. By using the hierarchy and contour tools from the Open Computer Vision library, it was possible to extract 
the lumina. External and internal contours were extracted from the U-net output. Then, when talking about a gland with 
a lumen, the presence of internal contours also called child contour is required, while the outer contour is known as the 
parent contour. The hierarchy of the glands is expressed according to forms like if the contour has or has not internal/
child contour, or if the contour has an external/parent contour.

While looping through the contours, only those with a parent contour are considered as lumen, provided that the 
region size is greater than 100 pixels and, the ratio of the number of pixels with intensity over 180 (from an intensity 
range of 0 to 255) to the total number of pixels exceeds 0.65. For lumina at the edges, their contours were not considered 
child contours (Figure 6). Instead, an external envelope known as Convex Hull, was implemented to simultaneously cover 
the gland and prospective lumen. While creating the Convex Hull, some stroma was incorporated into the envelope. To 
retain only the lumen and discard stroma, the convex hull and the actual glands were subtracted (Figure 6). Then, the 
same aforementioned size and color conditions were applied to retain the lumen, resulting in a final gland segmenta-
tion with lumen (Figure 6).

In tiles with a high Gleason score, distinguishing glands becomes challenging. The primary indicator of a gland is the 
presence of cytoplasm between the lumen and the layer of nuclei, so the contour should be detected, otherwise the 
lumen should be discarded. To detect the homogeneity and dissimilarity of the tissue around the lumen, it is important 
to consider cases where the cytoplasm layer is too thin to extract this information. To address this, the segmented nuclei 
result from the U-net model was subtracted from the gland segmented result (Figure 7). The Euclidean distance transform 
was then calculated using the results of the subtraction. Bright pixels in the distance transform corresponded to the cen-
tral regions of the glands when nuclei were organized as an external layer, while darker pixels indicated a nuclear region. 

Fig. 4   Results from U-net 
training and testing. a Seg-
mentation output. b Associ-
ated predicted mask
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Pixels with an intensity above 0.8 in the normalized distance map were kept and compared to the detected lumen. If the 
regions labeled as lumen by the distance transform fitted entirely inside the lumen identified previously, the lumen was 
retained; otherwise, it was discarded.

In Figure 7, only one region met the distance transformation requirement but did not match any lumen detected 
via size and shape conditions, leading to its disposal. No lumen was identified in this area, so the presence of a cluster 
of nuclei was assumed.

Fig. 5   Nuclei segmenta-
tion outputs were obtained 
using the trained U-Net 
model. a H&E-stained tiles. b 
U-net segmentation out-
put for H&E-stained tiles. c 
Hematoxylin-stained tiles. d 
U-net segmentation output 
for Hematoxylin-stained 
tiles. e Adjacent nuclei are 
segmented as a single object. 
f Masks of the adjacent nuclei 
are segmented as a single 
object. g Separated nuclei 
resulting from the watershed 
algorithm

Fig. 6   Detection of edge 
lumen. a Gland segmented 
from the U-net model without 
lumen. b Convex hull subtrac-
tion consisting of stroma and 
lumen. c Final gland segmen-
tation with lumen
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2.4 � Reconstruction of the glands from the lumina

Following the steps undertaken, nuclei, glands, and lumen have been properly detected and segmented. However, 
in some cases, closely situated irregular glands are erroneously considered a single unit due to their proximity. 
Therefore, a reconstruction process was initiated to separate these merged glands. Before reconstruction, the stroma 
within the gland’s region was removed from the RGB images (tiles). This was accomplished by applying a precise 
color constraint within the HSV color space, focusing solely on color intensity while disregarding color components. 
The image was then converted to the HSV color space. Next, the nuclei and lumina were subtracted, and pixels in 
the second channel of the image with color intensity above 0.35, indicating stromal presence, were deleted. A mask 
with filtered stroma was generated and applied to the RGB color space images (Figure 8).

Assuming that glands are organized around a lumen followed by a layer of nuclei, the Delaunay triangulation [28] 
method was employed to link the center of the perceived lumen to the center of the nuclei detected on the image. 
Only the nuclei directly connected to the center of the lumen were retained and considered as the external layer 
of the gland. Importantly, the Delaunay triangulation required a starting point distinct from the lumen’s center. In 
this context, multiple points, the corners of the lumen, served as points of departure of the Delaunay. These lumen 
corners were detected using the Harris Corner Detection algorithm [29].

To enhance the accuracy of gland reconstruction, the slides were segmented based on their pixel values via Simple 
Linear Iterative Clustering (SLIC) [30]. SLIC clusters pixels with similar intensity and proximity in the image, so SLIC 
segmentation was performed with 1400 segments. Glands were reconstructed via Geodesic Active Contour, involving 
an evaluation of pixel intensity surrounding the lumen. This method requires an initial reference point to construct 
a closed contour for the region of interest. Commencing from the lumen, the contour extended until the pixel color 
intensity matched the nuclei’s, thereby establishing the gland boundaries based on their nuclei layer, which served 
as the stopping threshold for the active contour.

Given significant intensity variations in biopsy images, potentially affecting the final detected contour by the 
geodesic model, the filtered RGB tiles were dilated and eroded, to enhance edge contours while smoothing internal 
pixels (Figure 8). Subsequently, these treated tiles were processed with a Geodesic Active Contour of 0.25 threshold. 
Nonetheless, as these contours were computed based on the dilated and eroded representations of the image, the 
final contour on the unaltered RGB slide might not fully encompass the nuclei layer (Figure 8). The active contour 
edge was superposed onto the pre-processed SLIC segmentation to address this. The average color intensity of the 
SLIC region was retrieved, and segments with an average pixel intensity below 0.20, corresponding to the color of 
stained nuclei, and crossed through by the active contour, were retained and integrated into the final area of interest.

2.5 � Feature extraction and classification

After gland reconstruction, 37 features were extracted, as presented in Table 2. These features encompass various 
aspects of gland architecture conventionally associated with prostate cancer. Additionally, supplementary pheno-
type components were collected, including features related to lumen quality, structural attributes, tumor volume, 

Fig. 7   Final lumen classification from distance transformation. a The region of interest is classified as lumen from size and color. b Gland 
segmentation results with subtracted nuclei segmentation results. c Distance transformation. d The actual area labeled as lumen from dis-
tance transform
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nuclei propagation, and stroma quantification. Each feature was discretized into five intervals to make these features 
compatible with our classification models. We also included the Gleason score in our feature set.

These features were fed into three classifiers -Support Vector Machine, logistic regression, and decision tree- to 
predict BCR and relapse time. The classifiers were selected over more recent deep-learning models for their high 
interpretability and transparency in classification tasks. Additionally, their ability to be integrated in clinical settings, 
while operating on standard hardware, and maintaining high performance, made them the preferred choice. The 
models were evaluated using accuracy and precision. Accuracy (TruePositives+TrueNegatives)/(TruePositives+True
Negatives+FalsePositives+FalseNegatives) measures the overall model performance, while precision (TruePositives/
(TruePositives + FalsePositives) assesses the model’s ability to make precise positive predictions.

3 � Results

The juxtaposition of the ground truth from a medical expert and the alleged segmentation results, visualized in Fig. 9, 
yielded a precision rate of 81% across 46 patients (230 tiles) and an Intersection over Union (IoU) of 0.87. This confusion 
matrix visualization is derived from the Morphological Geodesic Active Contours from the corner of the lumen super-
posed with SLIC 1400 segments.

Now, shifting our focus to classifier results, the precision of the 3 selected classifiers was compared utilizing extracted 
features alongside the Gleason score (Table 3). Regarding BCR prediction, the logistic regression model excels with a clas-
sification average precision of 75%, to predict whereas the patients according to their histological attributes will present 
a risk of BCR. The SVM and decision tree models achieve 68% and 67.5% average precision, respectively. Consequently, 
logistic regression stands out as the most effective classifier for BCR prediction, correctly classifying 169 out of 225 tiles 
with 75.2% accuracy.

To improve overall survival, our analysis delves deeper, stratifying patients with BCR into two equal groups: those expe-
riencing BCR within 24 months and after 24 months. The 24-month cut-off is a statistical necessity driven by the dataset’s 
constraints. Balancing the dataset ensured that the model could train effectively, given the limited recurrence cases while 
reducing class imbalance bias and optimizing the model’s ability to generalize predictions across the limited dataset.

In these subgroups, precision results for each classifier are shown in Table 3. As before, the logistic regression model 
comes out on top with a classification average precision of 62.6%, while the SVM and decision tree models achieve 59.9% 
and 60.95% average precision, respectively. The logistic regression correctly classifies 235 out of 376 tiles with 62.5% 
accuracy. Logistic regression analysis of phenotypic attributes can comprehensively predict the risk of BCR in a patient 
cohort. In cases where recurrence is predicted, the model can also estimate when the BCR is most inclined to occur, 
facilitating the timely initiation of active surveillance.

These results reaffirm logistic regression as the superior choice for BCR and time relapse prediction when phenotypic 
features and Gleason scores are utilized as inputs. Therefore, only logistic regression was considered in the following 
results, as it provided a better classification. The weight assigned to each attribute reflects its significance in predicting 
recurrence. A higher positive value indicates a major impact on predicting the risk of biochemical recurrence.

This signature of extracted features and Gleason scores can also be seen in Fig. 10. Notably, the attributes Gleason 
scores of 8, 9, and 10 are correlated with positive weights, reflecting the correlation between risk of recurrence and can-
cer aggressiveness. The rest of the attributes with positive weights, such as the value of the maximum ratio contour to 
whole tiles, number of glands fused, morphology glands means, and the high number of lumina discarded, coincide with 

Fig. 8   Reconstruction of the 
glands from detected lumen 
via Geodesic Active contour. 
a Filtered Image in RGB color 
space. b Dilation and erosion 
of RGB image with filtered 
stroma. c Active contour with 
0.25 threshold
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juxtaposed, non-circular shaped glands, and clusters of nuclei including former lumina. Negative weighted attributes 
indicate that tiles presenting BCR enclose a broad number of clusters of nuclei, contours with a high density of nuclei, 
and glands with small lumina with non-circular morphology.

Next, to further enhance BCR prediction, PSA levels were added to the model, already filled with the phenotypic fea-
tures and Gleason scores. The inclusion of PSA data improved the BCR prediction to a 79.2% accuracy, with a precision 
of 69.7% for BCR within 24 months and 63.1% for BCR beyond 24 months (Table 4).

4 � Discussion

The final logistic model produced an average accuracy of 71% in classifying patients at higher risk of presenting 
BCR, using available clinical data in cancer diagnosis without additional diagnostic exams or extra computational 
expenditure. Our findings indicate that adding PSA levels to the extracted phenotypic features and the Gleason score 
improves the accuracy of BCR prediction. This suggests that when the Gleason score is included as a phenotypic 
feature, that is not enough to predict patient outcomes.

Prior research [31–33], consistently supports the association between more aggressive cancer (higher Gleason 
scores) and an increased risk of BCR (Fig. 10). Images from patients with a Gleason score of 7 are problematic because 
it is a transitional category that depends mostly on the predominant pattern [21]. While no explicit distinction was 
made between Gleason 3 + 4 and Gleason 4 + 3 in this study, this potential oversight was addressed by incorporating 
morphological attributes independent of the Gleason score, such as glandular structure, lumina organization, and 
nuclei density. By leveraging these phenotypic features, the model can accurately predict BCR risk for patients with 
Gleason 3 + 4 or 4 + 3, effectively canceling the need for subgroup differentiation within the Gleason 7 category. This 
approach allows for a more robust prediction of BCR risk by focusing on histological patterns and tumor morphology, 
rather than solely relying on Gleason score subcategories.

While Gleason scores have been a predominant focus, our data underscores the value of PSA, especially when aim-
ing for higher accuracy. Although some studies suggest a strong correlation between PSA and tumor aggressiveness 
(indicated by Gleason scores) [34, 35], contrasting reports suggest that individuals with high Gleason scores but low 
PSA levels may have pathologic or genetic variants that render them less responsive to current therapies [36]. In this 
context, our results emphasize PSA as a valuable attribute for high accuracy with high Gleason scores, suggesting that 
PSA is a dominant predictor. Further tests are required to assess the impact of PSA on the stratification of patients.

Apart from biopsies, PSA tests are conducted when prostate discomfort is expressed. A model integrating pheno-
typic features, Gleason score, and PSA could enhance accessibility for patients in resource-limited settings, potentially 
becoming a systematic process in prostate cancer diagnosis, ultimately improving life expectancy. In conjunction with 
the classifier, we propose a computer-aided detection system for prostate cancer to assist oncologists in their work, 
optimize the whole H&E slide scanning process, and facilitate the identification of tumorous architecture. Challenges 
resulting from histological variability and staining differences are addressed through meticulous preprocessing, 
using a combination of filters to erase artifacts (markers of any color), increase contrast (contrast stretching), and 
conversion to different color spaces. The mentioned pre-process phase can benefit pathologists by enhancing tissue 
readability through different organs and improving image quality.

The proposed U-net model provides a significant advantage in the segmentation of prostate adenocarcinoma. It 
is capable of segmenting glands without visible lumen, which is a feature that has often been overlooked or failed 
to be segmented by previous models [14, 15, 37], but considering that feature has also been uncommon [13]. Its 
robustness and ability to be generalized have also been proven by the valid segmentation of elements of different 
sizes and from multiple sources. The model performance remained high, regardless of the source of the training data.

Implemented DeepLabV3 models showed great results in gastric cancer segmentation [38] but were unfit on 
invariant stain patterns. Higher segmentation performance can potentially be achieved with Vision Transformers 
(ViT) algorithms [39], either alone or in combination with a CNN [40]. Nevertheless, current ViT models require large 
annotated datasets and display insufficient interpretability [41]. The U-net model, with its straightforward implemen-
tation and efficient training, demonstrates the substantial potential for transfer learning across various image sources.

Improved U-net models have recently been applied for medical image segmentation [42, 43]. Notably, the U-net 
method introduced earlier is intelligible for medical professionals [44]. Its manageable and customizable implemen-
tation allows for adjusting the kernel size and number of layers, according to the type and source of the sample, 
reducing the risk of overfitting. This adaptability provides pathology specialists in LA with a wider range of operations. 
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Its highly adaptable architecture can easily be adapted and modified to accommodate tasks and images of different 
scales while ensuring simple transfer learning integration. Spatial context and subtle details are preserved in highly 
detailed images, specifically histological images, as a result of the U-net encoder-decoder structure while trainable 
with limited labeled data. The shallow depth enables its training on machines with restricted computational resources 
and limited GPU capacity, consequently more feasible, realistic, and manageable for pathologists in LA, compared 
to more recent architectures.

Increasing the number of tiles of higher Gleason scores and, consequently, the spread of a tumor, may enhance 
classifier accuracy. This increased predictive power could lead to significant discoveries regarding the origin of recur-
rence. For instance, elements of the extracellular matrix (ECM) responsible for tissue and architectural structure, along 
with morphological changes affecting its function, can result in increased proliferation of cancer cells and metastasis 
development [45]. A strong link between ECM and BCR in prostate cancer had previously been underlined [46], the 
methodology could therefore benefit from investigating anatomical structure related to ECM and its influence on 
its structural support to surrounding cells. Although collagen, a predominant ECM component, was not considered 
in our methodology, it has been emphasized that its features, such as fiber straightness and density, may predict 
malignant potential in breast cancer [47]. Moreover, there have been advancements in collagen fiber segmentation 
in WSI [48, 49]. As prostate diagnosis and prognosis mainly rely on gland structure, stroma structures are often over-
looked. Considering and collecting collagen changes in the tissue [50] might facilitate the prediction of the time of 
recurrence. Finally, it may be possible to predict the exact time of recurrence by including more patients with BCR 
in the investigation, as the TCGA data only included 75 cases of recurrence.

Our study significantly contributes to the existing knowledge in this area. Unlike limited training sets [51], our 
model was developed using a diverse range of specimens from the cohort, graded from Gleason 5 to 10. We also 
extracted and examined the percentage of tumor volume as a predictor for early BCR in high-risk patients. Further-
more, our approach goes beyond the Gleason pattern by incorporating information on nuclei density and spatial 
data as predictors for BCR. Since we used attributes already ubiquitous in clinical practice, we believe this approach 
holds great promise for improving BCR prediction in clinical settings with limited resources. The proposed solution 
can significantly shorten the often lengthy waiting times for diagnosis and provide superior histopathological assess-
ments, which are scarce in LA [52]. Computer-aided software (CAD) can alleviate the limited number and unequal 
distribution of highly-trained healthcare providers [53], thus enhancing BCR detection. Until now, no methodolo-
gies have been developed in the literature to provide adequate and evenly distributed access to the technologies 
required to predict the risk of prostate BCR and its possible treatment in LA [54]. This is consistently restricted by 
the high cost of cancer treatment and insufficient training [55]. The implementation of the solution can be hindered 
by the regulation and standard on medical devices set by the country, to ensure patients’ data privacy, efficacy, and 
reliability of the suggested tools. Regular maintenance and updates are required to warrant the accuracy of the 
models but might be incompatible with current electronic systems used in clinical institutions. Constant training 
and familiarity of personnel, updates, and integration of the AI-driven solution can strain clinical institutions with 
limited resources. Priorities may shift away from implementing modern technological solutions and instead favor 
using established devices.

The limitations of this study are primarily associated with the restricted dataset. Specifically, due to the stringent 
patient data requirements, including PSA levels, H&E WSI, and Gleason scores, we were compelled to rely solely on the 
TCGA database for comprehensive information. Unfortunately, this database contained fewer than 80 cases with BCR. 
Therefore, to strengthen the proposed model, the expansion of the dataset is needed, by incorporating biopsies and 
clinical information from multiple healthcare centers. Incorporating radical prostatectomy specimens could also improve 
the predictive power of the model by allowing it to account for spatial variations and tumor distribution across the entire 
prostate. Furthermore, broadening the spectrum of extracted phenotypic features, particularly those related to histologi-
cal structures like epithelium or ECM components such as collagen, may bolster our predictive results.

Moreover, the study primarily relies on biopsy characteristics, such as Gleason scores and histological features, without 
incorporating postoperative pathological characteristics for patients treated with radical prostatectomy. Variables such 
as surgical margin status, extraprostatic extension, and seminal vesicle invasion are critical for stratifying recurrence risk 
and predicting overall mortality. Recent evidence has demonstrated that positive surgical margins significantly increase 
the risk of BCR and prostate cancer-specific mortality, particularly in conjunction with other adverse pathological fea-
tures such as extraprostatic extension and high Gleason scores [56, 57]. Furthermore, the extent and location of positive 
surgical margins are also highly prognostic. These findings underscore the importance of integrating pathological data 
into predictive models, especially for patients treated surgically.
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WSI has the potential to stratify patients at risk of BCR during the diagnostic phase or prior to initiating treatment. By 
identifying patients who may benefit from more aggressive therapies or closer post-treatment monitoring, this approach 
could significantly optimize treatment strategies. The predictive information provided by the model demonstrates utility 
both before and after definitive treatment. Pre-treatment, the model’s ability to estimate recurrence risk could inform 
therapeutic decision-making, particularly in scenarios where treatment choices, such as surgery versus radiotherapy, 
hinge on recurrence probabilities. Post-treatment, for patients in remission, the model could assist in tailoring follow-
up schedules and interventions, potentially facilitating earlier detection of recurrence risks compared to conventional 
methodologies. Although the development of simplified AI workflows compatible with less expensive hardware is pro-
posed, WSI’s clinical utility remains largely constrained to institutions with the infrastructure necessary to implement 
this technology.

A method to phenotypically characterize prostate cancer histopathology images assigned Gleason scores 6 up to 10 
is presented. We show evidence that specific image features, Gleason scores, and PSA levels, improve the prediction of 

Table 2   Phenotypic features retrieved according to our methodology

Phenotypic features Approach

Number of glands without lumen Total number per tile
Number of lumina discarded Total number per tile
Number of U-net contours with more than one lumen (fused glands & high Gleason) Total number per tile
Number of U-net contours with one lumen (organized tissue & low Gleason) Total number per tile
Morphology of the glands Variance of the distance between the center of the 

lumen and the membrane of the reconstructed 
glands

U-net contour area Mean/variance/minimum/maximum
The ratio between the U-net region area to the total image area Mean/variance/minimum/maximum
The density of nuclei in a cluster of nuclei Mean/variance/minimum/maximum
The density of stroma in a cluster of nuclei Mean/variance/minimum/maximum
Ratio lumen area to U-net contour area Mean/variance/minimum/maximum
The ratio number of lumina discarded to the total lumina in contour Mean/variance/minimum/maximum
Ratio reconstructed area to U-net contour Mean/variance/minimum/maximum

Fig. 9   Confusion matrix visu-
alization with Morphological 
Geodesic Active Contours 
from lumen. Color coding 
employed: magenta for False 
Positives (FP), yellow for False 
Negatives (FN), cyan for True 
Positives (TP), and black for 
True Negatives (TN)

Table 3   Precision comparison 
among the three distinct 
classifiers of BCR and time of 
recurrence prediction

Logistic regression SVM Decision Tree

With BCR 0.740 0.69 0.70
Without BCR 0.76 0.67 0.65
0—24 months 63.7 60.1 61.7
 > 24 months 61.5 59.7 60.2
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biochemical recurrence. This method offers a cost-efficient solution for implementation in healthcare centers in rural 
areas of LA, providing a valuable tool for biochemical recurrence risk prediction.

Fig. 10   Phenotypic features and Gleason scores with their respective weights are involved in the logistic regression signature to predict the 
risk of presenting recurrence

Table 4   Results when adding PSA levels to the phenotypic data and Gleason scores to predict BCR and time of recurrence in months

With BCR Without BCR 0–24 months  >24 months

Precision 0.730 0.750 0.697 0.631
Accuracy 0.792 0.620
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