
HAL Id: hal-04942529
https://hal.science/hal-04942529v1

Preprint submitted on 13 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Forecasting time series with constraints
Nathan Doumèche, Francis Bach, Éloi Bedek, Gérard Biau, Claire Boyer,

Yannig Goude

To cite this version:
Nathan Doumèche, Francis Bach, Éloi Bedek, Gérard Biau, Claire Boyer, et al.. Forecasting time
series with constraints. 2025. �hal-04942529�

https://hal.science/hal-04942529v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Forecasting time series with constraints

Nathan Doumèche NATHAN.DOUMECHE@SORBONNE-UNIVERSITE.FR
Sorbonne University, EDF R&D

Francis Bach FRANCIS.BACH@INRIA.FR
Inria, ENS, PSL Research University

Eloi Bedek ELOI.BEDEK@EDF.FR
EDF R&D

Gérard Biau GERARD.BIAU@SORBONNE-UNIVERSITE.FR
Sorbonne University, IUF

Claire Boyer CLAIRE.BOYER@UNIVERSITE-PARIS-SACLAY.FR
Université Paris-Saclay, IUF

Yannig Goude YANNIG.GOUDE@EDF.FR

EDF R&D, Paris-Saclay University

Abstract
Time series forecasting presents unique challenges that limit the effectiveness of traditional ma-
chine learning algorithms. To address these limitations, various approaches have incorporated
linear constraints into learning algorithms, such as generalized additive models and hierarchical
forecasting. In this paper, we propose a unified framework for integrating and combining linear
constraints in time series forecasting. Within this framework, we show that the exact minimizer
of the constrained empirical risk can be computed efficiently using linear algebra alone. This ap-
proach allows for highly scalable implementations optimized for GPUs. We validate the proposed
methodology through extensive benchmarking on real-world tasks, including electricity demand
forecasting and tourism forecasting, achieving state-of-the-art performance.
Keywords: Physics-informed machine learning, constraints, hierarchical forecasting, transfer
learning, load forecasting, tourism forecasting

1 Introduction

Time series forecasting. Time series data are used extensively in many contemporary applica-
tions, such as forecasting supply and demand, pricing, macroeconomic indicators, weather, air
quality, traffic, migration, and epidemic trends (Petropoulos et al., 2022). However, regardless
of the application domain, forecasting time series presents unique challenges due to inherent data
characteristics such as observation correlations, non-stationarity, irregular sampling intervals, and
missing values. These challenges limit the availability of relevant data and make it difficult for
complex black-box or overparameterized learning architectures to perform effectively, even with
rich historical data (Lim and Zohren, 2021).

Constraints in time series. In this context, many modern frameworks incorporate physical con-
straints to improve the performance and interpretability of forecasting models. The strongest form
of such constraints are typically derived from fundamental physical properties of the time series
data and are represented by systems of differential equations. For example, weather forecasting
often relies on solutions to the Navier-Stokes equations (Schultz et al., 2021). In addition to defin-

©2024 Nathan Doumèche, Francis Bach, Eloi Bedek, Gérard Biau, Claire Boyer, Yannig Goude.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

ing physical relationships, differential constraints can also serve as regularization mechanisms. For
example, spatiotemporal regression on graphs can involve penalizing the spatial Laplacian of the
regression function to enforce smoothness across spatial dimensions (Jin et al., 2024).

However, time series rarely satisfy strict differential constraints, often adhering instead to more
relaxed forms of constraints (Coletta et al., 2023). Perhaps the most successful example of such
weak constraints are the generalized additive models (GAMs, Hastie and Tibshirani, 1986), which
have been applied to time series forecasting in epidemiology (Wood et al., 2017), earth sciences
(Augustin et al., 2009), and energy forecasting (Fasiolo et al., 2021). GAMs model the target
time series (or some parameters of its distribution) as a sum of nonlinear effects of the features,
thereby constraining the shape of the regression function. Another example of weak constraint
appears in the context of spatiotemporal time series with hierarchical forecasting. Here, the goal is to
combine regional forecasts into a global forecast by enforcing that the global forecast must be equal
to the sum of the regional forecasts (Wickramasuriya et al., 2019). Although this may seem like a
simple constraint, hierarchical forecasting is challenging because of a trade-off: using more granular
regional data increases the available information, but also introduces more noise as compared to the
aggregated total. Another common and powerful constraint in time series forecasting arises when
combining multiple forecasts (Gaillard et al., 2014). This is done by creating a final forecast by
weighting each of the initial forecasts, with the constraint that the sum of the weights must equal
one.

PIML and time series. Although weak constraints have been studied individually and applied
to real-world data, a unified and efficient approach is still lacking. It is important here to mention
physics-informed machine learning (PIML), which offers a promising way to integrate constraints
into machine learning models. Based on the foundational work of Raissi et al. (2019), PIML exploits
the idea that constraints can be applied with neural networks and optimized by backpropagation,
leading to the development of physics-informed neural networks (PINNs). PINNs have been suc-
cessfully used to predict time series governed by partial differential equations (PDEs) in areas such
as weather modeling (Kashinath et al., 2021), and stiff chemical reactions (Ji et al., 2021). Weak
constraints on the shape of the regression function have also been modeled with PINNs (Daw et al.,
2022). However, PINNs often suffer from optimization instabilities and overfitting (Doumèche
et al., 2024b). As a result, alternative methods have been developed for certain differential con-
straints that offer improved optimization properties over PINNs. For example, data assimilation
techniques in weather forecasting have been shown to be consistent with the Navier-Stokes equa-
tions (Nickl and Titi, 2024). Moreover, Doumèche et al. (2024a) showed that forecasting with
linear differential constraints can be formulated as a kernel method, yielding closed-form solutions
to compute the exact empirical risk minimum. An additional advantage of this kernel modeling is
that the learning algorithm can be executed on GPUs, leading to significant speedups compared to
the gradient-descent-based optimization of PINNs (Doumèche et al., 2024).

Contributions. In this paper, we present a principled approach to effectively integrate constraints
into time series forecasting. Each constrained problem is reformulated as the minimization of an
empirical risk consisting of two key components: a data-driven term and a regularization term
that enforces the smoothness of the function and the desired physical constraints. For nonlinear
regression tasks, we rely on a Fourier expansion. Our framework allows for efficient computation
of the exact minimizer of the empirical risk, which is easily optimized on GPUs for scalability and
performance.

2

FORECASTING TIME-SERIES WITH CONSTRAINTS

In Section 2, we introduce a unified mathematical framework that connects empirical risks con-
strained by various forms of physical information. Notably, we highlight the importance of distin-
guishing between two categories of constraints: shape constraints, which limit the set of admissible
functions, and learning constraints, which introduce an initial bias during parameter optimization. In
Section 3, we explore shape constraints and illustrate their relevance using the example of electricity
demand forecasting. In Section 4, we define learning constraints and show how they can be applied
to tourism forecasting. This common modeling framework for shape and learning constraints al-
lows for efficient integration of multiple constraints, as illustrated by the WeaKL-T in Section 4,
which combines hierarchical forecasting with additive models and transfer learning. Each empirical
risk can then be minimized on a GPU using linear algebra, ensuring scalability and computational
efficiency. This direct computation guarantees that the proposed estimator exactly minimizes the
empirical risk, preventing convergence to potential local minima—a common limitation of modern
iterative and gradient descent methods used in PINNs. Our method achieves significant performance
improvements over state-of-the-art approaches. The code for the numerical experiments and im-
plementation is publicly available at https://github.com/NathanDoumeche/WeaKL.

2 Incorporating constraints in time series forecasting

Throughout the paper, we assume that n observations (Xt1 , Yt1), . . . , (Xtn , Ytn) are drawn on Rd1×
Rd2 . The indices t1, . . . , tn ∈ T correspond to the times at which an unknown stochastic process
(X,Y) := (Xt, Yt)t∈T is sampled. Note that, all along the paper, the time steps need not be
regularly sampled on the index set T ⊆ R. We focus on supervised learning tasks that aim to
estimate an unknown function f⋆ : Rd1 → Rd2 , under the assumption that Yt = f⋆(Xt) + εt,
where ε is a random noise term. Without loss of generality, upon rescaling, we assume that Xt :=
(X1,t, . . . , Xd1,t) ∈ [−π, π]d1 and −π ≤ t1 ≤ · · · ≤ tn+1 ≤ π. The goal is to construct an
estimator f̂ for f⋆.

A simple example to to keep in mind is when Y is a stationary, regularly sampled time series
with tj = j/n, and the lagged value Xj = Ytj−1 serves as the only feature. In this specific case,
where d1 = d2, the model simplifies to Yt = f⋆(Yt−1/n) + εt. Thus, the regression setting reduces
to an autoregressive model. Of course, we will consider more complex models that go beyond this
simple case.

Model parameterization. We consider parameterized models of the form

fθ(Xt) = (f1θ (Xt), . . . , f
d2
θ (Xt)) = (⟨ϕ1(Xt), θ1⟩, . . . , ⟨ϕd2(Xt), θd2⟩), (1)

where each component f ℓθ(Xt) is computed as the inner product of a feature map ϕℓ(Xt) ∈ CDℓ ,
with Dℓ ∈ N⋆, and a vector θℓ ∈ CDℓ . The parameter vector θ ∈ CD1+···+Dd2 of the model is
defined as the concatenation of θ1, . . . , θd2 . Note that fθ is uniquely determined by θ and the
maps ϕℓ. To simplify the notation, we write dim(θ) = D1 + · · ·+Dd2 .

Our goal is to learn a parameter θ̂ ∈ Cdim(θ) such that Ŷt = fθ̂(Xt) is an estimator of the target
Yt. Equivalently, fθ̂ is an estimator of the target function f⋆. To this end, the core principle of our
approach is to consider θ̂ to be a minimizer over Cdim(θ) of an empirical risk of the form

L(θ) =
1

n

n∑
j=1

∥Λ(fθ(Xtj)− Ytj)∥22 + ∥Mθ∥22, (2)

3

https://github.com/NathanDoumeche/WeaKL

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

where Λ and M are complex-valued matrices with problem-dependent dimensions, which are not
necessarily square. The matrix M encodes a regularization penalty, which may include hyperpa-
rameters to be tuned through validation, as we will see in several examples.

Explicit formula for the empirical risk minimizer: WeaKL. The following proposition shows
how to compute the exact minimizer of (2). (Throughout the document, ∗ denotes the conjugate
transpose operation.)

Proposition 2.1 (Empirical risk minimizer.) Suppose both M and Λ are injective. Then, there is
a unique minimizer to (2), which takes the form

θ̂ =
((n∑

j=1

Φ∗
tjΛ

∗ΛΦtj

)
+ nM∗M

)−1
n∑

j=1

Φ∗
tjΛ

∗ΛYtj , (3)

where Φt is the d2 × dim(θ) block-wise diagonal feature matrix at time t, defined by

Φt =

ϕ1(Xt)
∗ 0 0

0
. . . 0

0 0 ϕd2(Xt)
∗

 . (4)

This result, proven in Appendix A.2, generalizes well-known results on kernel ridge regression (see,
e.g., Mohri et al., 2012, Equation 10.17). In the rest of the paper, we refer to the estimator θ̂ as the
weak kernel learner (WeaKL). The strength of WeaKL lies in its exact computation via (3). Unlike
current implementations of GAMs and PINNs, WeaKL is free from optimization errors. Further-
more, since WeaKL relies solely on linear algebra, it can take advantage of GPU programming to
accelerate the learning process. This efficiency enables effective hyperparameter optimization, as
demonstrated in Section 3.2 through applications to electricity demand forecasting.

Algorithmic complexity. The formula (3) used in this article to minimize the empirical risk (2)
can be implemented with a complexity of O(dim(θ)3 + dim(θ)2n). Note that the dimensions d1
and d2 of the problem only impact the complexity of WeaKL through dim(θ) = D1 + · · · +Dd2 .
By construction, dim(θ) ≥ d2, but the influence of d1 is more subtle and depends on the chosen
dimension Dℓ of the maps ϕj : [−π, π]d1 → CDj . In particular, if all the maps have the same
dimension, i.e., Dℓ = D, then dim(θ) = Dd2.

Notably, this implementation runs in less than ten seconds on a standard GPU (e.g., an NVIDIA
L4 with 24 GB of RAM) when dim(θ) ≤ 103 and n ≤ 105. We believe that this framework is
particularly well suited for time series, where data sampling is often costly, thus limiting both n and
d2. Moreover, in many cases, the distribution of the target time series changes significantly over
time, making only the most recent observations relevant for forecasting. This further limits the size
of n. For example, in the Monash time series forecasting archive (Godahewa et al., 2021), 19 out
of 30 time series have d2 ≤ 103 and n ≤ 105. However, there are relevant time series where either
the dimension d2 or the number of data points n is large. In such cases, finding an exact minimizer
of the empirical risk (2) becomes very computationally expensive. Efficient techniques have been
developed to approximate the minimizer of (2) in these regimes (see, e.g., Meanti et al., 2020), but
a detailed discussion of these methods is beyond the scope of this paper.

4

FORECASTING TIME-SERIES WITH CONSTRAINTS

Some important examples. Let us illustrate the mechanism with two fundamental examples.
Of course, the case where ϕℓ(x) = x and where Λ and M are identity matrices corresponds
to the well-known ridge linear regression. On the other hand, a powerful example of a non-
parametric regression map is the Fourier map, defined as ϕℓ(x) = (exp(i⟨x, k⟩/2))⊤∥k∥∞≤m =

(exp(i⟨x, k⟩/2))⊤−m≤k1,...,kd1≤m, where the Fourier frequencies are truncated at m ≥ 0. This map
leverages the expressiveness of the Fourier basis to capture complex patterns in the data. Thus, for
the ℓ-th component of fθ, we consider the Fourier decomposition

f ℓθ(x) =
∑

∥k∥∞≤m

θℓ,k exp(−i⟨x, k⟩/2),

which can approximate any function in L2([−π, π]d1 ,R) as m → ∞. In this example, we have
θℓ = (θℓ,k)

⊤
∥k∥∞≤m ∈ C(2m+1)d . Next, for s ∈ N⋆, let M be the (2m+ 1)d1 × (2m+ 1)d1 positive

diagonal matrix such that

∥Mθℓ∥22 = λ
∑

∥k∥∞≤m

θ2ℓ,k(1 + ∥k∥2s2),

where λ > 0 is an hyperparameter. Then, ∥Mθℓ∥2 is a Sobolev norm on the derivatives up to order s
of fθℓ . When λ = 1, we will denote this norm by ∥f ℓθ∥Hs . This approach regularizes the smoothness
of f ℓ

θ̂
, encouraging the recovery of smooth solutions. Moreover, choosing Λ as the identity matrix

and λ = n−2s/(2s+d1) achieves the Sobolev minimax rate E(∥f ℓ
θ̂
(X) − Yℓ∥22) = O(n−2s/(2s+d1))

(Blanchard and Mücke, 2020). This result justifies why the Fourier decomposition serves as an
effective nonparametric mapping.

These fundamental examples illustrate the richness of the approach, making it possible to incor-
porate constraints into models of chosen complexity, from very light models like linear regression,
up to nonparametric models such as Fourier maps.

Classification of the constraints. In order to clarify our discussion as much as possible, we find
it helpful, after a thorough analysis of the existing literature, to consider two families of constraints.
This distinction arises from the need to address two fundamentally different aspects of the forecast-
ing problem.

1. Shape constraints, described in Section 3, include additive models, online adaption after a
break, and forecast combinations (detailed in Appendix B.1). In these models, prior infor-
mation is incorporated by selecting custom maps ϕℓ. The set of admissible models fθ is thus
restricted by shaping the structure of the function space through this choice of maps. Here,
the matrix M serves only as a regularization term, while Λ is the identity matrix.

2. Learning constraints, described in Section 4, include transfer learning, hierarchical fore-
casting, and differential constraints (detailed in Appendix B.2). In these models, prior infor-
mation or constraints are incorporated through the matrices M and Λ. The goal is to increase
the efficiency of parameter learning by introducing additional regularization.

It is worth noting, however, that certain specific shape constraints cannot be penalized by a kernel
norm, such as those in isotonic regression. In the conclusion, we discuss possible extensions to
account for such constraints.

5

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

3 Shape constraints

3.1 Mathematical formulation

In this section, we introduce relevant feature maps ϕ that incorporate prior knowledge about the
shape of the function f⋆ : [−π, π]d1 → Cd2 . To simplify the notation, we focus on the one-
dimensional case where d2 = 1 and Λ = 1. This simplification comes without loss of generality,
since the feature maps developed in this section can be applied directly to (1).

As a result, the model reduces to fθ(Xt) = ⟨ϕ1(Xt), θ1⟩, and (3) simplifies to

θ̂ = (Φ∗Φ + nM∗M)−1Φ∗Y, (5)

where Y = (Yt1 , . . . , Ytn)
⊤ ∈ Rn and the n× dim(θ) matrix Φ takes the form

Φ = (ϕ1(Xt1) | · · · | ϕ1(Xtn))
∗.

Note that Φ is the classical feature matrix, and that it is related to the matrix Φt of (4) by Φ∗Φ =∑n
j=1 Φ∗

tjΦtj =
∑n

j=1 ϕ1(Xtj)ϕ1(Xtj)
∗.

Additive model: Additive WeaKL. The additive model constraint assumes that f⋆(x1, . . . , xd1) =∑d1
ℓ=1 g

⋆
ℓ (xℓ), where g⋆ℓ : R → R are univariate functions. This constraint is widely used in data

science, both in classical statistical models (Hastie and Tibshirani, 1986) and in modern neural net-
work architectures (Agarwal et al., 2021). Indeed, additive models are interpretable because the
effect of each feature xℓ is captured by its corresponding function g⋆ℓ . In addition, univariate effects
are easier to estimate than multivariate effects (Ravikumar et al., 2009). These properties allow
the development of efficient variable selection methods (see, for example, Marra and Wood, 2011),
similar to those used in linear regression.

In our framework, the additivity constraint directly translates into the model as

fθ(Xt) = ⟨ϕ1(Xt), θ1⟩ = ⟨ϕ1,1(X1,t), θ1,1⟩+ · · ·+ ⟨ϕ1,d1(Xd1,t), θ1,d1⟩,

where ϕ1 is the concatenation of the maps ϕ1,ℓ, and θ1 is the concatenation of the vectors θ1,ℓ. Note
that the maps ϕ1,ℓ and the vectors θ1,ℓ can be multidimensional, depending on the model. In this
formulation, the effect of each feature is modeled by the function gℓ(xℓ) = ⟨ϕ1,ℓ(xℓ), θ1,ℓ⟩, which
can be either linear or nonlinear in xℓ. The empirical risk then takes the form

L(θ) =
1

n

n∑
j=1

|fθ(Xtj)− Ytj |2 +
d1∑
ℓ=1

λℓ∥Mℓθ1,ℓ∥22, (6)

where λℓ > 0 are hyperparameters and Mℓ are regularization matrices. There are three types of
effects that can be taken into account:

(i) A linear effect is obtained by setting ϕ1,ℓ(xℓ) = xℓ ∈ R. To regularize the parameter θ1,ℓ, we
set Mℓ = 1. This corresponds to a ridge penalty.

(ii) A nonlinear effect can be modeled using the Fourier map ϕ1,ℓ(xℓ) = (exp(ikxℓ/2))
⊤
−m≤k≤m.

To regularize the parameter θ1,ℓ, we set Mℓ to be the (2m + 1) × (2m + 1) diagonal matrix
defined by Mℓ = Diag((

√
1 + k2s)−m≤k≤m), penalizing the Sobolev norm. A common

choice for the smoothing parameter s, as used in GAMs, is s = 2 (see, e.g., Wood, 2017).

6

FORECASTING TIME-SERIES WITH CONSTRAINTS

(iii) If xℓ is a categorical feature, i.e., xℓ takes values in a finite set E, we can define a bijection
ψ : E → {1, . . . , |E|}. The effect of xℓ can then be modeled as gℓ(xℓ) = ⟨ϕ1,ℓ(xℓ), θ1⟩,
where ϕℓ = ϕ ◦ ψ and ϕ is the Fourier map with m = ⌊|E|/2⌋. To regularize the parameter
θ1,ℓ, we set Mℓ as the identity matrix, which corresponds to applying a ridge penalty.

Overall, similar to GAMs, WeaKL can be optimized to fit additive models with both linear and
nonlinear effects. The parameter θ̂ of the WeaKL can then be computed using (5) with

M =


√
λ1M1 0 0

0
. . . 0

0 0
√
λd1Md1

 .

To stress that this WeaKL results from the enforcement of additive constraints, we call it the additive
WeaKL. Note that, contrary to GAMs where identifiability issues must be addressed (Wood, 2017),
WeaKL does not require further regularization, since θ̂ is the unique minimizer of the empirical
risk L. Note that the hyperparameters λℓ, along with the numberm of Fourier modes and the choice
of feature maps ϕℓ, can be determined by model selection, as described in Appendix D.1.

Online adaption after a break: Online WeaKL. For many time series, the dependence of Y
on X can vary over time. For example, the behavior of Y may change rapidly following extreme
events, resulting in structural breaks. A notable example is the shift in electricity demand during the
COVID-19 lockdowns, as illustrated in use case 1. To provide a clear mathematical framework, we
assume that the distribution of (X,Y) follows an additive model that evolves smoothly over time.
Formally, considering (t,Xt) as a feature vector, we assume that

f⋆(t, x1, . . . , xd1) = h⋆0(t) +

d1∑
ℓ=1

(1 + h⋆ℓ (t))g
⋆
ℓ (xℓ), (7)

where g⋆ℓ and h⋆ℓ are univariate functions. This model forms the core of the Kalman-Viking algo-
rithm (de Vilmarest and Wintenberger, 2024), which has demonstrated state-of-the-art performance
in forecasting electricity demand and renewable energy production (Obst et al., 2021; de Vilmarest
and Goude, 2022; de Vilmarest et al., 2024).

We assume that we have at hand estimators ĝℓ of g⋆ℓ that we want to update over time. For
example, these estimators can be obtained by fitting an additive WeaKL model, initially assuming
h⋆ℓ = 0. The functions h⋆ℓ are then estimated by minimizing the empirical risk

L(θ) =
1

n

n∑
j=1

∣∣∣hθ0(tj) + d1∑
ℓ=1

(1 + hθℓ(tj))ĝℓ(Xℓ,tj)− Ytj

∣∣∣2 + ∑
0≤ℓ≤d1

λℓ∥hθℓ∥
2
Hs , (8)

where λℓ > 0 are hyperparameters regularizing the smoothness of the functions hθℓ . Here, hθ(t) =
⟨ϕ(t), θ⟩, and ϕ is the Fourier map ϕ(t) = (exp(ikt/2))⊤−m≤k≤m. The prior hθℓ ≃ 0 reflects the
idea that the best a priori estimate of Y ’s behavior follows the stable additive model. Defining
Wt = Yt −

∑d1
ℓ=1 ĝℓ(Xℓ,t), the empirical risk can be reformulated as

L(θ) =
1

n

n∑
j=1

|⟨ϕ1(tj , Xtj), θ⟩ −Wtj |2 + ∥Mθ∥22,

7

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

where ϕ1(t,Xt) = ((exp(ikt/2))−m≤k≤m, (ĝℓ(Xℓ,t) exp(ikt/2))−m≤k≤m)d1ℓ=1)
⊤ ∈ C(2m+1)(d1+1),

M =


√
λ0D 0 0

0
. . . 0

0 0
√
λd1D

 ,

and D is the (2m+1)× (2m+1) diagonal matrix D = Diag((
√
1 + k2s)−m≤k≤m). From (5), we

deduce that the unique minimizer of the empirical loss L is

θ̂ = (Φ∗Φ + nM∗M)−1Φ∗W, (9)

where W = (Wt1 , . . . ,Wtn)
⊤ ∈ Rn.

This formulation allows to forecast the time series Y at the next time step, tn+1, using

Ŷtn+1 = fθ̂(tn+1, Xtn+1) = ⟨ϕ1(tn+1, Xtn+1), θ̂⟩

= hθ̂0(tn+1) +

d1∑
ℓ=1

(1 + hθ̂ℓ(tn+1))ĝℓ(Xℓ,tn+1).

Since the model is continuously updated over time, this corresponds to an online learning setting.
To emphasize that Equation (9) arises from an online adaptation process, we refer to this model as
the online WeaKL. Unlike the Viking algorithm of de Vilmarest and Wintenberger (2024), which
approximates the minimizer of the empirical risk through an iterative process, online WeaKL offers
a closed-form solution and exploits GPU parallelization for significant speedups. As shown in
Section 3.2, our approach leads to improved performance in electricity demand forecasting.

3.2 Application to electricity load forecasting

In this subsection, we apply shape constraints to two use cases in electricity demand forecasting and
demonstrate the effectiveness of our approach. In these electricity demand forecasting problems, the
focus is on short-term forecasting, with particular emphasis on the recent non-stationarities caused
by the COVID-19 lockdowns and by the energy crisis.

Electricity load forecasting and non-stationarity. Accurate demand forecasting is critical due
to the costly nature of electricity storage, coupled with the need for supply to continuously match
demand. Short-term load forecasting, especially for 24-hour horizons, is particularly valuable for
making operational decisions in both the power industry and electricity markets. Although the cost
of forecasting errors is difficult to quantify, a 1% reduction in error is estimated to save utilities
several hundred thousand USD per gigawatt of peak demand (Hong and Fan, 2016). Recent events
such as the COVID-19 shutdown have significantly affected electricity demand, highlighting the
need for updated forecasting models (Zarbakhsh et al., 2022).

Use case 1: Load forecasting during COVID. In this first use case, we test the performance of
our WeaKL on the IEEE DataPort Competition on Day-Ahead Electricity Load Forecasting (Far-
rokhabadi et al., 2022). Here, the goal is to forecast the electricity demand of an unknown country
during the period following the Covid-19 lockdown. The winning model of this competition was
the Viking model of Team 4 (de Vilmarest and Goude, 2022), with a mean absolute error (MAE)
of 10.9 gigawatts (GW). For comparison, a direct translation of their model into the online WeaKL

8

FORECASTING TIME-SERIES WITH CONSTRAINTS

framework—using the same features and maintaining the same additive effects—results in an MAE
of 10.5 GW. In parallel, we also apply the online WeaKL methodology without relying on the vari-
ables selected by de Vilmarest and Goude (2022). Instead, we determine the optimal hyperparame-
ters λℓ and select the feature maps ϕℓ through a hyperparameter tuning process (see Appendix D.1).
This leads to a different selected model with a MAE of 9.9 GW (see Appendix D.4 for a complete
description of the models). Thus, the online WeaKL given by (9) outperforms the state-of-the-art
by 9%. As done in the IEEE competition (Farrokhabadi et al., 2022), we assess the significance of
this result by evaluating the MAE skill score using a block bootstrap approach (see Appendix D.4).
It shows that the online WeaKL outperforms the winning model proposed by de Vilmarest and
Goude (2022) with a probability above 90%. The updated results of the competition are presented
in Table 1. Note that a great variety of models were benchmarked in this competition, like Kalman
filters (Team 4), autoregressive models (Teams 4 and 7), random forests (Teams 4 and 6), gradient
boosting (Teams 6 and 36), deep residual networks (Team 19), and averaging (Team 13).

Table 1: Performance of the online WeaKL and of the top 10 participants of the IEEE competiton.
A specific bootstrap test shows that the WeaKL significantly outperform the winning team.

Team WeaKL 4 14 7 36 19 23 9 25 13 26

MAE (GW) 9.9 10.9 11.8 11.9 12.3 12.3 13.9 14.2 14.3 14.6 15.4

Use case 2: Load forecasting during the energy crisis. In this second use case, we evaluate the
performance of our WeaKL within the open source benchmark framework proposed by Doumèche
et al. (2023). This benchmark provides a comprehensive evaluation of electricity demand forecast-
ing models, incorporating the GAM boosting model of Taieb and Hyndman (2014), the GAM of
Obst et al. (2021), the Kalman models of de Vilmarest and Goude (2022), the time series random
forests of Goehry et al. (2023), and the Viking model of de Vilmarest et al. (2024). The goal here
is to forecast the French electricity demand during the energy crisis in the winter of 2022-2023.
Following the war in Ukraine and maintenance problems at nuclear power plants, electricity prices
reached an all-time high at the end of the summer of 2022. In this context, French electricity de-
mand decreased by 10% compared to its historical trends (Doumèche et al., 2023). This significant
shift in electricity demand can be interpreted as a structural break, which justifies the application of
the online WeaKL given by (9).

In this benchmark, the models are trained from 8 January 2013 to 1 September 2022, and then
evaluated from 1 September 2022 to 28 February 2023. The dataset consists of temperature data
from the French meteorological administration Météo-France (2023), and electricity demand data
from the French transmission system operator RTE (2023), sampled with a half-hour resolution.
This translates into the feature variable

X = (Load1,Load7,Temp,Temp950,Tempmax950,Tempmin950,ToY,DoW,Holiday, t),

where Load1 and Load7 are the electricity demand lagged by one day and seven days, Temp is
the temperature, and Temp950, Tempmax950, and Tempmin950 are smoothed versions of Temp.
The time of year ToY ∈ {1, . . . , 365} encodes the position within the year. The day of the week
DoW ∈ {1, . . . , 7} encodes the position within the week. In addition, Holiday is a boolean variable

9

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

set to one during holidays, and t is the timestamp. Here, the target Y = Load is the electricity
demand, so d1 = 10 and d2 = 1.

We compare the performance of two of our WeaKLs against this benchmark. First, our additive
WeaKL is a direct translation of the GAM formula proposed by Obst et al. (2021) into the additive
WeaKL framework given by (6). Thus, fθ(x) =

∑10
ℓ=1 gℓ(xℓ), where:

• the effects g1, g2, and g10 of Load1, Load7, and t are linear,

• the effects g3, . . . , g7 of Temp, Temp950, Tempmax950, Tempmin950, and ToY are nonlinear
with m = 10,

• the effects g8 and g9 of DoW and Holiday are categorical with |E| = 7 and |E| = 2.

3 2 1 0 1 2 3

4000

2000

0

2000

4000

temperature

Figure 1: Effect in MW of the temper-
ature in the additive WeaKL.

The weights θ are learned using data from 2013 to 2021,
while the optimal hyperparameters λ1, . . . , λ10 are tuned
using a validation set covering the period from 2021 to
2022. Once the additive WeaKL is learned, it becomes
straightforward to interpret the impact of each feature
on the model. For example, the effect ĝ3 : Temp 7→
⟨ϕ1,3(Temp), θ̂1,3⟩ of the rescaled temperature feature
(Temp ∈ [−π, π]) is illustrated in Figure 1.

Second, our online WeaKL is the online adaptation
of fθ in response to a structural break, as described by
(9). The hyperparameters λ0, . . . , λ10 in (8) are chosen to
minimize the error over a validation period from 1 April
2020 to 1 June 2020, corresponding to the first COVID-19 lockdown. Note that this validation
period does not immediately precede the test period, which is uncommon in time series analysis.
However, this choice ensures that the validation period contains a structural break, making it as
similar as possible to the test period. Next, the functions h0, . . . , h10 in (7) are trained on a period
starting from 1 July 2020, and updated online.

The results are summarized in Table 2. The errors and their standard deviations are assessed by
stationary block bootstrap (see Appendix D.2). Since holidays are notoriously difficult to predict,
performance is evaluated over the entire period (referred to as Including holidays), and separately
excluding holidays and the days immediately before and after (referred to as Excluding holidays).
Over both test periods, the additive WeaKL significantly outperforms the GAM, while the online
WeaKL outperforms the state-of-the-art by more than 10% across all metrics.

Figure 2 shows the errors of the WeaKLs as a function of time during the test period, which
includes holidays. During the sobriety period, electricity demand decreased, causing the additive
WeaKL to overestimate demand, resulting in a negative bias. Interestingly, this bias is effectively
corrected by the online WeaKL, which explains its strong performance. This shows that the online
update of the effects effectively corrects biases caused by shifts in the data distribution.

Then, we compare the running time of the algorithms. Note that, during hyperparameter tuning,
the GPU implementation of WeaKL makes it possible to train 1.6 × 105 additive WeaKL over a
period of eight years in less than five minutes on a single standard GPU (NVIDIA L4). As for the
online WeaKL, the training is more computationally intensive because the model must be updated in
an online fashion. However, training 9.2× 103 online WeaKLs over a period of two years takes less
than two minutes. This approach is faster than the Viking algorithm, which takes over 45 minutes

10

FORECASTING TIME-SERIES WITH CONSTRAINTS

to evaluate the same number of parameter sets on the same dataset, even when using 10 CPUs in
parallel. A detailed comparison of the running times for all algorithms is provided in Appendix D.5.

Table 2: Benchmark for load forecasting during the energy crisis

Including holidays Excluding holidays

RMSE (GW) MAPE (%) RMSE (GW) MAPE (%)

Statistical model
Persistence (1 day) 4.0±0.2 5.5±0.3 4.0±0.2 5.0±0.3
SARIMA 2.4±0.2 3.1±0.2 2.0±0.2 2.6±0.2
GAM 2.3±0.1 3.5±0.2 1.70±0.06 2.6±0.1

Data assimilation
Static Kalman 2.1±0.1 3.1±0.2 1.43±0.05 2.20±0.08
Dynamic Kalman 1.4±0.1 1.9±0.1 1.10±0.04 1.58±0.05
Viking 1.5±0.1 1.8±0.1 0.98±0.04 1.33±0.04
Aggregation 1.4±0.1 1.8±0.1 0.96±0.04 1.36±0.04

Machine learning
GAM boosting 2.6±0.2 3.7±0.2 2.3±0.1 3.3±0.2
Random forests 2.5±0.2 3.5±0.2 2.1±0.1 3.0±0.1
Random forests + bootstrap 2.2±0.2 3.0±0.2 1.9±0.1 2.6±0.1

WeaKLs
Additive WeaKL 1.95±0.08 3.0 ±0.1 1.55±0.06 2.32±0.09
Online WeaKL 1.14±0.09 1.5±0.1 0.87±0.04 1.17±0.05

Both use cases demonstrate that WeaKL models are very powerful. Not only are they highly
interpretable—thanks to their ability to fit into a common framework and produce simple formulas—
but they are also competitive with state-of-the-art techniques in terms of both optimization efficiency
(they can run on GPUs) and performance (measured by MAPE and RMSE).

4 Learning constraints

4.1 Mathematical formulation

Section 3 focused on imposing constraints on the shape of the regression function f⋆. In contrast,
the goal of the present section is to impose constraints on the parameter θ. We begin with a ge-
neral method to enforce linear constraints on θ, and subsequently apply this framework to transfer
learning, hierarchical forecasting, and differential constraints.

Linear constraints. Here, we assume that f⋆ satisfies a linear constraint. By construction of
fθ in (1), such a linear constraint directly translates into a constraint on θ. For example, the linear
constraint f⋆ 1(Xt) = 2f⋆ 2(Xt) can be implemented by enforcing θ1 = 2θ2. Thus, in the following,
we assume a prior on θ in the form of a linear constraint. Formally, we want to enforce that θ ∈ S,
where S is a known linear subspace of Cdim(θ). Given an injective dim(θ)×dim(S) matrix P such
that Im(P) = S, then, as shown in Lemma A.2, ∥Cθ∥22 is the square of the Euclidean distance

11

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

2022-09 2022-10 2022-11 2022-12 2023-01 2023-02 2023-03
8000

6000

4000

2000

0

2000

4000

6000

8000 Additive WeakL
Online WeakL

Figure 2: Error Yt− Ŷt in MW of the WeaKLs on the test period including holidays. Dots represent
individual observations, while the bold curves indicate the one-week moving averages.

between θ and S, where C = Idim(θ) − P (P ∗P)−1P ∗. In particular, ∥Cθ∥22 = 0 is equivalent to
θ ∈ S , and ∥Cθ∥22 = ∥θ∥22 if θ ∈ S⊥. From this observation, there are two ways to enforce θ ∈ S
in the empirical risk (2).

On the one hand, suppose that f⋆ exactly satisfies the linear constraint. This happens in par-
ticular when the constraint results from a physical law. For example, to build upon the use cases
of Section 3.2, assume that we want to forecast the electricity load of different regions of France,
i.e., the target Y ∈ R3 is such that Y1 is the load of southern France, Y2 is the load of northern
France, and Y3 = Y1+Y2 is the national load. This prototypical example of hierarchical forecasting
is presented in Section C, where we show how incorporating even a simple constraint can signifi-
cantly improve the model’s performance. In this example, we know that f⋆ satisfies the constraint
f⋆ 3 = f⋆ 1 + f⋆ 2. When dealing with such exact priors, a sound approach is to consider only
parameters θ such that Cθ = 0, or equivalently, θ = Pθ′. Letting Πℓ be the Dℓ×dim(θ) projection
matrix such that θℓ = Πℓθ, we have ⟨ϕℓ(Xt), θℓ⟩ = ⟨ϕℓ(Xt),Πℓθ⟩ = ⟨P ∗Π∗

ℓϕℓ(Xt), θ
′⟩. Thus,

minimizing the empirical risk (2) over θ′ ∈ Cdim(S) simply requires changing ϕℓ to P ∗Π∗
ℓϕℓ, which

is equivalent to replacing Φt with ΦtP in (3).

On the other hand, suppose that the linear constraint serves as a good but inexact prior. For
example, building on the last example, let Xt be the average temperature in France at time t. We
expect the loads Y1 in southern France and Y2 in northern France to behave similarly. In both
regions, lower temperatures lead to increased heating usage (and thus higher loads), while higher
temperatures result in increased cooling usage (also leading to higher loads). Therefore, f⋆ 1 and
f⋆ 2 share the same shape, resulting in the prior f⋆ 1 ≃ f⋆ 2. This prototypical example of transfer
learning is explored in the following paragraphs. Such inexact constraints can be enforced by adding
a penalty λ∥Cθ∥22 in the empirical risk (2), where λ > 0 is an hyperparameter. (Equivalently, this

12

FORECASTING TIME-SERIES WITH CONSTRAINTS

… … … … … …

Figure 3: Graph representing the hierarchy of Australian domestic tourism.

only consists in replacing M with (
√
λC⊤ |M⊤)⊤ in (2).) This ensures that ∥Cθ̂∥22 is small, while

allowing the model to learn functions that do not exactly satisfy the constraint.
These approaches are statistically sound, since under the assumption that Yt = fθ⋆(Xt) + εt,

where θ⋆ ∈ S, both estimators have lower errors compared to unconstrained regression. This is true
in the sense that, almost surely,

1

n

n∑
j=1

∥fθ⋆(Xtj)−fθ̂C (Xtj)∥22+∥M(θ⋆− θ̂C)∥22 ≤
1

n

n∑
j=1

∥fθ⋆(Xtj)−fθ̂(Xtj)∥22+∥M(θ⋆− θ̂)∥22,

where θ̂ is the unconstrained WeaKL and θ̂C is a WeaKL integrating the constraint Cθ⋆ ≃ 0 (see
Proposition A.3 and Remark A.4).

Transfer learning. Transfer learning is a framework designed to exploit similarities between
different prediction tasks when d2 > 1. The simplest case involves predicting multiple targets
Y1, . . . , Yd2 with similar features X1, . . . , Xd2 . For example, suppose we want to forecast the elec-
tricity demand of d2 cities. Here, Yℓ is the electricity demand of the city ℓ, while Xℓ is the av-
erage temperature in city ℓ. The general function f⋆ estimating (Y1, . . . , Yd2) can be expressed
as f⋆(X) = f⋆(X1, . . . , Xd2) = (f⋆ 1(X1), . . . , f

⋆ d2(Xd2)). The transfer learning assumption
is f⋆ 1 ≃ · · · ≃ f⋆ d2 . Equivalently, this corresponds to the linear constraint θ ∈ Im(P), where
P = (I2m+1 | · · · | I2m+1)

⊤ is a (2m + 1)d1 × (2m + 1) matrix. Thus, one can apply the
framework of the last paragraph on linear constraints as inexact prior using P .

Hierarchical forecasting. Hierarchical forecasting involves predicting multiple time series that
are linked by summation constraints. This approach was introduced by Athanasopoulos et al. (2009)
to forecast Australian domestic tourism. Tourism can be analyzed at various geographic scales.
For example, at time t, one could consider the total number YA,t of tourists in Australia, and the
number YSi,t of tourists in each of the seven Australian states S1, . . . , S7. By definition, YA,t is
the sum of the YSi,t, which leads to the exact summation constraint YA,t =

∑7
i=1 YSi,t. Further-

more, since each state Si is composed of zi zones Zi,1, . . . , Zi,zi , an additional hierarchical level
can be introduced. Note that the number of zones depends on the state, for a total of 27 zones.
This results in another set of summation constraints YSi,t = YZi,1,t + · · · + YZi,zi

,t. Overall, the
complete set of summation constraints can be represented by a directed acyclic graph, as shown
in Figure 3. Alternatively, these constraints can be expressed by a 35 × 27 summation matrix S

13

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

that connects the bottom-level series Yb = (YZ1,1 , . . . , YZ7,z7
)⊤ ∈ R27 to all hierarchical nodes

Y = (YZ1,1 , . . . , YZ7,z7
, YS1 , . . . , YS7 , YA)

⊤ ∈ R35 through the relation Y = SYb. Thus, by letting

1 = (1, . . . , 1)⊤ ∈ R27, and defining 1(j) ∈ R27 by 1(j)
i =

{
1 if

∑j−1
k=1 zk ≤ i ≤

∑j
k=1 zk

0 otherwise
,

we have that S = (I27 | 1(1) | · · · | 1(7) | 1)⊤. The goal of hierarchical forecasting is to take
advantage of the summation constraints defined by S to improve the predictions of the vector Y
representing all hierarchical nodes.

This context can be easily generalized to many time series forecasting tasks. Spatial summation
constraints, which divide a geographic space into different subspaces, have been applied in areas
such as electricity demand forecasting (Brégère and Huard, 2022), electric vehicle charging demand
forecasting (Amara-Ouali et al., 2024), and tourism forecasting (Wickramasuriya et al., 2019). Sum-
mation constraints also arise in multi-horizon forecasting, where, for example, an annual forecast
must equal the sum of the corresponding monthly forecasts (Kourentzes and Athanasopoulos, 2019).
Finally, they also appear when goods are categorized into different groups (Pennings and van Dalen,
2017).

There are two main approaches to hierarchical forecasting. The first, known as forecast recon-
ciliation, attempts to improve an existing estimator Ŷ of the hierarchical nodes Y by multiplying
Ŷ by a so-called reconciliation matrix P , so that the new estimator PŶ satisfies the summation
constraints. Formally, it is required that Im(P) ⊆ Im(S), where S is the summation matrix. The
goal is for PŶ to have less error than Ŷ . The strengths of this approach are its low computational
cost and its ability to seamlessly integrate with pre-existing forecasts. Various reconciliation ma-
trices, such as the orthogonal projection P = S(S⊤S)−1S on Im(S) (see the paragraph above
on linear constraints), have been shown to reduce forecasting errors and to even be optimal under
certain assumptions (Wickramasuriya et al., 2019). Another complementary approach is to incor-
porate the hierarchical structure of the problem directly into the training of the initial estimator Ŷ
(Rangapuram et al., 2021). While this method is more computationally intensive, it provides a more
comprehensive solution than reconciliation methods because it uses the hierarchy not only to shape
the regression function, but also to inform the learning of its parameters. In this paper, we build on
this approach to design three new estimators, all of which are implemented in Section 4.2.

As for now, we denote by ℓ1 the total number of nodes and ℓ2 ≤ ℓ1 the number of bottom nodes.
Thus, Y = (Yℓ)

⊤
1≤ℓ≤ℓ1

represents the global vector of all nodes, while Yb = (Yℓ)
⊤
1≤ℓ≤ℓ2

represents
the vector of the bottom nodes. The ℓ1 × ℓ2 summation matrix S is defined so that, for all time
index t, the summation identity Yt = SYb,t is satisfied.

Estimator 1. Bottom-up approach: WeaKL-BU. In the bottom-up approach, models are fitted
only for the bottom-level series Yb, resulting in a vector of estimators Ŷb. The remaining levels are
then estimated by Ŷ = SŶb, where S is the summation matrix.

To achieve this, forecasts for each bottom node 1 ≤ ℓ ≤ ℓ2 are constructed using a set
of explanatory variables Xℓ ∈ Rdℓ specific to that node. Together, these explanatory variables
X1, . . . , Xℓ2 form the feature X ∈ Rd1+···+dℓ2 . A straightforward choice of features are the lags of
the target variable, i.e., Xℓ,t = Yℓ,t−1, though many other choices are possible. Next, for each bot-
tom node 1 ≤ ℓ ≤ ℓ2, we fit a parametric model fθℓ(Xℓ,t) to predict the series Yℓ,t. Each function
fθℓ is parameterized by a mapping ϕℓ (e.g., a Fourier map or an additive model) and a coefficient
vector θℓ, such that fθℓ(Xℓ,t) = ⟨ϕℓ(Xℓ,t), θℓ⟩. Therefore, the model for the lower nodes Yb,t can
be expressed as Φtθ, where θ = (θ1, . . . , θℓ2)

⊤ is the vector of all coefficients, and Φt is the fea-

14

FORECASTING TIME-SERIES WITH CONSTRAINTS

ture matrix at time t defined in (4). Overall, the model for all levels Yt = SYb,t is SΦtθ, and the
empirical risk corresponding to this problem is given by

L(θ) =
1

n

n∑
j=1

∥Λ(SΦtjθ − Ytj)∥22 + ∥Mθ∥22,

where Λ is a ℓ1 × ℓ1 diagonal matrix with positive coefficients, and M is a penalty matrix that
depends on the ϕℓ mappings, as in Section 3.

Since Λ scales the relative importance of each node in the learning process, the choice of its
coefficients plays a critical role in the performance of the estimator. In the experimental Section 4.2,
Λ will be learned through hyperparameter tuning. Typically, Λℓ,ℓ should be large when Var(Yℓ|Xℓ)
is low—that is, the more reliable Yℓ is as a target (Wickramasuriya et al., 2019). From (4), we
deduce that the minimizer θ̂ of the empirical risk is

θ̂ =
((n∑

j=1

Φ∗
tjS

∗Λ∗ΛSΦtj

)
+ nM∗M

)−1
n∑

j=1

Φ∗
tjΛ

∗ΛYtj . (10)

We call θ̂ the WeaKL-BU. Setting Λ = Iℓ1 , i.e., the identity matrix, results in treating all hierarchical
levels equally, which is the setup of Rangapuram et al. (2021). On the other hand, setting Λℓ,ℓ = 0
for all ℓ ≥ ℓ2 leads to learning each bottom node independently, without using any information
from the hierarchy. This is the traditional bottom-up approach.

Estimator 2. Global hierarchy-informed approach: WeaKL-G. The context is similar to the
bottom-up approach, but here models are fitted for all nodes 1 ≤ ℓ ≤ ℓ1, using local explanatory
variablesXℓ ∈ Rdℓ , where dℓ ≥ 1. Thus, the model for Yt is given by Φtθ, where θ = (θ1, . . . , θℓ1)

⊤

is the vector of coefficients and Φt is the feature matrix at time t defined in (4). To ensure that the
hierarchy is respected, we introduce a penalty term:

∥Γ(SΠbΦtθ − Φtθ)∥22 = ∥Γ(SΠb − Iℓ1)Φtθ∥22,

where Γ is a positive diagonal matrix and Πb is the projection operator on the bottom level, defined
as Πbθ = (θ1, . . . , θℓ2)

⊤. As in the bottom-up case, Γ encodes the level of trust assigned to each
node. In Section 4.2, we learn Γ through hyperparameter tuning. This results in the empirical risk

L(θ) =
1

n

n∑
j=1

∥Φtjθ − Ytj∥22 +
1

n

n∑
j=1

∥Γ(SΠb − Iℓ1)Φtjθ∥22 + ∥Mθ∥22.

where M is a penalty matrix that depends on the ϕℓ mappings, as in Section 3. This empirical
risk is similar to the one proposed by Zheng et al. (2023), where a penalty term is used to enforce
hierarchical coherence during the learning process. From (4), we deduce that the minimizer is given
by

θ̂ =
(n∑

j=1

(Φ∗
tjΦtj + Φ∗

tj (Π
∗
bS

∗ − Iℓ1)Γ
∗Γ(SΠb − Iℓ1)Φtj) + nM∗M

)−1
n∑

j=1

Φ∗
tjYt. (11)

We refer to θ̂ as the WeaKL-G. The fundamental difference between (10) and (11) is that the WeaKL-
BU estimator only learns parameters for the ℓ2 bottom nodes, whereas the WeaKL-G estimators

15

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

learns parameters for all nodes. We emphasize that WeaKL-BU and WeaKL-G follow different
approaches. While WeaKL-BU adjusts the lower-level nodes and then uses the summation matrix S
to estimate the higher levels, WeaKL-G relies directly on global information, which is subsequently
penalized by S. In the next paragraph, we complement the WeaKL-BU estimator by adding transfer
learning constraints.

Estimator 3. Hierarchy-informed transfer learning: WeaKL-T. In many hierarchical forecast-
ing applications, the targets Yℓ are of the same nature throughout the hierarchy. Consequently, we
often expect them to be explained by similar explanatory variablesXℓ and to have similar regression
functions estimators fθ̂ℓ (e.g., Leprince et al., 2023). For this reason, we propose an algorithm that
combines WeaKL-BU with transfer learning.

Therefore, we assume that there is a subset J ⊆ {1, . . . , ℓ2} of similar nodes and weights
(αi)i∈J such that we expect αifθ̂i(Xi,t) ≃ αjfθ̂j (Xj,t) for i, j ∈ J . In particular, there is an

integer D such that θj ∈ CD for all j ∈ J . Therefore, denoting by ΠJ the projection on J
such that ΠJθ = (θj)j∈J ∈ CD|J |, this translates into the constraint that ΠJθ ∈ Im(MJ) where
MJ = (α1ID, . . . , α|J |ID)

⊤. As explained in the paragraph on linear constraints, we enforce this
inexact constraint by penalizing the empirical risk with the addition of the term ∥(ID|J |−PJ)ΠJθ∥22,
where PJ = MJ(M

∗
JMJ)

−1M∗
J is the orthogonal projection onto the image of MJ . This leads to

the empirical risk

L(θ) =
1

n

n∑
j=1

∥Λ(SΦtjθ − Ytj)∥22 + λ∥(ID|J | − PJ)ΠJθ∥22 + ∥Mθ∥22,

where M is a penalty matrix that depends on the ϕℓ mappings, as in Section 3. We call WeaKL-T
the minimizer θ̂ of L. It is given by

θ̂ =
((n∑

j=1

Φ∗
tjS

∗Λ∗ΛSΦtj

)
+ nλΠ∗

J(ID|J | − PJ)ΠJ + nM∗M
)−1

n∑
j=1

Φ∗
tjΛ

∗ΛYtj . (12)

4.2 Application to tourism forecasting

Hierarchical forecasting and tourism. In this experiment, we aim to forecast Australian domes-
tic tourism using the dataset from Wickramasuriya et al. (2019). The dataset includes monthly mea-
sures of Australian domestic tourism from January 1998 to December 2016, resulting in n = 216
data points. Each month, domestic tourism is measured at four spatial levels and one categori-
cal level, forming a five-level hierarchy. At the top level, tourism is measured for Australia as a
whole. It is then broken down spatially into 7 states, 27 zones, and 76 regions. Then, for each
of the 76 regions, four categories of tourism are distinguished according to the purpose of travel:
holiday, visiting friends and relatives (VFR), business, and other. This gives a total of five levels
(Australia, states, zones, regions, and categories), with ℓ2 = 76 × 4 = 304 bottom nodes, and
ℓ1 = 1 + 7 + 27 + 76 + ℓ2 = 415 total nodes.

Benchmark. The goal is to forecast Australian domestic tourism one month in advance. Models
are trained on the first 80% of the dataset and evaluated on the last 20%. Similar to Wickramasuriya
et al. (2019), we only consider autoregressive models with lags from one month to two years. This
setting is particularly interesting because, although each time series can be reasonably fitted using

16

FORECASTING TIME-SERIES WITH CONSTRAINTS

the 216 data points, the total number of targets ℓ1 exceeds n. Consequently, the higher levels cannot
be naively learned from the lags of the bottom level time series through linear regression.

The bottom-up (BU) model involves running 304 linear regressions Ŷ BU
ℓ,t =

∑24
j=1 aℓ,jYℓ,t−j

for 1 ≤ ℓ ≤ ℓ2, where Yℓ,t−j is the lag of Yℓ,t by j months. The final forecast is then computed
as Ŷ BU

t = SŶ BU
ℓ,t , where S is the summation matrix. The Independent (Indep) model involves

running separate linear regressions for each target time series using its own lags. This results in 415
linear regressions of the form Ŷ Indep

ℓ,t =
∑24

j=1 aℓ,jYℓ,t−j for 1 ≤ ℓ ≤ ℓ1. Rec-OLS is the estimator
resulting from OLS adjustment of the Indep estimator, i.e., taking P = S(S∗S)−1S (Wickrama-
suriya et al., 2019). MinT refers to the estimator derived from the minimum trace adjustment of
the Indep estimator (see MinT(shrinkage) in Wickramasuriya et al., 2019). PIKL-BU refers to the
estimator (10), where, for all 1 ≤ ℓ ≤ 304, Xℓ,t = (Yℓ,t−j)1≤j≤24 and ϕℓ(x) = x. PIKL-G is
the estimator (11), where, for all 1 ≤ ℓ ≤ 415, Xℓ,t = (Yℓ,t−j)1≤j≤24 and ϕℓ(x) = x. Finally,
PIKL-T is the estimator (12), where Xℓ,t = (Yℓ,t−j)1≤j≤24 and ϕℓ(x) = x. In the latter model, all
the auto-regressive effects are penalized to enforce uniform weights, which means that αℓ = 1 and
J = {1, . . . , ℓ2} in (12). The hyperparameter tuning process to learn the matrix Λ for the WeaKLs
is detailed in Appendix D.6.

Results. Table 3 shows the results of the experiment. The mean square errors (MSE) are com-
puted for each hierarchical level and aggregated under All levels. Their standard deviations are
estimated using block bootstrap with blocks of length 12. The models are categorized based on the
features they utilize. We observe that the WeaKL-type estimators consistently outperform all other
competitors in every case. This highlights the advantage of incorporating constraints to enforce the
hierarchical structure of the problem, leading to an improved learning process.

Table 3: Benchmark in forecasting Australian domestic tourism

MSE (×106)

Australia States Zones Regions Categories All levels

Bottom data
BU 5.3±0.5 2.0±0.2 1.37±0.05 1.19±0.02 1.17±0.03 11.0±0.7
WeaKL-BU 4.5±0.5 1.9±0.3 1.34±0.05 1.19±0.03 1.17±0.03 10.1±0.6

Own lags
Indep 3.6±0.6 1.8±0.2 1.42±0.05 1.23±0.03 1.17±0.03 9.2±0.7
WeaKL-G 3.6±0.5 1.8±0.2 1.37±0.05 1.18±0.03 1.15±0.03 9.0±0.7

All data
Rec-OLS 3.5±0.5 1.8±0.2 1.35±0.05 1.18±0.02 1.17±0.03 8.9±0.7
MinT 3.6±0.4 1.7±0.1 1.29±0.05 1.15±0.03 1.17±0.03 8.9±0.5
WeaKL-T 3.1±0.3 1.7±0.1 1.27±0.05 1.15±0.02 1.12±0.03 8.3±0.4

5 Conclusion

In this paper, we have shown how to design empirical risk functions that integrate common lin-
ear constraints in time series forecasting. For modeling purposes, we distinguish between shape
constraints (such as additive models, online adaptation after a break, and forecast combinations)

17

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

and learning constraints (including transfer learning, hierarchical forecasting, and differential con-
straints). These empirical risks can be efficiently minimized on a GPU, leading to the development
of an optimized algorithm, which we call WeaKL. We have applied WeaKL to three real-world use
cases—two in electricity demand forecasting and one in tourism forecasting—where it consistently
outperforms current state-of-the-art methods, demonstrating its effectiveness in structured forecast-
ing problems.

Future research could explore the integration of additional constraints into the WeaKL frame-
work. For example, the current approach does not allow for forcing the regression function fθ to
be non-decreasing or convex. However, since any risk function L of the form (2) is convex in θ,
the problem can be formulated as a linearly constrained quadratic program. While this generally
increases the complexity of the optimization, it can also lead to efficient algorithms for certain con-
straints. In particular, when d = 1, imposing a non-decreasing constraint on fθ reduces the problem
to isotonic regression, which has a computational complexity ofO(n) (Wright and Wegman, 1980).

References

R. Agarwal, L. Melnick, N. Frosst, X. Zhang, B. Lengerich, et al. Neural additive models: In-
terpretable machine learning with neural nets. In Advances in Neural Information Processing
Systems, volume 34, pages 4699–4711, 2021.

Y. Amara-Ouali, Y. Goude, N. Doumèche, P. Veyret, A. Thomas, D. Hebenstreit, et al. Forecasting
electric vehicle charging station occupancy: Smarter mobility data challenge. Journal of Data-
centric Machine Learning Research, 1(16):1–27, 2024.

A. Antoniadis, J. Cugliari, M. Fasiolo, Y. Goude, and J.-M. Poggi. Statistical Learning Tools for
Electricity Load Forecasting. Springer, Cham, 2024.

G. Athanasopoulos, R. A. Ahmed, and R. J. Hyndman. Hierarchical forecasts for Australian do-
mestic tourism. International Journal of Forecasting, 25:146–166, 2009.

N. H. Augustin, M. Musio, E. K. Klaus von Wilpert, S. N. Wood, and M. Schumacher. Modeling
spatiotemporal forest health monitoring data. Journal of the American Statistical Association,
104:899–911, 2009.

G. Blanchard and N. Mücke. Kernel regression, minimax rates and effective dimensionality: Be-
yond the regular case. Analysis and Applications, 18:683–696, 2020.

M. Brégère and M. Huard. Online hierarchical forecasting for power consumption data. Interna-
tional Journal of Forecasting, 38:339–351, 2022.

A. Coletta, S. Gopalakrishnan, D. Borrajo, and S. Vyetrenko. On the constrained time-series gener-
ation problem. In Advances in Neural Information Processing Systems, volume 36, pages 61048–
61059, 2023.

A. Daw, A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-guided neural networks (PGNN):
An application in lake temperature modeling. In Knowledge Guided Machine Learning: Ac-
celerating Discovery Using Scientific Knowledge and Data, pages 352–372, New York, 2022.
Chapman and Hall/CRC.

18

FORECASTING TIME-SERIES WITH CONSTRAINTS

J. de Vilmarest and Y. Goude. State-space models for online post-covid electricity load forecasting
competition. IEEE Open Access Journal of Power and Energy, 9:192–201, 2022.

J. de Vilmarest and O. Wintenberger. Viking: Variational Bayesian variational tracking. Statistical
Inference for Stochastic Processes, 27:839–860, 2024.

J. de Vilmarest, J. Browell, M. Fasiolo, Y. Goude, and O. Wintenberger. Adaptive probabilistic
forecasting of electricity (net-)load. IEEE Transactions on Power Systems, 39:4154–4163, 2024.

N. Doumèche, Y. Allioux, Y. Goude, and S. Rubrichi. Human spatial dynamics for electricity
demand forecasting: The case of France during the 2022 energy crisis. arXiv:2309.16238, 2023.

N. Doumèche, F. Bach, G. Biau, and C. Boyer. Physics-informed machine learning as a kernel
method. In Conference on Learning Theory, volume 247 of Proceedings of Machine Learning
Research, pages 1399–1450, 2024a.

N. Doumèche, G. Biau, and C. Boyer. Convergence and error analysis of PINNs. Bernoulli, in
press, 2024b.

N. Doumèche, F. Bach, G. Biau, and C. Boyer. Physics-informed kernel learning.
arXiv:2409.13786, 2024.

M. Farrokhabadi, J. Browell, Y. Wang, S. Makonin, W. Su, and H. Zareipour. Day-ahead electricity
demand forecasting competition: Post-COVID paradigm. IEEE Open Access Journal of Power
and Energy, 9:185–191, 2022.

M. Fasiolo, S. N. Wood, M. Zaffran, R. Nedellec, and Y. Goude. Fast calibrated additive quantile
regression. Journal of the American Statistical Association, 116:1402–1412, 2021.

P. Gaillard and Y. Goude. Opera: Online prediction by expert aggregation, 2016. Available:
https://CRAN.Rproject.org/package=opera.rpackage.

P. Gaillard, G. Stoltz, and T. V. Erven. A second-order bound with excess losses. Conference on
Learning Theory, pages 176–196, 2014.

R. W. Godahewa, C. Bergmeir, G. Webb, R. Hyndman, and P. Montero-Manso. Monash time
series forecasting archive. In Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks, volume 1, 2021.

B. Goehry, H. Yan, Y. Goude, P. Massart, and J.-M. Poggi. Random forests for time series.
REVSTAT-Statistical Journal, 21:283–302, 2023.

T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1:297–310, 1986.

T. Hong and S. Fan. Probabilistic electric load forecasting: A tutorial review. International Journal
of Forecasting, 32:914–938, 2016.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2012.

W. Ji, W. Qiu, Z. Shi, S. Pan, and S. Deng. Stiff-PINN: Physics-informed neural network for stiff
chemical kinetics. The Journal of Physical Chemistry A, 125:8098–8106, 2021.

19

https://CRAN.Rproject.org/package=opera.rpackage

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

G. Jin, Y. Liang, Y. Fang, Z. Shao, J. Huang, J. Zhang, et al. Spatio-temporal graph neural networks
for predictive learning in urban computing: A survey. IEEE Transactions on Knowledge and
Data Engineering, 36:5388–5408, 2024.

K. Kashinath, M. Mustafa, A. Albert, J.-L. Wu, C. Jiang, S. Esmaeilzadeh, et al. Physics-informed
machine learning: Case studies for weather and climate modelling. Philosophical Transactions
of the Royal Society A, 2021.

N. Kourentzes and G. Athanasopoulos. Cross-temporal coherent forecasts for Australian tourism.
Annals of Tourism Research, 75:393–409, 2019.

S. N. Lahiri. Resampling Methods for Dependent Data. Springer, 2013.

J. Leprince, H. Madsen, J. K. Møller, and W. Zeiler. Hierarchical learning, forecasting coherent
spatio-temporal individual and aggregated building loads. Applied Energy, 348:121510, 2023.

B. Lim and S. Zohren. Time-series forecasting with deep learning: A survey. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379:20200209,
2021.

G. Marra and S. N. Wood. Practical variable selection for generalized additive models. Computa-
tional Statistics & Data Analysis, 55:2372–2387, 2011.

G. Meanti, L. Carratino, L. Rosasco, and A. Rudi. Kernel methods through the roof: Handling
billions of points efficiently. In Advances in Neural Information Processing Systems, volume 33,
pages 14410–14422, 2020.

J. W. Messner, P. Pinson, J. Browell, M. B. Bjerregård, and I. Schicker. Evaluation of wind power
forecasts – an up-to-date view. Wind Energy, 23:1461–1481, 2020.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press,
Cambridge, 2012.

Météo-France. Données SYNOP essentielles OMM. Available: pub-
lic.opendatasoft.com/explore/dataset/, 2023.

R. Nickl and E. S. Titi. On posterior consistency of data assimilation with Gaussian process priors:
The 2D-Navier–Stokes equations. The Annals of Statistics, 52:1825–1844, 2024.

D. Obst, J. de Vilmarest, and Y. Goude. Adaptive methods for short-term electricity load forecasting
during COVID-19 lockdown in France. IEEE Transactions on Power Systems, 36:4754–4763,
2021.

C. L. Pennings and J. van Dalen. Integrated hierarchical forecasting. European Journal of Opera-
tional Research, 263:412–418, 2017.

F. Petropoulos, D. Apiletti, V. Assimakopoulos, M. Z. Babai, D. K. Barrow, S. Ben Taieb, et al.
Forecasting: Theory and practice. International Journal of Forecasting, 38:705–871, 2022.

D. N. Politis and J. P. Romano. The stationary bootstrap. Journal of the American Statistical
Association, 89:1303–1313, 1994.

20

https://public.opendatasoft.com/explore/dataset/donnees-synop-essentielles-omm/
https://public.opendatasoft.com/explore/dataset/donnees-synop-essentielles-omm/

FORECASTING TIME-SERIES WITH CONSTRAINTS

M. Raissi, P. Perdikaris, and G. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

S. S. Rangapuram, L. D. Werner, K. Benidis, P. Mercado, J. Gasthaus, and T. Januschowski. End-
to-end learning of coherent probabilistic forecasts for hierarchical time series. In International
Conference on Machine Learning, pages 8832–8843, 2021.

P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 71:1009–1030, 2009.

C. Remlinger, C. Alasseur, M. Brière, and J. Mikael. Expert aggregation for financial forecasting.
The Journal of Finance and Data Science, 9:100108, 2023.

RTE. éCO2mix. Available: rte-france.com/en/eco2mix, 2023. [Accessed: July 17, 2024].

M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari, and
S. Stadtler. Can deep learning beat numerical weather prediction? Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 379:20200097, 2021.

S. B. Taieb and R. Hyndman. A gradient boosting approach to the Kaggle load forecasting compe-
tition. International Journal of Forecasting, 30:382–394, 2014.

A. Timmermann. Chapter 4 forecast combinations. In G. Elliott, C. Granger, and A. Timmermann,
editors, Handbook of Economic Forecasting, volume 1, pages 135–196. Elsevier, 2006.

S. L. Wickramasuriya, G. Athanasopoulos, and R. J. Hyndman. Optimal forecast reconciliation
for hierarchical and grouped time series through trace minimization. Journal of the American
Statistical Association, 114:804–819, 2019.

S. N. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, New
York, 2017.

S. N. Wood, Z. Li, G. Shaddick, and N. H. Augustin. Generalized additive models for gigadata:
Modeling the U.K. black smoke network daily data. Journal of the American Statistical Associ-
ation, 112:1199–1210, 2017.

I. W. Wright and E. J. Wegman. Isotonic, convex and related splines. The Annals of Statistics, 8:
1023–1035, 1980.

N. Zarbakhsh, M. Misaghian, and G. Mcardle. Human mobility-based features to analyse the impact
of COVID-19 on power system operation of Ireland. IEEE Open Access Journal of Power and
Energy, 9:213–225, 2022.

K. Zheng, H. Xu, Z. Long, Y. Wang, and Q. Chen. Coherent hierarchical probabilistic forecasting
of electric vehicle charging demand. IEEE Transactions on Industry Applications, pages 1–12,
2023.

21

https://www.rte-france.com/en/eco2mix/download-indicators

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

Appendix A. Proofs

The purpose of this appendix is to provide detailed proofs of the theoretical results presented in the
main article. Appendix A.2 elaborates on the formula that characterizes the unique minimizer of
the WeaKL empirical risks, while Appendix A.3 discusses the integration of linear constraints into
the empirical risk framework.

A.1 A useful lemma

Lemma A.1 (Full rank) The matrix

M̃ =
1

n

(n∑
j=1

Φ∗
tjΛ

∗ΛΦtj

)
+M∗M

is invertible. Moreover, for all θ ∈ Cdim θ, θ⋆M̃θ ≥ λmin(M̃)∥θ∥22, where λmin(M̃) is the minimum
eigenvalue of M̃ .

Proof First, we note that M̃ is a positive Hermitian square matrix. Hence, the spectral theorem
guarantees that M̃ is diagonalizable in an orthogonal basis of Cdim(θ) with real eigenvalues. In par-
ticular, it admits a positive square root, and the min-max theorem states that θ∗M̃θ = ∥M̃1/2θ∥22 ≥
λmin(M̃

1/2)2∥θ∥22 = λmin(M̃)∥θ∥22. This shows the second statement of the lemma.
Next, for all θ ∈ Cdim θ, θ∗M̃θ ≥ θ∗M∗Mθ. Since M is full rank, rank(M) = dim(θ). There-

fore, M̃θ = 0 ⇒ θ∗M̃θ = 0 ⇒ θ∗M∗Mθ = 0 ⇒ ∥Mθ∥22 = 0 ⇒ Mθ = 0 ⇒ θ = 0. Thus, M̃ is
injective and, in turn, invertible.

A.2 Proof of Proposition 2.1

The function L : Cdim(θ) → R+ can be written as

L(θ) =
1

n

(n∑
j=1

(Φtjθ − Ytj)
∗Λ∗Λ(Φtjθ − Ytj)

)
+ θ∗M∗Mθ.

Recall that the matrices Λ and M are assumed to be injective. Observe that L can be expanded as

L(θ + δθ) = L(θ) + 2Re(⟨M̃θ − Ỹ , δθ⟩) + o(∥δθ∥22),

where Ỹ = 1
n

∑n
j=1 Φ∗

tjΛ
∗ΛYtj . This shows that L is differentiable and that its differential at θ is

the function dLθ : δθ 7→ 2Re(⟨M̃θ − Ỹ , δθ⟩). Thus, the critical points θ such that dLθ = 0 satisfy

∀ δθ ∈ Cdim(θ), Re(⟨M̃θ − Ỹ , δθ⟩) = 0.

Taking δθ = M̃θ − Ỹ shows that ∥M̃θ − Ỹ ∥22 = 0, i.e., M̃θ = Ỹ . From Lemma A.1, we deduce
that θ = M̃−1Ỹ , which is exactly the θ̂n in (3).

From Lemma A.1, we also deduce that, for all θ such that ∥θ∥2 is large enough, one has L(θ) ≥
λmin(M̃)∥θ∥22/2. Since L is continuous, it has at least one global minimum. Since the unique
critical point of L is θ̂n, we conclude that θ̂n is the unique minimizer of L.

22

FORECASTING TIME-SERIES WITH CONSTRAINTS

A.3 Orthogonal projection and linear constraints

Lemma A.2 (Orthogonal projection) Let ℓ1, ℓ2 ∈ N⋆. Let P be an injective ℓ1 × ℓ2 matrix with
coefficients in C. Then C = Iℓ1 − P (P ∗P)−1P ∗ is the orthogonal projection on Im(P)⊥, where
Im(P) is the image of P and Iℓ1 is the ℓ1 × ℓ1 identity matrix.

Proof First, we show that P ∗P is an ℓ2 × ℓ2 matrix of full rank. Indeed, for all x ∈ Cℓ2 , one has
P ∗Px = 0 ⇒ x∗P ∗Px = 0 ⇒ ∥Px∥22 = 0. Since P is injective, we deduce that ∥Px∥22 = 0 ⇒
x = 0. This means that kerP ∗P = {0}, and so that P ∗P is full rank. Therefore, (P ∗P)−1 is well
defined.

Next, let C1 = P (P ∗P)−1P ∗. Clearly, C2
1 = C1, i.e., C1 is a projector. Since C∗

1 = C1,
we deduce that C1 is an orthogonal projector. In addition, since C1 = P × ((P ∗P)−1P ∗),
Im(C1) ⊆ Im(P). Moreover, if x ∈ Im(P), there exists a vector z such that x = Pz, and
C1x = P (P ∗P)−1P ∗Pz = Pz = x. Thus, x ∈ Im(C1). This shows that Im(C1) = Im(P).
We conclude that C1 is the orthogonal projection on Im(P) and, in turn, that C = Iℓ1 − C1 is the
orthogonal projection on Im(P)⊥.

The following proposition shows that, given the exact prior knowledge Cθ⋆ = 0, enforcing the
linear constraint Cθ = 0 almost surely improves the performance of WeaKL.

Proposition A.3 (Constrained estimators perform better.) Assume that Yt = fθ⋆(Xt) + εt and
that θ⋆ satisfies the constraint Cθ⋆ = 0, for some matrix C. (Note that we make no assumptions
about the distribution of the time series (X, ε).) Let Λ andM be injective matrices, and let λ ≥ 0 be
a hyperparameter. Let θ̂ be the WeaKL given by (3) and let θ̂C be the WeaKL obtained by replacing
M with (

√
λC⊤ |M⊤)⊤ in (3). Then, almost surely,

1

n

n∑
j=1

∥fθ⋆(Xtj)−fθ̂C (Xtj)∥22+∥M(θ⋆− θ̂C)∥22 ≤
1

n

n∑
j=1

∥fθ⋆(Xtj)−fθ̂(Xtj)∥22+∥M(θ⋆− θ̂)∥22.

Proof Recall from (3) that

θ̂ = P−1
n∑

j=1

Φ∗
tjΛ

∗ΛYtj and θ̂C =
(
P + λnC∗C

)−1
n∑

j=1

Φ∗
tjΛ

∗ΛYtj ,

where P = (
∑n

j=1 Φ∗
tjΛ

∗ΛΦtj) + nM∗M . Since Cθ⋆ = 0, we see that

θ⋆ =
(
P + λnC∗C

)−1
Pθ⋆. (13)

Subtracting (13) to, respectively, θ̂ and θ̂C , we obtain

θ⋆ − θ̂ = P−1/2∆ and θ⋆ − θ̂C =
(
P + λnC∗C

)−1
P 1/2∆,

where

∆ = P−1/2
(
Pθ⋆ −

n∑
j=1

Φ∗
tjΛ

∗ΛYtj

)
.

Moreover, according to the Loewner order (see, e.g., Horn and Johnson, 2012, Chapter 7.7), we
have that P−1/2C∗CP−1/2 ≥ 0 and (P−1/2C∗CP−1/2)2 ≥ 0. (Indeed, since P is Hermitian, so is

23

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

P−1/2C∗CP−1/2.) Therefore, (I+λnP−1/2C∗CP−1/2)2 ≥ I and (I+λnP−1/2C∗CP−1/2)−2 ≤
I (see, e.g., Horn and Johnson, 2012, Corollary 7.7.4). Consequently,

∥P 1/2(θ⋆ − θ̂C)∥22 = ∆∗(I + λnP−1/2C∗CP−1/2
)−2

∆ ≤ ∥∆∥22 = ∥P 1/2(θ⋆ − θ̂)∥22.

Observing that ∥P 1/2(θ⋆ − θ̂C)∥22 = 1
n

∑n
j=1 ∥fθ⋆(Xtj) − fθ̂C (Xtj)∥22 + ∥M(θ⋆ − θ̂C)∥22 and

∥P 1/2(θ⋆ − θ̂)∥22 = 1
n

∑n
j=1 ∥fθ⋆(Xtj)− fθ̂(Xtj)∥22 + ∥M(θ⋆ − θ̂)∥22 concludes the proof.

Remark A.4 Taking the limit λ→ ∞ in Proposition A.3 does not affect the result and corresponds
to restricting the parameter space to ker(C), meaning that, in this case, Cθ̂C = 0.

Note also that the proposition is extremely general, as it holds almost surely without requiring
any assumptions on either X or ε. Here, the error of θ̂ is measured by

1

n

n∑
j=1

∥fθ⋆(Xtj)− fθ̂(Xtj)∥22 + ∥M(θ⋆ − θ̂)∥22,

which quantifies both the error of θ̂ at the points Xtj and in the M norm. Under additional as-
sumptions on X and ε, this discretized risk can be shown to converge to the L2 error, E∥fθ⋆(X)−
fθ̂(X)∥22, using Dudley’s theorem (see, e.g., Theorem 5.2 in the Supplementary Material of Doumèche
et al., 2024b).

However, the rate of this convergence of θ̂ to θ⋆ depends on the properties of C and M , as well
as the growth of dim(θ) with n. For instance, when the penalty matrix M encodes a PDE prior,
the analysis becomes particularly challenging and remains an open question in physics-informed
machine learning. Therefore, we leave the study of this convergence outside the scope of this article.

Appendix B. More WeaKL models

B.1 Forecast combinations

To forecast a time series Y , different models can be used, each using different implementations
and sets of explanatory variables. Let p be the number of models and let Ŷ 1

t , . . . , Ŷ
p
t be the re-

spective estimators of Yt. The goal is to determine the optimal weighting of these forecasts, based
on their performance evaluated over the time points t1 ≤ · · · ≤ tn. Therefore, in this setting,
Xt = (t, Ŷ 1

t , . . . , Ŷ
p
t), and the goal is to find the optimal function linking Xt to Yt. Note that, to

avoid overfitting, we assume that the forecasts Ŷ 1
t , . . . , Ŷ

p
t were trained on time steps before t1.

This approach is sometimes referred to as the online aggregation of experts (Remlinger et al., 2023;
Antoniadis et al., 2024). Such forecast combinations are widely recognized to significantly im-
prove the performance of the final forecast (Timmermann, 2006; de Vilmarest and Goude, 2022;
Petropoulos et al., 2022; Amara-Ouali et al., 2024), as they leverage the strengths of the individual
predictors.

Formally, this results in the model

fθ(Xt) =

p∑
ℓ=1

(p−1 + hθℓ(t))Ŷ
ℓ
t ,

24

FORECASTING TIME-SERIES WITH CONSTRAINTS

where hθℓ(t) = ⟨ϕ(t), θℓ⟩, ϕ is the Fourier map ϕ(t) = (exp(ikt/2))⊤−m≤k≤m, and θℓ ∈ C2m+1.
The p−1 term introduces a bias, ensuring that hθℓ = 0 corresponds to a uniform weighting of the
forecasts Ŷ ℓ. The function f⋆ is thus estimated by minimizing the loss

L(θ) =
1

n

n∑
j=1

∣∣∣(p∑
ℓ=1

(p−1 + hθℓ(tj))Ŷ
ℓ
tj

)
− Ytj

∣∣∣2 + p∑
ℓ=1

λℓ∥hθℓ∥
2
Hs ,

where λℓ > 0 are hyperparameters. Again, a common choice for the smoothing parameter is to set
s = 2. Let ϕ1(Xt) = ((Ŷ ℓ

t exp(ikt/2))−m≤k≤m)pℓ=1)
⊤ ∈ C(2m+1)p. The Fourier coefficients that

minimize the empirical risk are given by

θ̂ = (Φ∗Φ + nM∗M)−1Φ∗W,

where W = (Wt1 , . . . ,Wtn)
⊤ is such that Wt = Yt − p−1

∑p
ℓ=1 Ŷ

ℓ
t ,

M =


√
λ1D 0 0

0
. . . 0

0 0
√
λd1D

 ,

and D is the (2m+ 1)× (2m+ 1) diagonal matrix D = Diag((
√
1 + k2s)−m≤k≤m).

B.2 Differential constraints

As discussed in the introduction, some time series obey physical laws and can be expressed as
solutions of PDEs. Physics-informed kernel learning (PIKL) is a kernel-based method developed
by Doumèche et al. (2024) to incorporate such PDEs as constraints. It can be regarded as a specific
instance of the WeaKL framework proposed in this paper. In effect, given a bounded Lipschitz
domain Ω and a linear differential operator D , using the model fθ(x) = ⟨ϕ(x), θ⟩, where ϕ(x) =
(exp(i⟨x, k⟩/2))∥k∥∞≤m is the Fourier map and θ represents the Fourier coefficients, the PIKL
approach shows how to construct a matrix M such that∫

Ω
D(fθ, u)

2 du = ∥Mθ∥22.

Thus, to incorporate the physical prior ∀x ∈ Ω, D(f⋆, x) = 0 into the learning process, the
empirical risk takes the form

L(θ) =
1

n

n∑
i=1

|fθ(Xti)− Yti |2 + λ

∫
Ω

D(fθ, u)
2 du =

1

n

n∑
i=1

|fθ(Xti)− Yti |2 + ∥
√
λMθ∥22,

where λ > 0 is a hyperparameter. From (5) it follows that the minimizer of the empirical risk is
θ̂ = (Φ∗Φ + nM)−1Φ∗Y. It is shown in Doumèche et al. (2024a) that, as n → ∞, fθ̂ converges to
f⋆ under appropriate assumptions. Moreover, incorporating the differential constraint improves the
learning process; in particular, fθ̂ converges to f⋆ faster when λ > 0.

25

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

Appendix C. A toy-example of hierarchical forecasting

Setting. We evaluate the performance of WeaKL on a simple but illustrative hierarchical forecast-
ing task. In this simplified setting, we want to forecast two random variables, Y1 and Y2, defined as
follows:

Y1 = ⟨X1, θ1⟩+ ε1, Y2 = ⟨X2, θ2⟩ − ε1 + ε2,

where X1, X2, ε1, and ε2 are independent. The feature vectors are X1 ∼ N (0, Id) and X2 ∼
N (0, Id), with d ∈ N⋆. The noise terms follow Gaussian distributions ε1 ∼ N (0, σ21) and ε2 ∼
N (0, σ22), with σ1, σ2 > 0. Note that the independence assumption aims at simplifying the analysis
in this toy-example by putting the emphasis on the impact of the hierarchical constraints rather than
on the autocorrelation of the signal, though in practice this assumption is unrealistic for most time
series. This is why we will develop a use case of hierarchical forecasting with real-world time series
in Section 4.2.

What distinguishes this hierarchical prediction setting is the assumption that σ1 ≥ σ2. Con-
sequently, conditional on X1 and X2, the sum Y1 + Y2 = ⟨X1, θ1⟩ + ⟨X2, θ2⟩ + ε2 has a lower
variance than either Y1 or Y2. We assume access to n i.i.d. copies (X1,i, X2,i, Y1,i, Y2,i)

n
i=1 of the

random variables (X1, X2, Y1, Y2). The goal is to construct three estimators Ŷ1, Ŷ2, and Ŷ3 of Y1,
Y2, and Y3 := Y1 + Y2.

Benchmark. We compare four techniques. The bottom-up (BU) approach involves running two
separate ordinary least squares (OLS) regressions that independently estimate Y1 and Y2 without
using information about Y1 + Y2. Specifically,

Ŷ BU
1 = ⟨X1, θ̂

BU
1 ⟩, Ŷ BU

2 = ⟨X2, θ̂
BU
2 ⟩,

where the OLS estimators are

θ̂BU
1 = (X⊤

1 X1)
−1X⊤

1 Y1, θ̂BU
2 = (X⊤

2 X2)
−1X⊤

2 Y2.

Here, X1 = (X1,1 | · · · | X1,n)
⊤ and X2 = (X2,1 | · · · | X2,n)

⊤ are n × d matrices, while
Y1 = (Y1,1, . . . , Y1,n)

⊤ and Y2 = (Y2,1, . . . , Y2,n)
⊤ are vectors of Rn. To estimate Y3, we simply

set Ŷ BU
3 = Ŷ BU

1 + Ŷ BU
2 .

The Reconciliation (Rec) approach involves running three independent forecasts of Y1, Y2, and
Y3, followed by using the constraint that the updated estimator Ŷ Rec

3 should be the sum of Ŷ Rec
1 and

Ŷ Rec
2 (Wickramasuriya et al., 2019). To estimate Y3, we run an OLS regression with X = (X1 | X2)

and Y = Y1 + Y2. In this approach,Ŷ Rec
3,t

Ŷ Rec
1,t

Ŷ Rec
2,t

 = S(STS)−1ST

 ⟨Xt, (X⊤X)−1X⊤Y⟩
⟨X1,t, θ̂

BU
1 ⟩

⟨X2,t, θ̂
BU
2 ⟩

 ,

with S =

1 1
1 0
0 1

 and Xt = (X1,t | X2,t).

The Minimum Trace (MinT) approach is an alternative update method that replaces the update

matrix S(S⊤S)−1ST with S(J−JWU(U⊤WU)−1U⊤), J =

(
0 1 0
0 0 1

)
,W the 3×3 covariance

26

FORECASTING TIME-SERIES WITH CONSTRAINTS

Figure 4: Hierarchical forecasting performance with 2d/n = 0.5.

matrix of the prediction errors on the training data, and U =
(
−1 1 1

)⊤ (Wickramasuriya et al.,
2019). This approach extends the linear projection onto Im(S) and better accounts for correlations
in the noise of the time series. Finally, we apply the WeaKL-BU estimator (10) with M = 0,
ϕ1(x) = x, ϕ2(x) = x, and Λ = Diag(1, 1, λ), where λ > 0 is a hyperparameter that controls the
penalty on the joint prediction Y1 + Y2. It minimizes the empirical loss

L(θ1, θ2) =
1

n

n∑
i=1

|⟨X1,i, θ1⟩−Y1,i|2+ |⟨X2,i, θ2⟩−Y2,i|2+λ|⟨X1,i, θ1⟩+⟨X1,i, θ2⟩−Y1,i−Y2,i|2,

In the experiments, we set λ = σ−2
2 for simplicity, although it can be easily learned by cross-

validation.

Monte Carlo experiment. To compare the performance of the different methods, we perform a
Monte Carlo experiment. Since linear regression is invariant under multiplication by a constant, we
set σ1 = 1 without loss of generality. Since σ2 ≤ σ1, we allow σ2 to vary from 0 to 1. For each
value of σ2, we run 1000 Monte Carlo simulations, where each simulation uses n = 80 training
samples and ℓ = 20 test samples. In each Monte Carlo run, we independently draw θ1 ∼ N (0, Id),
θ2 ∼ N (0, Id), X1,i ∼ N (0, Id), X2,i ∼ N (0, Id), ε1,i ∼ N (0, 1), and ε2,i ∼ N (0, σ22), where
1 ≤ i ≤ n. Note that, on the one hand, theL2 error of an OLS regression on Y1+Y2 is σ22(1+2d/n),
while on the other hand, the minimum possible L2 error when fitting Y1 + Y2 is σ22 . Thus, a large
2d/n is necessary to observe the benefits of hierarchical prediction. To achieve this, we set d = 20,
resulting in 2d/n = 0.5.

27

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

The models are trained on the n training data points, and their performance is evaluated on
the ℓ test data points using the mean squared error (MSE). Given any estimator (Ŷ1, Ŷ2, Ŷ3) of
(Y1, Y2, Y1+Y2), we compute the error ℓ−1

∑ℓ
j=1 |Y1,n+j−Ŷ1,n+j |2 on Y1, the error ℓ−1

∑ℓ
j=1 |Y2,n+j−

Ŷ2,n+j |2 on Y2, and the error ℓ−1
∑ℓ

j=1 |Y1,n+j + Y2,n+j − Ŷ3,n+j |2 on Y1 + Y2. The hierarchical
error is defined as the sum of these three MSEs, which are visualized in Figure 4.

Results. Figure 4 clearly shows that all hierarchical models (Rec, MinT, and WeaKL) outper-
form the naive bottom-up model for all four MSE metrics. Among them, our WeaKL consistently
emerges as the best performing model, achieving superior results for all values of σ2. Our WeaKL
delivers gains ranging from 10% to 50% over the bottom-up model, solidifying its effectiveness in
the benchmark.

The strong performance of WeaKL can be attributed to its approach, which goes beyond sim-
ply computing the best linear combination of linear experts to minimize the hierarchical loss, as
reconciliation methods typically do. Instead, WeaKL directly optimizes the weights θ1 and θ2 to
minimize the hierarchical loss. Another way to interpret this is that when the initial forecasts are
suboptimal, reconciliation methods aim to find a better combination of those forecasts, but do so
without adjusting their underlying weights. In contrast, the WeaKL approach explicitly recalibrates
these weights, resulting in a more accurate and adaptive hierarchical forecast.

Extension to the over-parameterized limit. Another advantage of WeakL is that it also works for
d such that 2n ≥ 2d ≥ n. In this context, the Rec and MinT algorithms cannot be computed because
the OLS regression of Y on X is overparameterized (2d features but only n data points). To study the
performance of the benchmark in the n ≃ d limit, we repeated the same Monte Carlo experiment,
but with d = 38, resulting in d/n = 0.95. The MSEs of the methods are shown in Figure 5. These
results further confirm the superiority of the WeaKL approach in the overparameterized regime.
Note that such overparameterized situations are common in hierarchical forecasting. For example,
forecasting an aggregate index-such as electricity demand, tourism, or food consumption-at the
national level using city-level data across d ≫ 1 cities (e.g., local temperatures) often leads to an
overparameterized model.

Extension to non-linear regressions. For simplicity, our experiments have focused on linear re-
gressions. However, it is important to note that the hierarchical WeaKL can be applied to nonlinear
regressions using exactly the same formulas. Specifically, in cases where Y1 = f1(X1) + ε1 and
Y2 = f2(X2)−ε1+ε2, where f1 and f2 represent nonlinear functions, the WeaKL approach remains
valid. This is because the connection to the linear case is straightforward: the WeaKL essentially
performs a linear regression on the Fourier coefficients of X1 and X2, seamlessly extending its
applicability to nonlinear settings.

Appendix D. Experiments

This appendix provides comprehensive details on the use cases discussed in the main text. Ap-
pendix D.1 describes our hyperparameter tuning technique. Appendix D.2 explains how we evalu-
ate uncertainties. Appendix D.3 outlines our approach to handling sampling frequency in electricity
demand forecasting applications. Appendix D.4 details the models used in Use case 1, while Ap-
pendix D.5 focuses on Use case 2, and Appendix D.6 covers the tourism demand forecasting use
case.

28

FORECASTING TIME-SERIES WITH CONSTRAINTS

Figure 5: Hierarchical forecasting performance with 2d/n = 0.95.

29

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

D.1 Hyperparameter tuning

Hyperparameter tuning of the additive WeaKL. Consider a WeaKL additive model

fθ(Xt) = ⟨ϕ1,1(X1,t), θ1,1⟩+ · · ·+ ⟨ϕ1,d1(Xd1,t), θ1,d1⟩,

where the type (linear, nonlinear, or categorical) of the effects are specified. Thus, as detailed in
Section 3,

(i) If the effect ⟨ϕ1,ℓ(Xℓ,t), θ1,j⟩ is assumed to be linear, then ϕ1,j(Xℓ,t) = Xℓ,t,

(ii) If the effect ⟨ϕ1,ℓ(Xℓ,t), θ1,ℓ⟩ is assumed to be nonlinear, then ϕ1,ℓ is a Fourier map with
2mℓ + 1 Fourier modes,

(iii) If the effect ⟨ϕ1,ℓ(Xℓ,t), θ1,ℓ⟩ is assumed to be categorical with values in E, then ϕ1,ℓ is a
Fourier map with 2⌊|E|/2⌋+ 1 Fourier modes.

We let m = {mℓ | the effect ⟨ϕ1,ℓ(Xℓ,t), θ1,ℓ⟩ is nonlinear} be the concatenation of the numbers of
Fourier modes of the nonlinear effects. The goal of hyperparameter tuning is to find the best set of
hyperparameters λ = (λ1, . . . , λd1) and m for the empirical risk (6) of the additive WeaKL.

To do so, we split the data into three sets: a training set, then a validation set, and finally a test
set. These three sets must be disjoint to avoid overfitting, and the test set is the dataset on which the
final performance of the method will be evaluated. The sets should be chosen so that the distribution
of (X,Y) on the validation set resembles as much as possible the distribution of (X,Y) on the test
set.

We consider a list of potential candidates for the optimal set of hyperparameters (λ,m)opt.
Since we have no prior knowledge about (λ,m), we chose this list to be a grid of parameters.
For each element (λ,m) in the grid, we compute the minimizer θ̂(λ,m) of the loss (6) over the
training period. Then, given θ̂(λ,m), we compute the mean squared error (MSE) of fθ̂(λ,m) over
the validation period. This procedure is commonly referred to as grid search. The resulting estimate
of the optimal hyperparameters (λ,m)opt corresponds to the values of (λ,m) that minimize the
MSE of fθ̂(λ,m) over the validation period. The performance of the additive WeaKL is then assessed
based on the performance of fθ̂(λ,m)opt

on the test set.

Hyperparameter tuning of the online WeaKL. Consider an online WeaKL

fθ(t, x1, . . . , xd1) = hθ0(t) +

d1∑
ℓ=1

(1 + hθℓ(t))ĝℓ(xℓ),

where the effects ĝℓ are known, and the updates hθℓ(t) = ⟨ϕ(t), θℓ⟩ are such that ϕ is the Fourier
map ϕ(t) = (exp(ikt/2))⊤−mj≤k≤mj

, with mj ∈ N⋆. We let m = {mj | 0 ≤ j ≤ d1} be
the concatenation of the numbers of Fourier modes. The goal of hyperparameter tuning is to find
the best set of hyperparameters λ = (λ0, . . . , λd1) and m for the empirical risk (8) of the online
WeaKL.

To do so, we split the data into three sets: a training set, then a validation set, and finally a
test set. This three sets must be disjoint to avoid overfitting. Moreover, the training set and the
validation set must be disjoint from the data used to learn the effects ĝℓ. The test set must be the
set on which the final performance of the method will be evaluated. The sets should be chosen so

30

FORECASTING TIME-SERIES WITH CONSTRAINTS

that the distribution of (X,Y) on the validation set resembles as much as possible the distribution
of (X,Y) on the test set. Similarly to the hyperparameter tuning of the additive WeaKL, we then
consider a list of potential candidates for the optimal hyperparameter (λ,m)opt, which can be a
grid. Then, we compute the minimizer θ̂(λ,m) of the loss (8) on the training period, and the
resulting estimation of (λ,m)opt is the set of hyperparameters (λ,m) such that the MSE of fθ̂(λ,m)
on the validation period is minimal. The performance of the online WeaKL is thus measured by the
performance of fθ̂(λ,m)opt

on the test set.

D.2 Block bootstrap methods

Evaluating uncertainties with block bootstrap. The purpose of this paragraph is to provide
theoretical tools for evaluating the performance of time series estimators. Formally, given a test
period {t1, . . . , tn}, a target time series (Ytj)1≤j≤n, and an estimator (Ŷtj)1≤j≤n of Y , the goal is
to construct confidence intervals that quantify how far RMSEn = (n−1

∑n
j=1 |Ŷtj − Ytj |2)1/2 de-

viates from its expectation RMSE = (E|Ŷt1 − Yt1 |2)1/2, and how far MAPEn = n−1
∑n

j=1 |Ŷtj −
Ytj ||Ytj |−1 deviates from its expectation MAPE = E(|Ŷt1 − Yt1 ||Yt1 |−1). Here, we assume that Y
and Ŷ are strongly stationary, meaning their distributions remain constant over time. Constructing
such confidence intervals is non-trivial because the observations Ytj in the time series Y are corre-
lated, preventing the direct application of the central limit theorem. The block bootstrap algorithm
is specifically designed to address this challenge and is defined as follows.

Consider a sequence Zt1 , Zt2 , . . . , Ztn such that the quantity of interest can be expressed as
g(E(Zt1)), for some function g. This quantity is estimated by g(Z̄n), where Z̄n = n−1

∑n
j=1 Ztj

is the empirical mean of the sequence. For example, RMSE = g(E(Zt1)) and RMSEn = g(Z̄n)
for g(x) = x1/2 and Ztj = (Ytj − Ŷtj)

2, while MAPE = g(E(Zt1)) and MAPEn = g(Z̄n) for
g(x) = x and Ztj = |Ŷtj − Ytj ||Ytj |−1. The goal of the block bootstrap algorithm is to estimate the
distribution of g(Z̄n).

Given a length ℓ ∈ N⋆ and a starting time tj , we say that (Ztj , . . . , Ztj+ℓ−1
) ∈ Rℓ is a

block of length ℓ starting at tj . We draw b = ⌊n/ℓ⌋ + 1 blocks of length ℓ uniformly from
the sequence (Zt1 , Zt2 , . . . , Ztn) and then concatenate these blocks to form the sequence Z∗ =
(Z∗

1 , Z
∗
2 , . . . , Z

∗
bℓ). Thus, Z∗ is a resampled version of Z obtained with replacement.

For convenience, we consider only the first n values of Z∗ and compute the bootstrap version of
the empirical mean: Z̄∗

n = 1
n

∑n
j=1 Z

∗
j . By repeatedly resampling the b blocks and generating mul-

tiple instances of Z̄∗
n, the resulting distribution of Z̄∗

n provides a reliable estimate of the distribution
of Z̄n. In particular, under general assumptions about the decay of the autocovariance function of
Z, choosing ℓ = ⌊n1/4⌋ leads to

sup
x∈R

|P(T ∗
n ≤ x | Zt1 , . . . , Ztn)− P(Tn ≤ x)| = On→∞(n−3/4),

where T ∗
n =

√
n(Z̄∗

n − E(Z̄∗
n | Zt1 , . . . , Ztn)) and Tn =

√
n(Z̄n − E(Zt1)) (see, e.g. Lahiri, 2013,

Theorem 6.7). Note that this convergence rate of n−3/4 is actually quite fast, as even if the Ztj were
i.i.d., the empirical mean Z̄n would only converge to a normal distribution at a rate of n−1/2 (by the
Berry-Esseen theorem). This implies that the block bootstrap method estimates the distribution of
Z̄n faster than Z̄n itself converges to its Gaussian limit.

The choice of ℓ plays a crucial role in this method. For instance, setting ℓ = 1 leads to an
underestimation of the variance of Z̄n when the Ztj are correlated (see, e.g. Lahiri, 2013, Corollary

31

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

2.1). In addition, block resampling introduces a bias, as Ztn belongs to only a single block and is
therefore less likely to be resampled than Zt⌊n/2⌋ . This explains why E(Z̄∗

n | Zt1 , . . . , Ztn) ̸= Z̄n.
To address both problems, Politis and Romano (1994) introduced the stationary bootstrap, where
the block length ℓ varies and follows a geometric distribution.

Comparing estimators with block bootstrap. Given two stationary estimators Ŷ 1 and Ŷ 2 of Y ,
the goal is to develop a test of level α ∈ [0, 1] for the hypothesis H0 : E|Ŷ 1

t − Yt| = E|Ŷ 2
t −

Yt|. Using the previous paragraph, such a test could be implemented by estimating two confidence
intervals I1 and I2 for E|Ŷ 1

t − Yt| and E|Ŷ 2
t − Yt| at level α/2 using block bootstrap, and then

rejecting H0 if I1 ∩ I2 = ∅. However, this approach tends to be conservative, potentially reducing
the power of the test when assessing whether one estimator is significantly better than the other.

To create a more powerful test, Messner et al. (2020) and Farrokhabadi et al. (2022) suggest
relying on the MAE skill score, which is defined by

Skill = 1− MAE1

MAE2
,

where MAE1 and MAE2 are the mean average errors of Ŷ 1 and Ŷ 2, respectively. Note that Skill =
(MAE2−MAE1)/MAE2 is the relative distance between the two MAEs. Thus, Ŷ 1 is significantly
better than Ŷ 2 if Skill is significantly positive. A confidence interval for Skill can be obtained by
block bootstrap. Indeed, consider the time series Z defined as Ztj = (|Ŷ 1

tj −Y
1
tj |, |Ŷ

2
tj −Y

2
tj |), and let

g(x, y) = 1 − x/y. We use the block bootstrap method over this sequence to estimate g(E(Z)) by
generating different samples of MAE1 and MAE2. In particular, in Appendix D.4, Ŷ 1 corresponds
to WeakL, while Ŷ 2 is the estimator of the winning team of the IEEE competition.

D.3 Half-hour frequency

Short-term electricity demand forecasts are often estimated with a half-hour frequency, meaning that
the objective is to predict electricity demand every 30 minutes during the test period. This applies
to both Use case 1 and Use case 2. There are two common approaches to handling this frequency in
forecasting models. One approach is to include the half-hour of the day as a feature in the models.
The alternative, which yields better performance, is to train a separate model for each half-hour,
resulting in 48 distinct models. This superiority arises because the relationship between electricity
demand and conventional features (such as temperature and calendar effects) varies significantly
across different times of the day. For instance, electricity demand remains stable at night but fluctu-
ates considerably during the day. This variability justifies treating the forecasting problem at each
half-hour as an independent learning task, leading to 48 separate models. Consequently, in both
use cases, all models discussed in this paper—including WeaKL, as well as those from de Vilmarest
and Goude (2022) and Doumèche et al. (2023)—are trained separately for each of the 48 half-hours,
using identical formulas and architectures. This results in 48 distinct sets of model weights. For
simplicity, and since the only consequence of this preprocessing step is to split the learning data into
48 independent groups, this distinction is omitted from the equations.

D.4 Precisions on the Use case 1 on the IEEE DataPort Competition on Day-Ahead
Electricity Load Forecasting

In this appendix, we provide additional details on the two WeaKLs used in the benchmark for
Use case 1 of the IEEE DataPort Competition on Day-Ahead Electricity Load Forecasting. The

32

FORECASTING TIME-SERIES WITH CONSTRAINTS

first model is a direct adaptation of the GAM-Viking model from de Vilmarest and Goude (2022)
into the WeaKL framework. The second model is a WeaKL where the effects are learned through
hyperparameter tuning.

Direct translation of the GAM-Viking model into the WeaKL framework. To build their
model, de Vilmarest and Goude (2022) consider four primary models: an autoregressive model
(AR), a linear regression model, a GAM, and a multi-layer perceptron (MLP). These models are
initially trained on data from 18 March 2017 to 1 January 2020. Their weights are then updated
using the Viking algorithm starting from 1 March 2020 (de Vilmarest and Goude, 2022, Table 3).
The parameters of the Viking algorithm were manually selected by the authors based on perfor-
mance monitoring over the 2020–2021 period (de Vilmarest and Goude, 2022, Figure7). To further
refine the forecasts, the model errors are corrected using an autoregressive model, which they called
the intraday correction and implemented as a static Kalman filter. The final forecast is obtained by
online aggregation of all models, meaning that the predictions from different models are combined
in a linear combination that evolves over time. The weights of this aggregation are learned using the
ML-Poly algorithm from the opera package (Gaillard and Goude, 2016), trained over the period
1 July 2020 to 18 January 2021. The test period spans from 18 January 2021 to 17 February 2021.
During this period, the aggregated model achieves a MAE of 10.9 GW, while the Viking-updated
GAM model alone yields an MAE of 12.7 GW.

Here, to ensure a fair comparison between our WeaKL framework and the GAM-Viking model
of de Vilmarest and Goude (2022), we replace their GAM-Viking with our online WeaKL in their
aggregation. Our additive WeaKL model is therefore a direct translation of their offline GAM
formulation into the WeaKL framework. Specifically, we consider the additive WeaKL based on the
features X = (DoW,FTemps95corr1,Load1,Load7,ToY, t) corresponding to

Yt =g
⋆
1(DoWt) + g⋆2(FTemps95corr1t) + g⋆3(Load1t) + g⋆4(Load7t) + g⋆5(ToYt) + g⋆6(t) + εt,

where g⋆1 is categorical with 7 values, g⋆2 and g⋆6 are linear, g⋆3 , g⋆4 , and g⋆5 are nonlinear.
FTemps95corr1 is a smoothed version of the temperature, while the other features remain the

same as those used in Use case 2. The weights of the additive WeaKL model are determined using
the hyperparameter selection technique described in Appendix D.1. The training period spans from
18 March 2017 to 1 November 2019, while the validation period extends from 1 November 2019
to 1 January 2020. During this grid search, the performance of 250, 047 sets of hyperparameters
(λ,m) ∈ R7 ×R3 is evaluated in less than a minute using a standard GPU (Nvidia L4 GPU, 24 GB
RAM, 30.3 teraFLOPs for Float32). Notably, this optimization period exactly matches the training
period of the primary models in de Vilmarest and Goude (2022), ensuring a fair comparison between
the two approaches.

Then, we run an online WeaKL, where the effects ĝℓ, 1 ≤ ℓ ≤ 7, are inherited directly from
the previously trained additive WeaKL. The weights of this online WeaKL are determined using the
hyperparameter selection technique described in Appendix D.1. The training period extends from 1
February 2020 to 18 November 2020, while the validation period extends from 18 November 2020
to 18 January 2021, immediately preceding the final test period to ensure optimal adaptation. During
this grid search, we evaluate 625 sets of hyperparameters (λ,m) ∈ R6 × R6 in less than a minute
using a standard GPU. Since t is already included as a feature, the function h∗0 in Equation (7) is not
required in this setting.

33

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

Table 4: Comparing GAM-Viking with its direct translation in the WeaKL framework on the final
test period

Model GAM GAM+ GAM+,intra GAMon GAMon,intra GAMagg

MAE (GW) 48.3 22.7 13.2 12.7 10.9
Model WeaKL WeaKL+ WeaKL+,intra WeaKLon WeaKLon,intra WeaKLagg

MAE (GW) 58.0 23.4 11.2 11.3 10.5

Table 5: Comparing GAM with its direct translation in the WeaKL framework on a stationary test
period.

Model GAM+ WeaKL+ GAM+,intra WeaKL+,intra

MAE (GW) 20.7 19.1 19.3 19.2

Finally, we evaluate the performance of our additive WeaKL (denoted as WeaKL+), our addi-
tive WeaKL followed by intraday correction (WeaKL+,intra), our online WeaKL (WeaKLon), our
online WeaKL with intraday correction (WeaKLon,intra), and an aggregated model based on de Vil-
marest and Goude (2022), where the GAM and GAM-Viking models are replaced by our additive
and online WeaKL models (WeaKLagg). The test period remains consistent with de Vilmarest and
Goude (2022), spanning from 18 January 2021 to 17 February 2021. Their performance results
are presented in Table 4 and compared to their corresponding translations within the GAM-Viking
framework. Thus, GAM+ refers to the offline GAM, while GAM+,intra corresponds to the of-
fline GAM with an intraday correction. Similarly, GAMon represents the GAM-Viking model, and
GAMon,intra denotes the GAM-Viking model with an intraday correction. Finally, GAMagg corre-
sponds to the final model proposed by de Vilmarest and Goude (2022).

The performance GAM+, GAM+,intra, WeaKL+, and WeaKL+,intra in Table 4 alone is not
very meaningful because the distribution of electricity demand differs between the training and test
periods. To address this, Table 5 presents a comparison of the same algorithms, trained on the
same period but evaluated on a test period spanning from 1 January 2020 to 1 March 2020. In this
stationary period, WeaKL outperforms the GAMs.

Moreover, in Table 4, the online WeaKLs clearly outperform the GAM-Viking models, achiev-
ing a reduction in MAE of more than 10%. As a result, replacing the GAM-Viking models in the
aggregation leads to improved overall performance. Notably, the WeaKLs are direct translations of
the GAM-Viking models, meaning that the performance gains are due solely to model optimization
and not to any structural changes.

Pure WeaKL. In addition, we trained an additive WeaKL using a different set of variables than
those in the GAM model, aiming to identify an optimal configuration. Specifically, we consider the
additive WeaKL with

X = (FcloudCover corr1,Load1D,Load1W,DayType,FTemperature corr1,

FWindDirection,FTemps95 corr1,Toy, t),

where

34

FORECASTING TIME-SERIES WITH CONSTRAINTS

(i) the effects of FclouCover corr1, Load1D, and Load1W are nonlinear,

(ii) the effect of DayType is categorical with 7 values,

(iii) the remaining effects are linear.

This model is trained using the hyperparameter tuning process detailed in Appendix D.1, with the
training period spanning from 18 March 2017 to 1 January 2020, and validation starting from 1
October 2019. Next, we fit an online WeaKL model, with hyperparameters tuned using a training
period from 1 March 2020 to 18 November 2020 and a validation period extending until 18 January
2021.

To verify that our pure WeaKL model achieves a significantly lower error than the best model
from the IEEE competition, we estimate the MAE skill score by comparing our pure WeaKL to
the model proposed by de Vilmarest and Goude (2022). To achieve this, we follow the procedure
detailed in Appendix D.2, using block bootstrap with a block length of ℓ = 24 and 3000 resamples
to estimate the distribution of the MAE skill score, Skill. Here, Ŷ 1 represents the WeaKL, while
Ŷ 2 corresponds to the estimator from de Vilmarest and Goude (2022). To evaluate the performance
difference, we estimate the standard deviation σn of Skilln and construct an asymptotic one-sided
confidence interval for Skill. Specifically, we define Skilln = 1− (

∑n
j=1 |Ŷ 1

tj −Ytj |)/(
∑n

j=1 |Ŷ 2
tj −

Ytj |) and consider the confidence interval [Skilln−1.28σn,+∞[, which corresponds to a confidence
level of α = 0.1. The resulting interval, [0.007,+∞[, indicates that the Skill score is positive with
at least 90% probability. Consequently, with at least 90% probability, the WeaKL chieves a lower
MAE than the best model from the IEEE competition.

D.5 Precision on the use Use case 2 on forecasting the French electricity load during the
energy crisis

This appendix provides detailed information on the additive WeaKL and the online WeaKL used in
Use case 2, which focuses on forecasting the French electricity load during the energy crisis.

Additive WeaKL. As detailed in the main text, the additive WeaKL is built using the following
features:

X = (Load1,Load7,Temp,Temp950,Tempmax950,Tempmin950,ToY,DoW,Holiday, t).

The effects of Load1, Load7, and t are modeled as linear. The effects of Temp, Temp950,
Tempmax950, Tempmin950, and ToY are modeled as nonlinear with m = 10. The effects of DoW
and Holiday are treated as categorical, with |E| = 7 and |E| = 2, respectively. The model weights
are selected through hyperparameter tuning, as detailed in Appendix D.1. The training period spans
from 8 January 2013 to 1 September 2021, while the validation period covers 1 September 2021 to
1 September 2022. Notably, this is the exact same period used by Doumèche et al. (2023) to train
the GAM. The objective of the hyperparameter tuning process is to determine the optimal values
for λ = (λ1, . . . , λ10) ∈ (R+)10 and m = (m3,m4,m5,m6,m7) ∈ (N⋆)5 in (6). As a result,
the additive WeaKL model presented in Use case 2 is the outcome of this hyperparameter tuning
process.

35

DOUMÈCHE, BACH, BEDEK, BIAU, BOYER, GOUDE

Online WeaKL. Next, we train an online WeaKL to update the effects of the additive WeaKL. To
achieve this, we apply the hyperparameter selection technique detailed in Appendix D.1. The train-
ing period spans from 1 February 2018 to 1 April 2020, while the validation period extends from 1
April 2020 to 1 June 2020. These periods, although not directly contiguous to the test period, were
specifically chosen because they overlap with the COVID-19 outbreaks. This is crucial, as it allows
the model to learn from a nonstationary period. Moreover, since online models require daily up-
dates, the online WeaKL is computationally more expensive than the additive WeaKL. The training
period is set to two years and two months, striking a balance between computational efficiency and
GPU memory usage. Using the parameters (λ,m) obtained from hyperparameter tuning, we then
retrain the model in an online manner with data starting from 1 July 2020, ensuring that the rolling
training period remains at two years and two months.

Error quantification. Following the approach of Doumèche et al. (2023), the standard deviations
of the errors are estimated using stationary block bootstrap with a block length of ℓ = 48 and 1000
resamples.

Model running times. Below, we present the running times of various models in the experiment
that includes holidays:

• GAM: 20.3 seconds.

• Static Kalman adaption: 1.7 seconds.

• Dynamic Kalman adaption: 48 minutes, for an hyperparameter tuning of 104 sets of hyper-
parameters (see Obst et al., 2021, II.A.2).

• Viking algorithm: 215 seconds (in addition to training the Dynamic Kalman model).

• Aggregation: 0.8 seconds.

• GAM boosting model: 6.6 seconds.

• Random forest model: 196 seconds.

• Random forest + bootstrap model: 34 seconds.

• Additive WeaKL: grid search of 1.6 × 105 hyperparameters: 257 seconds; training a single
model: 2 seconds.

• Online WeaKL: grid search of 9.2 × 103 hyperparameters: 114 seconds; training a single
model: 52 seconds.

D.6 Precisions on the use case on hierarchical forecasting of Australian domestic tourism
with transfer learning

The matrices Λ for the WeaKL-BU, WeaKL-G, and WeaKL-T estimators are selected through hy-
perparameter tuning. Following the procedure detailed in Appendix D.1, the dataset is divided into
three subsets: training, validation, and test. The training set comprises the first 60% of the data, the
validation set the next 20%, and the test set the last 20%. The optimal matrix, Λopt, is chosen from
a set of candidates by identifying the estimator trained on the training set that achieves the lowest

36

FORECASTING TIME-SERIES WITH CONSTRAINTS

MSE on the validation set. The model is then retrained using both the training and validation sets
with Λ = Λopt, and its performance is evaluated on the test set. Given that d1 = 415×24 = 19, 920,
WeaKL involves matrices of size d21 ≃ 4× 108, requiring several gigabytes of RAM. Consequently,
the grid search process is computationally expensive. For instance, in this experiment, the grid
search over 1024 hyperparameter sets for WeaKL-T takes approximately 45 minutes.

37

	Introduction
	Incorporating constraints in time series forecasting
	Shape constraints
	Mathematical formulation
	Application to electricity load forecasting

	Learning constraints
	Mathematical formulation
	Application to tourism forecasting

	Conclusion
	Proofs
	A useful lemma
	Proof of Proposition 2.1
	Orthogonal projection and linear constraints

	More WeaKL models
	Forecast combinations
	Differential constraints

	A toy-example of hierarchical forecasting
	Experiments
	Hyperparameter tuning
	Block bootstrap methods
	Half-hour frequency
	Precisions on the Use case 1 on the IEEE DataPort Competition on Day-Ahead Electricity Load Forecasting
	Precision on the use Use case 2 on forecasting the French electricity load during the energy crisis
	Precisions on the use case on hierarchical forecasting of Australian domestic tourism with transfer learning

