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ARTICLE OPEN
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Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined
the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n= 40) scores
on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n= 37). We
also recruited patients diagnosed with BD who were assigned (randomized, double-blind) to six weeks of lithium (n= 19) or
placebo (n= 16) after a two-week baseline period (n= 22 for FMRI). Participants completed mood ratings daily over 50 (MDQ
study) or 42 (BD study) days, as well as a risky decision-making task and functional magnetic resonance imaging. The task measured
adaptation of risk taking to past outcomes (increased risk aversion after a previous win vs. loss, ‘outcome history’). While the low
MDQ group was risk averse after a win, this was less evident in the high MDQ group and least so in the patients with BD. During
fMRI, ‘outcome history’ was linked to medial frontal pole activation at the time of the decision and this activation was reduced in
the high risk MDQ vs. the low risk MDQ group. While lithium did not reverse the pattern of BD in the task, nor changed clinical
symptoms of mania or depression, it changed reward processing in the dorsolateral prefrontal cortex. Participants’ modulation of
risk-taking in response to reward outcomes was reduced as a function of risk for BD and diagnosed BD. These results provide a
model for how reward may prime escalation of risk-related behaviours in bipolar disorder and how mood stabilising treatments
may work.

Molecular Psychiatry; https://doi.org/10.1038/s41380-025-02900-w

INTRODUCTION
Bipolar disorder (BD) is typically characterized by episodes of
depression or mania, lasting weeks and months. Lithium is the
most effective mood stabiliser for management of BD, reducing
the frequency of both manic and depressive episodes [1]. While
fluctuating mood episodes have traditionally be seen as lasting
weeks or months, more recent work has shown that, in fact,
patients with BD show large day-to-day fluctuations in mood even
when symptoms are in the non-clinical range [2] and that this is
affected by lithium treatment [3]. Understanding the processes
underpinning bipolar disorder may help us develop and assess
more effective treatment approaches.
From a computational psychiatry perspective, two causes for

mood fluctuations in bipolar disorder could be considered. First,
mood fluctuations could be the result of either increased and
prolonged responses to valanced outcomes. Recent work from the
field of reinforcement learning has suggested that destabilizing
positive feedback cycles between mood and perceptions of
rewards may contribute to BD [4–7]: In people with subclinical
symptoms of BD, positive or negative surprises were found to
affect the neural and behavioural responses to reward and

punishments. In particular, symptoms were associated with an
increase in reward value after a positive surprise. This kind of
reward sensitivity has been linked to later changes in mood,
suggesting a route by which escalation of reward responses may
translate into clinical symptoms [4]. Second, mood fluctuations
could be the result of reduced behaviours that stabilize mood.
Using momentary ecological monitoring has revealed that in the
healthy state, when mood fluctuates, people self-report using
strategies to re-establish mood homeostasis such as engaging
with aversive activities when they are in a good mood [8]. This
strategy is reduced in people with depression or low mood [9].
However, it is yet unclear whether regulating behaviour is also
reduced in BD. In the lab, adaptations of behaviour to past
outcomes have been studied in the field of decision-making,
revealing temporal interdependencies. For example, people show
‘biases’ such as ‘loss chasing’ [10] (taking more risks to try and
recover losses). Here, we used a lab-based task that allowed us to
test the impact of BD and its’ treatment on both putative
processes.
Optimal decision making involves interplay between frontos-

triatal systems, which play a role in motivation, reward value and
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its regulation. The ventral striatum and the ventromedial
prefrontal cortex (vmPFC) are implicated in reward anticipation
as well as its hedonic impact [11, 12]. vmPFC is further implicated
in the evaluation of options [13], including tracking of past reward
outcomes [14]. We would therefore expect that if bipolar disorder
affects the adaptation of behaviour to past outcomes, these
signals in the vmPFC should be changed. By contrast, activity in
the dorsolateral PFC is associated with regulation of behaviour
towards reward, including self-regulation of reward craving
[15, 16]. Previous work has linked bipolar disorder to increased
reward related striatal signalling, coupled with altered patterns of
ventromedial and dorsolateral PFC engagement [17] and interac-
tion [18], while a meta-analysis [19] has highlighted a role for
orbitofrontal cortex abutting dlPFC.
Here, we have built on these findings to test whether a gradient

across a bipolar disorder spectrum (i.e. from low risk to diagnosed
bipolar disorder), was linked to changed behavioural adaptation
(risk taking) from trial to trial in response to reward/loss outcomes.
For this, we recruited 40 volunteers with high scores on the mood
disorder questionnaire (MDQ [20]), at suspected high risk for
bipolar disorder, 37 volunteers with low scores, and 35 treatment
seeking patients with diagnosed BD (n= 22 for FMRI). To assess
whether behaviour and naturally occurring daily-life mood
fluctuations were related, participants completed up to 50
longitudinal testing sessions at home. To understand the neural
mechanisms of risk adaptation behaviour, we measured brain
activity with fMRI. To test the causal effect of a commonly
prescribed mood-stabilizing drug, lithium, 19 patients were
randomly assigned to receive six weeks of lithium treatment
(dose titrated individually to plasma levels of 0.6–1 mmol/L) and
16 to placebo treatment in a double-blind design.
We hypothesized that BD and risk for BD would be associated with

reduced adaption of risk taking behaviour (i.e. choice being less
connected to previous experience of a win or a loss), which would be
associated with changes in vmPFC and dlPFC signalling of previous
win/loss experiences during fMRI. We also hypothesized that these
behavioural and neuroimaging differences would be normalised
following six weeks of lithium vs placebo treatment in BD.

METHODS
Participants and ethics statement
Participants were recruited in two separate studies (see below). The non-
interventional study was approved by the local ethics committee (MSD-
IDREC-C2-2014-023) and the interventional study by the National Research
Ethics Service Committee South Central – Oxford A (15/SC/0109) and the
Oxford Health NHS Foundation Trust. Participants gave informed consent
and were reimbursed for taking part in the study. All methods were
performed in accordance with the relevant guidelines and regulations.

Volunteers at suspected high vs low risk of bipolar disorder. Participants
were recruited through local advertisement and from pools of previous
participants. In an online pre-screening session, participants completed the
Mood Disorders Questionnaire (MDQ [20]), a self-report screening
instrument to identify risk for bipolar disorder. Participants were only
invited for a full screening session if they scored either <5 points (‘low
MDQ’ group, n= 37 included, at presumed low risk for bipolar disorder); or
≥7 (‘high MDQ’ group, n= 40 included). The screening verified that several
of these symptoms measured with the MDQ happened during the same
period of time. Structured clinical interviews with the SCID revealed that 5
of this group met criteria for bipolar disorder, despite not having received
a formal diagnosis or seeking treatment. See Supplementary Method [1A]
for detailed exclusion criteria.

Patients with BD. Participants were recruited through the BD Research
Clinic (Oxford). All participants met criteria for BD-I (n= 7), BD-II (n= 27) or
BD not otherwise specified (BD-NOS, n= 1), based on structured clinical
interview. All participants were outside major mood episodes requiring
immediate treatment. Full exclusion criteria are provided in the
Supplementary Materials [1B]. Participants were assigned to placebo

(n= 16) or lithium (n= 19), in a randomised double-blind design,
see below.

Study design
Volunteers. We measured participants’ mood and behaviour in a
cognitive task longitudinally five times a week over ten weeks. Brain
activity during the same task was measured during an MRI scan. The data
here were part of a larger study (Supplementary Method [1B]).

Patients with BD. This study was a randomised, 6-week, double-blind,
placebo-controlled trial [21]. See Supplementary Method [1B] for full
information. All participants underwent a two-week pre-randomization
phase (‘baseline’) during which they completed the cognitive task and
mood ratings daily at home. Due to logistic challenges, for some
participants this phase lasted longer than two weeks. For the next phase
(6 weeks), participants were pseudo-randomly assigned to receive either
lithium (starting dose of 400mg and then titrated to plasma levels of
0.6–1mmol/L) or placebo in a double-blind design. Only 22 participants
were fMRI compatible. Participants were invited to complete online weekly
assessments of depression symptoms with the Quick Inventory of
Depressive Symptomatology (QIDS, [22]) and symptoms of Mania with
the Altman Self Rating Mania Scale [23].
Throughout, we performed two types of group comparisons. First, we

compared across risk of BD (i.e. group as ordered factor [24] in regressions,
Low MDQ ≤ High MDQ ≤ patients with BD), subsequently referred to as
‘bipolar disorder gradient’. Ordered factors in regression imply a relation-
ship of order between the groups, this does not have to be a linear
relationship (i.e. the difference low MDQ to high MDQ can be larger or
smaller [but of same sign] than the difference high MDQ to patients with
BD). MDQ was not measured in the patient group. As this involved data
from the BD group before assignment to lithium or placebo, all
participants were included. Significant results were post-hoc followed up
comparisons of the individual groups (t-tests). Second, we tested for the
effects of lithium treatment as drug (lithium/placebo) x time point (pre, i.e.
baseline/post) interactions.

‘Wheel of fortune’ task
Trial structure. On each trial of the task, participants were given two
options shown side-by-side. In the at-home version, these were wheels of
fortune (Fig. 1A). In the fMRI version, they were instead presented as bars.
Each option had three attributes: probability of winning vs. losing (size of
green vs. red area), magnitude of possible gain (number on green area,
10–200), and magnitude of possible loss (number on red area, also
10–200). After participants chose one option, the wheel of fortune started
spinning and then randomly landed on either win or loss. Finally,
participants were shown their updated total score. The experiment was
designed so that most choices were difficult, i.e., the options were very
similar in expected value, i.e. relative utility (reward magnitude *
probability; 90% of choices were not more than 20 points apart; 76%
not more than 5 points apart, Fig. 1B, Supplementary Fig. S1).

Timings and number of trials. Each day, participants rated their positive
and negative mood using the Positive and Negative Affect Schedule –
Short Form, PANAS-SF [25]. They also gave an overall rating of their mood
(‘How are you feeling’, referred to here as ‘happiness VAS’) using a slider
ranging from ‘very unhappy’ (red sad face drawing) to ‘very happy’ (green
smiley face). They then played 20 trials of the task. After the task, they
repeated the happiness VAS.
In the fMRI scanner, participants played 100 trials. All timings were

jittered. From the onset of options until participants could make a choice:
1–2 s; delay between participants’ response and outcomes shown: 2.7 to
7.7 s; duration of outcome shown: 1–3 s; duration of total score shown:
1–9 s; ITI: 1–9 s.

Behaviour: Behavioural data were analysed in R [26] (version 4.0.2) and
Matlab. R-packages: Stan [27], BRMS [28, 29], dplyr [30], ggpubr [31], sjPlot
[32], compareGroups [33], emmeans [34], ggsci [35].

Group comparisons
To compare groups, instead of a standard ANOVA procedure which tests
for any differences between groups, we tested for a systematic effect, i.e.
bipolar disorder gradient (group as ordered factor [24], Low MDQ ≤ High
MDQ ≤ patients with BD) in linear regressions, also controlling for age and
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gender. Models used the BRMS toolbox interface for Stan (Supplementary
Methods 2). For this and all subsequent analyses, we used Bayesian
Credible Intervals [36] to establish significance by the 95% CI not
including zero.

Computational models
Decision making. We used a computational model to capture participants’
choices. The model first computed the overall expected value (‘utility’) of
each option, then made a choice (left or right option) depending on which
option had the better utility, but also allowing for some random choice
behaviour [37, 38].
First, the model compared the options’ utilities as displayed at the time

of choice on the current trial, i.e., probability (prob) x magnitude (mag).
We allowed for individual differences in sensitivity to the loss vs. reward
utility (λ). We also included in the model a measure of adaptions of risk
taking (i.e. loss vs win sensitivity) to past outcomes (‘outcome history’).
Specifically, a parameter (γ) changed the weighting of the loss utility on
the current trial depending on whether the previous trial’s outcome was a
win or a loss (i.e., γ > 0 means increased sensitivity to losses after a win on
the previous trial).

Utilityleft ¼ Prob �Magrew � λþ γ � PrevOutcwin
loss

� �
� 1� Probð Þ �Magloss

To decide which option to choose, the model compared the utilities of
the left and right options taking into account each participant’s
‘randomness’ (inverse temperature (β), higher numbers indicating higher
choice consistency):

p Choiceleftð Þ ¼ 1

1þ eβ�ðUtilityright�UtilityleftÞ

To allow fitting of individual sessions (20 trials), a Bayesian approach was
implemented that allowed specifying priors for each parameter (Supple-
mentary Methods [2C]). The model was validated using simulations and
model comparisons (Supplementary Tables S1–3 and Supplementary
Methods [2A–B]).

Group differences
To assess group differences, we entered the session-wise parameters into
hierarchical regressions (using BRMS). This allowed us to take into account
that parameters might change over days of testing, as well as individual
differences in the means and variability (standard deviation) across
sessions. For example:
Mean: invTemp(β) ~ 1+ day+ group+ Age+ Gender+ (1+ day | ID),
And error term: sigma ~ 1+ group+ Age+ Gender+ (1|ID))
The effect of lithium (vs. placebo) was tested analogously:
Mean: invTemp(β) ~ 1+ day+ group*pre, i.e. baseline/post+ Age+
Gender+ number_days_baseline+ (1+ day | ID)

These models were used for group comparisons of mean parameters
(Supplementary Methods 2C, D). Variabilities of parameters over days were
not compared as model validation (Supplementary Table S1) suggested
poor recovery. Mood data (positive and negative PANAS, happiness VAS)
were analysed using similar regressions (Supplementary Methods 2D) to
assess group differences in mood (mean or variability) or the relationship
between task outcomes and changes in happiness VAS.

Model-free analyses of behaviour
To test that participants could perform the task, i.e., that their choices
were sensitive to expected value, we binned their choices (% left vs.
right option) according to the overall utility difference between the
two options (i.e., left vs. right reward utility minus loss utility,
utility= probability*magnitude).
To test sensitivity to risk of losses, as has been previously reported to be

affected in BD [39, 40], we refined the binning of choices (as above) by
further splitting the data according to win and loss utility (i.e. probability *
magnitude).
We next analysed behaviour for adaptions of risk taking to past

outcomes by considering how participants change their behaviour – here
risk-taking (avoidance of potential losses) – based on win/loss outcomes
on previous trials (‘outcome history’ effect). For this, we computed how
their choices differed after a win or loss on the previous trial (difference %
choosing option with lower potential loss [loss utility] after win minus after
a loss). We focused on the most extreme (lowest/highest) loss utility bins
from the analyses above (‘taking loss utility more into account’) as
adaptation to past trial outcomes by taking loss more into account (i.e. a
multiplicative effect) should most strongly affect choices the more
dissimilar the loss utilities of the two options.

MRI acquisition
Data from all 77 high and low MDQ volunteers and 13 patients with BD
were collected on a 3T Siemens Magneton Trio. Data from 9 patients with
BD were collected at a different site using a Siemens Magneton PRISMA.
Group comparisons include scanner as a control regressor. Scan protocols
were carried out following [14], Supplementary Methods [3A].

FMRI analysis – whole-brain
General approach. Data were pre-processed using FSL ([41], Supplemen-
tary Methods [3B]). Statistical analysis was performed at two levels, event-
related GLM for each participant, followed by group-level mixed-effect
model using FSL’s FLAME 1 [42, 43] with outlier de-weighting. Whole-brain
images are all cluster-corrected (p < 0.05 two-tailed, FWE), voxel inclusion
threshold: z < 2.3.

Regression designs. At the time of the decision, we looked for neural
activity correlating with the utility (reward, loss) of the choice. At the time

B

Fig. 1 Task design and longitudinal behaviour. A On each trial, participants chose between two gambles (‘wheel of fortune’) that differed in
their probability of winning or losing points and in the number of points that could be won or lost. Once participants had chosen an option,
the alternative was hidden, and the chosen wheel started spinning until finally landing on the win or loss. B Participants’ choices (left vs. right
option) were guided by the relative utilities (reward utility – i.e., probability * magnitude – minus loss utility): the higher the utility of the left
option, the more it was chosen. The computational model (lines) captured behaviour (dots with error bars) well. Data were combined across
all testing sessions (up to 50) per participant (20 trials per session). Error bars show the standard error of the mean, and the size of the dots
indicates the number of data points available.

J. Scholl et al.

3

Molecular Psychiatry



of the outcome of the gamble, we looked for neural activity related to the
processing of the outcome (win/loss as continuous regressor). Decision
and outcome-related activity could be dissociated due to jitter used in the
experimental timing [14]. As a key measure of interest, we looked at
whether there was a history effect at the time of the choice (i.e., previous
trial’s gamble win/loss outcome [14, 44], analogous to the behavioural
analyses). Full design information: Supplementary Methods [3C], Supple-
mentary Fig. S2.

Group-level comparisons. We compared the low vs high MDQ groups
(n= 77) in whole-brain analyses. As only 22 patients with BD were
available, these group comparisons were first performed in regions of
interest (ROIs) derived from comparisons of the high/low MDQ groups. As
exploratory analyses, BD groups were also compared at the whole-
brain level.

ROI analyses. Mean brain activations (COPES, contrasts of parameter
estimates) were extracted for each participant. These were used to
illustrate group differences and also to perform independent statistical
tests (e.g., ROIs of clusters defined based on group differences of high vs.
low MDQ could be used to test group differences between lithium and
placebo). For this, non-hierarchical Bayesian regressions were used, also
controlling for age and gender. Brain activations for the outcome history
effect were correlated with the corresponding behavioural measures. For
this, effects of age, gender and group (and for the patients with BD:
number of days in the baseline phase pre-randomization, i.e. before the
MRI scan) were first removed using regressions from both neural and
behavioural measures.

RESULTS
We recruited four groups of participants in two separate studies
(Table 1). In the group of patients with BD, based on self-report
scores (Altman self-report scale, quick inventory of depressive
symptomatology), in the phase before the assignment to placebo
or lithium, 30% scored in the mania range and 53% scored at least
moderate symptoms of depression (Table 1). Similar numbers
persisted throughout treatment with lithium vs. placebo (Table 1,
Supplementary Fig. S3). Participants with BD took several
medications at study inclusion (Table 2).

General performance
Participants completed longitudinal daily behavioural test sessions
at home, consisting of 20 trials of a gambling task and mood self-
reports. In the task (Fig. 1A), participants needed to choose
repeatedly between two gambles (wheels of fortune), considering
the probabilities of winning or losing points and the number of
points that could be won or lost. Participants in all groups
performed the task well (Fig. 1B), selecting options with higher
values more frequently.

Risk taking (avoidance of potential losses)
To test whether sensitivity to (i.e. avoidance of) potential losses vs.
wins when gambling was reduced with a bipolar disorder gradient
(low MDQ ≤high MDQ ≤patients with BD), we built a stochastic
decision-making model that described participants’ choices as
being based on the reward and loss utilities of the two options
while allowing for individual differences in how people made
decisions (see Supplementary Table S2 for model comparisons;
model accuracy: 71%). The model captured participants’ sensitivity
to losses (vs. wins) as a parameter (λ). We found that the higher
the bipolar disorder gradient, the lower the sensitivity to losses vs
wins (Fig. 2Ai, Supplementary Table S4A, mean=−0.27, 95%
CI= [−0.49; −0.05]). This was driven mainly by a step change
decrease in the group of patients with BD compared to the low/
high MDQ groups, rather than a continuous linear relationship
(Supplementary Table S4A for group comparison and continuous
measure of mania symptoms across all groups). Lithium vs.
placebo did not affect this (Fig. 2Aii, Supplementary Table S4B). To
illustrate the effect in a model-free way, we plotted the sensitivity

of choices to the win or loss dimensions (i.e., steepness of the
curve, Fig. 2Aiii). This revealed that the difference between groups
(group*win/loss dimension* utility bin: mean= 0.33, 95% CI=
[0.06; 0.61]) is driven by both an increased sensitivity to wins
(group*utility bin: mean 0.24, 95% CI= [0.08; 3.99]) and a
decreased sensitivity to losses (group* utility bin: mean=−0.15,
95% CI= [−0.30; −0.01]) with the bipolar disorder gradient.
Alternative computational models in Supplementary Table S5.

Outcome history effects
We next analysed how participants adapted their risk taking
across trials based on win or loss outcomes in the previous trial
(‘outcome history effect’). In the computational model, outcome
history effects were captured as a parameter (γ) that described to
what extent participants were more sensitive to (i.e. avoidant of)
potential losses after a win on the previous trial. We found that the
bipolar disorder gradient reduced outcome history effects (Fig. 2Bi,
Supplementary Tables S4A, S5 mean=−0.05, 95% CI= [−0.11;
−0.0003], showing also a continuous effect with mania symptoms
across all groups, Supplementary Table S4A). This was not affected
by lithium (Fig. 2Bii, Supplementary Tables S4B, S5). We can
unpack this effect in the data without a model (Fig. 2Biii) by
focusing on the most extreme loss utility bins (if the loss utility
difference is small, it will not affect choices if it is taken slightly
more or less into account). If people show no outcome history
effect, their choices should not change depending on the last
trial’s outcome. However, the low MDQ group in fact takes the loss
dimension more into account after a previous trial win vs. loss (i.e.
less likely to pick options with high potential loss and more likely
to pick options with low potential loss). This effect decreases with
the bipolar disorder gradient (group*last loss/win: mean= 0.02,
95% CI= [0.0008; 0.04]).

Mood
Finally, an advantage of the behavioural data being collected at
home was that we could relate daily mood ratings to task-based
behaviour. As reported previously [3, 45] and similar to other
studies [2, 46, 47] groups differed in their instability (standard
deviation) of mood: The low MDQ group showed the lowest and
the patients with BD the highest mood instability (positive PANAS:
mean= 0.22, 95%CI= [0.11; 0.33]; negative PANAS: mean= 0.64,
95%CI= [0.45; 0.83], Supplementary Table S8A, Supplementary
Fig. S4A). Lithium did not affect instability when using our
measure of standard deviation here (Supplementary Table S8B,
Supplementary Fig. S4B), though note that using a measure of
Bayesian volatility, lithium has been found to increase volatility of
positive mood [3]. Across all groups, happiness VAS at the end of
each session, compared to before was increased by overall
(summed across the whole session) reward and decreased by loss
outcomes (mean= 0.42, 95% CI= [0.31; 0.52]), similar to previous
reports [48, 49]. However, this did not differ by bipolar disorder
gradient (mean=−0.06, 95% CI= [−0.15, 0.03], Supplementary
Table S8C). While mood instability differed between the groups,
the impact on behaviour was distinct, with mood instability
affecting the choice noisiness (the more unstable the mood, the
more random the choices), without clearly affecting either loss
sensitivity or outcome history effects (Supplementary Fig. S4D).
The relationship between mood (PANAS) on the day of testing
(rather than an overall measure of instability) and behaviour was
not robust (Supplementary Table S8D). An exploratory analysis
found that in the BD group, positive mood (PANAS) before the
session led to reduced choice noisiness (Supplementary Fig. S4C,
stats on the regression interaction term BD gradient x PANAS
predicting choice noisiness: mean: 0.18, 95%CI: [0.01; 0.35]).

Neural results
Neural data were available for 77 volunteers and 22 patients.
Across volunteers, brain activations to reward and loss utility
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Table 1. Participant demographics.

Low MDQ High MDQ Bipolar lith Bipolar pla ANOVA all 4
groups
(p-value)

Low vs high
MDQ
(p-value)

BD lith vs.
pla
(p-value)

#Participants N= 37 N= 40 N= 19 N= 16

Age 25.0 (6.61) 25.0 (7.06) 28.8 (9.81) 35.1 (13.8) <0.001 0.974 0.137

Gender: 0.819 0.998 1

F 24 (64.9%) 27 (67.5%) 11 (57.9%) 9 (56.2%)

M 13 (35.1%) 13 (32.5%) 8 (42.1%) 7 (43.8%)

Diagnosis: <0.001 0.119 0.527

BDI 0 (0.00%) 0 (0.00%) 3 (15.8%) 4 (25.0%)

BDII 0 (0.00%) 3 (7.50%) 16 (84.2%) 11 (68.8%)

BD NOS 0 (0.00%) 2 (5.00%) 0 (0.00%) 1 (6.25%)

None 37 (100%) 35 (87.5%) 0 (0.00%) 0 (0.00%)

Additional diagnosis: 0.018

Depression 0 (0.00%) 4 (10.0%) NA NA

Depression & Past alcohol
dependence

0 (0.00%) 1 (2.50%) NA NA

Depression & Past panic
disorder

0 (0.00%) 1 (2.50%) NA NA

Depression & PTSD 0 (0.00%) 2 (5.00%) NA NA

None 37 (100%) 31 (77.5%) NA NA

Past alcohol dependence 0 (0.00%) 1 (2.50%) NA NA

MDQ 1.11 (1.31) 9.32 (1.67) NA NA <0.001

Altman Mania (pre): 0.001 0.24 1

Mania 0 (0.00%) 3 (8.11%) 5 (27.8%) 5 (31.2%)

None 37 (100%) 34 (91.9%) 13 (72.2%) 11 (68.8%)

QIDS Depression (pre): <0.001 <0.001 0.043

None 36 (97.3%) 18 (48.6%) 4 (22.2%) 1 (6.25%)

Mild 1 (2.70%) 17 (45.9%) 5 (27.8%) 6 (37.5%)

Moderate 0 (0.00%) 2 (5.41%) 8 (44.4%) 4 (25.0%)

Severe 0 (0.00%) 0 (0.00%) 0 (0.00%) 5 (31.2%)

Very severe 0 (0.00%) 0 (0.00%) 1 (5.56%) 0 (0.00%)

Altman Mania (post): 1

Mania 0 (.%) 0 (.%) 4 (22.2%) 3 (20.0%)

None 0 (.%) 0 (.%) 14 (77.8%) 12 (80.0%)

QIDS Depression (post): 0.731

None 0 (.%) 0 (.%) 4 (22.2%) 1 (6.67%)

Mild 0 (.%) 0 (.%) 7 (38.9%) 8 (53.3%)

Moderate 0 (.%) 0 (.%) 4 (22.2%) 4 (26.7%)

Severe 0 (.%) 0 (.%) 3 (16.7%) 2 (13.3%)

Handedness: 0.757

Right 32 (86.5%) 32 (80.0%) NA NA

Ambidext 0 (0.00%) 1 (2.50%) NA NA

Left 5 (13.5%) 7 (17.5%) NA NA

# Behav. days 46.7 (3.63) 44.9 (6.61) NA NA 0.146

# Behav. days (pre) NA NA 11.8 (6.72) 12.4 (5.04) 0.771

# Behav. days (post) NA NA 24.5 (7.85) 28.5 (9.32) 0.182

Has longitudinal data: Yes 37 (100%) 38 (95.0%) 19 (100%) 16 (100%) 0.762 0.494 1

Has FMRI data: Yes 37 (100%) 40 (100%) 13 (68.4%) 9 (56.2%) <0.001 1 0.696

Day time difference (h)
between longitudinal
session

3.55 (1.19) 3.68 (1.16) 2.60 (1.25) 2.71 (1.39) 0.002 0.62 0.806
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during decisions (Fig. 3A) and at the receipt of outcomes (Fig. 3C)
activated brain evaluation networks, including ventromedial
prefrontal cortex (vmPFC), ventral striatum, dorsal anterior
cingulate cortex (dACC), insula (Supplementary Table S9). Next,
we tested whether, related to the outcome history effect, there
was brain activity when participants made a choice that correlated
with the previous trial’s outcome. Indeed, we found that activity in
a network including the ventral striatum, vmPFC and medial
frontal pole (FPm) related to the outcome of the previous trial, i.e.
increased activity the more positive (and less negative) the
previous trial’s outcome (Fig. 3B, Supplementary Table S9).

Next, we compared the low and high MDQ groups. Activity for
the previous trial’s outcome was higher for the low MDQ vs high
MDQ group in FPm (Fig. 4Ai–ii, Supplementary Table S10,
p= 0.038, whole-brain cluster corrected). In other words, while
all participants showed activity in vmPFC/FPm, in low MDQ
participants the cluster extended further into FPm. Moreover,
there was a correlation between the neural signal for the previous
trial’s outcome and the behavioural outcome history effect: the
stronger the activity for the last trial’s outcome in this area, the
stronger the behavioural outcome history effect (Fig. 4Aiii,
r= 0.24, p= 0.017, partial correlation after correction for control
variables and group; without correction: r= 0.28, p= 0.005; test
performed as robust regression, controlling for outliers: 95%
Bayesian CI= [0.03; 1.52]). Lithium vs. placebo participants’ activity
did not differ in this area (mean= 0.64, 95% CI= [−0.23; 1.44]).
As exploratory analyses (due to low sample sizes in BD groups

for the MRI scan), we next compared lithium vs. placebo
treatment at the whole-brain level. We found that patients
receiving placebo had stronger activity related to the outcome of
gambles in an area spanning dorsolateral prefrontal cortex
(dlPFC, area 46) and lateral frontal pole (Fig. 4B, Supplementary
Table S10B, p= 0.009). We also tested whether the gamble
outcome activation related to the behavioural outcome history
effect, finding that interestingly it did (Supplementary Fig. S5), in
an mFP area overlapping with the area of group differences
identified above, though not in the dlPFC area of group
differences between lithium and placebo (Fig. 4A).

DISCUSSION
We designed a study to test the computational and neural
correlates of adaptations of risk-taking to gains and losses in
bipolar disorder (BD), in risk of bipolar disorder and treatment with
lithium. We included participants along a gradient of bipolar
disorder ranging from volunteers with low risk of BD (low MDQ
group), to volunteers with high risk of BD, to patients with
diagnosed BD. In the patients, we tested the effect of lithium
treatment in a placebo-controlled double-blind design. We
measured how much participants adapted their risk-taking
following reward outcomes in a risky decision-making task
(‘outcome history effects’). We measured behaviour both long-
itudinally over up to 50 days and during a brain imaging (FMRI)
session. We found that the low MDQ group showed an ‘outcome
history effect’. Specifically, after a win on a trial, they were more

Table 1. continued

Low MDQ High MDQ Bipolar lith Bipolar pla ANOVA all 4
groups
(p-value)

Low vs high
MDQ
(p-value)

BD lith vs.
pla
(p-value)

Most common longitudinal session time of day: 0.61 0.552 1

Afternoon 9 (24.3%) 12 (31.6%) 3 (15.8%) 2 (12.5%)

Evening 24 (64.9%) 19 (50.0%) 14 (73.7%) 13 (81.2%)

Morning 4 (10.8%) 6 (15.8%) 2 (10.5%) 1 (6.25%)

Night 0 (0.00%) 1 (2.63%) 0 (0.00%) 0 (0.00%)

Statistical tests are two-tailed p-values and refer to comparisons between the two groups of participants with low or high MDQ scores (‘Low vs. high MDQ’)
and between the two groups of patients with BD randomized to lithium or placebo (‘Lith vs. pla’). Values are the mean and standard error of the mean. For the
patients with BD, comorbid disorders were not measured. Note that in the low and high MDQ groups, diagnoses were only based on SCID, not on a full clinical
examination. Participants completed weekly self-report scales of symptoms of mania (Altman) and depression (QIDS) at baseline (pre) and post assignment to
lithium or placebo. The average scores pre (baseline) and post lithium were here categorized according to standard cut-offs (Altman: <6 for no mania, QIDS:
1–5: no depression, 6–10: mild depression, 11–15: moderate depression, 16–20: severe depression, 21–27: very severe depression). In short, lithium vs. placebo
did not affect ratings of mania and depression, in line with the groups recruited here being outside major mood episodes requiring immediate treatment (see
Supplementary Fig. S3 for time course of ratings). # Behav. Days number of days of behavioural data available (20 trials per day), # Behav. Days (pre) number of
days in the baseline phase for the patients with BD, # PANAS days number of days with mood scores (PANAS, positive affect negative affect scale, short form)
available, MDQ Mood disorder questionnaire, Has longitudinal data: Yes percentage of participants from whom longitudinal data (i.e., sessions at home) were
available. Diagnoses: BD-I bipolar I disorder, BD-II bipolar II disorder, BDNOS bipolar disorder not otherwise specified, PTSD post traumatic stress disorder.

Table 2. Medication in patients with BD.

Bipolar lith Bipolar pla

# Participants N= 19 N= 16

Medication:

None 5 (8.93%) 3 (9.68%)

Atypical antipsychotic 16 (28.6%) 6 (19.4%)

Benzodiazepine 2 (3.57%) 1 (3.23%)

Beta blocker 1 (1.79%) 0 (0.00%)

Mood stabilizer 5 (9.80%) 3 (10.7%)

NA and DA reuptake inhibitor 1 (1.79%) 0 (0.00%)

Nonbenzodiazepine 1 (1.79%) 1 (3.23%)

Sedative 1 (1.79%) 0 (0.00%)

SNRI 1 (1.79%) 0 (0.00%)

SSRI 20 (35.7%) 12 (38.7%)

Tetracyclic antidepressant 2 (3.57%) 2 (6.45%)

Tricyclic antidepressant 0 (0.00%) 3 (9.68%)

Typical antipsychotic 1 (1.79%) 0 (0.00%)

At baseline, most patients were on stable doses of different medications,
categorized here as: atypical antipsychotics (quetiapine, olanzapine,
aripiprazole, risperidone, amisulpiride), benzodiazepine (clonazepam,
lorazepam, diazepam), beta blocker (propranolol), mood stabilizer (valpro-
ate, lamotrigine), noradrenaline (NA) and dopamine (DA) reuptake
inhibitor (buproprion), nonbenzodiazepine (zopiclone), sedative (pro-
methazine), serotonin and noradrenaline reuptake inhibitor (SNRI, venla-
faxine), SSRI (selective serotonin reuptake inhibitor (sertraline, citalopram,
fluoxetine), tetracyclic antidepressant (mirtazapine), tricyclic antidepres-
sant (dosulepin, lofepramine, amitriptyline), typical antipsychotic (stelazine,
haloperidol).
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risk averse (avoiding potential losses). This was reduced across the
bipolar disorder gradient (lowest risk aversion adaptation in
patients with BD). Neurally, outcome history was related to the
representation of past information in a large network including
ventromedial prefrontal cortex (vmPFC) and medial frontal pole
(FPm). In low MDQ volunteers, this brain signal extended further
dorsally into FPm compared to the high MDQ scorers and this was
correlated with risk adaption behaviour.

Decreased loss sensitivity and reward hypersensitivity have
been suggested as central to BD [39, 40, 50, 51] and may drive
risky or impulsive decision making. Our findings of decreased
sensitivity to potential losses (vs wins) with BD gradient are in
agreement with this. This effect showed a step change between
the volunteer and the patient groups, rather than a continuous
effect across the gradient. Then, we went further looking at
adaptation of risk taking to past outcomes. We found that
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volunteers with presumed low risk of bipolar disorder (low MDQ)
showed sequential dependencies between their choices and
previous trials’ outcomes, avoiding potential losses after a win on
the previous trial (‘outcome history effect’), as similarly recently
reported in a go/no go decision-making task [52]. This was not
strictly rational in our task since outcomes for gambles across trials
were independent [10]. However, this kind of behaviour observed
in the lab may be functionally appropriate in more naturalistic
environments [38, 53–55] and thus reflect prior beliefs participants
have about reward distributions (e.g. non-independence between
trials). For example, in natural environments, which are experi-
enced continually rather than in discrete trials and in which
different types of rewards (e.g. food, water) need to be
accumulated or a homeostatic setpoint needs to be reached, it
would make sense to adapt behaviour according to previous
outcomes [56–60]. The influence of past losses (vs wins) was lower
in the high vs low MDQ group and lowest in patients with BD (i.e.
the pattern showed a continuous gradient, also captured as a
linear relationship to mania scores across all groups, rather than a
step change from volunteers to patients). Reduced homeostatic

behaviour of this kind could lead to unstable moods since in the
healthy population mood has been found to be regulated through
behaviour [8]. Relatedly, in patients with BD, purposefully
regulating behaviour during the prodromal periods has been
shown to reduce the risk of relapse [61]. However, in our study,
links between ratings of mood and behaviour were weak and so
this suggestion remains speculative. Future studies could measure
mood over longer timescales, more frequently than done here
and using a more naturalistic task [62, 63]. We also note that our
findings diverge from previous findings [4] of a stronger impact of
previous rewards (and associated emotions) on the perception of
outcomes in a study including a participant sample not specifically
selected for BD diagnosis or risk of bipolar disorder, but
completing the Hypomanic Personality scale [64] after the task.
We focused on whole-brain analyses for the low/high MDQ

volunteer sample due to the larger sample size compared to the
patient study. Decision-making and the processing of outcomes
produced a typical pattern of activation [12, 65–67] in areas
including dorsal anterior cingulate cortex, striatum and vmPFC.
However, there were no group differences in any of these signals,

Fig. 2 Group differences in longitudinal behaviour and mood. A Loss sensitivity. Ai Decreased loss sensitivity (λ, avoidance of potential
losses) with bipolar disorder gradient, particularly for patients with BD. Aii Lithium (vs. placebo) did not affect loss sensitivity (group [lithium/
placebo] * time [pre, i.e. baseline/post] interaction). Aiii Illustration of sensitivity of choices to loss/reward utility – as utility increases for the
left compared to the right option, participants are more likely to choose the left option. For low/ high MDQ participants, this increase in
choice probability is similar for the reward or loss dimension. In contrast, patients with BD show decreased sensitivity to losses vs. rewards (the
loss curve is shallower. B Outcome history (i.e. adaptation of risk taking to past outcomes; avoidance of potential losses after a win [rather than
loss] on the previous trial). Bi The outcome-history model parameter (γ) differed between the groups, with low MDQ participants showing the
most and the patients with BD showed the least outcome history effects. Bii Lithium (vs. placebo) did not affect outcome history effects. Biii
After a win vs. a loss on the previous trial (‘last win’/ ‘last loss’), low MDQ participants avoided losses more, while this was reduced with the
MDQ gradient, so that patients with BD did not adapt their choices to past trial outcomes. A full list of comparisons of parameters for the
groups is shown in Supplementary Tables S4 (longitudinal data) and Supplementary Table S6 (fMRI session data). Relationships between
parameters measured longitudinally over weeks or in the lab during the fMRI session are shown in Supplementary Table S7. ii) and iii) show
conditional effects from regression models, roughly equivalent to means, controlling for regressors of no interest. Lines in Aiii and Biii show
the choices predicted by the model. Participant numbers: low MDQ: 37, high MDQ:40, BD lithium: 19, BD placebo: 16.

Fig. 3 Neural activity during gambling. A At the time of the decision a wide network of areas activated with relative (chosen minus
unchosen) reward utility (orange), while loss relative utility activated the anterior cingulate cortex (blue). B At the time of the decision, the last
trial’s outcome (points won or lost) activated areas including vmPFC and ventral striatum (orange). C At the time of the outcome (win or loss
received), the outcome (points won or lost) activated areas including vmPFC, FPm, and ventral striatum (red/orange) and deactivated the pre-
supplementary area. All results are cluster-corrected at p < 0.05, two-tailed, with inclusion cut-off z > 2.3. See Supplementary Table S9 for the
full list of results. Data were combined across both volunteer groups (low and high MDQ). Participant numbers: low MDQ: 37, high MDQ: 40.
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matching our behavioural results of an absence of differences in
general ability to make decisions or sensitivity to rewards vs.
losses per se in the low vs. high MDQ groups. We next looked for
brain activity related to the modulation of risk taking with
‘outcome history’. We found that at the time when people made
decisions, there was activity representing the last trial’s outcome
in an area spanning vmPFC to FPm. This is similar to previous
findings in a learning context of between-trial activities
[14, 44, 68]. This gamble outcome activation was related to the
behavioural outcome history effect across participants. This signal
extended more dorsally into FPm in low MDQ volunteers.
Furthermore, the stronger this signal, the stronger the modulation
of risk taking by outcome history. As such the influence of
outcomes on decision making may be a feature of risk for bipolar
disorder which involves the FPm. This adds to previous work
linking BD to changes in reward related signals in ventral striatum
and OFC [19, 69] and changes in connectivity between striatum
and PFC [17, 18]. In this region, lithium did not affect brain activity,
suggesting that its mechanism of action may not involve direct
modulation of vmPFC value weighting.
In an exploratory analysis, we compared the brain activity of

patients with BD randomised to lithium or placebo. Patients given
placebo showed larger outcome-related activity in dorsolateral
prefrontal cortex. Yet at the same time, lithium did not change
behaviour. dlPFC signalling has largely been associated with
regulation of mood and reward-related behaviour. Previous work
in bipolar disorder has showed altered patterns of both vmPFC
and dlPFC activity. In particular, Mason et al. [17] reported that
while controls activated dlPFC more to rewards of high
probability, patients with bipolar disorder showed greater dlPFC

to low probability (more risky) rewards. As such, our preliminary
findings suggest that lithium may modulate a key component of
frontostriatal circuitry important for effective decision making.
Previous work in healthy volunteers also reported an effect of
lithium on reward related signals in the ventral striatum which
wasn’t detected in the current study [70].
The current work has a number of limitations. Our sample size

was low for the comparison between lithium and placebo fMRI
responses, which may have affected our statistical power for key
comparisons. It is also relevant that we saw no effect of lithium on
the clinical questionnaires included in this study. However, this is
consistent with the characteristics of the sample recruited here,
where current symptoms were largely residual (i.e. outside of an
acute episode). Furthermore, lithium is largely used for relapse
prevention rather than acute treatment of mania or depression
[71] which could not be tested in the short timescale of the
current investigation. Data across a large number of tasks and
measures were also completed as part of these studies, and
analysis is still ongoing. These complete results may shed light on
the overall effects of bipolar disorder risk and treatment on
different facets of mood and cognition. While we pre-registered
our lithium trial (2014-002699-98), we did not pre-register our
specific hypotheses for this part of the analysis. While we found an
expected value signal (chosen minus unchosen value) in a typical
‘negative value’ network including the dACC, we did not find a
’positive value’ signal in a typically expected area like the vmPFC.
This is unlikely to be due to signal drop out as vmPFC showed
activation with reward outcome and an outcome history signal at
the time of choice. This result is reminiscent of our previous
findings [14], where it was interpreted as possibly due to the

Fig. 4 Group differences in brain signals. A Differences between the low and high MDQ groups for the outcome history effects. Ai Activation
with last trial’s outcome at the time of the current trial’s decision differed between the low and high MDQ groups in the medial frontal pole
(FPm; x=−10, y= 56, z= 16; p= 0.038, n= 77, cluster-corrected, Supplementary Table S10A. In the low MDQ group, the activation with the
last trial’s outcome that is found across both groups (Fig. 3B) extends further dorsally. Aii This group difference was driven by the low MDQ
group showing stronger activation than the high MDQ group in FPm (Figure shows conditional effects from regression model, roughly
equivalent to means, controlling for regressors of no interest). There was no significant difference between activations comparing lithium and
placebo groups (−0.30, 95%CI: [−0.73; 0.17]). Aiii This FPm activity correlated with the longitudinally measured outcome history parameter.
Related whole-brain results shown in Supplementary Fig. S5. Colours match those of groups in B. B Exploratory whole-brain group differences
in the patients with BD for gamble outcome signal (lithium vs. placebo). Bi Outcome related activity differed between the placebo and the
lithium participants in an area including dorsolateral prefrontal cortex and lateral frontal pole (whole-brain cluster-corrected, Supplementary
Table S10B). This effect is illustrated in Bii. Participant numbers: low MDQ: 37, high MDQ:40, BD lithium: 13, BD placebo: 9.
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integration of an aversive dimensions (there: effort) with reward,
rather than only integrating two positive dimensions (e.g. reward
probability and reward magnitude). Similarly, here, participants
were faced with a negative dimension, i.e. monetary loss.
Our results highlight the importance of considering rewarded

decision-making and related neural activity to understand
symptoms of bipolar disorder and the stabilising effects of lithium.
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