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Abstract. We present a substantial extension of our Human-Aware
Task Planning framework, tailored for scenarios with intermittent shared
execution experiences and significant belief divergence between humans
and robots, particularly due to the uncontrollable nature of humans. Our
objective is to build a robot policy that accounts for uncontrollable hu-
man behaviors, thus enabling the anticipation of possible advancements
achieved by the robot when the experience is not shared, e.g., when hu-
mans are briefly absent from the shared environment to complete a sub-
task. But, this anticipation is considered from the perspective of humans
who have access to an estimated robot’s model. To this end, we propose a
novel planning framework and build a solver based on AND/OR search,
which integrates knowledge reasoning, including situation assessment by
perspective taking. Our approach dynamically models and manages the
expansion and contraction of potential advances while precisely keeping
track of when (and when not) agents share the task execution experi-
ence. It systematically assesses the situation and ignores worlds that it
has reason to think are impossible for humans. Overall, our new solver
can estimate the distinct beliefs of the human and the robot along po-
tential courses of action, enabling the synthesis of plans where the robot
selects the right moment for communication, i.e. telling or replying to
an inquiry, or defers ontic actions until the execution experiences can be
shared. Preliminary experiments in two domains — one novel and one
adapted — demonstrate the framework’s effectiveness.

1 Introduction

The increasing number of robot-assisted applications has led to a heightened fo-
cus on human-robot collaboration (HRC) research [2, 30]. Collaborative robots
have proven beneficial in real-world scenarios such as construction engineer-
ing [23], workshops [8], and nursing care [24].

Studies in psychology and cognitive science, particularly within the domain
of joint actions, suggest that humans consider each other’s actions and beliefs,
indicating that they model each other’s tasks when planning [28, 19, 29]. How-
ever, they often hold inaccurate models of their partners’ beliefs and capabilities.
This phenomenon is particularly evident in joint action scenarios, where partners
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Fig. 1. Our planning framework is endowed with the ability to make the difference
between H&R shared and individual execution experiences in the planned activities. It
can anticipate potential belief divergence between H&R and also estimate the updated
beliefs of H when they meet again (situation assessment (SA)) based on a distinction
between observable and non-observable facts. This will be used to plan communicative
actions or adapt the R’s plan to ensure the shared experience of some actions. In this
diagram, we roughly depict what happens when H&R no longer share the execution
experience, H has independent experience (blue), while R progresses towards the goal
(green), with anticipated traces (in gray) depicting other estimated courses of action
that the robot can choose along with the green trace but from the H’s perspective. Upon
co-presence at place, SA eliminates impossible worlds, e.g., those with state property
prop4=F (since it is observable), aiding H to ignore wrongly estimated worlds.

share a common goal. Individuals tend to expect and estimate their partners’
actions based on their own mental models, which may not always be accurate.

When partners are temporarily absent, they rely on these mental models to
estimate what the other might have accomplished during the separation. These
expectations can be skewed by an incorrect or incomplete understanding of their
collaborator’s beliefs, intentions, and actions. This cognitive bias shows the com-
plexities of effective collaboration between robots and humans. And, highlights
the need for strong frameworks to manage these differences.

Inspired by these insights, we take the first step in this paper towards building
robot policies that address the issue of mental models that can be inaccurate. Our
proposed strategy integrates tools developed for epistemic planning [3], Dynamic
Epistemic Logic (DEL) [4], and human-aware planning [1, 7, 5, 16, 35].

To this end, we propose a novel epistemic human-aware task planning frame-
work. It substantially extends our past works and enables the robot to estimate,
anticipate, and adapt to scenarios in which uncontrollable human and robot part-
ners have disrupted shared execution experiences. Specifically, it considers the
human’s perspective and estimation regarding the potential advances achieved
by the robot, even when the exact progress is not directly experienced by the
humans, who may hold an incorrect robot model.
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Fig. 2. Three cubes cr (red), cy (yellow), and cw (white) are shown. cr and cy are
placed on mt (main table), and cw is on ot (other table). There are two boxes, box1 and
box2, placed on mt, which can be either transparent or opaque. The shared task is to
organize the cubes in a way that cubes from one table are placed in one box. The choice
of which box is flexible as long as each table’s cubes end up in separate boxes.

Our framework employs tools developed in the literature, including those for
DEL-based epistemic planning. However, as we will see, it offers more flexibility
because, unlike the majority of epistemic planners, we do not need to script in
the input all the effects on the beliefs of all agents in action models.

Figure 1 provides a rough illustration of a single plan trace, showing what
happens when agents share execution experience and when they do not in the
process of achieving the shared task.

In addition, we build an AND/OR search-based offline planner that facilitates
Theory of Mind (ToM) by integrating knowledge reasoning and incorporating
situation assessment. It dynamically manages the evolution or contraction of
estimated possible worlds from the human’s point of view. This helps the planner
to prepare itself with a set of worlds that humans would consider possible.

Our contributions specific to this paper compared to our past works are:

• We introduce the notion of the human mental model during the deliberation
process. We will see how non-trivial changes are required in the existing
framework and algorithm to tackle the problem motivated in this paper.

• Non-controllability is not unique here, but we extend [5, 16, 31] to address
events of (non-)shared execution experiences and managing beliefs. We present
enriched models for co-presence, observability, and situation assessment.

Thanks to the new framework and our planner, it enables the robot to take
proactive steps, such as anticipating humans to be inquiring about an unknown
variable’s value, communicating relevant information without being annoying
(e.g., not verbalizing a fact already known to them), or deferring executing an
action until H&R reunite, allowing H to further narrow down the possibilities.

The paper is structured as follows. A case study is presented, followed by
background information on necessary tools. Next, we describe our proposed
framework, followed by the AND/OR search-based algorithm. The subsequent
section discusses related work, followed by preliminary experiments showing the
effectiveness of the framework in diverse scenarios. Finally, we conclude our work.
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w1: inside(cr, box2) w2: inside(cr, box1)
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Fig. 3. We represent a state (si), action (ai), and how applying ai in si leads to next
state (si+1 = si ⊗ ai). f is a formula that captures if H&R were co-present when the
events took place. Common facts for both worlds, such as opaque(box1), are not shown.
Also, each world is fully defined, with either an atom or its negation holding true.

2 The Cube Organization Case Study

Take the case illustrated in Figure 2, in which the job of arranging cubes in boxes
is shared by a human and a robot. The task is that the cubes from different tables
must be arranged in different boxes.

Say only H is capable of moving around and exhibits unpredictable behavior
(nondeterminism), such as moving to the other table (ot) to retrieve cubes, while
R may continue to act. From the H’s perspective, R may move some or all of
the cubes from the main table (mt) and place them into one of the boxes, or it
may choose to take no action at all. Upon returning to the main table mt, H
may discover that some, none, or all of the cubes originally on mt are missing,
indicating that they have been placed in one of the boxes.

If R places some cubes from mt into one of the boxes, H will only learn
about this decision upon encountering transparent boxes. But when opaque,
R has several options: it can communicate, wait for H to inquire, or select a
remaining cube of mt to place in the correct box when H and R are co-present.

Planning is done from the robot’s point of view by taking into account R’s
and H’s task models, including their individual beliefs. The human collaborator
has an approximation of the robot’s model, which enables them to anticipate the
robot’s action. We later provide more details on these models and about their
accuracy and falsity. These models are contained within the robot and are used
in planning such that human behavior can only be estimated.

3 Background

Dynamic Epistemic Logic (DEL): We focus on epistemic languages (LK),
a state (s — comprising a set of worlds wi), an action (a — comprising a set of
events ei), and state transitions (via the cross product ⊗ operator) as derived
from the literature [3, 4], with necessary trivial adjustments for our needs. For
other basic concepts like indistinguishability and equivalence relations, perspec-
tive shift, and truth of epistemic formulas, readers are referred to the literature.

Here, we highlight only required DEL concepts to build it through examples
based on our use case study. Recall the requirements for the task.
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Example 1. Say the task is in the state si (Fig. 3), in which cr is inside box1

and both the boxes are opaque, and the robot holding cy and the human comes
back with cw, and assesses the situation. We assume that the human can see the
robot holding cy. The epistemic state si such that si |= KRinside(cr, box1), but
concerning the human partner, si |= ¬KHinside(cr, box1)∧¬KHinside(cr, box2).
Here, Kip represents agent i knows that the literal p is true.

Example 2. The next state si+1 is such that, the epistemic action the robot
will execute in epistemic state si is ai that is placing cy in the correct box. We
describe how the next epistemic state si+1 looks like when and when not H&R
are co-present (i.e., whether they share this experience) during execution: An
indistinguishability relation is only for H when the formula f , e.g., at(R, place)
& not(at(H, place)), holds. R always knows that the designated world is w2.
That means if the human is co-present, they will know that the real world is w2.

Human-Aware Task Planning: We briefly discuss the human-aware task
planning paradigm here. HATP/EHDA [5] comprises a dual Hierarchical Task
Network (HTN) based task specification model. It is a recently proposed planner
that estimates and emulates human decisions and actions for HRC. It solves
problems in a turn-taking fashion, as formalized in our previous work [16, 15].
The following language adheres to this framework for easier understanding.

Consider the human-aware task planning problem, Prh and implicitly coordi-
nated joint solution defined (Definitions 5 & 6, respectively) in [15].

R and H have their own action models, beliefs, task networks (agendas),
plans, and more, collectively comprising Prh = ⟨MR,MH⟩. More specifically,
R has its estimated beliefs, sr0. We consider it as the real knowledge of “ground
truth” in the planner’s reference, versus what the robot estimates to be believed
by the human, sh0 , by perspective taking. sh0 may include a literal that is not true
(false belief – e.g., prop1 in Fig. 1) from R’s perspective and can be corrected.

We extended HATP/EHDA in [16], which adeptly anticipates human false
beliefs for better collaboration based on (non-) shared execution experience.

To achieve that, situation assessment processes based on co-presence are
integrated into the planning framework of HATP/EHDA. This enhances the
planner to be pertinent to capturing what humans can observe and infer in their
surroundings. It assesses the detrimental effects of humans’ incorrect beliefs on
the task at hand. As a result, R plans to communicate minimally and proactively.

We demonstrated in our previous work how to handle false beliefs (of first
order) and situate the research broadly within the literature. In this paper,
we extend and model knowledge up to level two, enabling us to handle HR
collaboration more realistically and allowing us to incorporate communication
in a more practical way. We detail all these aspects as we proceed.

4 The EHATP Planning Framework

We consider that the human maintains an estimated model for the robot MR
H ,

which can be incorrect compared to MR.
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The epistemic HATP (EHATP) framework considers three models: MR, MH

and MR
H . While MR guides the planning of R’s actions and MH helps esti-

mate and emulate H’s decisions and actions. But, using MR
H , H “expects” and

“predicts” certain robot behavior (from their own perspective) both, respectively,
when they are co-present and when they are not.

Majority of the models’ components remain static, but for each model, its
task network (tnϕ) and belief (Bel(ϕ)) components are dynamic, where ϕ denotes
an agent (or agent perspective). Except for belief, we assume that components
like robot’s action models and task network are accurately estimated by H.
This allows us to focus on the key aspects relevant to this paper. For other
incorrectly estimated components of MR

H , we suspect a possible generalization
utilizing concepts developed in [32] and intend to explore this in the future.

4.1 Planning Workflow

We focus on only the dynamic parts. The initial epistemic state s0 (with the
only world to begin with and that is also the designated world wd) is pro-
vided as an input. In general, each world wj in an epistemic state si represents
⟨(Bel(R), tnr), (Bel(H), tnh), (Bel(RH), tnrh)⟩. It also includes the only desig-
nated world wd always known to R. Note that these worlds are indistinguishable
for H, but human knows that the robot can always distinguish them and that
the robot can identify wd. Also, the human knows that, if wj is the designated
world, then Belij(RH), is the reality as they do not have access to the facts
appearing in Belij(R). Here, we consider that Bel(H) is equal to Bel(RH), but
they can be different from Bel(R) and can contain false (human) beliefs.

The robot, an epistemic state si and possible worlds wj in it are considered.
We compute the set of all possible primitive actions, computed by all feasible de-
compositions, based on (Bel(R), tnr)ij , and whether it is different than the set of
primitive actions based on the allowed decompositions w.r.t. (Bel(RH), tnrh)ij .
The idea is to align these decompositions, w.r.t. each wj , in a way that the hu-
man can correctly estimate the progress the robot may achieve, thus utilizing the
human’s capacity for anticipating. If there is a difference, we identify the relevant
facts in Belij(R) that need to be corrected in Belij(RH), to align the decompo-
sitions. To achieve that, we adapt our earlier approach presented in [16]. That is,
one can plan minimal communication, possible to schedule ahead of time during
offline planning when communication is allowed. Eventually, communication will
also fix Belij(H), accordingly. However, Belij(H) and Belij(RH) can still have
non-relevant false beliefs compared to the ground truth (Belij(R)).

Next, the planner computes the R’s next real action based on its task network
tnid

R in the designated world wd of si, we call it the designated event. It also
computes other non-designated events based on respective decompositions in
each world wj of si. (An event and a possible real action including noops are
used interchangeably.) In other words, the planner computes a set of all possible
decompositions based on what H can anticipate, that means by taking into
account each (Bel(RH), tnrh)ij . These are all the anticipated events that can
happen due to the robot acting, but the designated event may or may not be
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assessed depending on co-presence. All the decompositions (i.e., the set of the
first primitive action in each refinement) together form an epistemic action ai.

Executing an Epistemic Action in a State: Based on the cross-product (⊗) op-
eration, it computes si+1 = si ⊗ ai. We model within the planning algorithm
(Algorithm 1, Line 8) as, if human is co-present – an idea adapted from the litera-
ture and described, then they can distinguish between the designated event (real
action on ground) performed by R with the other estimated actions, otherwise
human considers each event as the R’s possible next move (ref. Fig. 1).

When co-present, H assesses the execution of R’s real action, thus narrowing
down the possibilities over w′

j ’s in si+1 — captured in ⊗ operation (ref Fig. 3).
Within each world of the new epistemic state, belief components, i.e., Bel(R),

Bel(H), and Bel(RH) are updated corresponding to the possible robot action
(either real or anticipated) that is a part of epistemic action ai. Also, the task
networks concerning MR and MR

H are updated in each world, accordingly.

When The Human Acts: Humans act only if they believe that their next real
action, corresponding to a possible decomposition, is applicable in all possible
worlds. That means, for each wj in si+1, applicability of the action is examined
w.r.t. every (Bel(H), tnh)i+1,j . At this stage, there arise two key issues. First,
humans can act based on a false belief (if consistent throughout all the worlds), or
a true belief w.r.t. the ground truth in every wj . We handle false belief scenarios
the way it is addressed in the literature, that is, by finding out relevant belief
divergence and handling it via communication [16].

Second, we also know that a boolean state variable, p, that H is uncertain
about at this stage, which holds only in some worlds, is due to disrupted shared
execution experiences. If p is a precondition of the task refinement process, then
H can initiate communication, or R can inform H about p. And, if co-present,
R can also act to implicitly share p’s value such that there is some correlation
between that action and p. Here, we focus on explicit communication, while
sharing p’s value by changing the environment is left for the future.

Handling H&R Communication. We introduce two types of actions and
they become a part of the deliberation process. First, ask-p – human inquires
about p from R, and, second inform-p – R informs them of the status of p.

At this stage, we create two specialized versions of state si+1: one prioritiz-
ing human inquiries, ask-p, and the other prioritizing robot updates, inform-p.
Communication tasks are adjusted into respective networks appropriately.

Situation Assessment. Assessing the status of a state property depends on a
broader context, which determines whether it can be observed or only inferred by
attending the action execution affecting it. Knowledge rules were used to address
this aspect [31]. For example, H can view the current status of the variable
inside(cr, box1) as true if they meet the requirements of the rule’s antecedent
formula, e.g., being at the main table, box1 is transparent, and cr is inside box1.
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Algorithm 1 AND/OR Planner using Breadth-First Search. Two key subrou-
tines are Situation Assessment and Expand.
1: Input: A HAETP task
2: Output: A joint solution or failure
3: root_epi_state← ⟨M, wd⟩ ▷ (focusing just on the essential parts) each world in

w ∈W contains (⟨sr0, tnr,0⟩, ⟨sh0 , tnh,0⟩, ⟨srh0 , tnrh,0⟩)
4: queue.enqueue(root_epi_state)
5: while queue is not empty do
6: curr_node′ ← queue.dequeue()
7: curr_node← Situation Assessment(curr_node′)
8: successors← Expand(curr_node)
9: if successors ̸= ∅ then

10: for successor in successors do
11: queue.enqueue(successor)
12: end for
13: else
14: eval(curr_node) ▷ assign it DONE or DEAD
15: propagate_revised_status(curr_node)
16: end if
17: if root_solved(root_epi_state) then
18: return extract_joint_solution()
19: end if
20: end while
21: return failure

Definition 1. The situational assessment (SA) process considers the observa-
tion process (described in [31]) and a state si, producing an updated epistemic
state s′i. This process iterates over each world wj in si, removing it if it can be
distinguished from wd by the human.

We roughly show how the SA process works in Figure 3. Let w1 =
⟨(...), ({inside(cr, box1)}, ...), (...)⟩ and w2 = ⟨(...), ({inside(cr, box2)}, ...), (...)⟩,
where w1 and w2 represent distinct worlds within an epistemic state si, with
w1 as the designated world. When boxes are transparent and the human is co-
located with the main table, the updated epistemic state s′i contains only w1.

5 AND/OR Search based HAETP Planner

Algorithm 1 takes the EHATP problem as input, producing an output as either
a failure or an optimal-worst case joint solution. We assume agents’ real and
auxiliary actions, e.g., NOOP, to be instantaneous and of equal cost, as in clas-
sical planning. Algorithm 1 is an implementation of the classic AND/OR search
using rooted graphs. Following the search, when the root node is DONE, the
joint solution policy is extracted, extract_joint_solution(), in Lines 17 & 18.

We consider the root node (root_epi_state) and the subsequent actor, either
R or H, to begin the plan exploration (Line 3). Within the loop, in Line 6, we
select a node/state from queue, and next call the Situation Assessment( )
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subroutine. What we present in Line 7 is a lazy approach for doing SA. At this
stage, the planner already knows whether agents were co-present and whether the
designated action could be assessed by the human. This helps the planner ignore
those worlds that can be distinguished from the designated world (Definition 1).
The scenario where a human transitions to the R’s location and subsequently
becomes co-present is particularly interesting. Another significant subroutine,
Expand( ), previously discussed in the EHATP framework’s planning workflow,
is called in Line 8. The children created after R expands the popped node are
AND nodes, OR nodes, and vice versa for the case where H expands this node.

If there are no successors for the current node, it indicates either a goal node
or a dead end. In Line 14, we evaluate the current node. If both tnr and tnh are
fully decomposed in the designated world of si, we execute an auxiliary action
with a precondition that the task network is fully decomposed. If both agents can
execute it individually, it signifies that agents believe that the shared task has
been achieved. In Line 15, we propagate the status of this node to its immediate
parent, who then propagates its status to its parent depending on whether it is
an AND node or an OR node.

The Post-processing Step: Post-processing of the joint solution is done based
on whether H&R are co-present. When co-present, we follow a turn-taking ap-
proach, but when not co-present, their actions are parallelized. This involves ex-
ecuting the AND/OR policy, and identifying where H&R separate and reunite.
We then group the agents’ actions in between to form pairs. This step assumes
that actions performed in parallel do not interact when actors are apart.

6 Related Work

Human Robot Collaboration (HRC): Generating the robot’s behavior while con-
sidering the existence of humans, known as human-aware planning and decision-
making [7, 1, 35, 20, 22, 10, 9]. Also, it can do reasoning for task allocation [27,
26]. Communication is an essential key to successful HRC, which is used to align
an agent’s belief, clarify its decision or action, fix errors, etc. [33, 22]. We extend
this research line but have not found studies addressing human anticipation and
divergent beliefs in disrupted execution experiences.

Models, Planning Approaches and Solution Plans: Several models are applied
in the context of HRC planning, including HTNs [21, 27, 6], POMDPs (Partially
Observable MDPs) [34, 27, 35], AND/OR graphs [11], etc. HTNs use both ab-
stract and non-abstract tasks to form a hierarchical network, while AND/OR
graphs cover the causal links among subtasks and depth-first search is used for
planning [17].

Epistemic Planning: The epistemic planning framework, in [4], holds promise for
capturing key elements of ToM in autonomous robots. For HRC, the framework
lays the groundwork for implicit coordination through perspective shifts [12].
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inst K comm #states |W | #leaves time (ms) × 105

P1 (2,2,T) 2 N 218 4 3 0.089
P2 (2,2,O) 2 Y 236 4 3 0.141
P3 (3,2,T) 2 N 1643 7 6 5.906
P4 (3,2,O) 2 Y 2003 7 6 9.816
P5 (3,2,T) 4 N 4107 14 5 99.81
P6 (3,2,O) 4 Y 5607 14 5 125.3
Cooking 1 2 Y 603 3 5 0.382
Cooking 2 3 Y 1054 4 5 1.474
Cooking 3 4 Y 1800 5 5 5.301

Table 1. The planner’s performance is evaluated using different metrics. inst denotes
instance description, while comm indicates whether communication is employed. The
metrics include the total number of explored states (#states), the worst-case number of
worlds evaluated in a state (|W |), the number of traces in the final AND/OR solution
tree (#leaves), and the execution time (measured in 105 ms). The table is divided into
two parts, containing instances from two domains.

By adopting this planning framework and focusing on the robot’s perspective, it
could serve as a basis for addressing the core problem we aim to solve with the
shared mental model [25], albeit without considering false beliefs.

Explainable AI Planning (XAIP): In general, XAIP focuses on human-aware
systems providing explanations of their behavior [18]. For example, a system
might explain the correctness of its plan and the reasoning behind its decision
based on its own model. The model reconciliation method, introduced in [32], as-
sumes that the human possesses a disparate model of the robot’s behavior (MR

H

instead of MR). This approach avoids unnecessary explanations by identifying
the specific differences between the two models and only generates explanations
where needed. Essentially, it suggests changes to the human’s model to optimize
the robot’s plan based on that revised model. The proposed planning approach
calculates the optimal explanations by identifying relevant discrepancies and
communicating only the necessary information to align the models. We adopt a
similar approach, computing relevant divergences to communicate only what is
necessary to align the decompositions.

7 Empirical Evaluation

We implemented our planning system using Algorithm 1 in Python. It is based
on the latest version of HATP/EHDA code [5].

As far as we know, there are not any standard planners available for compar-
ison. However, we occasionally gauge the performance of our planner against the
one presented in [16], which is more effective in scenarios with disrupted shared
execution experiences. Nonetheless, it is worth noting that directly comparing
their runtime would not be entirely fair, as our planner operates with a richer
representation.
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Domain Description: We test the planner in our use case domain and the cooking
domain adapted from [16], on a variety of problems.

In the adapted scenario, both H and R are tasked with preparing dinner. The
main activities involve cutting (R), washing (R) vegetables, putting (R) them
on the stove with a pan and seasoning (R) them. Depending on the vegetables,
seasoning can occur before or after they are placed in the pan, but always after
washing. H is responsible for bringing (H) spices and other ingredients from the
pantry and mixing (H) them in the pan, but only after the vegetables have been
boiled (i.e., the effect of the putting action). Serving (H) dinner can only happen
after the spices and seasoning have been mixed. Actors appear in (). Effects of
washing and seasoning are non-observable.

In our context, the action of bringing ingredients is modeled such that it
temporarily separates H from R. Despite the adaptation, H can still choose
when to leave the kitchen for the pantry.

Analyzing the Impact of Parameter (K ) and Non-Determinism: Algorithm 1
highlights a rapid growth in the size of the epistemic state in terms of the num-
ber of worlds which directly correlates with the number of actions (K ) the robot
can perform when the experience is not shared. The sequencing of actions sig-
nificantly influences the range of potential worlds H expects to see.

K is considered to assess its impact on the planner’s performance. We as-
sume that whenever the shared execution experience is disrupted, R can execute
a maximum of K actions, including the option of doing nothing. For example,
when the human is away to fetch the cube and has a fixed length and sequence of
actions to perform. The exact number of real ontic actions R performs ranging
from 0 to K , including which of those allowed ones and their potential sequences,
will depend on the scenario at hand, environment dynamics (e.g., the observabil-
ity factor), and the optimization criteria. The option for the robot to limit its
real actions whenever required is integrated into the task description, aligning
with the turn-taking nature of the underlying planner. Consequently, the plan-
ner is engineered to optimize the robot’s policy tree branching on uncontrollable
human choices, including a communication action, to meet our objective.

Qualitative Analysis: In our use case domain, we explore different plan traces
the planner can come up with depending on scenarios that arise. We start with
two cubes, cr and cw, placed initially on tables mt and ot, respectively. Initially,
there is only one designated world, wd, in the initial epistemic state, s0. The
environment otherwise remains unchanged. H can decide to go and retrieve the
white cube, while the robot begins to work on other parts of the shared task.

Two plan traces from an AND/OR tree are shown in Figure 4. H starts to
execute. H&R are co-present and the boxes are opaque. (SA is a systematic
subroutine, but is shown only at relevant places.)

Let us focus on (a): after the human shifts focus to ot, both agents are not
co-present until they reunite later in the trace, during which they act simulta-
neously. (In this situation, agents must be at the same table and simultaneously
focus on it to be considered co-present.) In the first broad rectangular box, the
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human moves to ot. They anticipate that the robot may have picked cr or done
nothing, but in reality, the robot picks cr, resulting in two possibilities that will
be maintained within the robot. Similarly, in the following box, the human picks
cw at ot and anticipates that if the robot had picked cr, it could have placed it in
one of the boxes or held onto it, or cr is still on the table. Together, these create
four possibilities, with the reality being that cr is inside box1. At this point, the
robot currently has no feasible action to execute, and the shared task has been
not achieved yet, too. Upon the human’s return, as per their initial agreement
on K , the robot has prepared itself with four possible worlds (with a designated
world that only the robot knows). Perspective-taking and situation assessment
help the robot eliminate two worlds where cr is not on mt or in its hand.

We present two approaches to proceed with the task. In trace (a), the robot
waits for human inquiry, while in trace (b), the human does nothing. Conse-
quently, the robot decides to inform that box2 is empty, resulting in only the
designated world remaining. Here, empty(box2) is a precondition for the human
to place cw in it, which is true in one world and not another. Our proposed
method considers a situation where the human waits for information without
taking any action, such as nodding or making eye contact with the robot, as a
distinct condition (trace (b)). Meanwhile, R also has the option to modify the
world to signal the variable’s status, which we intend to address in the future.

In our three-cube scenario, if the red cube is already in box1 and the robot
is holding the cy, it can choose to place the cy in box1 in the presence of the
human. This action results in the creation of a state with only the designated
world as the next action ordered in the task network (tnrh) of that world does
not allow the robot to execute place(cy, box1). The robot can only be clever if
it can fully explore its options. Depending on the situation, it might not always
be preferable to place the yellow cube while the human is away and rely on
communication or other means later on.

In contrast, in [16], R communicates after agents become co-present again.
This assumes that H can choose to place cw in box1 due to their outdated belief
w.r.t. changes they missed. In some practical cases, not communicating may lead
to detrimental effects.

Quantitative Results and Analysis: Refer to Table 6. For the first domain, the
first column indicates the instance number, along with the count of cubes and
boxes, and whether the boxes are transparent (T) or opaque (O), respectively.
In each instance, at least one cube is positioned on ot, which H must retrieve.
We show how the factor K influences the overall runtime.

We observe that |W | and K contribute to longer runtime in both domains.
Instances requiring communication tend to take slightly longer compared to
those where communication is not required.

8 Conclusion

Our framework allows the robot to implement a ToM not only at execution time
but also at planning time and hence explores what would be the beliefs of the
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H: pick(cw)
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do nothing
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H: COM
empty(box2)
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SA

change focus

H: pick(cw)
R: place(cr, box1)

H: move to ot
R: pick(cr)

H: change focus
R: do nothing

H: move to mt
R: do nothing

do nothing

SA

place(cw, box2)

SA

number of worlds = 4

number of worlds = 2
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number of worlds = 2

number of worlds = 2

plan trace (a)

WAIT_SIGNAL

R: COM
empty(box2)

number of worlds = 2

number of worlds = 1

plan trace (b)

WAIT_SIGNAL signifies H does nothing and
R can share information

number of worlds: signifies the possible
worlds human considers after the
operation, e.g., SA, or action execution 

Fig. 4. Two branches from an AND/OR joint solution are shown: (a) R informs H
proactively, thus leaving only the designated world for them to continue with place(cw,
box2). (b) R waits to inform H about the condition empty(box2).

human and the robot depending on which course of action. This is done thanks
to the use of epistemic reasoning, the notion of shared experience, and observable
and non-observable facts, which allow anticipation of H’s situation assessment
along the various non-deterministic shared plan traces of H and R.

It allows R to adapt its choices to H’s diverging beliefs over time, for example
by choosing to communicate to inform the human or elicit an action or to choose
a particular context to act.

We acknowledge that scaling such abilities can pose complexity challenges for
planners, which can be evident in [4]. Hence, we take care to precisely identify
the context in which our approach can be effectively used which is dealing in
a refined manner with short-term interactions and intricate H&R face-to-face
situations. Also, we intend to test the current system in different domains with
realistic H&R co-activities. We aim to enhance planner’s practical efficiency and
explore incremental task planning.
User Study: A user study has been conducted, validating the HATP framework,
where planning anticipates human decisions and actions [13, 14]. Users acknowl-
edged R’s pertinent decisions and compliance with their preferences.

Next, we are extending the plan execution framework to assess the pertinence
of HATP equipped with epistemic reasoning as shown in relevant task contexts.
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