
HAL Id: hal-04942350
https://hal.science/hal-04942350v1

Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Non-Stationary Gradient Descent for Optimal
Auto-Scaling in Serverless Platforms

Jonatha Anselmi, Bruno Gaujal, Louis-Sébastien Rebuffi

To cite this version:
Jonatha Anselmi, Bruno Gaujal, Louis-Sébastien Rebuffi. Non-Stationary Gradient Descent for Op-
timal Auto-Scaling in Serverless Platforms. IEEE/ACM Transactions on Networking, 2025, pp.1-14.
�10.1109/TON.2025.3538982�. �hal-04942350�

https://hal.science/hal-04942350v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Non-Stationary Gradient Descent for Optimal
Auto-Scaling in Serverless Platforms

Jonatha Anselmi, Bruno Gaujal, Louis-Sébastien Rebuffi

Abstract—To efficiently manage serverless computing platforms,
a key aspect is the auto-scaling of services, i.e., the set of
computational resources allocated to a service adapts over time
as a function of the traffic demand. The objective is to find
a compromise between user-perceived performance and energy
consumption. In this paper, we consider the scale-per-request
auto-scaling pattern and investigate how many function instances
(or servers) should be spawned each time an unfortunate job
arrives, i.e., a job that finds all servers busy upon its arrival.
We address this problem by following a stochastic optimization
approach: we develop a stochastic gradient descent scheme of
the Kiefer–Wolfowitz type that applies over a single run of the
state evolution. At each iteration, the proposed scheme computes
an estimate of the number of servers to spawn each time an
unfortunate job arrives to minimize some cost function. Under
natural assumptions, we show that the sequence of estimates
produced by our scheme is asymptotically optimal almost surely.
In addition, we prove that its convergence rate is O(n−2/3) where
n is the number of iterations.

From a mathematical point of view, the stochastic optimization
framework induced by auto-scaling exhibits non-standard aspects
that we approach from a general point of view. We consider the
setting where a controller can only get samples of the transient
– rather than stationary – behavior of the underlying stochastic
system. To handle this difficulty, we develop arguments that exploit
properties of the mixing time of the underlying Markov chain.
By means of numerical simulations, we validate the proposed
approach and quantify its gain with respect to common existing
scale-up rules.

Index Terms—Auto-scaling, serverless computing, parallel
queueing system, stochastic optimization, Kiefer–Wolfowitz.

I. INTRODUCTION

A. Auto-scaling in Serverless Computing

Auto-scaling mechanisms are considered to be essential
components of serverless computing systems as they efficiently
support cloud providers in handling the largest possible user
base on their physical platforms. These mechanisms are
designed to automatically adjust the current service capacity
in response to the current load while ensuring that service
level agreement (SLA) contracts are respected. In this paper,
we tweak a popular auto-scaling paradigm that in the cloud
computing literature is known as “per-request” [21], [4] or
“reactive” [13] auto-scaling. According to this paradigm, an
incoming request (or job) is processed by an active idle
function instance (or server) if there is any available, otherwise,
the platform spawns a new server that will serve the job
immediately after a coldstart latency. By design, the activation

J. Anselmi, B. Gaujal and L.-S. Rebuffi are with Univ. Grenoble Alpes,
CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France. Email: first-
name.lastname@inria.fr

of a new server is only triggered at the arrival time of an
unfortunate job, i.e., a job that finds no active idle servers
upon its arrival and thus must wait. In practice, this is the
de-facto auto-scaling pattern and is currently employed by
serverless computing platforms such as AWS Lambda, Google
Cloud Functions, Azure Functions, IBM Cloud Functions and
Apache OpenWhisk.

B. Addressed Problem

The current implementations of the auto-scaling paradigm
described above operate under the assumption that exactly
one server is spawned (or initialized) when an unfortunate
job arrives [21]. The objective of this work is to investigate
whether or not it would be convenient to activate more than
one server, say 1 + θ, instead of just one. It is worth noting
that activating θ > 0 extra servers results in increased energy
consumption compared to the case where θ = 0. On the other
hand, this brings a performance benefit proactively, as future
arrivals have a higher chance of finding active idle servers,
thus avoiding the coldstart latency cost. This is particularly
crucial for serverless or edge computing applications, where
response time is critical to ensure optimal performance [13]. It
is commonly recognized that even a minor rise of even a few
milliseconds in latency can have a drastic effect on real-time
applications such as e-commerce sales. Therefore, this paper
aims to explore whether the activation of surplus servers at
scale-up times ultimately leads to a more favourable balance
between energy consumption and user-perceived performance.

C. Stochastic Optimization Framework

Several analytical performance models have been developed
in the literature to evaluate the delay performance and power
consumption induced by auto-scaling algorithms; see, e.g., [21],
[16], [15]. The starting point of our work is the Markov model
proposed in [21], which captures the unique details of several
existing serverless computing platforms and is also tailored
to the auto-scaling algorithm implemented in Amazon’s AWS
Lambda. We extend this model to the case where the platform
spawns θ + 1 servers at the moment of a job arrival if the job
finds no active idle server – the model in [21] is recovered
when θ = 0.

To find the θ that minimizes a cost function that takes
into account the blocking probability, i.e., the probability
that a random job incurs a coldstart latency, and the energy
consumption, we follow a stochastic optimization approach
looking for an online learning algorithm. The main motivation
for this approach is that some quantities such as the job arrival

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

rate are time-varying and unknown in advance. However, they
are observable and can therefore be learned. Moreover, the
specific structure of the cost function induced by the considered
auto-scaling setting brings the additional difficulty that the
gradient of the cost function is unknown as well, although
again observable. This issue prevents us from relying on the
class of Stochastic Gradient Descent (SGD) iterative schemes,
which are common in stochastic optimization, and leads us to
consider iterative schemes of the Kiefer-Wolfowitz type [8];
see below for further details.

To optimize over θ, an alternative approach would consist in
modeling the problem via a Markov decision process (MDP)
[23] and then learning the optimal policy via (variations of)
algorithms such as the celebrated UCRL2 [5]. In the literature,
MDP formulations for problems similar to ours have been
developed recently in [10], [28]; see also the references therein.
In contrast to our approach, these works assume full knowledge
of the model parameters and no learning is considered. We
do not follow the MDP reinforcement learning approach for
two reasons. In general, the optimal policy is highly dependent
on the system state and therefore not versatile. In our case,
however, the optimal policy reduces to a one-dimensional
parameter θ, indicating how many servers to activate upon
job arrivals. Also, the size of the state space of the MDP
is prohibitively large in our case, and this would make any
model-based reinforcement learning algorithm impractical. We
show in Section II, that the size of the state space is of the
order of N3 where N denotes the nominal number of servers
that can be up and running, which for several applications is
in the order of hundreds or thousands.

We also notice that the application of reinforcement learning
for autoscaling of serverless applications is currently a bit
underexplored [7], [2]. A Q-learning approach is considered
in [1] and a comprehensive numerical evaluation of existing
deep learning algorithms has been recently conducted in [2].
The downside of these works is that no theoretical properties
about convergence and optimality are proven.

Finally, to minimize over θ, a further approach would consist
of i) solving the global balance equations of the underlying
Markov chain to get the stationary measure induced by a given
θ and then ii) computing the optimal θ by binary search or
relying on standard algorithms for deterministic optimization.
This naive approach is not interesting either because it requires
the knowledge of all the parameters that define the underlying
Markov chain. As discussed above, we do not assume this
knowledge.

D. Novelty of our Approach: Non-Stationary Samples

When trying to apply existing stochastic optimization
techniques to the specific case of auto-scaling, the following
technical difficulty appears. To fully grasp the root of the
problem, let us formally introduce the general stochastic
optimization framework under investigation. The objective
is to minimize some real function f(θ) := E[F (θ,X)] over
θ ∈ Rp, where X is some random variable over X . The
distribution of X and the mapping F : Rp × X 7→ R are
unknown. However, it is allowed to get samples X1, X2, . . .

and, thus, F (θ1;X1), F (θ2;X2), . . . for different values of
θn. Here, F (θn, Xn) represents the random cost observed
at time step n under the set of parameters θ. To find an
optimal θ, one can only rely on such information. Under
certain technical conditions, the Robbins–Monro and Kiefer-
Wolfowitz algorithms are the classical iterative schemes that
make the sequence θn converge to a minimum of f [8], [25];
see also [30]. Unfortunately, this type of approach can not be
employed within our setting because our problem does not
grant access to samples of X . In our case, X has the stationary
distribution of a continuous-time Markov chain that models the
dynamics of auto-scaling, and what we can only observe are
(non-stationary) samples from the transient behavior of such
chain; in practice, this corresponds to collecting observations
from the up-and-running real system. This non-stationarity is
the main technical difficulty that singles out our work from
existing approaches; for further details, see Section II-C and
Remark 1. To deal with this difficulty, we modify the standard
Kiefer-Wolfowitz algorithm by introducing a new parameter
that controls how long the system is observed for a given θ
in order to obtain a non-stationary sample that is sufficiently
close to the corresponding stationary distribution of the Markov
chain parameterized by that given θ. While we can prove that
the modified algorithm converges a.s. to the optimal value of θ
(Theorem 1) with a state-of-the-art convergence rate in O(n2/3)
(Theorem 2), there is still a price to pay for non-stationarity:

• Additional assumptions: Assumption 2, which requires
the underlying Markov chain to mix uniformly, is critical
to our proof technique. It provides a means to control the
accuracy of non-stationary samples and is, to some extent,
necessary, as we demonstrate that without it, the desired
convergence properties fail to hold. This is supported by
numerical evidence.

• Technical difficulty: The proof for the convergence rate
requires a truncation/extension of the control policy to
ensure smoothness of the stationary policy with respect
to θ.

• Increased convergence time: The convergence rate in-
volves a term depending on the mixing time, more
precisely log(1/ρ) where ρ is the uniform mixing rate.

The closest reference to our work is the classical work [22],
which presents a scheme of the Kiefer-Wolfowitz type as in
our setting. Under technical conditions, that scheme converges
almost surely to a minimum of the cost function. However, no
convergence rate is proven for that scheme. Another reference
that is close to ours is [9]. Here, the authors consider a general
iteration scheme for solving a stochastic optimization problem
as in our setting, modulo some minor technical assumptions.
The main differences with respect to our work are that their
iterative scheme is of the Robbins-Monroe type and that their
main result (Theorem 1) does not specify the convergence
speed of the scheme towards the minimum of the cost function.
More precisely, they show that it has a polynomial structure,
but the exponent depends on a parameter, α, related to the
Lipschitz constant of the average cost, which may be difficult
to get depending on the application considered.

We also mention a number of related works that have recently

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

appeared in the literature to address settings similar to ours [27],
[14], [19], [18], [24], i.e., where samples of X are not available.
These propose SGD methods where approximate samples of X
are taken on the trajectory of a Markov chain, as we do within
our approach. In particular, the algorithm proposed in [27] has
nice convergence properties even in the case of non-convex
cost functions and non-reversible Markov chains, which is
the setting considered in this paper. The crucial difference
between all these works and ours is that they all assume the
knowledge of the gradient of the cost function f . In our case,
this information is not available as it depends on the unknown
transition rate matrix of the underlying Markov chain.

E. Summary of our Contribution

First, we model the job and server dynamics induced by
our auto-scaling mechanism in terms of a Markov chain
that generalizes the one recently proposed in [21]. This is
parameterized by θ, which defines a set of auto-scaling policies
and may be interpreted as a reserve of extra servers that are
ready to be used – the model and the algorithm discussed
in [21] are recovered if θ = 0. The parameter θ is under the
control of the system manager and, following the stochastic
optimization approach discussed above, the aim is to design an
iterative scheme capable of making θ to converge to θ∗, i.e.,
the reserve size that minimizes some cost function. lthough our
optimization framework is inspired by auto-scaling, we look
at the problem from a larger perspective than auto-scaling and
propose a general iterative scheme, see Algorithm 2, which is an
adaptation of the celebrated Kiefer-Wolfowitz scheme. Under
natural conditions, in Theorem 1, we show that the sequence of
scalars generated by the proposed algorithm converges almost
surely to a minimum of the cost function of interest, and in
Theorem 2, we show that the convergence rate is O(n−2/3),
where n denotes the number of iterations on θ. Finally, we
apply the proposed algorithm to the special case of auto-scaling.
By means of numerical simulations, we validate the proposed
approach and quantify the cost function relative gains with
respect to the common scale-up rule where θ = 0. Within a
realistic parametrization of our problem, we show that θ∗ ≈ 6
and that the proposed algorithm indeed generates a sequence
(θn)n that converges to such a value, yielding relative gains
of around 5-8%.

F. Organization

This paper is organized as follows. Section II introduces
a Markov model for the considered auto-scaling system and
formalizes the stochastic optimization problem of interest. Sec-
tion III defines our non-stationary Kiefer–Wolfowitz algorithm
(Algorithm 2) and presents our main results (Theorems 1
and 2). We stress that this algorithm is general and that it
can be applied outside the auto-scaling framework introduced
in Section II. Finally, Section IV is dedicated to the application
of Algorithm 2 in the context of auto-scaling. Here, we validate
its behavior and evaluate its performance numerically.

II. FRAMEWORK

A. System Description and Auto-scaling Algorithm

We consider an architecture composed of N parallel servers;
in serverless computing, servers are also called function
instances. These represent the nominal service capacity, i.e.,
the upper limit on the number of servers that one user of the
platform can have up and running at the same time. To ensure
service availability for other users, existing serverless platforms
require the specification of such limit [21].

Each server can be in one of the following three macro
states: warm if turned on, cold if turned off, and initializing if
making the transition from cold to warm. An initializing server
cannot process jobs yet as it performs basic startup operations
such as connecting to database, loading libraries, etc. We also
say that a server is idle-on if it is warm but not processing
any job, and busy if it is warm and processing some job. For
our purposes, it is convenient to split the set of initializing
servers into two groups, say init0 and init1. Init-1 servers are
initializing servers that are already bound to a job, i.e., the job
that triggered their activation. Upon finishing their initialization
phase, they process their associated job immediately. Init-0
servers are initializing servers that are not necessarily bound to
any job. Upon finishing their initialization phase, they become
either idle-on or busy depending on whether a job is blocked
in the queue. Warm servers can make the transition to cold
only if they are idle-on. Figure 1 summarizes the possible
transitions among the server states.

Figure 1. State transitions for each server.

Jobs join the system from an exogenous source to receive
service. Upon each job arrival:

• if an idle-on server exists, then the job is sent and
processed by an idle-on server selected uniformly at
random;

• if all servers are either busy or init1, all resources are
saturated and the job is rejected;

• otherwise, a certain number of cold servers is selected
uniformly at random to become initializing, and in the
meanwhile the job waits in a central queue for the
activation of its init1 server. that is again selected upon
arrival of the job itself.

In the central queue, jobs wait following the first-come first-
served scheduling discipline, and each job leaves the system
upon completion at its designated server. We notice that scale-
up decisions are taken at job arrival times and by a central
monitor, which at any point in time has full knowledge of the
server states. In the literature, this auto-scaling mechanism

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

is called “scale-per-request” [21], [4]. On the other hand,
the decision of making a server cold is taken by the server
itself after an expiration time if during such time the server
received no job. This scale-down rule is well consolidated in
practice [31], [29], [15] and it will be assumed in the following.

Since the scale-down rule is fixed, we focus on the design of
a scale-up rule. As commented in the Introduction, current scale-
up rules initialize at most one server for each job arrival. The
novelty of our approach consists in providing more flexibility
in this respect, and this flexibility is captured by controlling the
number of init0 servers. More precisely, Algorithm 1 defines
our auto-scaling algorithm.

Algorithm 1: The proposed auto-scaling algorithm.
Input: θ ∈ R+, “system state”
Output: Number of servers to initialize:

#init0_servers:=0 and #init1_servers:=0
1 for each job arrival do
2 #init0_servers:=0
3 #init1_servers:=0
4 if #idle-on_servers=0 and #cold_servers>0 then
5 #init1_servers:=1
6 #init0_servers:=πθ(“system_state”)
7 end

Let us elaborate a bit more on Algorithm 1. First, servers
are only initialized if there is no idle-on server. In this case, the
number of init1 servers to activate is always set to one, because
by definition this init1 server will be the server that will process
the incoming job. Then, the number of init0 servers to activate
is given by the “black box” Πθ. The form of this function is
not important for now and will be given in Section IV-D. What
should be retained is that it depends on the system state and on
the parameter θ ∈ R+, i.e., the design parameter that will be the
subject of stochastic optimization. We anticipate that the idea
behind our scale-up rule πθ will be to choose #init0_servers
to ensure that an average reserve of θ servers is ready for use
at least in the short future. Within this interpretation, if θ = 0
then no init0 servers exist and Algorithm 1 boils down to the
auto-scaling algorithm investigated in [21].

B. Markov Model

We introduce a continuous-time Markov chain that models
the dynamics induced by the system described above.

We assume that jobs join the system following a Poisson
process with rate λ. Service, initialization and expiration times
are exponentially distributed random variables with rate µ, β,
γ, respectively. The four sequences of job inter-arrival, service,
initialization and expiration times are i.i.d. and independent of
each other.

Let X := {x = (x1, x2, x3, x4) ∈ N4 :
∑3

i=1 xi ≤ N, x4 ≤
x3}. A Markovian representation of the system dynamics is
captured by the state variable x ∈ X where x1, x2 and x3
represent the number of idle-on, busy and initializing (both init0
and init1) servers, respectively, and x4 represents the number
of init1 servers only. Note that the number of init1 servers can
be equivalently interpreted as the number of blocked jobs, i.e.,

the jobs that are waiting in the central queue. Thus, the number
of cold servers in state x is N −∑3

i=1 xi.
Let ei be the size-4 unit vector in direction i.
The Markov chain (Xt)t that describes the dynamics of the

proposed auto-scaling algorithm is defined by the transition
matrix

Qx,x′ =

λI{x1>0} if x′ = x− e1 + e2
λI{x1=0} if x′ = x+ πθ(x)e3 + e4
µx2 if x′ = x+ (e1 − e2)I{x4=0}

− e4 I{x4>0}
γx1 if x′ = x− e1
βx3I{x4>0} if x′ = x+ e2 − e3 − e4
βx3I{x4=0} if x′ = x+ e1 − e3

(1)

for all states x, x′ ∈ X , with x′ ̸= x, where πθ(x) represents
the scale-up policy, i.e., the number of servers to initialize
upon job arrival and when the system is in state x with x1 = 0
and N −∑3

i=1 xi > 0. Again, the precise form of πθ(x) will
be given in Section IV-D.

C. Stochastic Optimization Problem

Our objective is to find θ that minimizes a trade-off between
user-perceived performance and energy consumption, and
as discussed in the Introduction, we follow a stochastic
optimization approach. To investigate this trade-off, we first
define the instant random cost:

C(x) :=

4∑
i=1

wixi + I{x2+x4=N}wrej, (2)

where wi, for i = 1, . . . , 4, and wrej are positive weights; here,
for instance, wrej is the weight for rejecting a job because
I{x2+x4=N} represents the event that the system contains N
jobs or, equivalently, that all the N servers are used. This cost
function is known to the optimizer. However, we are interested
in finding θ that minimizes the average long-run cost in a
setting where the transition rate matrix Q in (1) is unknown
but the states of the underlying Markov chain, (Xt)t, can be
observed by the optimizer. More precisely, we want to develop
an iterative scheme able to find θ ∈ R+ that minimizes

c(θ) := E[C(Xθ
∞))] (3)

where Xθ
∞ is a random variable having the invariant distribution

of (Xt)t, which exists because it is ergodic and depends on
θ because of (1). In addition, we require that the iterative
scheme that we look for should be potentially implemented in
a real system. To achieve this goal, the optimizer can only use
samples from a single run of the Markov chain and adjust the
value of θ on the fly.

Remark 1. The structures of (2) and the cost function
described in Section I-D are different in the sense that (2)
does not depend on θ directly. It only depends on θ via Xθ

∞.
This poses the technical difficulty that d

dθC is not accessible and
rules out the application of a large class of stochastic gradient
descent algorithms based on stochastic approximations with
Markovian noise (see for example [3], [9]).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Remark 2. If one could sample directly from Xθ
∞, then the

optimization problem under investigation could be solved via
the celebrated Kiefer–Wolfowitz algorithm which, under certain
conditions, can provide a sequence of θ’s converging to a
minimum of c(θ). However, as discussed in the introduction,
we have only access to (transient) samples of (Xt)t rather
than Xθ

∞ and this makes our problem more difficult.

III. A NON-STATIONARY KIEFER–WOLFOWITZ
ALGORITHM

In this section, we propose a general stochastic descent
algorithm that solves a general optimization problem. The
relationship with auto-scaling as formulated previously is quite
intuitive but it will be formally explained in Section IV. Here,
we consider a quite general parametric finite Markovian system,
with parameter denoted θ ∈ R. The finite state space is denoted
by X and the transition matrix under θ is Pθ. The aim is to
design an online learning algorithm that computes the optimal
value θ∗, which minimizes an expected cost under the stationary
regime of the Markov chain.

In the following, we denote by f the function to minimize,
defined as

f : R → R
θ 7→ E

[
F (θ,Xθ

∞)
]

where F (θ, x) is the cost under state x and parameter θ. Here,
Xθ

∞ is a random state whose distribution is mθ, the stationary
distribution of the Markov chain with parameter θ.

The rest of this section is organized as follows. Section III-A
introduces our online algorithm; Section III-B shows that
under some regularity assumptions on the cost, our algorithm
converges to the optimal parameter θ∗ almost surely (Theorem
1). In addition, a state-of-the-art convergence rate in O(n−2/3)
is proved in Theorem 2.

A. Description of the Algorithm

Our non-stationary Kiefer–Wolfowitz (KW) algorithm is
based on the following idea. After each policy update, from
episode n−1 to n, the classical KW algorithm needs to sample
two independent states from the stationary measures of the
Markov chain with parameters θn + δn and θn − δn, where δn
is the stepsize that is needed to approximate the gradient of the
cost function at θn. However, we do not have access to these
stationary measures. Instead, we simulate one Markov chain
over τn timesteps twice to reach two states close to stationarity,
where τn is related to the mixing time of the Markov chain
and scales in log n.

We start from the initial state xstart and initial policy θ0.
Denote by Tn the number of timesteps at the end of episode
n − 1. For each episode n, we also choose xstart to be the
initial state of the trajectories we will simulate.

From Tn to Tn+ τn−1, we first simulate the Markov chain
with initial state xstart and parameter θn + δn, and observe
the states Xθn+δn

Tn,Tn+i for i = 1, . . . , τn, and the random cost
F (θn+δn, X

θn+δn
Tn,Tn+τn

). We reiterate this process K times, and
do similar simulations for the Markov chain with parameter

θn − δn. We then evaluate the average cost of the Markov
chain with parameters θn + δn and θn − δn with the samples
Xθn+δn

Tn+iτn,Tn+(i+1)τn
and Xθn−δn

Tn+(K+i)τn,Tn+(K+i+1)τn
for i =

0, . . . ,K−1, from which we may approximate the derivative of
the cost function at θn, and eventually compute the following
update of the parameter θ:

θn+1 = θn − γn
f̂n(θn + δn)− f̂n(θn − δn)

2δn
, (4)

where γn is the stepsize of the parameter update, and

f̂n(θn + δn) =
1

K

K−1∑
i=0

F
(
θn + δn, X

θn+δn
Tn+iτn,Tn+(i+1)τn

)
, (5a)

f̂n(θn − δn) =
1

K

K−1∑
i=0

F
(
θn − δn, X

θn−δn
Tn+(K+i)τn,Tn+(K+i+1)τn

)
.

(5b)

This process is formalized in Algorithm 2.

Algorithm 2: Non-stationary Gradient Descent Algo-
rithm.
Input: γn step-size sequence, δn discretization step,

initial parameter θ0 and state xstart, T the total
simulation time and a parameter τ .

1 Set n = 0 the algorithm time-step and t = 0 the current
simulation time-step, x = xstart the initial state.

2 while t ≤ T do
3 τn = τ log(n+ 1)
4 for the simulation number i = 0, 1, . . . ,K − 1 do
5 Simulate the Markov chain starting at xstart

with parameter θn + δn over τn steps, by
choosing at each step of the simulation the
action θ̂ randomly between ⌊θn + δn⌋ and
⌊θn + δn⌋+ 1.

6 Repeat this process overall K times, and
observe the empirical average reward and the
average visit count for each state.

7 Repeat this process for the parameter θn − δn.
8 end
9 Compute the average over the K simulations to

obtain f̂n(θn + δn) and f̂n(θn − δn).
10 Update the empirical stationary measure: the

number of visits of a given state under any
parameter, divided by the total number of visits.

11 Compute the parameter update (4):

θn+1 = θn − γn
f̂(θn+δn)−f̂(θn−δn)

2δn
.

12 t := t+ 2Kτn and n := n+ 1
13 end

In the loop in Line 4, we simulate the trajectory induced by
θn + δn before the one induced by θn − δn. Because of the
memoryless property, this does not affect our results.

B. Convergence Results

We will use the following assumptions.

Assumption 1 (Regularity of the cost function).
(1.a) f : R → R ∈ C3,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

(1.b) f ′ is Lipschitz,
(1.c) the cost function F can be written as F (θ, x) =

G(θ, x) + b(θ), where b is a penalty function such that
|b(θ + ε)− b(θ − ε)| ≤ C2(θ − θ∗)ε for 0 < ε < ε0,
where C2 and ε0 are positive constant, and G is positive
and bounded by Gmax and θ∗ is a minimum of f .

(1.d) There exists L > 0 and r > 0 such that f ′(θ) > r for
θ > L, and f ′(θ) < −r for θ < −L.

While Assumption 1 is quite technical and may look restric-
tive, it is satisfied in the autoscaling case by simple inspection
of the cost function. This will be shown in Section IV.

Assumption 2 (Uniform mixing time). Let Pθ be the transition
matrix of a Markov chain indexed by the parameter θ ∈ R.
Let x be an initial state and mθ denote the corresponding
stationary measure within parameter θ. There exists C1 > 0
and ρ < 1 independent of θ such that∥∥P t

θ(x, ·)−mθ

∥∥
1
≤ C1ρ

t

for any θ and t.

The previous assumption is not common in stochastic gradi-
ent descent algorithms because standard approaches assume to
be able to sample from a stationary distribution. Indeed, in our
framework it relates the transient regime that we can observe
over time to stationary properties of the system.

Assumption 3 (Uniqueness). The function f has a unique
minimum θ∗.

Assumption 4 (Strong convexity). The function f is strongly
convex: for some κ > 0, for any θ, θ′ ∈ R+, it holds that

f ′(θ)(θ − θ′) ≥ κ(θ − θ′)2. (6)

We can now state our main results.
The next theorem states the almost sure convergence of the

sequence θn produced by the proposed algorithm, under the
following parametrization: The sequences (γn)n, (δn)n and
(τn)n are such that:

lim
n→∞

δn = 0, lim
n→∞

τn = +∞ (7a)∑
n

γn = ∞,
∑
n

γ2nδ
−2
n <∞ (7b)

and
(γn)n, (δn)n and

(
γn
δn

)
n

are decreasing. (8)

Theorem 1. Let (θn)n be the sequence of random variables
generated by Algorithm 2 with parametrization (7)-(8). Under
Assumptions 1, 2, and 3, we have

θn
a.s.→ θ∗. (9)

The next theorem provides a result on the convergence rate
to the minimizer of f .

Theorem 2. Let Assumptions 1, 2, 3 and 4 hold. Under well-
chosen parameters δn = n−2/3, γn = n−1 and Tn = α logn

log 1/ρ

with α > 1, and γ0 < 4κ
C2

, Algorithm 2 converges to the
minimum θ∗ with asymptotic rate:

lim sup
n→∞

E
[
(θn − θ∗)2

]
n2/3

≤

(
2C0 +

√
2GmaxC

1/2
1

)2
8κ2

+
G2

max

2κ
.

Theorem 2 implies that the convergence rate of the sequence
θn produced by Algorithm 2 is O(n−2/3), provided that its in-
put parameters are properly tuned, which is as good as the state-
of-the-art convergence rate of classical KW algorithms [30].
The detailed proof is postponed to Appendix A.

IV. APPLICATION TO AUTO-SCALING

In this section, we discuss the applicability of Theorems
1 and 2 to the auto-scaling problem modeled in Section II.
The main point is to construct a cost function f satisfying
Assumptions 1 whose minimum coincides with the minimum
of the function c defined in (3).

This construction is not unique and several choices made in
the following could certainly be changed, especially to improve
the performance of the algorithm in practice (see Section IV-D).

A. Truncation/Extension: Construction of the Scale-up Rule

The first step is to construct a scale-up rule πθ that maps any
real parameter θ into a number of servers in [0, N]. The idea is
as follows: see θ as the average amount of servers to turn on. A
simple choice would be to sample πθ from a binomial law with
parameters (N, θ/N). This would be possible for θ ∈ (0, N).
However, to comply with the optimization algorithm given in
Section III, θ must live on the whole real space R.

For that, we construct an explicit mapping from R to [ε,M−
ε], with ε > 0, and M < N . Here, ε must be seen as a very
small parameter whose role is only to get a smooth transition
from R to [0,M]. As for the choice of M < N , it will be
explained in the next subsection.

First, define the following smooth step function ψa,b, for
a < b ∈ R:

ψa,b : x ∈ R 7→

0 if x < a

exp
(
− (b−x)2

x−a

)
if a ≤ x ≤ b

1 if b ≤ x.

This function is equal to 0 on (−∞, a], equal to 1 on [b,+∞),
and is smooth on R. Using this function, for ε > 0, we define

θε,M : θ ∈ R 7→

h−(θ), if θ < 0

h−(θ) (1− ψ0,ε(θ)) + θψ0,ε(θ),

if 0 ≤ θ ≤ ε

θ, if ε < θ < M − ε

θ (1− ψM−ε,M (θ)) + h+(θ)ψM−ε,M (θ),

if M − ε ≤ θ ≤M

h+(θ), if M < θ,

where h−(θ) = ε
3 exp

(
θ
ε

)
and h+(θ) =M − ε

3 exp
(
− θ−M

ε

)
.

We display a representation of this function for M = 10, ε =
0.5 in Figure 2. Here, θε,M is adapted from θ and has the
following properties:

• θε,M ∈ [0,M],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

The parameter θ

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

T
h

e
p

ar
am

et
er

fu
n

ct
io

n

The smoothed parameter θε
The true parameter θ

Figure 2. The smoothed parameter function θε,M compared with θ

• For θ ∈ [ε,M − ε], θε,M = θ,
• θε,M → 0 as θ → −∞,
• θε,M →M as θ → +∞.

We will therefore be able to sample from a binomial law
with parameters (M, θε,M/M). At any state x, the number of
servers to turn on π(x) follows a binomial law with parameters
(M, θε,M).

B. Smoothness

Since the mapping θ → θε,M → Pθε,M defined in the
previous subsection only constructs irreducible matrices, the
set of recurrent states of the Markov chain remains unchanged
as θ gets updated. This implies that the rank of Pθε,M is
constant for all θ ∈ R.

By construction, we also have for all θ ∈ R, θ 7→ Pθε,M ∈ C3

(actually, it is in Ck for all k > 0).
These two properties imply that the stationary measure is also

smooth, which we will prove by proving regularity properties
of the pseudoinverse matrices related ot the transition matrices
Pθε,M .

The Drazin inverse of a matrix is defined as follows.

Definition 1 ([11]). Let A be a square real-valued matrix.
The Drazin inverse exists and is the unique solution X to the
following equations:

AX = XA,

Ak = Ak+1X for some positive integer k,
X = X2A.

The smaller k for which these equations still hold is called the
Drazin index of A. We will denote the Drazin inverse of A by
A#.

We will be able to relate f to the Moore-Penrose pseudo
inverse of a matrix, also called generalized inverse, which will
be denoted by the superscript †. Regularity properties of this
pseudo inverse will be proven using the following lemmas.

Lemma 1 (Theorem 4.3, [17]). Let θ 7→ Aθ be a Fréchet
differentiable square matrix function with local constant rank
in R. We denote by DAθ the Fréchet-derivative at θ and we
write the following equation as a function from R to R|X |×|X|.
For any θ ∈ R:

DA†
θ = −A†

θDAθA
†
θ+A

†
θA

†⊤
θ DA⊤

θ P
⊥
Aθ

+Aθ
P⊥DA⊤

θ A
†⊤
θ A†

θ,
(10)

where P⊥
Aθ

:= I − AθA
†
θ is the projector on the orthogonal

complement of the space spanned by the columns of Aθ, and
Aθ
P⊥ := I −A†

θAθ is similarly defined for the space spanned
by the rows of Aθ.

In the previous lemma, the Fréchet derivatives can be directly
seen as matrix functions R → R|X |×|X| rather than linear
applications.

We can now state and prove the following regularity property
on the cost function.

Proposition 1. The function θ 7→ mθε,M (x) is C∞.

Proof. Let x ∈ X be any state. Consider a Markov reward
process with rewards r(x) = 1 and r(y) = 0 for y ̸= x, with
the same transitions Pθε,M . This Markov chain is unichain and
the gain at x is equal to mθ(x), the stationary measure at x.
It can be written with the Cesàro-limit:

mθ(x) = e⊤x P
∞
θε,Mex,

where P∞
θε,M

:= limT→∞
1
T

∑T
t=1 P

t
θε,M

is the limiting matrix
and ex is the vector equal to 1 at x and 0 everywhere else.
With [23, Theorem A.7], we relate the limiting matrix P∞

θ

to the Drazin inverse (I − Pθε,M)# of (I − Pθε,M). Letting I
denote the identity matrix:

P∞
θε,M = I − (I − Pθε,M)(I − Pθε,M)#.

Let us now call Aθ := I − Pθε,M , and denote by k the Drazin
index of Aθ, as defined in Definition 1. We use [11, Theorem
5] to relate the Drazin inverse to the generalized pseudoinverse
in the following way:

A#
θ = Ak

θ(A
2k+1
θ)†Ak

θ . (11)

In order to prove the regularity of f , we therefore need to
show that the function θ 7→ A†

θ is in C3 itself. To prove it,
recalling that Pθ and therefore Aθ is of constant rank over
R, we can use Lemma 1 to explicitly get the derivative of
θ 7→ Aθ, which itself is continuous, using the continuity of the
generalized inverse ([26, Theorem 5.2]), as the rank of Aθ is
constant. We can then use equation 10 to iterate the derivation
process and prove that all the derivatives of θ 7→ A†

θ exist and
are continuous. Using equation 11, we finally get that θ 7→ A#

θ

is in C∞, and therefore θ 7→ mθε,M (x) is C∞.

C. Truncation of the Parameter Domain and Penalty Function

We are now ready to construct the functions f from the
autoscaling costs c and C. Let M < N be any truncation of
the parameter space.

Set f1(θ) = EC(Xθε,M
∞). We can thus rewrite this function

as
f1(θ) =

∑
x∈X

C(x)mθε,M (x) (12)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

This function is defined on R and is C∞. In the following,
we assume that there exists M < N such that this smooth
function has a unique minimum inside (0,M) and is strongly
convex in (0,M). Such an interval is displayed in red in
Figure 3 (left).

The last step is to construct a penalty function to extend the
cost function unboundly outside [0,M]. Let

b(θ) := (1−ψ0,ε(θ))(θ−ε)2+ψM−ε,M (θ)(θ−M+ε)2. (13)

We can now construct the function f as follows: f(θ) :=
f1(θ) + b(θ).

• By construction of the smooth junction between f1 and b,
f is also C∞ over R so it satisfies Assumption (1.a). By
construction, the cost function f1 is C3 on the compact
[0,M]. This implies that f ′1 is Lipschitz over [0,M] and
bounded over this interval. Since the penalty is quadratic
outside [0,M], f ′ is also Lipschitz over R. (Assumption
(1.b)) The decomposition of f into f1 and b also implies
Assumption (1.c) Assumption (1.d), as f ′1 is bounded.

• As for Assumption 2, this is a direct consequence of the
fact that θε,M lives in the compact [0,M] and P t

θ as well
as mθ are continuous functions of θ.

• Finally, Assumptions 3 and 4 are true for f as soon
as one can find a small enough interval [0,M] where
f1 is strongly convex and has a unque minimum in the
interior of this interval. This is checked numerically in
the following section.

The final point is to notice that c and f coincide over
[ε,M − ε] and therefore have the same minimum θ∗ in this
interval.

D. Numerical Evaluation

By means of numerical simulations, we now evaluate the
convergence properties of Algorithm 2 when applied to the
proposed auto-scaling algorithm (Algorithm 1). Here, we use a
simplified form (compared with Section IV-A) for the scale-up
rule πθ(x) and we set π(x) to

min
{
(⌊θ⌋+ I{V <θ−⌊θ⌋} − x3 + x4)

+, N − x2 − x3 − 1
}

(14)

where V is an independent random variable uniformly dis-
tributed over [0,1]. Roughly speaking, since the number of
init0 servers (i.e., x3 − x4) is the number of servers that will
be available to use in the short future, we let this number be
θ − (x3 − x4). The randomization in V is used because the
number of servers to activate must by an integer but we allow
θ to be a real number because the optimal number of servers
to initialize may not be an integer in average. Finally, the min
and (·)+ := max{·, 0} operators simply ensure that boundary
conditions are satisfied.

Remark 3. If θ = 0, then no init0 servers exist, which implies
x4 = x3 at all times, and the Markov chain under investigation
(defined by (1)) boils down to the Markov chain investigated
in [21].

In our simulations, we consider the following parametriza-
tion:

1) For the parameters that define the underlying Markov
chain, we let N = 50, λ ∈ {0.15, 0.3} (arrival rate), µ = 1
(service rate), β = 0.1 (initialization rate) and γ = 0.01
(expiration rate). If a time unit is 10 milliseconds, these
values are realistic for serverless applications [21], [12].

2) For the parameters that define the cost function (2), we
let wrej = 103, w1 = w2 = 1, w3 = 5 and w4 = 100.
Note that w3 ≥ max{w1, w2} because initializing servers
perform a batch of operations (connecting to database,
loading libraries and data, etc.) and these are very
expensive from the point of view of power consumption.
Also, to make user-perceived performance and energy
consumption comparable, we choose w4 and wrej to be
significantly greater than w3.

3) For the parameters that are used by Algorithm 2, in
accordance with the assumptions in Theorems 1 and 2, we
choose γn = 10/n, δn = n−2/3, τ = 106, θ0 ∈ {1, 10},
K = 2 and T = 108.

Figure 3 (left) plots the cost function c(θ) (defined in (3)),
which plays the role of f(θ) in Section III. It admits a unique
minimum, θ∗, and it is strongly convex on a neighbourhood θ∗;
here, the red vertical line is used to mark the convexity region
postulated in Section IV-C. These properties have also been
tested numerically over a wide range of parameters, and this is
in agreement with the approach discussed in Section IV-C. For
the plots in the figure, θ∗ ∈ [5, 6], which means that initializing
6 or 7 servers is much better than initializing 1 server as in [21];
recall that θ is the number of extra server to initialize. From the
figure, we observe the potential gain in activating the optimal
surplus of servers amounts to 5-8%.

Figure 3 (right) plots the sequence θn produced by Al-
gorithm 2 from different initial conditions. All trajectories
converge to θ∗. Thus, the proposed algorithm improves with
respect to the existing scale-up rule of no activating extra
servers. Importantly, we notice that the trajectories correspond-
ing to λ = 0.15 converge much faster than the trajectories
corresponding to λ = 0.3. This quantifies the impact of the
mixing time of the underlying Markov chain, which in our
framework is captured by Assumption 2: the smaller the λ, the
smaller the mixing time and therefore the easier the sampling
close to stationarity.

E. Comparing with Fast θ-updates
In Algorithm 2, the reserve size parameter θ is updated

only after the system has been observed for a sufficiently long
period, ensuring that its dynamics approximate its stationary
behavior. This observation time, linked to the mixing time of
the underlying Markov chain, is controlled by the variable
τn. An alternative approach could involve updating θ on the
same timescale as the Markov chain, “without waiting for
stationarity”. In other words, θ is be updated after the system
undergoes a fixed number of state transitions, such as 102 or
103, since the last update. As discussed in the Introduction, this
stochastic-approximation approach has been already considered
in the literature, e.g., [3], though we stress that the existing
theoretical results do not apply to our case. Thus, we cannot
expect that this alternative approach makes θ converge to the
desired optimal point θ∗.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

0 5 6 10 15 20 25 30
26

28

30

32

34

36

38

40

42

44

C
o
s
t
fu

n
c
ti
o
n
 -

 f
(

)

*

*

=0.3

=0.15

0 5 10 15 20 25 30

n (# iterations on
n
 by Algorithm 2)

1

2

3

4

5

6

7

8

9

10

n

=0.3,
0
=1

=0.15,
0
=1

=0.3,
0
=10

=0.15,
0
=10

Figure 3. Plots of the cost function f(θ) (left) and of the sequences produced by Algorithm 2 (right). The red line corresponds to the truncation to the interval
[0,M] over which the function is convex.

The goal of this section is to evaluate this alternative
approach within the same simulation setting described in
Section IV-D and compare it with ours. Within the considered
auto-scaling framework, we demonstrate that our approach
provides improved performance.

In our simulations, we consider the following setup:

• Scenario 1: Identical parameter setting. Simulations are
performed in exactly the same setting that produced
Figure 3 (right) with the exception that θ is updated every
102 or 103 state transitions of the underlying Markov
chain.

• Scenario 2: Corrected γ weights. As in Scenario 1 but θ
is less sensitive to the gradient updates. Specifically,
the weights γn are multiplied by the number of state
transitions (102 or 103) and divided by τ = 106 (used
to generate Figure 3 (right)). In this manner, θ changes
slower than in Scenario 1 and its variations are of the
same order of the ones considered in the evaluation of
our algorithm.

For Scenario 1, the corresponding sequences of θ’s are
plotted in Figures 4 and 5.

Remark 4. Any point of the x-axis of Figure 4 has a
corresponding simulation time of the underlying Markov chains,
and the same holds true for the x-axis of Figure 3 (right). It
is important to remark that such points coincide on a 1:1
scale. In other words, the curves in these figures describe the
evolution of θ on the same time interval.

Let us comment on the plots in these figures:

• As expected, the plots in Figure 4 are not fully visible
because the fluctuations of θ are very sensitive to the

contribution of the gradient values. For this reason, we
reported the first 100 θ points in Figure 5.

• The curves in Figure 4 (left) indicate that θ tends to follow
trajectories that attempt to escape the feasible region from
above, which is constrained by N = 50 servers, implying
θ ≤ 50 necessarily. These trajectories exhibit oscillations
with maximum amplitude (N = 50), which is impractical
and clearly suboptimal.

• In contrast, for λ = 0.3, Figure 4 (right) shows that θ tends
to escape the feasible region from below. For λ = 0.15, θ
oscillates within the interval 4± 0.5, while the optimal θ
(between five and six, as shown in Figure 3) lies outside
this range. While waiting for 1000 state transitions slightly
improves results compared to 100 transitions, the outcomes
remain unsatisfactory.

For Scenario 2, the corresponding sequences of θ’s are plot-
ted in Figure 6, where again the x-axis maps in simulation time
1:1 with the the x-axis in Figures 3 (right) and 4. As expected,
the large oscillations encountered in Scenario 1 are smoothed
out by scaling γn. We observe that the resulting curves are
sensitive to the initial conditions and input parameters and do
not converge to a point: They tend to move away from the true
optimum θ∗, which is around 5 and 6 as shown in Figure 3
(left). Also, the black curves tend to behave as in Scenario 1
(in average).

In the considered auto-scaling context, the simulation results
above indicate that “the fast θ-update approach” does not work.

APPENDIX

In this appendix, we provide proofs for our main results,
i.e., Theorems 1 and 2. To do so, it is convenient to rewrite

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

0 2 4 6 8 10 12

n (# iterations on
n
 by Algorithm 2) 10 5

0

5

10

15

20

25

30

35

40

45

50

n

n
 updates every 100 state changes

=0.3,
0
=1

=0.15,
0
=1

=0.3,
0
=10

=0.15,
0
=10

0 2 4 6 8 10 12

n (# iterations on
n
 by Algorithm 2) 10 4

0

2

4

6

8

10

12

n

n
 updates every 1000 state changes

=0.3,
0
=1

=0.15,
0
=1

=0.3,
0
=10

=0.15,
0
=10

Figure 4. Scenario 1: Plots of the sequences produced by Algorithm 2 when the underlying Markov chain is simulated for τn =100 (left) and τn =1000
(right) steps. In simulation time, the x-axis corresponds exactly to the one in Figure 3.

0 20 40 60 80 100

n (# iterations on
n
 by Algorithm 2)

0

5

10

15

20

25

30

35

40

45

50

n

n
 updates every 100 state changes

=0.3,
0
=1

=0.15,
0
=1

=0.3,
0
=10

=0.15,
0
=10

0 20 40 60 80 100

n (# iterations on
n
 by Algorithm 2)

0

5

10

15

n

n
 updates every 1000 state changes

=0.3,
0
=1

=0.15,
0
=1

=0.3,
0
=10

=0.15,
0
=10

Figure 5. A zoom of the plots of Figure 4 obtained by truncation of the x-axis.

0 2 4 6 8 10

n (# iterations on
n
 by Algorithm 2) 10 5

0

2

4

6

8

10

12

14

16

18

20

n

n
 updates every 100 state changes

=0.3,
0

=1

=0.15,
0

=1

=0.3,
0

=10

=0.15,
0

=10

0 2 4 6 8 10

n (# iterations on
n
 by Algorithm 2) 10 4

1

2

3

4

5

6

7

8

9

10

n

n
 updates every 1000 state changes

=0.3,
0

=1

=0.15,
0

=1

=0.3,
0

=10

=0.15,
0

=10

Figure 6. Scenario 2: Plots of the sequences produced by Algorithm 2 when the underlying Markov chain is simulated for τn =100 (left) and τn =1000
(right) steps. In simulation time, the x-axis corresponds exactly to the one in Figure 3.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

the parameter update rule as follows

θn+1 = θn − γn (f
′(θn) + ∆diff,n +∆mart,n +∆mix,n) ,

(15)
where we define

∆mart,n :=
F (θn + δn, X

θn+δn
∞)− F (θn − δn, X

θn−δn
∞)

2δn

− f(θn + δn)− f(θn − δn)

2δn
,

∆diff,n :=
f(θn + δn)− f(θn − δn)

2δn
− f ′(θn),

∆mix,n :=
f̂n(θn + δn)− f̂n(θn − δn)

2δn

− F (θn + δn, X
θn+δn
∞)− F (θn − δn, X

θn−δn
∞)

2δn
.

The rewriting (15) will facilitate the control of some difference
terms.

We consider specific samples Xθn+δn
∞ and Xθn−δn

∞ from
the stationary distribution of the Markov chains with param-
eters θn + δn and θn − δn respectively, so that for i =

0, . . . ,K − 1, the couplings
(
Xθn+δn

Tn+iτn,Tn+(i+1)τn
, Xθn+δn

∞

)
and

(
Xθn−δn

Tn+(K+i)τn,Tn+(K+i+1)τn
, Xθn−δn

∞

)
are optimal, as

defined in [20, Remark 4.8]. More precisely, for i = 0 for
example, this means that Xθn+δn

Tn,Tn+τn
and Xθn+δn

∞ are different
with probability

∥∥P τn
θn+δn

(x, ·)−mθn+δn

∥∥
1
, with x denoting

the starting state for the Markov chain simulation between
time-steps Tn and Tn + τn; in the remainder, ∥ · ∥1 denotes
the L1 norm.

1) Proof of Theorem 1: Before delving into the proof, let
us first show a preliminary lemma.

Lemma 2. Asumming 1, the variance conditioned on θ is
finite:

sup
θ

Varθ(F (θ,X
θ
∞)) <∞.

Proof. Using Assumption 1.c, we can write:

Varθ(F (θ,X
θ
∞)) = E

[(
F (θ,Xθ

∞)− E
[
F (θ,Xθ

∞)
])2 | θ

]
≤ E

[(
G(θ,Xθ

∞)− E
[
G(θ,Xθ

∞)
])2 | θ

]
≤ 4G2

max.

The proof of Theorem 2 is divided in the following steps:
1) We introduce the continuous-time interpolation θ̄ of the

discrete process θ.
2) We show that θ̄ is an APT (asymptotic pseudotrajectory,

see below) for the flow induced by f ′, meaning that it
remains “close” to a trajectory with flow f ′.

3) We then show that θ̄ is a precompact APT, i.e., f(θ̄t)
remains bounded.

4) We deduce that θ̄ and therefore θ share the same equilib-
rium set as the trajectories induced by the flow f ′, which
we assumed to be a single point: the minimum of f .

Proof. We first remind the definition of an asymptotic pseudo-
trajectory (APT) in our setup.

Definition 2 (Asymptotic pseudotrajectory, [6]). Let the
continuous map

Φ : R+ × R → R
(t, θ) 7→ Φ(t, θ) = Φt(θ)

be a semiflow, so that Φ0 is the identity and Φt+s = Φt ◦ Φs.
A continuous function X is an asymptotic pseudotrajectory

for the semiflow Φ if for any T > 0:

lim
t→∞

sup
0≤h≤T

|X(t+ h)− Φh(X(t))| = 0.

Moreover, in R, the asymptotic pseudotrajectory X is said to
be precompact if its image is bounded.

Rather than dealing with the discrete trajectory (θn)n∈N,
we consider its piecewise linear interpolated counterpart in
continuous time, (θ̄t)t∈R+ . This is defined as follows{

tn =
∑n

i=1 γi,

θ̄tn+s = θn + s θn+1−θn
γn+1

for 0 ≤ s < γn+1.
(16)

Then, the goal is to use the following proposition from [6].

Proposition 2 (Proposition 4.1 in [6]). Assume that f ′ is
Lipschitz, and that with probability 1, for all T > 0:

lim
n→∞

sup
k∈En

{∣∣∣∣∣
k∑

i=n+1

γi(∆diff,i +∆mix,i +∆mart,i)

∣∣∣∣∣
}

= 0,

(17)
where En := {k | tn < tk ≤ tn + T} is the set of discrete-
time timesteps k such that the tk are within a timeframe T
of tn. Then the interpolated process (θ̄t)t∈R is an asymptotic
pseudotrajectory for the flow induced by f ′.

Let us first show Equation (17). We deal with each of error
term in (17) separately. For any T > 0 and any k ∈ En:∣∣∣∣∣

k∑
i=n+1

γi∆diff,i

∣∣∣∣∣ ≤ ∑
i∈En

γi |∆diff,i|

≤ C0

∑
i∈En

γiδ
2
i

≤ C0δ
2
n

∑
i∈En

γi ≤ C0Tδ
2
n −→

n→∞
0

where in the second inequality we have used the bound (27),
and in the third and last inequalities, we have used the definition
of En and that (δn)n is decreasing from the parametrization
properties (7)-(8).

Now, let us consider the second term. Let us recall that
Xθn+δn

∞ and Xθn−δn
∞ build optimal couplings. Using As-

sumption 2, these quantities are different with probability
at most C1ρ

τn = C1n
−α. Choosing α > 1, and using

a Borel-Cantelli lemma, we have that almost surely, for n
large enough: Xθn+δn

Tn,Tn+τn
= Xθn+δn

∞ . Proceeding similarly for
i = 0, . . . ,K − 1 and θn − δn, and using a union bound, we
obtain (18), i.e., ∆mix,n = 0 almost surely. Therefore, with
probability 1, ∣∣∣∣∣

k∑
i=n+1

γi∆mix,i

∣∣∣∣∣ −→
n→∞

0.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

P (∆mix,n = 0) ≥ P

(
K−1⋂
i=0

(
Xθn+δn

Tn+iτn,Tn+(i+1)τn
= Xθn+δn

∞ ∩Xθn−δn
Tn+(K+i)τn,Tn+(K+i+1)τn

= Xθn−δn
∞

))

= 1− P

(
K−1⋃
i=0

(
Xθn+δn

Tn+iτn,Tn+(i+1)τn
̸= Xθn+δn

∞ ∪Xθn−δn
Tn+(K+i)τn,Tn+(K+i+1)τn

̸= Xθn−δn
∞

))

≥ 1−
K−1∑
i=0

(
P
(
Xθn+δn

Tn+iτn,Tn+(i+1)τn
̸= Xθn+δn

∞

)
+ P

(
Xθn−δn

Tn+(K+i)τn,Tn+(K+i+1)τn
̸= Xθn−δn

∞

))
≥ 1 for n large enough, (18)

Finally, let us consider the last term. First, we need to show
that δ2nE

[
∆2

mart,n | θn
]
<∞, so that with the tower rule:

sup
n
δ2nE

[
∆2

mart,n

]
<∞. (19)

Let us calculate

E
[(
F (θn + δn, X

θn+δn
∞)− f(θn + δn)

)2 | θn
]

= Varθn+δn

(
F (Xθn+δn

∞)
)
,

so that, with the same reasoning for θn − δn, using that for
any a, b ∈ R, (a+ b)2 ≤ 2a2 + 2b2, we get

sup
n

4δ2nE
[
∆2

mart,n | θn
]
≤ 2 sup

n
δ2nVarθn+δn

(
F (Xθn+δn

∞)
)

+ 2 sup
n
δ2nVarθn−δn

(
F (Xθn−δn

∞)
)
<∞,

where in the final step we have used Lemma 2.
Using the parametrization property (7) and [32, Theorem

12.1] on the convergence of martingales in L2, as Mn :=∑n
i=1 γi∆mart,i defines a martingale M with∑

i

γ2i E
[
∆2

mart,i

]
≤ sup

n
δ2nE

[
∆2

mart,n | θn
]∑

i

γ2i δ
−2
i <∞,

then almost surely, Mn → M∞. Then, for any n ∈ N and
k ∈ En, with probability 1:∣∣∣∣∣

k∑
i=n+1

γi∆mart,i

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
i≥n

γi∆mart,i

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

i>supEn

γi∆mart,i

∣∣∣∣∣∣
−→
n→∞

0.

Overall, summing the ∆diff,i, ∆mix,i and ∆mart,i, we have
proved that (17) holds with probability 1. Now, we show that
supn |θn| <∞.

For n large enough, with probability 1,
|∆diff,n +∆mart,n +∆mix,n| < r/2, with r defined in
Assumption 1.d, so that if |θn| > L, then equation (15)
gives |θn+1| < |θn| − γn

r
2 . Otherwise, if |θn| < L, then

|f ′(θn)| ≤ supθ∈[−L,L] |f ′(θ)| (by Assumption 1.b) and with
equation (15) |θn+1| ≤ |θn|+γn(supθ∈[−L,L] |f ′(θ)|+r/2) ≤
L+ γ0(supθ∈[−L,L] |f ′(θ)|+ r/2), as (γn) is decreasing (by
the parametrization property (8)).

Therefore, with probability 1, (θn)n remains bounded and
we can apply [6][Proposition 4.1], so that θ̄ is an asymptotic
pseudotrajectory of the flow Φ induced by f ′. It is precompact
as f is continuous and {θn, n ∈ N} is bounded with probability
1.

We remark that the flow Φ satisfies dΦt(θ)
dt = −f ′(Φt(θ)).

Since

d

dt
[f(Φt(θ))] =

dΦt(θ)

dt
× f ′(Φt(θ)) = −f ′(Φt(θ))

2 < 0,

then f is a Lyapounov function of the flow Φ. Using [6,
Corollary 6.6] and the uniqueness Assumption 3, we get that
θ̄t

a.s.→ θ∗ as it is the only minimum, and thus θn
a.s.→ θ∗ as

desired.

2) Proof of Theorem 2: Our approach consists in decompos-
ing the term of interest in multiple terms and then in bounding
each term individually. In the decomposition, the main inno-
vation and difficulty will come from the non-stationary term.
More specifically, letting ξn := E

[
(θn − θ∗)

2
]
, we write

ξn+1 = ξn + 2E [(θn+1 − θn) (θn − θ∗)] + E
[
(θn+1 − θn)

2
]

≤ ξn

− 2γnE [f ′(θn) (θn − θ∗)] (20)
− 2γnE [∆diff,n (θn − θ∗)] (21)
− 2γnE [∆mart,n (θn − θ∗)] (22)
− 2γnE [∆mix,n (θn − θ∗)] (23)

+ E
[
(θn+1 − θn)

2
]
. (24)

In the remainder, we bound the five terms above following
these lines:

• To bound (20), we use Assumption 4 as in classical
gradient descent algorithms. With the strong convexity
from Assumption 4, we obtain

−2γnE [f ′(θn)(θn − θ∗)] ≤ −2γnκE
[
(θn − θ∗)2

]
≤ −2γnκξn. (25)

• To bound (21), using Assumption 1 and the Cauchy-
Schwarz inequality, we obtain

− 2anE [∆diff,n (θn − θ∗)]

≤ 2γnE
[
∆2

diff,n

]1/2 E [(θn − θ∗)
2
]1/2

≤ 2C0γnδ
2
nξ

1/2
n ,

where we used that ∆diff,n ≤ C0δ
2
n by assumption on

f and by its Euler discretization around any parameter.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

More precisely, we can write the Taylor expansion, for
ε = 1 or ε = −1, as

f(θn + εδn) = f(θn) + f ′(θn)εδn + f ′′(θε)
δ2n
2
, (26)

for some θε ∈ [θn − δn, θn + δn], so that:

∆diff,n ≤ δn
|f ′′(θ+1)− f ′′(θ−1)|

2
≤ δ2n sup

θ∈Θ
f (3)(θ).

(27)
• To bound (22), we notice that E [∆mart,n | θn] = 0.

Taking the expectation, we get −2γn×
E [∆mart,n (θn − θ∗)] = 0.

• To bound (23), using the ergodicity structure in Assump-
tion 2, the Assumption 1 and first with a Cauchy-Schwarz
inequality:

− 2γnE [∆mix,n(θn − θ∗)]

≤ 2γnE
[
∆2

mix,n

]1/2 E [(θn − θ∗)
2
]1/2

= 2γnE
[
(θn − θ∗)

2
]1/2

E
[
E
[
∆2

mix,n | θn
]]1/2

.

With i) Assumption 1.c on the instant cost function, ii)
using that (

∑K−1
i=0 ai)

2 ≤ K
∑K−1

i=0 a2i for any ai ∈ R,
which follows by a linear algebra argument, and iii) letting
in our case ai := G(θn + δn, XTn+iτn,Tn+(i+1)τn) −
G(θn + δn, X

θn+δn
∞), we obtain

E
[(
f̂n(θn + δn)− F (θn + δn, X

θn+δn
∞)

)2
| θn
]

=
1

K2
E

(K−1∑
i=0

ai

)2

| θn

 ≤ 1

K

K−1∑
i=0

E
[
a2i | θn

]
≤ G2

max

K

K−1∑
i=0

∥∥∥P τn
θn+δn

(x
(i,+)
θn+δn

, ·)−mθn+δn

∥∥∥
1
,

where x
(i,+)
θn+δn

denotes the initial state for the i−th
simulation of the Markov chain with parameter θn+ δn at
episode n. Applying the same argument, a similar bound
is obtained for the Markov chain with parameter θn − δn.
Now, using that (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R,
for the conditional expectation we obtain

4δ2nE
[
∆2

mix,n | θn
]

≤ 2E
[(
f̂n(θn + δn)− F (θn + δn, X

θn+δn
∞)

)2
+
(
f̂n(θn − δn)− F (θn − δn, X

θn−δn
∞)

)2
| θn
]

≤ 2G2
max

K

K−1∑
i=0

∥∥∥P τn
θn+δn

(x
(i,+)
θn+δn

, ·)−mθn+δn

∥∥∥
1

+
∥∥∥P τn

θn−δn
(x

(i,−)
θn−δn

, ·)−mθn−δn

∥∥∥
1

≤ 2G2
maxC1ρ

τn ,

where in the last inequality we have used ergodicity
(Assumption 2). We continue the computations of the
bound on (23):

−2γnE [∆mix,n(θn − θ∗)] ≤
√
2
γn
δn
ξ1/2n GmaxC

1/2
1 ρτn/2.

Choosing Tn := 2α logn
log 1/ρ , we finally obtain that

−2γnE [∆mix,n(θn − θ∗)] ≤
√
2
γn
δn
ξ1/2n GmaxC

1/2
1 n−α.

• To bound (24), we let

ai := G(θn + δn, XTn+iτn,Tn+(i+1)τn)

−G(θn − δn, XTn+(K+i)τn,Tn+(K+i+1)τn)

to obtain

E
[
(θn+1 − θn)

2
]

=
γ2n
4δ2n

E
[(
f̂n(θn + δn)− f̂n(θn − δn)

)2]

=
γ2n
4δ2n

E

(1

K

K−1∑
i=0

ai + b(θn + δn)− b(θn − δn)

)2

≤ γ2n
2δ2n

E

(1

K

K−1∑
i=0

ai

)2

+ (b(θn + δn)− b(θn − δn))
2

≤ γ2n

2Kδ2n
E

[
K−1∑
i=0

a2i

]
+
C2γ

2
n

2
E
[
(θn − θ∗)2

]
≤ 2γ2nG

2
max

δ2n
+
C2γ

2
n

2
ξn

where the second inequality follows by Assumption 1.c.
Finally, summing the previous terms, we obtain

ξn+1 ≤ (1− qn)ξn + unξ
1/2
n + vn,

where qn := γn

(
2κ− C2γn

2

)
, un = 2C0γnδ

2
n +

√
2GmaxC

1/2
1

γn

δn
n−α and vn = 2

G2
maxγ

2
n

δ2n
.

We can already choose α such that n−α

δn
≤ δ2n. In this case,

un ≤ Cuδ
2
nγn with Cu := 2C0 +

√
2GmaxC

1/2
1 . Now, let us

consider the following lemma from [30], which we state here
for convenience. This lemma is purely algebraic and will let
us identify the “correct” scaling for the input parameters of
Algorithm 2.

Lemma 3 ([30]). Let ξn be a positive sequence, An be a
sequence, and Bn, Cn be positive non-increasing sequences
such that

ξn+1 ≤ ξn(1−An) +AnBnξ
1/2
n + CnAn.

Then,

lim sup
n→∞

ξn
B2

n + Cn
≤ 1

2
.

Since γn < 4κ
C2

, then qn is positive and Lemma 3 gives the
scaling:

lim sup
n→∞

ξn
B2

n + Cn
≤ 1

2
,

with Bn =
2Cuδ

2
n

4κ−C2γn
and Cn =

4G2
maxγn

δ2n(4κ−C2γn)
. Therefore, to get

comparable scalings, we choose the parameters such that δ4n
and γnδ−2

n are of the same order. A valid parameter choice is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

obtained when γn = n−1, δn = n−1/6 and α > 1/2. Within
these parameters, we get

lim sup
n→∞

ξnn
2/3 ≤

(
2C0 +

√
2GmaxC

1/2
1

)2
8κ2

+
G2

max

2κ
. (28)

This concludes the proof.

REFERENCES

[1] Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. A
reinforcement learning approach to reduce serverless function cold start
frequency. In 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pages 797–803, 2021.

[2] Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. A Deep
Recurrent-Reinforcement Learning Method for Intelligent AutoScaling
of Serverless Functions . IEEE Transactions on Services Computing,
17(05):1899–1910, September 2024.

[3] Sebastian Allmeier and Nicolas Gast. Computing the bias of constant-step
stochastic approximation with markovian noise. 2024.

[4] Mohammad Sadegh Aslanpour, Adel N. Toosi, Muhammad Aamir
Cheema, Mohan Baruwal Chhetri, and Mohsen Amini Salehi. Load
balancing for heterogeneous serverless edge computing: A performance-
driven and empirical approach. Future Generation Computer Systems,
154:266–280, 2024.

[5] Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret
bounds for reinforcement learning. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural Information
Processing Systems, volume 21. Curran Associates, Inc., 2008.

[6] Michel Benaïm. Dynamics of stochastic approximation algorithms. 1999.
[7] Priscilla Benedetti, M. Femminella, G. Reali, and Kris Steenhaut.

Reinforcement learning applicability for resource-based auto-scaling
in serverless edge applications. In 2022 IEEE International Conference
on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops), pages 674–679, 2022.

[8] V.S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint.
Cambridge University Press, 2008.

[9] Siddharth Chandak, Vivek S. Borkar, and Parth Dodhia. Concentration
of contractive stochastic approximation and reinforcement learning.
Stochastic Systems, 12(4):411–430, 2022.

[10] Behzad Chitsaz, Ahmad Khonsari, Masoumeh Moradian, Aresh Dadlani,
and Mohammad Sadegh Talebi. Scaling power management in cloud data
centers: A multi-level continuous-time mdp approach. IEEE Transactions
on Services Computing, pages 1–12, 2024.

[11] Randall E. Cline. Inverses of rank invariant powers of a matrix. SIAM
Journal on Numerical Analysis, 5(1):182–197, 1968.

[12] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM,
56(2):74–80, February 2013.

[13] Javad Dogani and Farshad Khunjush. Proactive auto-scaling technique
for web applications in container-based edge computing using federated
learning model. Journal of Parallel and Distributed Computing,
187:104837, 2024.

[14] John C. Duchi, Alekh Agarwal, Mikael Johansson, and Michael I. Jordan.
Ergodic mirror descent. SIAM Journal on Optimization, 22(4):1549–1578,
2012.

[15] Anshul Gandhi, Sherwin Doroudi, Mor Harchol-Balter, and Alan
Scheller-Wolf. Exact analysis of the m/m/k/setup class of markov
chains via recursive renewal reward. In Proceedings of the ACM
SIGMETRICS/International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’13, page 153–166, New York, NY,
USA, 2013. Association for Computing Machinery.

[16] Diego Goldsztajn, Andres Ferragut, Fernando Paganini, and Matthieu
Jonckheere. Controlling the number of active instances in a cloud
environment. SIGMETRICS Perform. Eval. Rev., 45(3):15–20, March
2018.

[17] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and
nonlinear least squares problems whose variables separate. SIAM Journal
on Numerical Analysis, 10(2):413–432, 1973.

[18] Bjorn Johansson, Maben Rabi, and Mikael Johansson. A simple peer-
to-peer algorithm for distributed optimization in sensor networks. In
2007 46th IEEE Conference on Decision and Control, pages 4705–4710,
2007.

[19] Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized
incremental subgradient method for distributed optimization in networked
systems. SIAM Journal on Optimization, 20(3):1157–1170, 2010.

[20] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains
and mixing times. American Mathematical Society, 2008.

[21] Nima Mahmoudi and Hamzeh Khazaei. Performance modeling of
serverless computing platforms. IEEE Transactions on Cloud Computing,
10(4):2834–2847, 2022.

[22] G. Ch. Pflug. On-line optimization of simulated markovian processes.
Mathematics of Operations Research, 15(3):381–395, 1990.

[23] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Statistics. Wiley,
1 edition, April 1994.

[24] S. Sundhar Ram, A. Nedić, and V. V. Veeravalli. Incremental stochastic
subgradient algorithms for convex optimization. SIAM Journal on
Optimization, 20(2):691–717, 2009.

[25] Miklós Rásonyi and Kinga Tikosi. Convergence of the kiefer–wolfowitz
algorithm in the presence of discontinuities. Advances in Applied
Probability, 55(2):382–406, 2023.

[26] G. W. Stewart. On the continuity of the generalized inverse. SIAM
Journal on Applied Mathematics, 17(1):33–45, 1969.

[27] Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient
descent. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, page 9918–9927, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[28] Thomas Tournaire, Hind Castel-Taleb, and Emmanuel Hyon. Efficient
computation of optimal thresholds in cloud auto-scaling systems. ACM
Trans. Model. Perform. Eval. Comput. Syst., 8(4), jul 2023.

[29] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann,
and Simon Eismann. A spec rg cloud group’s vision on the performance
challenges of faas cloud architectures. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering, ICPE
’18, page 21–24, New York, NY, USA, 2018. ACM.

[30] Walton N. Zero-order stochastic optimization: Kiefer-
wolfowitz. https://appliedprobability.blog/2022/10/28/
zero-order-stochastic-optimization-keifer-wolfowitz/, 2022.

[31] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’18, page 133–145, USA, 2018. USENIX
Association.

[32] David Williams. Probability with Martingales. Cambridge University
Press, 1991.

Jonatha Anselmi is a tenured researcher at the French National Institute for
Research in Digital Science and Technology (Inria), since 2014. Prior to this,
he was a full-time researcher at the Basque Center for Applied Mathematics
and a postdoctoral researcher at Inria. He received his PhD in computer
engineering at Politecnico di Milano (Italy) in 2009. At the intersection of
applied mathematics, computer science and engineering, his research interests
focus on decision making under uncertainty, with particular emphasis on
the development of highly-scalable algorithms that minimize congestion and
operational costs of large-scale distributed systems.

Bruno Gaujal is an Inria researcher. Till Dec. 2015, he has been the head of
the large-scale computing team in Inria Grenoble-Alpes. He has held several
positions in AT&T Bell Labs, Loria and École Normale Supérieure of Lyon. He
obtained his PhD from University of Nice in 1994. He is a founding partner of
a start-up company, RTaW, since 2007. His main interests are in performance
evaluation, optimization and control of large discrete event dynamic systems
with applications to telecommunication and large computing infrastructures.

Louis-Sebastien Rebuffi defended his PhD thesis in 2023 at Université
Grenoble Alpes under the supervision of Bruno Gaujal and Jonatha Anselmi.
His research interests focus on reinforcement learning algorithms applied to
controlled queuing systems, viewing them as Markov decision processes.

https://appliedprobability.blog/2022/10/28/zero-order-stochastic-optimization-keifer-wolfowitz/
https://appliedprobability.blog/2022/10/28/zero-order-stochastic-optimization-keifer-wolfowitz/

	Introduction
	Auto-scaling in Serverless Computing
	Addressed Problem
	Stochastic Optimization Framework
	Novelty of our Approach: Non-Stationary Samples
	Summary of our Contribution
	Organization

	Framework
	System Description and Auto-scaling Algorithm
	Markov Model
	Stochastic Optimization Problem

	A Non-stationary Kiefer–Wolfowitz Algorithm
	Description of the Algorithm
	Convergence Results

	Application to Auto-scaling
	Truncation/Extension: Construction of the Scale-up Rule
	Smoothness
	Truncation of the Parameter Domain and Penalty Function
	Numerical Evaluation
	Comparing with Fast -updates

	Appendix
	Proof of Theorem 1
	Proof of Theorem 2

	References
	Biographies
	Jonatha Anselmi
	Bruno Gaujal
	Louis-Sebastien Rebuffi

