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CARLESON MEASURES FOR HARDY-SOBOLEV SPACES IN THE
SIEGEL UPPER HALF-SPACE

N. CHALMOUKIS AND G. LAMBERTI

Abstract. We give a capacitary type characterization of Carleson measures for a class of
Hardy-Sobolev spaces (also known as weighted Dirichlet spaces) on the Siegel upper half-
space, introduced by Arcozzi et al. in [7]. This answers in part a question raised by the same
authors.

1. Introduction

It is a basic principle of the so-called “complex method” that many properties of a suffi-
ciently regular function defined on R correspond to properties of its Poisson extension, and
its conjugate harmonic function, on the upper half plane C+ := {ζ = x + iy ∈ C : y > 0}.
Therefore, certain problems of real analysis can be translated in problems concerning holo-
morphic functions in C+ and vice versa. In the realm of several variables this correspondence
takes several forms. A particularly fruitful generalization of this idea in several variables was
provided by Stein [21]. To introduce this point of view let us define the Siegel domain

U :=
{
ζ ∈ Cn+1 : Im ζn+1 >

1

4

n∑
j=1

|ζj|2
}
.

The Siegel domain is a biholomorphic copy of the unit ball Bn+1 in Cn+1, via the Caley map
C : Bn+1 → U defined by

C(ζ) =
( 2ζ1
1− ζn+1

, . . . ,
2ζn

1− ζn+1

, i
1 + ζn+1

1− ζn+1

)
, ζ = (ζ1, ζ2, . . . , ζn+1) ∈ Bn+1.

Thus, the topological boundary of U ,

∂U =
{
ζ ∈ Cn+1 : Im ζn+1 =

1

4

n∑
j=1

|ζj|2
}
,

corresponds, via the Caley map, to the boundary ∂Bn+1 of the unit ball with the point
(0, . . . , 0, 1) removed. As we shall shortly see, ∂U can be identified in a natural way with the
Heisenberg group Hn, that is the differentiable manifold Cn×R equipped with the group law

[z, t] · [w, s] =
[
z + w, t+ s− 1

2
Im(z · w)

]
, [z, t], [w, s] ∈ Hn.

The above structure renders Hn a non-abelian, nilpotent Lie group of step two with invariant
Haar measure the (2n+1)-dimensional Lebesgue measure. The investigation of the interplay
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between holomorphic functions in U and the function theory in Hn constitutes part of a
program which recently has made significant progress, and of which in the sequel we shall
only mention a fraction.

In [17] Ogdan and Vági proved a Paley-Wiener type representation for the holomorphic
Hardy space in a class of domains including the Siegel domain U . The Hardy space H2(U)
is defined as the space of functions F , holomorphic in U , such that

∥F∥2H2 := sup
r>0

∫
∂U

|F (ζ + ri)|2dH2n+1(ζ) < +∞, (1.1)

where dHk denotes the real k-dimensional Hausdorff measure and i = (0, . . . , 0, i).
More recently, diverse aspects of spaces of holomorphic functions in the Siegel domain and

its generalizations have been studied by Calzi and Peloso, including Carleson measures [11]
and biholomorphic invariant spaces [8, 12] (see also [9, 10]). In [7] the authors introduced a
class of Hardy-Sobolev spaces in the Siegel domain and proved Paley-Wiener type representa-
tion theorems, while in [6] a von Neumann type inequality for unbounded tuples of operators
was proved using the Paley-Wiener theorems developed in [7]. In this work we are interested
in a class of holomorphic Hilbert spaces introduced in [7, Definition p. 1961]. We recall here
the basic definitions. Let ρ : Cn+1 → R be the defining function of the Siegel domain;

ρ(ζ) := Im(ζn+1)−
1

4
|ζ ′|2, ζ = (ζ ′, ζn+1) ∈ Cn × C.

We denote by Hol(U) the Fréchet space of holomorphic function in the Siegel domain and
Hol(U) the space of holomorphic functions in an open neighborhood of U . Following [7], we
shall say that a function F ∈ Hol(U) vanishes at infinity if for all R > 0

lim
Im(ζn+1)→∞

sup
|ζ′|≤R

|F (ζ ′, ζn+1)| = 0.

Definition 1.1 (Hardy-Sobolev spaces). Let 0 ≤ α < n+1
2

and let m be an integer such that
m > α. We define 1 the Hardy-Sobolev space H2

α as the space of functions F ∈ Hol(U) which
vanish at infinity and∫

U
|ρm(ζ)∂m

ζn+1
F (ζ)|2ρ−(2α+1)(ζ)dH2n+2(ζ) < +∞. (1.2)

It turns out that a function F ∈ Hol(U) satisfies (1.2) for some natural m > α if and only
if it satisfies it for every natural m > α, which justifies the notation H2

α for the space of
such functions. In fact, much more is true. In [7, Theorem 2] the authors proved that for
functions in the Hardy-Sobolev space H2

α the quantity

∥F∥2H2
α
:= 4−mΓ(2m− 2α)

∫
U
|ρm(ζ)∂m

ζn+1
F (ζ)|2ρ−(2α+1)(ζ)dH2n+2(ζ), (1.3)

does not depend on m ∈ N as long as m > α and it is a norm on H2
α. This norm renders

the space a Hilbert space with inner product which we denote by ⟨·, ·⟩H2
α
. In fact, for α = 0,

this is exactly the Hardy space H2(U) defined in (1.1). Furthermore, the spaces H2
α are

reproducing kernel Hilbert spaces with reproducing kernel given by

1We choose to work with a different parametrization of the spaces H2
α with respect to the one introduced

in the original work of Arcozzi et al. The relation between the two is α = −ν+1
2 .
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Kα(ω, ζ) = Kζ
α(ω) :=

Γ(n+ 1− 2α)

(4π)n+1
(ωn+1 − ζn+1

2i
− 1

4
ω′ · ζ ′

)n+1−2α
, (ζ ′, ζn+1), (ω

′, ωn+1) ∈ Cn×C.

In the same work Arcozzi et al. raised the question of characterizing Carleson measures for
the class of spaces H2

α. Let us first recall the definition of Carleson measures in our setting.

Definition 1.2 (Carleson measure). A positive Radon measure µ on U is a Carleson measure
for H2

α if there exists a constant C > 0, depending only on µ, such that∫
U
|f(ζ)|2dµ(ζ) ≤ C∥f∥2H2

α
, ∀f ∈ H2

α. (1.4)

For the family of weighted Bergman spaces in U [7, Definition p. 1961], a characterization
of their Carleson measures was obtained, in a much more general setting, in [11]. In [16]
Hörmander characterized Carleson measures for the Hardy space defined on bounded pseu-
doconvex domains. We should also mention the characterization of Carleson measures for
Bergman spaces in the unit ball obtained in [13, 14] and the more recent works [1, 2] which
extends the previous results to some classes of pseudoconvex domains.

The study of such measures is relevant in many areas of complex and harmonic analysis.
For example, Carleson measures have a central role in the characterization of universal in-
terpolating sequences for reproducing kernel Hilbert spaces of holomorphic functions (see [4]
and [19] for more details). Furthermore, they are linked to the multipliers of reproducing
kernel Hilbert spaces [20].

In this work we are interested in finding a characterization of Carleson measures for the
spaces H2

α when α ∈ (n
2
, n+1

2
). Before discussing our results in more depth, we should mention

that analogous results have been obtained first by Stegenga ([20]) for the Dirichlet space in
the unit disc and then by Ahern and Cohn ([5]) in the unit ball of Cn. In the aforementioned
work the authors characterized exceptional sets and Carleson measures for Hardy-Sobolev
spaces defined in the unit ball of Cn, i.e. spaces of holomorphic functions f such that the
fractional derivative of f , up to a certain order, belongs to the Hardy space of the ball. With
this aim they developed a potential theory on ∂Bn+1. In our setting, in a similar manner, we
exploit the Riesz potential theory in the Heisenberg group, in order to characterize Carleson
measures for the spaces H2

α. It is worth pointing out that since Riesz potential theory on the
Heisenberg group is quite well understood, our approach exhibits less technical difficulties
and it offers the advantage of providing a link between the Hardy-Sobolev spaces H2

α and the
potential theory associated to the Kohn Laplacian of the Heisenberg group.

Let us now discuss in some detail the objects that we have introduced. We start by defining
an action of Hn on the boundary of the Siegel domain. To an element [z, t] ∈ Hn, we associate
the affine self-mapping of U

L[z,t] : (ζ
′, ζn+1) 7→

(
ζ ′ + z, ζn+1 + t+

i

2
ζ ′ · z + i

4
|z|2

)
, (ζ ′, ζn+1) ∈ U .

As it can be readily verified, this is a faithful and simply transitive Lie group action on ∂U .
Furthermore, for every ζ ∈ U and [z, t] ∈ Hn we have that ρ(ζ) = ρ(L[z,t](ζ)). This allows us
to identify the Heisenberg group with ∂U via its action on the origin.

We will use the following parametrization of U by means of a foliation of copies of the
boundary. We set U := Hn × (0,+∞). Given ζ = (ζ ′, ζn+1) ∈ U , we define Ψ(ζ ′, ζn+1) :=
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[z, t, h] ∈ U by {
z = ζ ′

t = Re(ζn+1)
h = Im(ζn+1)− 1

4
|ζ ′|2.

(1.5)

Then Ψ : U → U is a C∞-diffeomorphism and Ψ−1 is given by

Ψ−1[z, t, h] =
(
z, t+

i

4
|z|2 + ih) =: (ζ ′, ζn+1). (1.6)

We consider the following function

d([z, t, h]) =
( 1

16
(|z|2 + h)2 + t2

) 1
4 , [z, t, h] ∈ U,

and we let
d([z, t, h], [w, s, k]) := d([[z, t] · [w, s]−1, 4(h+ k)]).

Restricted on Hn this is exactly the Folland-Kaplan gauge of the Heisenberg group. The
associated distance function is given by

d([z, t], [w, s]) := d([z, t] · [w, s]−1), [z, t], [w, s] ∈ Hn.

It is worth mentioning that the topology induced by the metric d on Hn is equivalent to
the Euclidean metric of Cn×R. We write B([z, t], r) for the open ball centered at [z, t] ∈ Hn

and radius r > 0, with respect to the metric d. We have that, for some constant cn > 0,

H2n+1(B([z, t], r)) = cnr
2n+2, (1.7)

as can be found for example in [21, Chapter XII, Section 2.5.2].
Finally , if F is a function defined on U and f a function defined on U, we set pF := F ◦Ψ−1

and qf := f ◦Ψ. Notice that, since | det JΨ| = 1, we have∫
U
F (ζ)dH2n+2(ζ) =

∫ ∞

0

∫
Hn

pF [z, t, h]dH2n+1[z, t]dh.

In the next definition we denote by capα the α - Riesz capacity of a Borel subset Hn. A
discussion of the potential theory on the Heisenberg group will be given in Section 2.2

Definition 1.3 (Subcapacitary measures). Let E be a Borel subset of Hn, we define the tent
based on E as

T (E) := Ψ−1
{
[z, t, h] ∈ U : B([z, t], h1/2) ⊆ E

}
.

Let now µ be a positive Radon measure on U . We say that µ is α-subcapacitary, α > 0, if
there exists a constant C > 0 such that, for all disjoint collection of balls B(xi, ri), i = 1, . . . , d
in Hn, the following inequality holds true

d∑
i=1

µ(T (B(xi, ri))) ≤ C capα(
d⋃

i=1

B
(
xi, ri)

)
. (1.8)

It should be mentioned that the regularity properties of capα (see [23]), immediately imply
that the subcapacitary condition implies that µ(T (E)) ≤ C capα(E) for all Borel sets E ⊆ Hn.

We can now formulate our main result.

Theorem 1.4. Let µ be a positive Radon measure on U and n
2
< α < n+1

2
. Then µ is a

Carleson measure for H2
α, if and only if it is α-subcapacitary.
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This provides a fairly concrete characterization of Carleson measures, compatible with the
one of Ahern and Cohn ([5]) for the unit ball.

2. Preliminaries

2.1. Elements of Fourier analysis on the Heisenberg group. In this section we shall
introduce the absolutely necessary elements of Fourier analysis in the Heisenberg group. It
is a tool that, although not indispensable for our purposes, will simplify some calculations
later. For a more detailed exposition we refer the reader to [22].

Let λ > 0 and consider the Fock space Fλ

Fλ :=
{
F ∈ Hol(Cn) :

( |λ|
2π

)n
∫
Cn

|F (z)|2e−
λ
2
|z|2dH2n(z) < +∞

}
,

while for λ < 0 set Fλ := F−λ. The Bargman representation of the Heisenberg group is then
defined as follows. If [z, t] ∈ Hn and λ > 0 we define the unitary operator σλ[z, t] on Fλ as a
weighted shift operator

σλ[z, t]F (w) := eiλt−
λ
2
w·z−λ

4
|z|2F (z + w), w ∈ Cn

and σ−λ[z, t] := σλ[z,−t]. For a function f ∈ L1(Hn), we define the Fourier transform of f
as the operator σλ(f) on Fλ, defined by

σλ(f)F (w) =

∫
Hn

f [z, t]σλ[z, t]F (w)dH2n+1[z, t].

We denote by tr the trace norm of a trace class operator on a Hilbert space.

Theorem 2.1 (Plancherel’s Theorem for Hn). Let f, g ∈ L2(Hn), then the operators σλ(f), σλ(g)
are Hilbert-Schmidt operators for a.e. λ ∈ R and∫

Hn

f [z, t]g[z, t]dH2n+1[z, t] =
1

(2π)n+1

∫ ∞

−∞
tr(σλ(f)σλ(g)

∗)|λ|ndλ. (2.1)

Finally we need the following formula for the Fourier transform of the kernel vectors,
obtained in [7]. Write ζ, ω ∈ U using the U-coordinates [z, t, h], [w, s, k], and let 0 < α < n+1

2
.

Consider the function f[z,t,h][w, s] := xKα([w, s, 0], [z, t, h]). It holds that [7, p. 1978] for every
λ > 0, σλ(f[z,t,h]) = 0 and for λ < 0

σλ(f[z,t,h]) = 2−2αehλ|λ|−2αP0σλ[z, t], (2.2)

where P0 : Fλ → Fλ is the orthogonal projection on the constant functions. Furthermore,
one can show (see [7, p. 1978]) that

tr(P0σλ[z, t]P0σλ[w, s]
∗) = e−|λ|( 1

4
|w−z|2−i(s−t+ 1

2
Im(w·z)), [z, t], [w, s] ∈ Hn. (2.3)

2.2. Potential theory. In this section we shall briefly recall some aspects of the potential
theory in the Heisenberg group associated to Riesz potentials. One can consult [3] for a
general potential theory of which the one we present is an instance.

For α > 0, we define the Riesz kernel of order α as the function

Iα(x, y) :=
Γ(n+ 1− α)

2α(2π)n+1d(x, y)2n+2−2α
, x ∈ Hn.
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Notice that, for α = 1, this is a scalar multiple of the fundamental solution of the subelliptic
Laplacian in the Heisenberg group (see [15]). Given a positive Radon measure on Hn, we
define its α-Riesz potential to be the convolution with the Riesz kernel Iα, that is

Iα(µ)(x) :=

∫
Hn

Iα(x, y)dµ(y),

which can be considered as an everywhere defined function taking values in [0,∞]. Let now
A ⊆ Hn, we define its (outer) capacity to be the quantity

capα(A) := inf{∥f∥2L2(Hn)
: f ≥ 0, f ∈ L2(Hn), Iα(f) ≥ 1 on A}.

Restricted to Borel sets, capα is actually inner and outer regular [3, Proposition 2.3.12]. A
particularly useful application of the celebrated minimax theorem of von Neumann, allows
us to express the capacity of compact sets in a “dual” sense [3, Corollary 2.5.2].

Theorem 2.2. Let A ⊆ Hn be a compact set and M+(A) the collection of positive finite
Borel measures on A. Then,

capα(A) = sup{µ(A) : µ ∈ M+(A), Iα(Iα(µ))(x) ≤ 1 on suppµ}.

We recall the following Theorem ([3, Theorem 2.3.10, 2.5.3]).

Theorem 2.3. Let A ⊆ Hn be compact. Then there is a finite positive Borel measure µA on
A, such that Iα(Iα(µA))(x) ≤ 1 for all x ∈ suppµ, Iα(Iα(µA))(x) ≥ 1 for H2n+1- a.e. x ∈ A.
Furthermore,

µA(A) =

∫
Hn

(Iα(Iα(µ
A))2dH2n+1 = capα(A).

The results concerning potential theory that we have discussed up to this point apply in
very general situations. The next theorem of Vodopyanov [23, Theorem 2] rests on more
intrinsic properties of the Riesz potentials.

Theorem 2.4 (Strong capacitary inequality). There exists a positive constant C depending
only on α and n such that for every positive function f ∈ L2(Hn) we have∫ ∞

0

capα

(
{[z, t] ∈ Hn : Iα(f)[z, t] > λ}

)
λ dλ ≤ C ∥f∥2L2(Hn)

.

In our setting, the connection between Riesz potentials in the Heisenberg group and the
Hardy-Sobolev spaces H2

α comes from the fact that, as a straightforward computation shows,

|yKα
2
([z, t], [w, s])| = Iα([z, t], [w, s]), [z, t], [w, s] ∈ Hn. (2.4)

2.3. Other preliminaries. Finally we recall some basic objects and notions from multivari-
able complex theory. The Poisson kernel of the Siegel domain is the positive kernel defined
as follows

P (ζ, ω) :=

(
Im(ζn+1)− 1

4
|ζ ′|2

)n+1∣∣∣ ζn+1−ωn+1

2i
− 1

4
ζ ′ · ω′

∣∣∣2(n+1)
, ζ ∈ U , ω ∈ ∂U .

For a function f defined on ∂U such that∫
∂U

|f(ζ)|
1 + qd(ζ)4(n+1)

dH2n+1(ζ) < +∞, (2.5)
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we can define its Poisson extension by

P [f ](ζ) :=

∫
∂U

P (ζ, ω)f(ω)dH2n+1(ω).

Now we recall the definition of a admissible region and the admissible maximal function.
This will be used later on the proof of the main theorem. Let ω = Ψ−1[w, s] ∈ ∂U and γ > 1.
The admissible region centered at ω of aperture γ > 0 is defined as

Γγ(ω) : =
{
ζ ∈ U :

∣∣∣∣ζn+1 − ωn+1

2i
− 1

4
ζ ′ · ω′

∣∣∣∣ < γ
(
Im(ζn+1)−

1

4
|ζ ′|2

)}
= Ψ−1

{
[z, t, h] ∈ U : d([z, t, h], [w, s]) <

√
2γh

}
.

In a natural way one defines also the admissible maximal function. Let F be an holomorphic
function in U . The admissible maximal function is

MγF (ω) := sup
{
|F (ζ)| : ζ ∈ Γγ(ω)

}
.

Finally, let f be locally integrable function Hn, we define the Hardy-Littlewood maximal
function as

Mf([z, t]) := sup
r>0

1

r2n+2

∫
B([z,t],r)

|f [w, s]|dH2n+1[w, s].

The next Lemma is a well known result about maximal functions, see for instance [21,
Chapter XIII, Section 7.11].

Lemma 2.5. For every γ > 1 there exists C > 0, depending only on γ, such that

MγP [ qf ] ≤ C}Mf,

for every positive measurable function f on Hn.

2.4. Notation. With the letter C we will denote a constant which might change from ap-
pearance to appearance and it depends only on the parameters n, α, γ. If f, g are positive
expressions we write f ≲ g if there exists a constant C > 0 as before, such that f ≤ Cg.
Furthermore we will write f ≃ g instead of f ≲ g and g ≲ f .

3. Proof of the main theorem

We will first prove that the subcapacitary condition is sufficient in order to have the Car-
leson embedding. We have divided the proof in a sequence of lemmas. The basic idea is that
using the fractional differentiation operator that we construct in Lemma 3.1, we can “embed”
the Hardy-Sobolev space, via the Poisson extension, into the space of Riesz potentials on
the Heisenberg group (Lemma 3.2). The remaining steps, involving the admissible maximal
function and Vodopyanov’s strong capacitary inequality, are quite standard.

Lemma 3.1. Let 0 < α < n+1
2

. Then there exists an isometry Rα : H2
α → H2 such that for

every ζ ∈ U we have
RαKζ

α = 2αKζ
α
2
. (3.1)

Proof. We claim that it is sufficient to prove that for every α ∈ (0, n+1
2
), it holds that

Kζ
α
2
∈ H2(U), and also

⟨Kζ
α
2
, Kω

α
2
⟩H2 = 2−2αKα(ω, ζ). (3.2)
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If this is the case we initially define Rα on finite linear combinations of kernel vectors via
(3.1). Then for c1, . . . cJ ∈ C, ζ1, . . . ζJ ∈ U we have

∥∥Rα(
J∑

j=1

cjK
ζj
α )

∥∥2

H2 = 22α
J∑

j,k=1

cjck⟨K
ζj
α
2
, Kζk

α
2
⟩H2

=
J∑

j,k=1

cjckKα(ζk, ζj)

=
∥∥ J∑

j=1

cjK
ζj
α

∥∥2

H2
α
.

Hence Rα extends in a unique way to a Hilbert space isometry.
Let now prove the initial claim. For ζ, ω ∈ U , with U-coordinates [z, t, h], [w, s, k] and

C > 0, a constant depending only on n, α, we have

∥Kζ
α
2
∥2H2 = C sup

h>0

∫
Hn

dH2n+1[w, s](
(k + h+ 1

4
|w − z|2)2 + (s− t+ 1

2
Im(w · z)2

)n+1−α

= C

∫
Hn

dH2n+1[w, s](
(k + 1

4
|w − z|2)2 + (s− t+ 1

2
Im(w · z)2

)n+1−α

= C

∫
Hn

dH2n+1[w, s](
(k + 1

4
|w|2)2 + s2

)n+1−α < +∞.

The last quantity is finite for every k > 0 because α < n+1
2

.
Next, let f[z,t,h] as defined in (2.2), and apply successively Plancherel’s theorem and equa-

tions (2.2) and (2.3) to obtain

⟨Kζ
α
2
, Kω

α
2
⟩H2 =

1

(2π)n+1

∫ 0

−∞
tr
(
σλ(f[z,t,h])σλ(f[w,s,k])

∗)|λ|ndλ
=

2−2α

(2π)n+1

∫ 0

−∞
e−|λ|(h+k) tr

(
P0σλ[z, t]P0σλ[w, s]

∗
)
|λ|n−2αdλ

=
2−2α

(2π)n+1

∫ ∞

0

e−λ
(
h+k+ 1

4
|w−z|2−i

(
s−t+ 1

2
Im(w·z)

))
λn−2αdλ

=
Γ(n+ 1− 2α)

22α(2π)n+1

(
h+ k +

1

4
|w − z|2 − i

(
s− t+

1

2
Im(w · z)

)2α−(n+1)

= 2−2αKα(ω, ζ).

This concludes the proof. □

Lemma 3.2. Let 0 < α < n+1
2

. Then, for every F ∈ H2
α ∩ Hol(U), there exists f ∈

L2(Hn), f ≥ 0, satisfying ∥F∥H2
α
= ∥f∥L2(Hn) and also

|F (ζ)| ≤ 2αP [ ~Iα(f)](ζ), ∀ζ ∈ U .

Proof. Let ζ ∈ U ,Ψ(ζ) = [z, t, h]. We use the properties of the operator Rα defined in Lemma
3.1 and the fact that functions in H2(U) have boundary values almost everywhere [17], to
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obtain

F (ζ) = ⟨F,Kζ
α⟩H2

α
= ⟨RαF,RαKζ

α⟩H2 = 2α
∫
∂U

RαF (ω)Kα
2
(ζ, ω)dH2n+1(ω). (3.3)

Since Kω
α
2

is a pluriharmonic function, then we can write it as the Poisson kernel of its
boundary values (see [18]). This gives

Kα
2
(ζ, ω) =

∫
∂U

P (ζ, η)Kα
2
(η, ω)dH2n+1(η).

Hence substituting this Poisson representation in the expression (3.3) and setting f := |zRαF |
we obtain

|F (ζ)| ≤ 2α
∫
∂U

P (ζ, η)

∫
∂U

|RαF (ω)Kα
2
(η, ω)|dH2n+1(ω)dH2n+1(η)

= 2α
∫
∂U

P (ζ, η)

∫
Hn

|zRαF [w, s]||yKα
2
(Ψ(η), [w, s])|dH2n+1[w, s]dH2n+1(η)

= 2α
∫
∂U

P (ζ, η)

∫
Hn

f [w, s]Iα(Ψ(η), [w, s])dH2n+1[w, s]dH2n+1(η)

= 2αP [}Iαf ](ζ).

□

Lemma 3.3. Let f ∈ L1(Hn) be a positive function. Then there exists a constant C > 0
such that

Mγ(P [}Iαf ]) ≤ C ~Iα(f).

Proof. From Lemma 2.5 we know that Mγ(P [}Iαf ]) ≤ C ­M(Iαf), so we need to estimate
M(Iαf).

MIαf(x) = sup
r>0

1

r2n+2

∫
B(x,r)

Iαf(y)dH2n+1(y)

= C sup
r>0

1

r2n+2

∫
B(x,r)

∫
Hn

f(u)

d(y, u)4(n+1−α)
dH2n+1(u)dH2n+1(y)

≤ C

∫
Hn

f(u) sup
r>0

( 1

r2n+2

∫
B(x,r)

dH2n+1(y)

d(y, u)4(n+1−α)

)
dH2n+1(u),

To reach the result it suffices to prove that the supremum is dominated by a constant times
Iα(x, u).

Suppose d(x, u)4 ≥ 3r. Since x ∈ B(x, r), then from triangular inequality it follows that

1

C
d(y, u)4 ≤ d(x, u)4 ≤ Cd(y, u)4.

The result follows immediately.
Conversely, if d(x, u)4 ≤ 3r, then there exists C > 0 such that

B(x, r) ⊆ B(u,Cr).
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This yields to

1

r2n+2

∫
B(x,r)

dH2n+1(y)

d(y, u)2(n+1−α)
≤ C

1

r2n+2

∫
B(u,Cr)

dH2n+1(y)

d(y, u)2(n+1−α)

≤ C
1

r2n+2

∫ Cr

0

∫
∂B(0,1)

ρ2n+1

ρ2(n+1−α)
dH2ndρ

≤ C
1

r2n+2

∫ Cr

0

ρ−1+2αdρ

≤ C
1

r2(n+1−α)

≤ CIα(x, u).

□

We remark that what we have actually proved in Lemma 3.3 is that there exists C > 0
such that, for every Heisenberg ball B(x, r)

sup
r>0

1

r2n+2

∫
B(x,r)

Iα(u, y)dH2n+1(y) ≤ CIα(x, u) ∀x, u ∈ Hn.

In other words the Riesz kernel Iα(·, u) is a Muckenhoupt weight A1.

Proof of the sufficiency of the α-subcapacitary condition in Theorem 1.4. Let µ be a subca-
pacitary measure and consider F ∈ H2

α. By Lemma 3.2, we know that there exists f ∈ L2(Hn)
such that

|F (ζ)| ≤ P [}Iαf ](ζ),

with ∥F∥H2
α
= ∥f∥L2(Hn).

If we use the hypothesis, Theorem 2.4 and Lemmas 3.2, 3.3 we deduce that∫
U
|F (ζ)|2dµ(ζ) = 2

∫ ∞

0

µ({ζ ∈ U : |F (ζ)| > λ})λdλ

≤ C

∫ ∞

0

µ
(
{ζ ∈ U : P [}Iαf ](ζ) > λ}

)
λdλ

≤ C

∫ ∞

0

µ
(
T{x ∈ Hn : xMγ(P [}Iαf ])(x) > λ}

)
λdλ

≤ C

∫ ∞

0

capα

(
{x ∈ Hn : xMγP [}Iαf ](x) > λ}

)
λdλ

≤ C

∫ ∞

0

capα

(
{x ∈ Hn : Iαf(x) > λ}

)
λdλ

≤ C∥f∥2L2(Hn)
= C∥F∥2H2

α
.

□

It is worth noticing that in the proof of the sufficiency part, the fact that α > n
2

has
not been used in any way. Therefore, the capacitary condition remains sufficient for all
0 < α < n+1

2
.

We now turn to the necessary part of our main theorem. We shall need a direct estimate
of the convolution of the Riesz potential with itself.
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Lemma 3.4. Let n
2
< α < n+1

2
. Then for every x, u ∈ Hn we have∫

Hn

Iα(x, y)Iα(y, u)dH2n+1(y) ≃ I2α(x, u).

Proof. Let x, u ∈ Hn and set r = d(x,u)
2

. Then we want to estimate the integral∫
Hn

dH2n+1(y)

d(x, y)2(n+1−α)d(y, u)2(n+1−α)
.

To do that we can split the domain of integration as follows

Hn = B(x, r) ∪ {d(x, y) ≤ d(y, u)} \B(x, r)

∪B(u, r) ∪ {d(y, u) ≤ d(x, y)} \B(u, r).

We denote by I, II, I’, II’ the corresponding integrals. By the symmetry of the problem, it
is sufficient to estimate I and II. For the first integral we note that if y ∈ B(x, r), then by
triangular inequality

d(y, u) ≤ d(x, u) + d(y, x) ≤ 3r

d(y, u) ≥ d(x, u)− d(x, y) ≥ r.

So we obtain that

I ≃ 1

r2(n+1−α)

∫
B(x,r)

dH2n+1(y)

d(x, y)2(n+1−α)

=
1

r2(n+1−α)

∫ ∞

0

H2n+1

({
y ∈ B(x, r) : d(x, y) ≤ t

−1
2(n+1−α)

})
dt.

We have that t ≤ r−2(n+1−α) if and only if t
−1

2(n+1−α) ≥ r. Combining this with (1.7), we obtain

I ≃ r2n+2

r4(n+1−α)

+
1

r2(n+1−α)

∫ ∞

r−2(n+1−α)

H2n+1

({
y ∈ B(x, r) : d(x, y) ≤ t

−1
2(n+1−α)

})
dt

≃ r−2(n+1−α) +
1

r2(n+1−α)

∫ ∞

r−2(n+1−α)

t−
n+1

n+1−αdt

≃ r−2(n+1−2α).

We now turn to estimate II.

II ≤
∫
Hn\B(x,r)

dH2n+1(y)

d(x, y)4(n+1−α)

=

∫ ∞

0

H2n+1

({
y ∈ Hn : r < d(x, y) ≤ t

−1
4(n+1−α)

})
dt.

Note that if t > r−4(n+1−α) then t
−1

4(n+1−α) < r, which means{
y ∈ Hn : r < d(x, y) ≤ t

−1
4(n+1−α)

}
= ∅.
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Since n
2
< α < n+1

2
, then n+1

2(n+1−α)
< 1 which yields to

II ≤
∫ r−4(n+1−α)

0

H2n+1

({
y ∈ Hn : r < d(x, y) ≤ t

−1
4(n+1−α)

})
dt

≤
∫ r−4(n+1−α)

0

H2n+1

({
y ∈ Hn : d(x, y) ≤ t

−1
4(n+1−α)

})
dt

≤
∫ r−4(n+1−α)

0

t−
n+1

2(n+1−α)dt

≃ r−2(n+1−2α).

Combining the two estimates, we obtain that

r−2(n+1−2α) ≃ I ≤ I + II ≲ r−2(n+1−2α)

which is the desired conclusion. □

In the next lemma we introduce the so called “holomorphic potentials” which are holomor-
phic substitutes of the classical Riesz potentials.

Lemma 3.5. Let A ⊆ Hn be a compact set and µA as defined in Theorem 2.3. Consider the
holomorphic potential

FµA(ζ) =

∫
∂U

Kα(ζ, ω)dµ
A(Ψ(ω)).

Then ∥FµA∥2H2
α
≤ C capα(A).

Proof. For r > 0 and F ∈ H2
α, we can define the bounded linear functional on H2

α

lr(F ) :=

∫
∂U

F (ζ + ir)dµA(Ψ(ζ)),

where i = (0, . . . , 0, i). Now if we consider Fr(ζ) := FµA(ζ + ir), then we have

⟨Kζ
α, Fr⟩H2

α
= Fr(ζ) =

∫
∂U

Kα(ω, ζ + ir)dµA(Ψ(ω))

=

∫
∂U

Kα(ω + ir, ζ)dµA(Ψ(ω))

= lr(K
ζ
α).

Since finite linear combinations of the kernels Kζ
α are dense in H2

α, then for every F ∈ H2
α we

have lr(F ) = ⟨F, Fr⟩H2
α
. This yields to

∥Fr∥2H2
α
= ⟨Fr, Fr⟩H2

α
= lr(Fr)

=

∫
∂U

FµA(ζ + 2ir)dµA(Ψ(ζ))

=

∫
∂U

(∫
∂U

Kα(ζ + ir, ω + ir)dµA(Ψ(ω))
)
dµA(Ψ(ζ)).

Since Re(Kα) ≃ |Kα|, we obtain that

∥Fr∥2H2
α
≃

∫
∂U

(∫
∂U

|Kα(ζ + ir, ω + ir)|dµK(Ψ(ω))
)
dµK(Ψ(ζ)).
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Furthermore, note that |Kα(ζ+ ir, ω+ ir)| ≤ Kα(ζ, ω) for ζ, ω ∈ U . By Lemma 3.4 and using
(2.4), we can conclude that

∥Fr∥2H2
α
≃

∫
∂U

∫
∂U

I2α(Ψ(ζ),Ψ(ω))dµA(Ψ(ω))dµA(Ψ(ζ))

≃
∫
Hn

Iα(Iα(µ
A))(x)dµA(x)

≤ capα(A).

Combining the above inequality with the dominated convergence theorem, we reach the
result. □

Proof of the necessity of the α-subcapacitary condition in Theorem 1.4. Let µ be a Carleson
measure and let A =

⋃d
i=1 B(xi, ri) be a finite union of disjoint balls in Hn. Consider a

capacitary measure for A, µA, as defined in Theorem 2.3 and FµA as defined in Lemma 3.5.
Combining the hypothesis with Lemma 3.5 we reach that∫

T (A)

|FµA(ζ)|2dµ(ζ) ≤
∫
U
|FµA(ζ)|2dµ(ζ) ≤ C∥FµA∥2H2

α
≤ C capα(A).

Since 0 ≤ ReFµA ≤ |FµA|, we have that∫
T (A)

(ReFµA(ζ))2dµ(ζ) ≤
∫
U
|FµA(ζ)|2dµ(ζ) ≤ C capα(A). (3.4)

We next show that ReFµA ≥ C on T (A). Let [z, t, h] ∈ Ψ(T (A)), then B([z, t], h1/2) ⊆ A.
Since by Theorem 2.3 we know that I2α(µ

A) ≥ 1 a.e. on A, we obtain

ReFµA(ζ) =

∫
∂U

P (ζ, ω) ReFµA(ω)dH2n+1(ω)

≃
∫
∂U

P (ζ, ω)I2α(µ
A)(Ψ(ω))dH2n+1(ω)

≥
∫
Ψ−1(A)

P (ζ, ω)dH2n+1(ω)

= C

∫
B([z,t],h1/2)

hn+1

d([z, t, h], [w, s])4(n+1)
dH2n+1[w, s].

The task is now to estimate the function d. It is easily seen that

d([z, t, h], [w, s])4 =
(1
4
|z − w|2 + 4h

)2
+
(
t− s+

1

2
Im(z · w)

)2
≃ 16h2 +

1

16
|z − w|4 +

(
t− s+

1

2
Im(z · w)

)2
= 16h2 + d([z, t], [w, s])4

≤ 17h2,

which yields to

C

∫
B([z,t],ch1/2)

hn+1

d([z, t, h], [w, s])4(n+1)
dH2n+1[w, s] ≥

C

17n+1

1

hn+1

∫
B([z,t],ch1/2)

dH2n+1[w, s] ≥ C ′.
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Substituting the above inequalities to (3.4), we can conclude that

µ(T (A)) ≤ C capα(A),

which is the desired inequality. □
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