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ABSTRACT

Turbulent gas motions are expected to dominate the non-thermal energy budget of the intracluster medium (ICM). The measurement
of pressure fluctuations from high angular resolution Sunyaev–Zel’dovich imaging opens a new avenue to study ICM turbulence,
complementary to X-ray density fluctuation measures. We developed a methodological framework designed to optimally extract
information on the ICM pressure fluctuation power spectrum statistics, and publicly released the associated software named PITSZI
(Probing ICM Turbulence from Sunyaev–Zel’dovich Imaging). We applied this tool to the New IRAM KIDs Array (NIKA) data of
the merging cluster MACS J0717.5+3745 to measure its pressure fluctuation power spectrum at high significance, and to investigate
the implications for its non-thermal content. Depending on the choice of the radial pressure model and the details of the applied
methodology, we measured an energy injection scale Linj ∼ 800 kpc. The power spectrum normalization corresponds to a characteristic
amplitude reaching AδP/P̄(kpeak) ∼ 0.4. These results were obtained assuming that the ICM of MACS J0717.5+3745 can be described
as pressure fluctuations on top of a single (smooth) halo, and were dominated by systematics due to the choice of the radial pressure
model. Using simulations, we determined that fitting a radial model to the data can suppress the observed fluctuations by up to ∼50%,
while a poorly representative radial model can induce spurious fluctuations, which we also quantified. Assuming standard scaling
relations between the pressure fluctuations and turbulence, we find that MACS J0717.5+3745 presents a turbulent velocity dispersion
σv ∼ 1200 km/s, a kinetic to kinetic plus thermal pressure fraction Pkin/Pkin+th ∼ 20%, and we estimate the hydrostatic mass bias
to bHSE ∼ 0.3−0.4. Our results are in excellent agreement with alternative measurements obtained from X-ray surface brightness
fluctuations, and in agreement with the fluctuations being adiabatic in nature.
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1. Introduction

In the 1970s, X-ray observations revealed the existence of
a diffuse hot gas component that dominates the baryon con-
tent of galaxy clusters, known as the intracluster medium
(ICM; see Sarazin 1986, for a review). Since then, the ICM
has been extensively studied using X-ray observations, but
also in the millimetre via the Sunyaev–Zel’dovich (SZ) effect
(Sunyaev & Zeldovich 1970, 1972). Today, we know that the
physical properties of the ICM are driven by the gravitational
collapse of the surrounding cosmic web, in which the kinetic
energy of the infalling gas is converted into heat primarily
through shocks and turbulent cascades (Kravtsov & Borgani
2012). Consequently, the ICM is essentially thermal. How-
ever, a non-negligible fraction of the energy is also chan-
neled into a non-thermal component in the form of turbulence,
magnetic fields, and cosmic rays. While the thermal state of
galaxy clusters is now well understood, the non-thermal con-
tent is not. In particular, turbulent gas motions are expected to
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dominate the non-thermal ICM energy budget (e.g. Vazza et al.
2016) and are presumably key to explain cosmic-ray (re-)
acceleration and magnetic field amplification (Brunetti & Jones
2014; Donnert et al. 2018). Therefore, the characterization of
ICM turbulence is becoming crucial to acquire a comprehen-
sive view of the physical processes involved in the assembly
of massive halos and utilizing them for high-precision cluster
cosmology.

Robust and precise total mass estimates are indeed essen-
tial for the use of the galaxy cluster population as a cosmo-
logical probe (Pratt et al. 2019). As the dominant contribution
to the non-thermal pressure support, turbulence is expected to
play a leading contribution to the hydrostatic mass bias that
affects cluster masses derived from the hydrostatic equilib-
rium assumption (Angelinelli et al. 2020). The hydrostatic mass
bias has been widely examined in the literature through both
observational data, especially via the calibration of mass scal-
ing relations, and numerical simulations (e.g. Hoekstra et al.
2015; Smith et al. 2016; Eckert et al. 2019; Gianfagna et al.
2021; Muñoz-Echeverría et al. 2024), in particular in light of
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the tension between cosmic microwave background-based and
cluster-based cosmology (Planck Collaboration XX 2014). Nev-
ertheless, the understanding of its physical origin and its
complete characterization is still an open issue. In fact, the
hydrostatic mass bias is currently one of the major limitations
for the use of ICM-based observations as a cosmological probe
(e.g. Planck Collaboration XXIV 2016; Pratt et al. 2019).

Turbulence is also a key ingredient to explain the diffuse
radio emission that is widely observed in galaxy clusters today,
but not yet fully understood. We can differentiate between radio
relics, which are elongated structures located at the periphery
of clusters, and radio halos, which coincide spatially with the
thermal gas (van Weeren et al. 2019). While relics are believed
to trace merger shock acceleration (van Weeren et al. 2010),
turbulence is often invoked to explain the failure of the sim-
ple diffuse shock acceleration model (Fujita et al. 2015). Radio
halos are generally further divided into mini-halos (in relaxed
cool-core clusters), megaparsec-sized giant radio halos (in dis-
turbed objects), and mega-halos, which extend out to the extreme
periphery. In all cases, observations suggest that turbulence is a
key player to re-accelerate synchrotron-emitting relativistic elec-
trons (Brunetti & Jones 2014). In this scenario, mini-halos may
be powered by active galactic nuclei (AGN) feedback or slosh-
ing motions (Mazzotta & Giacintucci 2008), giant-halos by the
energy dissipated in mergers (Cassano et al. 2010), and mega-
halos by large-scale structure formation (Beduzzi et al. 2023).
However, the details of the mechanisms involved are still poorly
understood and the origin of the particles re-accelerated by tur-
bulence is debated (e.g. Pinzke et al. 2017; Adam et al. 2021).
Characterizing the connection between these non-thermal pro-
cesses and turbulence, in different environments will therefore
be key to understand the plasma physics at play.

Ideally, turbulence should be observed by directly prob-
ing the ICM velocity field (Simionescu et al. 2019). This will
become routine with high-resolution X-ray spectroscopy experi-
ments (XRISM Science Team 2020; Barret et al. 2020), follow-
ing on from the early results from the Hitomi satellite towards
the core of the Perseus cluster (Hitomi Collaboration 2016).
Alternatively, turbulence can be probed indirectly through fluc-
tuations of ICM thermodynamic quantities, assuming these are
being produced by the turbulent velocity field. This approach
relies on the calibration of the power spectrum of the target
ICM fluctuation with the turbulent Mach number, as studied
in numerical simulations (Zhuravleva et al. 2014; Gaspari et al.
2014; Mohapatra et al. 2020, 2021, 2022; Simonte et al. 2022;
Zhuravleva et al. 2023). To date, such studies have been con-
ducted through the statistics of X-ray surface brightness and
pressure fluctuations obtained relative to a smooth model (e.g.
Schuecker et al. 2004; Churazov et al. 2012; Dupourqué et al.
2023, 2024; Heinrich et al. 2024). However, the physical inter-
pretation of these fluctuations as being generated by turbulence
is not straightforward from X-rays only. They may also arise
from structures that are independent of turbulence (e.g. clump-
ing, sloshing features, and shocks; see Churazov et al. 2012;
Dupourqué et al. 2023, for discussions). Moreover, the thermo-
dynamic nature of the fluctuations may depend on the ICM
environment1. For instance, isobaric fluctuations may arise from
slow sloshing motions, gas bubbles induced by AGN feedback
will appear as isothermal fluctuations, and adiabatic fluctuations
are associated with more vigorous motions such as with weak
shocks or sonic turbulence (see, e.g. Zhuravleva et al. 2018).

1 Pressure and density perturbations are related via δP/P = Γδρ/ρ,
with Γ = [0, 1, 5/3] for isobaric, isothermal, and adiabatic fluctuations.

These regimes are very difficult to access directly through X-ray
surface brightness fluctuations alone, since they probe essen-
tially density perturbations2.

The SZ effect offers an independent and complementary
probe of the ICM (see Birkinshaw 1999; Mroczkowski et al.
2019, for reviews). Unlike the X-ray emission, which traces gas
density and temperature (with imaging and spectroscopy, respec-
tively), the SZ effect directly measures the thermal pressure3.
Furthermore, the SZ surface brightness is independent of the
redshift, which makes it very attractive for the characterization
of distant objects, provided that sufficiently high angular resolu-
tion and sensitivity are available. As such, the SZ surface bright-
ness fluctuations are obvious tracers to investigate the impact
of turbulence on the ICM physics. To date, only three such stud-
ies have been conducted on individual objects (Khatri & Gaspari
2016; Romero et al. 2023, 2024), albeit with a limited signal-
to-noise-ratio. Romero (2024) also undertook a forecast study
on constraints from SZ surface brightness fluctuations in galaxy
clusters.

Here, we aim to develop a methodological framework that
efficiently extracts information on the ICM pressure fluctuation
power spectrum from SZ observations. We also release the cor-
responding software, named PITSZI (Probing ICM Turbulence
from Sunyaev–Zel’dovich Imaging), to the public. We apply
this tool to NIKA observations of the triple merging cluster
MACS J0717.5+3745, which probe the SZ signal at an angular
resolution of 18 arcsec, to measure its pressure fluctuation power
spectrum and explore the implications for its non-thermal energy
content.

The present article is structured as follows. Section 2 gives
an overview of the PITSZI software. In Section 3, we present the
NIKA data of the cluster MACS J0717.5+3745, which we use
as a test case throughout the paper. The modelling of the pres-
sure distribution and its SZ observable, accounting for instru-
mental effects and noise, is discussed in Section 4. Section 5
presents the methodology used to infer constraints on the pres-
sure profile and the pressure fluctuation power spectrum. We dis-
cuss the results highlighting the implications for the non-thermal
ICM physics of MACS J0717.5+3745 in Section 6. Section 7
gives a summary of the paper and details our conclusions. Sev-
eral appendices complement the paper by quantifying the relevant
sources of uncertainty and systematic effects, and discuss how
background and foreground contamination may be accounted
for. Throughout the paper, we assume a flat ΛCDM cosmology
with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3. At the redshift
of MACS J0717.5+3745 (z = 0.546), 1 arcmin corresponds to
395 kpc.

2. General overview and structure of the PITSZI
software

PITSZI is a python-based code designed to model the ICM
pressure distribution in galaxy clusters. It allows us to generate
SZ image mocks and derive constraints on the power spectrum of
the pressure fluctuations and its implications to the non-thermal

2 The soft X-ray band primarily reflects density fluctuations, while the
hard X-ray band captures fluctuations influenced by both density and
temperature. Consequently, X-ray surface brightness fluctuations can, in
principle, provide insights into the thermodynamic nature of these vari-
ations. However, achieving the necessary photon statistics in the hard
band is challenging, which restricts the range of observable scales.
3 It may also measure the ICM velocity from the kinetic SZ effect
(kSZ) in individual systems, but this remains extremely challenging
(Sayers et al. 2013; Adam et al. 2017b).
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ICM physics. Before entering into the details of the modelling
and analysis framework, this section gives a brief overview of
the code.

2.1. Overview and key ingredients

Modelling of the pressure distribution requires a description
of the ICM pressure profile, to which pressure fluctuations are
added via the modelling of their power spectrum. Given a 3D
grid sampling along the sky coordinates and the line of sight,
the pressure is integrated to produce a mock SZ image. The
SZ image may then be convolved with an instrument response
function (beam smoothing and data reduction transfer function)
and realistic noise may be added to mimic the data obtained
from a given telescope. PITSZI was developed in the context
of the analysis of NIKA and NIKA2 data (Adam et al. 2014;
Catalano et al. 2014; Adam et al. 2018a), but it can in principle
be applied to data obtained from any SZ imaging instrument (e.g.
Planck, ACT, SPT, Bolocam, MUSTANG, MUSTANG2).

To extract constraints on the pressure fluctuation power spec-
trum in three dimensions, one must first compute the power spec-
trum of the SZ image in two dimensions after accounting for the
radial pressure model and given a region of interest (e.g. within
R500). This power spectrum is then compared to a model, which
can be obtained via different methods, accounting for projec-
tion effects, the instrument response function, the masking of
bad pixels, the noise, and possible astrophysical contaminants.
To avoid noise bias and mitigate systematic effects in the data,
one may use the cross power spectra of two independent data
(sub)sets, if available.

With the constraints on the pressure fluctuation power spec-
trum in hand, PITSZI implements several approaches from the
literature to derive the non-thermal properties of the ICM. This
includes the turbulent velocity or the non-thermal to thermal
energy ratio.

2.2. Code structure

The structure of the code is illustrated in Figure 1. PITSZI con-
sists of four main classes.
1. The class Model is designed to describe the cluster object and

the pressure sampling. In addition to basic properties such as
sky coordinates, mass and redshift, it includes the description
of the pressure profile and the pressure fluctuations as the key
physical properties.

2. The class Data can be used to construct a data object, defined
according to an SZ image, its astrometry information and the
instrument response function and noise properties. This class
also implements functions to handle the noise properties and
generate noise Monte Carlo realizations.

3. The classes InferenceRadial and InferenceFluctuation are
dedicated to extraction of constraints on the radial and fluc-
tuation model parameters. Several methods to compute the
SZ fluctuation power spectrum from a given pressure model
are implemented, in addition to two different fitting methods
based on non-linear least squares or Markov Chain Monte
Carlo.

4. The class Physics derives physical constraints on the non-
thermal ICM physics given the pressure fluctuation power
spectrum. It implements various results from the literature
that connect turbulence to pressure fluctuations.

In addition, libraries of utility functions, including those
related to power spectrum analysis, are used by the different
classes.

2.3. Sampling

The ICM pressure is sampled in real space by defining a box
centered at the cluster redshift and on a reference map coordi-
nate. This setup assumes that the cluster extent is sufficiently
small on the sky to approximate the box as a simple pixelated
rectangular parallelepiped. The line of sight is gridded given the
pixel resolution and the box size along the line of sight (typi-
cally 3 × R500). The projected grid may be provided via a header
(e.g. corresponding to real data) or by defining the pixel resolu-
tion and the size of the field of view along longitude and latitude
directions.

Fast Fourier transform definitions of the spatial frequency
space, k, follow that of the numpy.fft package4, which is used
in PITSZI. We note that the k-space does not include modes
for which |k| > min (max(k1),max(k2),max(k3)), where k1, k2, k3
are the spatial frequency along the plane of the sky and line of
sight, respectively, so that the fluctuations would not be isotropic
at these scales (see Ponthieu et al. 2011, and in particular their
Figure 1), but they are usually well below the limit given by
the telescope angular resolution so that this is not relevant in
practice.

3. Data: MACS J0717.5+3745 as observed with NIKA

In this paper, we apply the PITSZI code to the cluster
MACS J0717.5+3745, as imaged by the NIKA camera. This
section discusses the target choice, presents the NIKA data, and
reviews the possible contaminants that are accounted for in the
analysis.

3.1. MACS J0717.5+3745

MACS J0717.5+3745 is one of the most complex and dynam-
ically active galaxy clusters known. It is a triple merging
system at redshift z = 0.546, involving at least four sub-
clusters (Ma et al. 2009), and one of the most massive clus-
ters in the Universe (M(<1 Mpc) ∼ 2 × 1015 M�, Jauzac et al.
2018). MACS J0717.5+3745 is characterized by the pres-
ence of very large amounts of both thermal and non-thermal
energy. Its ICM was found to be extremely hot, reaching
up to 25 keV (Adam et al. 2017a), and it hosts one of the
most powerful known radio halos (Rajpurohit et al. 2021a)
and a complex radio relic (Rajpurohit et al. 2021b). Recently,
the analysis of ICM density fluctuations with Chandra data
in a sample of 80 clusters found that MACS J0717.5+3745
displayed the highest characteristic velocities in the sample
(Heinrich et al. 2024). In addition, MACS J0717.5+3745 is cur-
rently the only individual cluster in which a kinetic SZ signal
has been detected (Mroczkowski et al. 2012; Sayers et al. 2013;
Adam et al. 2017b). As a well-studied system, the SZ images
of MACS J0717.5+3745 are among the best available, both in
terms of signal-to-noise ratio and angular resolution. Given these
properties, this cluster is an ideal test and benchmark target to
search for pressure fluctuations via SZ mapping. However, as
will be further discussed in Section 6, we note that the interpre-
tation of the results in terms of turbulence may not be straight-
forward given the complexity of the system. Nevertheless, it
remains an excellent target for addressing the methodology that
we develop here, which is the main goal of the paper.

4 https://numpy.org/doc/stable/reference/routines.fft.
html
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User

Class Model(ModelLibrary, ModelSampling, ModelMock)  
model_main.py 

‣ Cluster model initialization 
‣ Handle parameters settings 

Utility functions 
utils.py, utils_pk.py, utils_fitting.py, utils_plot.py, title.py 

‣ Library that gathers useful functions

SubClass ModelLibrary()  
model_library.py 

‣ Profile and fluctuation model library and setup

SubClass ModelSampling()  
model_sampling.py 

‣ Handle the 3d grid and image header definition

SubClass ModelMock()  
model_mock.py 

‣ Compute mock images

Class Data() 
data_main.py 

‣ Data, instrument response & noise definition 
‣ Generate mock data

Define/modify 
the cluster model

Handle data / 
generate mock

Pressure 
measurement

Input data & model for 
inference

Input Data for instrument 
response

Class Physics() 
physics_main.py 

‣ Derive physical properties associated with pressure fluctuations
Physical 

implications

Pass pressure 
fluctuation constraints

Input Model to mock data

Class Inference_radial() 
inference_radial_main.py 

Class Inference_fluctuation() 
inference_fluctuation_main.py 

‣ Initialization with objects from Data and Model classes 
‣ Provide a framework for profile and fluctuation inference 
‣ Fitting tools for the profile and the spectrum

SubClass 
InferenceRadialFitting()  

inference_radial_fitting.py

SubClass 
InferenceFluctuationFitting() 

inference_fluctuation_fitting.py

Fig. 1. Overview of the code structure, user interfaces, and links between the different components. The yellow boxes display the main classes
and the inner orange boxes indicate the dependence on the main sub-classes, with class names indicated at the top together with the name of the
main file where this is defined. The grey box gives the name of the utility function files. The blue arrows indicate the interfaces with the user. The
orange arrows indicate how the different modules are inputs to one another. The grey arrows show how utility functions are used by the classes.

3.2. Data

We use the 150 GHz NIKA data obtained from the IRAM
30m telescope under projects 237-13 and 222-14 (displayed
in Figure 2). These correspond to about 13 h of unflagged
data taken under good atmospheric conditions. Calibration
uncertainties were estimated to be 7% at 150 GHz and the
Gaussian beam FWHM (full width at half maximum) was
measured to be 18.2 arcsec5. The data processing induced trans-
fer function, that filters scales larger than the field-of-view
(∼2 arcmin) was estimated following Adam et al. (2015). Noise
Monte Carlo realizations were generated following the method
described in Adam et al. (2016). These data have been made
publicly available in Adam et al. (2018b); see Section 7. We
refer to Adam et al. (2017b,a) for further details regarding the
data reduction.

3.3. Contaminants

In addition to the thermal SZ signal and the target pressure
fluctuations, a few astrophysical contaminants may affect the

5 This corresponds to 0.3 arcmin FWHM. For comparison, the
Planck, ACT, SPT, Bolocam, and MUSTANG2 beam FWHM are
about 10 arcmin, ∼2 arcmin, ∼1.5 arcmin, 0.97 arcmin and 0.16 arcmin,
respectively, in the context of SZ observations.

data. We account for these contaminants as follows. The atmo-
spheric and instrumental noise will be discussed separately in
Section 4.

First of all, MACS J0717.5+3745 is known to be con-
taminated by kinetic SZ signal. We use the best fit template
obtained in Adam et al. (2017b) as a correction. However, fol-
lowing their recommendation, since the model is degenerate
and presents large uncertainties, we only used it to test the
impact of the kinetic SZ signal as a systematic effect. We refer
to Appendix D for details regarding the quantification of this
effect.

The NIKA 150 GHz images are affected by resolved individ-
ual radio and infrared sources. We used the point source model
built in Adam et al. (2017b) to correct for these. Additionally, we
built a conservative point source mask by thresholding the point
source template at 0.1 mJy/beam. We will apply this mask to the
data to test the systematic effects due to possible remaining point
source residuals.

In addition to the sources directly detected in the data, we
expect the SZ signal to be affected by a contribution from unre-
solved galaxies below the detection threshold, which constitute
the cosmic infrared background (CIB). We followed the method-
ology developed by Béthermin et al. (2017) to generate 1000
mock CIB realizations which were used to account for this con-
taminant in the following. We refer to Appendix A.1 for further
details regarding the construction of these mocks.
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Fig. 2. NIKA Compton parameter (y) data. From left to right, we show the NIKA MACS J0717.5+3705 input data, its best-fit radial model map, a
jackknife map (half difference between two equal data subsets) and the residual between the data and the radial model, δy. The data were smoothed
with a 15 arcsec gaussian kernel (FWHM) for visual purposes. The contours are showing the S/N in units of 3σ. The comparison with mock data
can be observed in Figure 3.

The contribution from undetected lower mass halos in the
field of view may also potentially affect the data. However, we
verify in Appendix A.2, using simulations, that this signal is neg-
ligible in the present case.

Finally, the diffuse galactic emission and the primary CMB
anisotropies may also affect the data and should be accounted for
if relevant. In the case of the NIKA data, however, both of these
contaminants were shown to be negligible given the image sensi-
tivity and the angular scales involved (Adam et al. 2016, 2017b).

4. Modelling the pressure fluctuations and its
Sunyaev-Zel’dovich observable

This section discusses how the pressure distribution is modelled
in PITSZI, how it is used to generate mock SZ images, and how
the observables are related to the underlying pressure fluctuation
power spectrum.

4.1. Pressure distribution and projection

Let us first consider the modelling of the pressure and its projec-
tion to obtain the requested SZ observable and the power spec-
trum of its fluctuations.

4.1.1. The Sunyaev–Zel’dovich effect

The thermal SZ effect is due to the inverse Compton scatter-
ing of CMB photons by the hot ICM (Sunyaev & Zeldovich
1970, 1972). The SZ surface brightness ∆Iν, at frequency ν, rel-
ative to the CMB specific intensity I0, can be expressed as (see
Mroczkowski et al. 2019, for a review)

∆Iν
I0

= f (ν,T ) × y, (1)

where f (ν,T ) is the characteristic SZ spectrum and y the Comp-
ton parameter, which gives the amplitude of the SZ effect. The
SZ spectrum slightly depends on the temperature T for very
hot gas in the relativistic regime (Pointecouteau et al. 1998;
Itoh et al. 1998). We used the coefficients listed in Adam et al.
(2017b), together with their XMM-Newton X-ray spectroscopic
temperature map, to convert from surface brightness to Compton
parameter as a function of temperature.

The Compton parameter is related to the electron pressure
Pe, via integration along the line of sight `, such that

y =
σT

mec2

∫
Ped`. (2)

The parameter σT is the Thomson cross section, me is the elec-
tron rest mass, and c is the speed of light.

In PITSZI, we decompose the pressure into a mean radial
component and pressure fluctuations such that
Pe(x1, x2, x3) = P̄e(r) + δPe(x1, x2, x3)

= P̄e(r)
(
1 +

δPe(x1, x2, x3)
P̄e(r)

)
. (3)

Here, x1, x2, and x3 ≡ ` are the coordinates in the plane of the

sky and along the line of sight, and r =

√
x2

1 + x2
2 + x2

3 is the 3D
radius.

4.1.2. The mean pressure profile

The choice of the mean radial distribution is key for fluc-
tuation analyses (see discussions in, e.g. Romero et al. 2023;
Dupourqué et al. 2023). Here, we discuss how the pressure pro-
file can be modelled in PITSZI and we refer to Appendix C for
a study of the impact of the choice of the model on the results.

Mean pressure profile. PITSZI was built taking advantage
of the developments made for the MINOT software6. As such,
it implements the same profile libraries, including: the β,
double-β, Navarro-Frenk-White (NFW), generalized Navarro-
Frenk-White (gNFW), simplified Vikhlinin model (SVM), or
any user-defined profile to be interpolated in log-space (see
Adam et al. 2020, for details). It is also possible to set the
pressure profile given the mass and the redshift of the cluster,
according to various universal models available from the litera-
ture (e.g. Arnaud et al. 2010; Planck Collaboration Int. V 2013;
Ghirardini et al. 2019; Melin & Pratt 2023).

Triaxiality. The expected shape of dark matter halos is tri-
axial rather than spherical. Even though the gas should be
rounder, its structure is still driven by the dark matter collapse
(Limousin et al. 2013). It is therefore mandatory to allow for tri-
axiality in the radial pressure modelling in order not to confuse
pressure fluctuations with deviations from sphericity.

In PITSZI, the shape of the ellipsoid is parametrized via the
minor-to-major and intermediate-to-major axis ratio, qmin and
qint, respectively. We define the ellipsoid radius as

ξ =

√(
x1

qmin

)2

+

(
x2

qint

)2

+ (x3)2. (4)

6 https://github.com/remi-adam/minot
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The pressure profile is then given by P̄e(r) −→ P̄e(ξ).
The axes are initially defined so that the major axis is

aligned with the line of sight, the intermediate axis aligned
with the latitude coordinates, and the minor axis aligned with
the longitude. The cluster is then rotated according to the three
Euler angles, φ1, φ2, φ3, to allow for any orientation, using the
scipy.spatial.transform.Rotation package. The rotation
follows the so-called ZXZ sequence, meaning that φ1 corre-
sponds to a first rotation around the line of sight axis (x3), φ2
corresponds to a second rotation around the longitude axis (x1),
and φ3 corresponds to a third rotation around the line of sight
axis (x3).

4.1.3. Description of the pressure fluctuations

The pressure fluctuations relative to the radial pressure profile(
δPe(x1,x2,x3)

P̄e(r)

)
are modelled as an isotropic random field. This field

is described by its power spectrum and a probability density
function. While radial evolution of the fluctuations are usually
expected (Shaw et al. 2010; Battaglia et al. 2012; Nelson et al.
2014), this is not currently implemented in PITSZI, which
assumes a single pressure fluctuation power spectrum over the
whole ICM.

For the time being, only one power spectrum model is avail-
able, a cutoff powerlaw function, but any other function can eas-
ily be implemented. This 3D model power spectrum, which we
use in the following, is parameterized as

PδP/P̄(k3D) = σ2
P

kα3Dexp
(
− 1

k2
3DL2

inj

)
exp

(
−k2

3DL2
dis

)
∫

4πkα+2
3D exp

(
− 1

k2
3DL2

inj

)
exp

(
−k2

3DL2
dis

)
dk3D

. (5)

Here, the notation k3D specifies that we consider the power spec-
trum in three dimensions (contrary to the 2D power spectrum of
SZ images discussed later) and k3D is the norm of the wavenum-
ber k = (k1, k2, k3). The parameter σP represents the standard
deviation of the pressure fluctuations and gives the normaliza-
tion of the power spectrum7. The parameter α is the slope of the
spectrum in the inertial range. Its canonical value is α = −11/3
for a Kolmogorov cascade (Kolmogorov 1941). The parameters
Linj and Ldis are the injection scale and the dissipation scale,
respectively. While the model given in Equation (5) has been
largely used in the litterature, the true power spectrum could be
more complicated, and this choice represents one of the strong
assumption of the present work.

With the power spectrum in hand, it is also useful to consider
the unitless characteristic spectrum, defined as

AδP/P̄(k3D) =

√
4πk3

3DPδP/P̄(k3D). (6)

The pressure fluctuations are also described given a probability
distribution function, for which either a gaussian or a lognor-
mal distribution is available. We use the formalism described in
Greiner & Enßlin (2015) to generate lognormal fluctuations that
follow the required power spectrum.

7 In practice, the output standard deviation of a pressure fluctuation
box obtained by generating a random field that follows this spectrum
may be lower than σP if the scales below and above those sampled by
the model are not available.

4.1.4. Relation between pressure fluctuation (3D) and SZ
surface brightness fluctuations (2D) power spectra

The pressure fluctuation power spectrum is related to the
SZ surface brightness fluctuation power spectrum by (e.g.
Churazov et al. 2012; Khatri & Gaspari 2016, for the formalism
in X-ray and SZ, respectively)

Pδy/ȳ(k2D) =

∫
PδP/P̄(k3D)

∣∣∣W̃(k1, k2, k3)
∣∣∣2 dk3. (7)

The quantity Pδy/ȳ(k2D) is the power spectrum of the residual
SZ image between the radial model ȳ(R) and the total SZ image
y(x1, x2), such that

δy
ȳ
≡

y(x1, x2) − ȳ(R)
ȳ(R)

, (8)

with R =

√
x2

1 + x2
2 the projected radius and k2D the norm of the

wavenumber in the plane of the sky. The quantity W̃(k1, k2, k3) is
the Fourier transform of the window function given by

W(x1, x2, x3) =
σT

mec2

P̄e(r)
ȳ(R)

. (9)

In practice, the window function quickly drops for k3 above a
given cutoff, such that Equation (7) is well approximated by

Pδy/ȳ(k2D) ' PδP/P̄(k3D)
∫ ∣∣∣W̃(k1, k2, k3)

∣∣∣2 dk3. (10)

Using this simplification implies that the map

C3D→2D =

∫ ∣∣∣W̃(k1, k2, k3)
∣∣∣2 dk3 (11)

provides a simple normalization to convert the 3D to 2D power
spectrum. In practice, one needs to average the conversion factor
over the effective area over which the power spectrum is com-
puted to obtain

C(eff)
3D→2D =

∑
map pixels ω(x1, x2)2C3D→2D(x1, x2)∑

map pixels ω(x1, x2)2 , (12)

where ω(x1, x2) is a weight map (e.g. data mask, region of inter-
est, or any weighting function that is applied to the data prior
computing the power spectrum; see Section 4.2.2). In the end,
Equation (7) becomes

Pδy/ȳ(k2D) = C(eff)
3D→2D × PδP/P̄(k3D). (13)

This approximation was introduced by Churazov et al. (2012),
who studied the X-ray surface brightness fluctuations in the core
of the Coma cluster with XMM-Newton and Chandra. However,
it may significantly break at large scales, especially for 3D power
spectra with low power on large scales. Additionally, the approx-
imation holds better for flatter pressure profiles since the window
function in this case would be sharper (see also Clerc et al. 2019
for more insights). The limits of this approximation are quanti-
fied in Appendix B, where we see that it is in fact fairly good
in the vast majority of practical cases. In the present analysis, it
implies a bias on the power spectrum model that remains within
about 10% over the range of scales that we probe.
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4.2. Power spectrum measurement and modelling
accounting for the instrumental response, data
weighting and noise

After calibration, the observed Compton parameter map
obtained from SZ imaging instruments can usually be expressed
as

yobserved = H ~ B ~ ytrue + n, (14)

where ytrue is the true incoming signal. The quantity B rep-
resents the beam smoothing induced by the limited telescope
angular resolution and H is the transfer function induced by the
data reduction that usually filters the scales larger than the field
of view (Adam et al. 2015; Romero et al. 2017; Ruppin et al.
2018). The term n is the noise. The map used to extract the 2D
SZ power spectrum is defined as

S = ω ×
yobserved − y(num)

radial model

y(den)
radial model

, (15)

with ω the weight map. The radial component model in the
numerator and denominator, y(num, den)

model , may slightly differ (see
below).

Let us now consider the measurement of the power spectrum
itself and its modelling in the presence of these instrumental
effects. This includes beam smoothing and transfer function fil-
tering due to the mapmaking procedure, data masking or weight-
ing, and noise.

4.2.1. Instrumental response function

Leaving the weight and the noise aside for the moment, in
Fourier space, application of the instrument response function
translates into

Pobserved(k2D) ' B(k2D)2H(k2D)2Pδy/ȳ(k2D). (16)

Equation (16) is not a strict equality due the fact that the con-
volution of the instrument response with the observable S is not
the same as the ratio of the convolved numerator and denomina-
tor. While y(num) accounts for the instrumental response to match
the observed data, we therefore define y(den) such that it does not
account for the transfer function, but is smoothed by the beam.
This implies that deviations from equality only appears on scales
below the beam cutoff, where the information on fluctuations is
lost anyway.

In the case where the cross spectra between two maps a and
b are used, the beam and transfer function become B2(k2D) →
B(a)(k2D)×B(b)(k2D) and H2(k2D)→ H(a)(k2D)×H(b)(k2D), respec-
tively.

For a Gaussian beam with FWHM = 2
√

2 ln(2)σbeam, the
transmission reads

B(k2D) = exp
(
−2π2k2

2Dσ
2
beam

)
. (17)

The exact shape of the transfer function will depend on the
details of the data reduction and shall be provided as part of the
data products for any quantitative analysis.

4.2.2. Data weighting

In practice, the δy/ȳ image is not used to extract the power spec-
trum directly. Indeed, one needs to account for possible mask-
ing, or more generally data weighting. This may arise due to

the presence of contaminant point sources that cannot be sub-
tracted perfectly, because we might want to extract the power
spectrum over a given region of interest (e.g. within R500), or in
the case where data weighting is required (e.g. to account for
noise inhomogeneity). In PITSZI, we implemented the method-
ology developed by Ponthieu et al. (2011) for the POKER soft-
ware in order to account for data masking and weighting in the
power spectrum modelling.

Assuming the SZ fluctuation image to be weighted as S ≡
ω × δy/ȳ, its pseudo-Fourier coefficients, for each mode m1,m2,
are given by

S̃ m1,m2 =
∑
µ1,µ2

ωµ1,µ2

(
δy
ȳ

)
µ1,µ2

e−2iπ(µ1m1/N1+µ2m2/N2), (18)

with N1,N2 the number of pixels along latitude and lon-
gitude, indexed µ1 and µ2, respectively. We can show that
(Ponthieu et al. 2011, their Appendix A, albeit with different
Fourier transform normalization)

S̃ m1,m2 =
∑

m′1,m
′
2

S̃ unweighted
m′1,m

′
2

Km2,m′2
m1,m′1

N1N2
, (19)

with S̃ unweighted
m′1,m

′
2

the pseudo-Fourier coefficients of the

unweighted image δy/ȳ and Km2,m′2
m1,m′1

a matrix that depends on
the pseudo-Fourier coefficients of the weight map. The power
spectrum of the weighted image is given by Pm1,m2 =

∣∣∣S̃ m1,m2

∣∣∣2
for each mode m1,m2 and P(k2D) is obtained by binning Pm1,m2

in k2D assuming isotropy. We refer to Ponthieu et al. (2011) for
more insight into the mathematical details.

The comparison between the power spectrum of weighted
data and a model of SZ fluctuations should therefore either
convolve the model to account for the effect of the weights
(using Equation (19) together with binning), or deconvolve the
data from the weights. Moreover, it is advisable to embed the
observed sky patch into a larger patch and pad it with zeros
to prevent aliasing from scales larger than the observed sky.
The observation patch should be apodized to minimize large-
scale aliasing. Other methods have been used in the literature
to estimate the power spectrum in this context. In particular,
most results have used the method from Arévalo et al. (2012),
which differs from ours. Appendix B quantifies the underlying
uncertainties.

4.2.3. Noise

The contribution from the noise is obtained by applying the same
process to noise Monte Carlo realizations. In this case, we use
the image given by

S noise,i = ω ×
ni

y(den)
radial model

, (20)

for each Monte Carlo i, to obtain the power spectra Pnoise,i(k2D).
The mean across all the Monte Carlo realizations pro-
vides the expected noise bias Pnoise(k2D) = 〈Pnoise,i(k2D)〉
and the noise covariance matrix is given by Cnoise =
〈
(
Pnoise,i(k2D) − Pnoise(k2D)

) (
Pnoise,i(k2D) − Pnoise(k2D)

)
〉. It will

be an essential ingredient for the likelihood estimation and
power spectrum estimation (Section 5). We note that model
uncertainties are not accounted in Equation (20) because they
will be treated as a systematic effect.
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When two independent data (sub)sets are used to compute
the power spectrum, the noise is estimated accordingly. We thus
use the cross spectra between two independent noise realizations
S (a)

noise,i and S (b)
noise,i. In this case, the mean noise power spectrum

is expected to be zero.
The exact same procedure allows us to extract the contribu-

tion from the CIB, to obtain PCIB(k2D) and CCIB, or any astro-
physical contaminant in general.

4.3. Summary, discussion, and example

In PITSZI, the power spectrum of the data is computed as the
modulus squared of the fast Fourier transform of the quantity S
defined in Equation (15), which is then binned in k2D to obtain
Pobserved(k2D). It is also possible to use the cross spectra between
two independent data (sub)sets, S (a) and S (b), if available. The
weight map accounts for the region of interest and discarded pix-
els. In practice, the weights are somewhat arbitrary. For instance,
one might set ω to y(den)

model to avoid a dramatic increase in the noise
with radius. However, this will be at the cost of obtaining a power
spectrum estimate that will be weighted towards the cluster
center.

To obtain a mock or an actual model power spectrum that
can be compared to the data, one must account for the instru-
ment response function and the weighting scheme. Starting
from a 3D pressure fluctuation power spectrum model, PITSZI
implements two different approaches. The projection approach
computes the model as follows: 1) Equation (13) is used to
compute the theoretical 2D power spectrum; 2) Equation (16)
is applied to account for the instrument response function; 3)
the power spectrum is projected in k-space given the sampled
mode m1,m2 and Equation (19) is applied to account for data
weighting; 4) the power spectrum is binned in k2D to obtain
PICM(k2D). Alternatively, a brute force approach may be used
in which full SZ image Monte Carlo simulations are generated
and their power spectra calculated as for the data. This is done by
generating mock pressure cubes including the radial profile and
the fluctuations; obtaining SZ images via Equation (2); convolv-
ing the image with the instrument response function; applying
the weights; and finally extracting the 2D power spectrum. As in
the case of the noise (Section 4.2.3), the statistics of the power
spectra obtained in this manner allow us to determine the mean
power spectrum PICM(k2D) = 〈PMonte Carlo,i(k2D)〉 and its covari-
ance matrix CICM. The brute force approach is significantly more
computationally expensive than the projection approach, and is
not used to fit the data.

To illustrate the methodology discussed in this Section, we
now compare the MACS J0717.5+3745 NIKA data with three
mock SZ maps constructed from different pressure fluctuation
models with PITSZI (model 1, model 2 and model 3, see
Table 1). These are designed to qualitatively mimic the NIKA
data, but we refer to Section 5 for a full discussion of model
inference. The radial model is the same for the three cases,
and is obtained by fitting an elliptical gNFW model to the
NIKA data

P̄(r) =
P0(

r
rp

)c (
1 +

(
r
rp

)a) b−c
a

. (21)

The slope parameters a, b and c are fixed to the morphologi-
cally disturbed model of Arnaud et al. (2010), the centre is free
to vary, and the mass is fit via a single normalization parame-

Table 1. Summary of the test model properties used for illustration.

σP Linj α Statistics

Test model 1 0.5 1 Mpc −11/3 Gaussian
Test model 2 0.5 1 Mpc −11/3 Lognormal
Test model 3 0.2 250 kpc −11/3 Gaussian

ter that also defines the scale radius8. The first fluctuation model
is built with σP = 0.5, Linj = 1 Mpc, and α = −11/3, with
Gaussian pressure fluctuations. The second model has the same
power spectrum parameters but with lognormal pressure fluctu-
ations (and we use the same seed to generate random fluctua-
tions). The third model is built with σP = 0.2, Linj = 250 kpc,
and α = −11/3, with Gaussian pressure fluctuations. In all cases,
Ldis = 1 kpc, but the exact value of this parameter is irrelevant
here because it lies well below the instrumental resolution.

In Figure 2, we can see that, given the elliptical radial model,
SZ fluctuations are observed by eye in the NIKA residual map.
The half-difference (Jackknife) map gives a visual comparison
of the noise contribution to the data. In Figure 3, the SZ mocks
derived from model 1 and 2 visually resemble the data, at least
qualitatively. When including the noise Monte Carlo, it would
be nearly impossible to distinguish mock images from true data.
This indicates that our description of the ICM as a radial model
plus isotropic pressure perturbations mimics the real data well,
at least given the sensitivity and the scales that are probed with
NIKA. We defer discussion of the limitations of the modelling
approach to Section 6. Contrary to models 1 and 2, we can
already observe that model 3 presents too few fluctuations and
its residual is nearly consistent with the half difference map of
the true data. Visually, models 1 and 2 are nearly identical, and
look statistically similar.

In Figure 4, we show that indeed, the fluctuation statistics
(lognormal or Gaussian) cannot be distinguished for the pres-
sure fluctuation models 1 and 2. While the pressure fluctuation
distributions present significant differences, when seen as SZ
fluctuation models 1 and 2 are nearly compatible, even with-
out including noise in the data, owing to projection effects.
The Gaussian versus lognormal models become significantly
different only when the fluctuation amplitude is significantly
increased. When including noise, it is not possible to distin-
guish the two within uncertainties. The fluctuations obtained
for MACS J0717.5+3745 are compatible with those expected in
both models 1 and 2.

In Figure 5, we show the input power spectrum of the pres-
sure fluctuations for the different models. The scales accessible
with NIKA roughly correspond to the shaded area, since the sig-
nal is progressively filtered for scales larger than the field of
view, and on scales smaller than the beam. We thus expect sen-
sitivity to the normalization, the injection scale, and possibly the
slope if a sufficient signal-to-noise ratio is available. The dissi-
pation scales, on the other hand, is expected to be far beyond
the reach of NIKA in the case of MACS J0717.5+3745. We also
compute the power spectrum of the corresponding SZ fluctua-
tions with our different methods and include the different con-
tributions to the data. Here, the weight map, shown in the bot-
tom right of the right panel, was defined so that pixels beyond
θ500/2 ' 2 arcmin were masked and the ICM was weighted

8 In Equation (21), the characteristic radius rp = R500/c500 and the nor-
malization P0 can be related to the mass assuming that clusters follow
the same scaled pressure profile. See Arnaud et al. (2010) for details.
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Fig. 3. Simulated SZ mocks to be compared with the NIKA data (Figure 2). The smoothing kernel and the contours are the same as Figure 2. From
left to right, we show a noiseless SZ realization, the same image with noise, the noiseless residual between the mock and the radial model, and the
residual including noise. The first, second and third rows correspond to model 1, model 2 and model 3, respectively. See Table 1 for the definition
of the models.
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Fig. 4. Comparison between the pressure and 1D SZ fluctuations probability distributions for model 1 (gaussian) and model 2 (lognormal), and
MACS J0717.5+3745 data. Left: probability density function of the pressure fluctuations 1 + δP/P̄ for model 1 (gaussian fluctuations) and model
2 (lognormal fluctuations). Middle: probability density function of the SZ fluctuations 1 +

δy

ȳ
for model 1 and model 2, without noise. Right:

probability density function of the SZ fluctuations 1 +
δy

ȳ
for model 1 and model 2, including noise, and comparison with MACS J0717.5+3745

NIKA data. The data and model were smoothed with a 10 arcsec FWHM gaussian kernel to reduce the noise. The mean distributions and error
bars were obtained from the mean and standard deviations, respectively, of 100 Monte Carlo realizations.

(i.e. the ω term) according to the smooth radial model (with
inner slope set to zero) and smoothed with a 20 arcsec FWHM
Gaussian kernel to minimize aliasing. We can see that the projec-
tion approach matches very well the mean brute force approach,
indicating that the approximations discussed in this Section are
robust over the full range of scales. The contribution of the
CIB is expected to be lower than the noise, but it is still non-
negligible. While model 1 is expected to be well detected, and
in fact match the data relatively well, model 3 is below the noise
and the CIB contributions. Model 2 is not represented because

it is very similar to model 1. The shaded regions provide the
standard deviation of the different power spectra, including that
of the pressure fluctuation model, which arise from the fact that
they intrinsically correspond to stochastic processes. The data
show both the auto spectrum of the full data and the cross spec-
trum of two independent equivalent data subsets. In both cases,
a clear excess associated with the injected signal is observed in
the range k ∼ 10−3−3 × 10−3 kpc−1. The auto-spectrum con-
verges to the expected noise mean at high k, where it dominates,
while the cross-spectrum is scattered around zero. The auto- and
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Normalization σ!

Slope α

Dissipation scale Ldis

Injection scale Linj

Fig. 5. Input pressure fluctuation power spectrum and its 2D projection. Left: input 3D pressure fluctuations power spectra for model 1, 2, and 3.
The grey area roughly corresponds to the observable modes with the NIKA data. Right: 2D SZ fluctuations power spectra for MACS J0717.5+3745
NIKA data, the noise contribution, the CIB contribution, and models 1 and 3 including the projection and brute force approaches. The shaded area
corresponds to the measured standard deviation of the respective spectra. For the data, error bars indicate the contribution from the noise and CIB
only in black, and account for the intrinsic scatter of model 1 in grey. We show both the auto spectrum of the full data, and the cross spectra of two
independent data subsets. For the later, the power spectrum may be negative, as indicate in the legend. The uncertainties due to the noise are

√
2

larger for the cross spectrum than for the auto spectrum.

cross-spectra agree very well on scales where the signal domi-
nates. The noise contribution dominates the uncertainties at high
k, while the intrinsic model scatter dominates at low k. In the
case of MACS J0717.5+3745, the CIB contribution to the uncer-
tainties is subdominant at all scales, although its mean contribu-
tion is not negligible.

5. Pressure profile and pressure fluctuation
inference

In Section 4, we discussed how to compute the SZ fluctua-
tions 2D power spectrum, and how to derive the correspond-
ing model given a 3D pressure fluctuation power spectrum
and radial model. Here we discuss the methodology imple-
mented in PITSZI to infer constraints on the radial model and
the pressure fluctuation power spectrum, and then apply it to
MACS J0717.5+3745 data.

5.1. Pressure profile

The fitting approach used to constrain the radial pressure pro-
file consists of comparing the model, including projection effects
and instrumental effects as described in Section 4.1, to the data.
While the ICM triaxiality can be modelled in three dimensions,
SZ data alone cannot constrain the ICM shape along the line
of sight (see, e.g. Kim et al. 2024, for such an analysis). There-
fore, in the fitting process, only a single axis ratio (assuming
qint = qmin) and the rotation angle φ3 (assuming φ1 = 0 and
φ2 = 90 deg) are fit. This corresponds to a fit of the ellipticity as
projected onto the plane of the sky. At this stage, PITSZI also
accounts for the map zero level as a nuisance parameter, since
it is generally unconstrained from SZ observations. In the end,
PITSZI allows for the fit of any pressure profile model param-
eters, the cluster centre, the cluster ellipticity, and the map zero
level.

Two different algorithms are implemented to constrain
the model: sampling of the parameter space via Markov
Chain Monte Carlo (MCMC) using the emcee package
(Foreman-Mackey et al. 2013), and the use of a non-linear least

square fit via the scipy.optimize.curve_fit package9. The
MCMC fit uses a Gaussian log likelihood computed as

ln L ∝
∑
m,n

(D − M)m

(
C−1

)
m,n

(D − M)n (22)

where D represents the unmasked data map, M the radial model,
and C the noise covariance matrix. In the present paper, we
neglect pixel-to-pixel correlations and only account for the noise
standard deviation in the fit. This is because obtaining the
full noise covariance matrix is computationally expensive, and
because its use essentially affects the posterior uncertainties on
the parameters which are dominated by systematic uncertainties
associated to the choice of radial model. In the case where the
posterior is well approximated by a multivariate Gaussian dis-
tribution, the MCMC and non-linear least square methods give
fully consistent results. In the present analysis, we will neglect
the statistical uncertainties associated with the fit parameters of
the radial model, because they are much smaller than the sys-
tematic uncertainties induced by the choice of the radial model.

Indeed, the choice of radial model is known to be key for sur-
face brightness fluctuation analysis (e.g. Dupourqué et al. 2023;
Romero et al. 2023) and is responsible for most of the systematic
uncertainties. Therefore, we explore the stability of the results by
using the following radial models (RM):
1. RM1: centre fixed to the X-ray peak (roughly consistent with

X-ray barycenter) and a spherical profile. The shape of the
pressure profile is fixed to the morphologically disturbed
model from Arnaud et al. (2010), and the mass M500 is the
only free parameter of the pressure profile. The model has
two free parameters (including the map zero level);

2. RM2: free centre, spherical profile, M500 fitted as the nor-
malization of the morphologically disturbed Arnaud et al.
(2010) pressure profile (2 + 1 + 1 = 4 parameters);

3. RM3: free centre, free elliptical shape, M500 fitted as the nor-
malization of the Arnaud et al. (2010) morphologically dis-
turbed pressure profile (2 + 2 + 1 + 1 = 6 parameters);

9 All parameters may be fixed, sharp limits can be imposed, and in the
case of MCMC, Gaussian priors can be used.
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Table 2. Best-fit parameters obtained for the different radial models.

RA Dec qint, maj φ3 M500 P0 rp a b c
– (deg) (deg) (–) (deg) (1014 M�) (10−2 keV cm−3) (kpc) (–) (–) (–)

RM1 109.3806 37.7583 1 – 18.1 – – – – –
RM2 109.3872 37.7530 1 – 21.7 – – – – –
RM3 109.3878 37.7528 0.77 23 26.5 – – – – –
RM4 109.3874 37.7525 0.74 24 – 11.7 852 – – –
RM5 109.3870 37.7543 0.71 21 – 10.5 463 6.6 7.4 0.06

Notes. Uncertainties on the radial model parameters are negligible compared to the systematic effects associated with the choice of the model, and
are thus omitted. The results shown here were obtained using the non-linear least square method.
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Fig. 6. Residual SZ maps between the data and the radial models under consideration. Contours are multiples of 3σ, and the maps have been
smoothed with a 15 arcsec FWHM gaussian kernel for visual purposes.

4. RM4: free centre, free elliptical shape, free gNFW pressure
profile normalization P0 and scale radius rp (2+2+2+1 = 7
parameters);

5. RM5: free centre, free elliptical shape, free gNFW pressure
profile (2 + 2 + 5 + 1 = 10 parameters).

In the case of elliptical profiles, we stress that the mass determi-
nation is driven by the shape and normalization of the pressure
profile along the major axis, so that its meaning should be taken
with caution (see Section 4.1.2). In the case of RM5, the profile
parameters being highly degenerate, we impose a flat prior on
the slopes of the gNFW model such that a ∈ [0, 5], b ∈ [2, 8],
c ∈ [0, 2] given the results from Planck Collaboration Int. V
(2013). On one hand, if the model is too simplistic, the clus-
ter potential well is not well represented, and we would expect
to observe excess residual features unrelated to pressure fluctu-
ations. On the other hand, models that are too complex would
be expected to overfit the pressure fluctuations. See Appendix C
for more discussion. Accordingly, we expect that our baseline
model RM3 should provide a fairly good compromise.

In Table 2, we give the best fit results obtained for the five
models. In Figure 6, we show the SZ residual maps. As expected,
the amount of SZ surface brightness residuals diminishes as a
function of increasing model complexity. While fitting for the
centre largely improves the residual, fitting for the ellipticity has
a smaller impact. The most complex model is able to account for
a substantial fraction of the fluctuations, and no large features
are observed visually in the residual. In Appendix D, we also
show that attempting to correct for the kSZ signal implies larger
residuals, in particular for model RM5.

5.2. Pressure fluctuations

With the radial model in hand, PITSZI can constrain the pressure
fluctuation model parameters given the data. The power spec-
trum of the data is extracted from the map S given by Equa-
tion (15), or from the cross spectra between two independent
maps. Data and model are then compared by processing the
model following the formalism discussed in Section 4.

Again, two fitting methods have been implemented: the
MCMC parameter space sampling, and a non-linear least-
squares fit. For the MCMC, the log-likelihood is defined, as for
the profile, under the Gaussian approximation10

ln L ∝
∑
m,n

(D − M)m

(
C−1

)
m,n

(D − M)n , (23)

where D corresponds to the power spectrum of the data, M is
the model power spectrum, and C is the covariance matrix. The
model is given for both methods by the sum of the different con-
tributions to the power spectrum

M ≡ M(k2D) = PICM(k2D) + AnoisePnoise(k2D) + ACIBPCIB(k2D).
(24)

Here, the quantity PICM(k2D) refers to the ICM pressure model,
which depends on the (fixed) pressure profile and on the pressure
fluctuation parameters. The nuisance parameters Anoise and ACIB
allow PITSZI to marginalize over the amplitude of the noise and
the CIB, to account for possible differences between the pre-
dictions and these components in the real data, and to check
for degeneracies with the pressure fluctuation model. The power
spectrum covariance matrix is given by the sum of the contri-
butions from the noise and the CIB. The contribution from the
pressure fluctuation can be added to account for sample variance
using a reference spectrum that matches the data. In practice,
we first fit the model without accounting for sample variance to
obtain a reference model, and then refit the data accounting for
the sample variance using the pressure fluctuation model covari-
ance given the best-fit model from the first step. We check that
the results are stable after only 1 iteration, given the relatively
high signal-to-noise ratio for MACS J0717.5+3745. The sample
variance is thus accounted for in the total error budget.

We apply this method to the NIKA data on
MACS J0717.5+3745. We fit for the pressure fluctuation

10 In practice, the probability distribution followed by the data is not
strictly Gaussian, especially for the first bins if the number of modes
that are averaged to extract the spectrum is low.
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Table 3. Constraints on the pressure fluctuation parameters.

Analysis Model σP Linj Anoise ACIB

(–) (kpc) (–) (–)

Reference† RM1 1.01+0.08
−0.11 3128+1322

−1792 1.06+0.04
−0.04 1.8+1.8

−1.3

Reference† RM2 0.63+0.03
−0.03 859+63

−62 1.01+0.04
−0.04 2.4+1.7

−1.6

Reference† RM3 0.58+0.04
−0.04 873+74

−75 1.04+0.04
−0.04 2.4+1.7

−1.7

Reference† RM4 0.68+0.07
−0.07 653+78

−78 1.03+0.04
−0.04 2.4+1.7

−1.7

Reference† RM5 0.27+0.11
−0.11 1010+410

−418 1.05+0.04
−0.04 2.5+1.7

−1.7

Cross-spectrum RM3 0.64+0.04
−0.04 812+71

−72 0 (fixed) 2.5+1.7
−1.7

kSZ template subtracted RM3 0.70+0.03
−0.03 852+49

−51 1.03+0.04
−0.04 2.4+1.7

−1.6

Point sources masked RM3 0.61+0.04
−0.04 851+72

−69 1.03+0.04
−0.04 2.4+1.7

−1.6

No radial model based weight RM3 0.70+0.04
−0.04 822+62

−62 0.98+0.04
−0.04 2.4+1.7

−1.7

MCMC fit RM3 0.58+0.03
−0.03 869+67

−60 1.04+0.04
−0.04 1.1+1.7

−0.8

Notes. The central value gives the median of the distribution and the uncertainties correspond to the 68% confidence intervals. The reference
values († symbol) were obtained with the following analysis choices: auto-spectrum, no kSZ correction, point sources subtracted, radial model
based weighting plus 2 arcmin radius region of interest, non-linear least square fit, and projection approach.

10 3 10 2

10 2

10 1

2
k2 P

(k
)

Pressure fluctuations
Noise
CIB
Best-fit model
Data (all uncertainties)
Data (noise uncertainties)

10 3 10 2

k (kpc 1)

5
0
5

Re
sid

ua
l (

)

10 3 10 2

k (kpc 1)

10 2

10 1

100

4
k3 P

(k
)

RM1
RM2
RM3
RM4
RM5

Fig. 7. Constraints on the fluctuation model obtained for the reference analysis. Left: comparison between the data and model for the 2D SZ
fluctuation power spectrum, in the case of radial model RM3. The residual shows the offset to the best-fit model relative to the uncertainties,
accounting or not for intrinsic model variance (sample variance). Shaded area provide 68% and 95% confidence intervals. Right: constraints on
the 3D pressure fluctuation power spectrum for the different radial model, with 68% confidence interval shown. The sample variance is included
in the error budget.

normalization σP, the injection scale Linj, and marginalize
over the noise (Anoise) and CIB (ACIB) normalization. Given
the scales sampled by the data, it is not feasible to fit for the
slope without large degeneracies with other parameters, and we
therefore fix it to α = −11/3 (see also Dupourqué et al. 2023,
2024). The impact of this choice on the results is discussed in
Appendix E. We use flat priors on parameters, as σP ∈ [0, 3],
Linj ∈ [50, 5000], Anoise ∈ [0, 5] and ACIB ∈ [0, 5]. However,
this only affects the results for the CIB normalization since it
is poorly constrained, so that we marginalize over its uncertain
amplitude within a large range. We use RM3 as our baseline
radial model, but since this choice is the main source of uncer-
tainty, we also provide the results for the other models. The
pressure fluctuations are assumed to follow Gaussian statistics,
and trace the velocity field. In terms of methodology, we make
the following choices as a reference: the auto-spectrum is used
(we note that when using the cross-spectrum between two data
subsets, the noise amplitude is fixed to zero since the two sets

are independent); no kSZ correction is performed; the point
sources are subtracted but not masked ; the weight map (ω)
is defined as being proportional to the radial model Compton
parameter map multiplied by the binary mask (2 arcmin radius
region of interest, plus point sources if relevant) and smoothed
with a 20 arcsec FWHM Gaussian kernel, giving more weight
to the inner part of the cluster; the non-linear least square fit is
used; the projection approach is used. Nevertheless, we provide
the results when varying all of these choices. For the non linear
least square fit, the best fit parameters and their covariance
matrix is used to produce multivariate Gaussian distributions
as the constraint in the parameter space, accounting for sharp
limits on the parameters.

Numerical results of the fits are listed in Table 3. In Figure 7,
we show the constraints in terms of the 2D power spectrum and
the corresponding constraints in terms of the 3D power spec-
trum, for our reference analysis choice RM3. Figure 8 provides
the posterior constraints on the parameter space, focusing only
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Fig. 8. Top: constraints in the parameter space for models RM2, RM3
and RM4. Other extreme models are not shown for clarity. Contours
correspond to the 68 and 95% confidence intervals. Bottom: comparison
between the constraints obtained on RM3 for the full MCMC sampling
and the non linear least square approximation methods, in the case of
RM3.

on the non-extreme models RM2, RM3 and RM4 for clarity.
As expected, the value of σP and Linj tends to decrease with
model complexity, from RM1 to RM5, although the value of
Linj is nearly unconstrained for RM5, which explains its high
central value. Excluding the two extremes (RM1 and RM5), the
results are relatively stable with respect to the choice of the radial
model. This can also be observed in the 3D power spectrum con-
straint and the parameter space constraint.

The statistical uncertainty on the normalization σP is of
the order of 10%, while the injection scale is also well con-

strained, with similar precision. If the injection scale is poorly
constrained, for instance because the power spectrum peak falls
beyond the scales accessible from the data (RM1) or because the
fluctuations have been absorbed in the radial model (RM5), the
uncertainties increase significantly. The systematic uncertainty
due to the radial model is much larger than the statistical uncer-
tainty when including all radial models (about 50%), but these
uncertainties are comparable when excluding the two extreme
radial models (see also Appendix C for an attempt to quantify
the systematics induced by these models). We also show that
the analysis choices have a minor impact on the results as they
are all nearly compatible within the statistical uncertainties. The
main changes are observed in the case of the kSZ template sub-
traction and the change of the weighting scheme, which effec-
tively slightly changes the power spectrum extraction region
under consideration. They both imply a slightly higher pressure
fluctuation amplitude (by about 3σ). Given the relatively high
signal-to-noise detection of the pressure fluctuations, the param-
eter posterior distribution is nearly Gaussian, so that the MCMC
fit and the non-linear least squares method are fully consistent
for σP, Linj and Anoise. The CIB normalization is compatible with
unity, but is poorly constrained. As its posterior distribution sig-
nificantly deviates from that of a Gaussian, the CIB constraints
given in Table 3 for the non-linear least squares and MCMC fits
differ. The noise normalization is well constrained and is com-
patible with unity, indicating that it describes the data well.

6. Implications for the non-thermal ICM physics

The constraints on the pressure fluctuation power spectrum give
information on the non-thermal physic of the ICM, assuming
the fluctuations are directly related to the turbulence. In this
Section, we explore the physical consequences of the measure-
ments obtained above, compare the results with other work, and
discuss limitations and caveats of the method.

In PITSZI, the physical interpretation is implemented in the
class Physics (see Figure 1), essentially as a list of functions
that encode the equations described in detail below, and the
results from the literature used here. As will be discussed fur-
ther later, we stress that the results derived here are subject to
several assumptions and are limited by systematic uncertainties,
in particular due to the choice of the radial model.

6.1. From the power spectrum to non-thermal physics

The power spectrum of the pressure fluctuations is related to the
turbulent 3D Mach number, as characterized by numerical sim-
ulations (e.g. Gaspari et al. 2014; Mohapatra et al. 2020, 2021,
2022; Zhuravleva et al. 2023). For instance, assuming adiabatic
perturbations, the relation obtained by Gaspari et al. (2014) for
density perturbations becomes, when expressed as pressure per-
turbations

M3D =
4
γ

AδP/P̄(kpeak)
(

Linj

500 kpc

)−s

, (25)

where AδP/P̄(kpeak) is the peak of the characteristic amplitude
of the pressure fluctuation power spectrum (Equation (6)). The
slope s ' 0.25 gives a small correction as a function of injection
scale. In contrast, Zhuravleva et al. (2023) provide a scaling of
the Mach number with the integrated power spectrum (∝σP), for
pressure perturbations, accounting for a radial dependence and
for different dynamical states. These relations read
M3D
√

3
= a + b ×

r
R500

+ c ×
δξ

ξ
, (26)
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Table 4. Non-thermal ICM physics derived from our reference analysis.

Model M3D σv
Pkin

Pkin+Pth
bHSE,∆=2500

(†) bHSE,∆=500
(†)

(–) (km/s) (–) (–) (–)

RM1 0.82+0.16
−0.16

(
+0.04
−0.06 stat.

)
1618+334

−323

(
+74
−115 stat.

)
0.27+0.08

−0.08

(
+0.02
−0.03 stat.

)
0.33+0.07

−0.06

(
+0.007
−0.010 stat.

)
0.41+0.05

−0.05

(
+0.005
−0.008 stat.

)
RM2 0.62+0.11

−0.11

(
+0.02
−0.02 stat.

)
1221+220

−230

(
+41
−45 stat.

)
0.170.05

0.05

(
+0.01
−0.01 stat.

)
0.30+0.06

−0.06

(
+0.004
−0.004 stat.

)
0.38+0.05

−0.05

(
+0.003
−0.003 stat.

)
RM3 0.59+0.20

−0.19

(
+0.02
−0.03 stat.

)
1176+404

−385

(
+43
−52 stat.

)
0.16+0.10

−0.08

(
+0.01
−0.01 stat.

)
0.29+0.07

−0.06

(
+0.004
−0.005 stat.

)
0.38+0.05

−0.05

(
+0.003
−0.004 stat.

)
RM4 0.64+0.21

−0.21

(
+0.04
−0.05 stat.

)
1261+421

−413

(
+87
−90 stat.

)
0.18+0.10

−0.09

(
+0.02
−0.02 stat.

)
0.30+0.06

−0.06

(
+0.008
−0.009 stat.

)
0.39+0.05

−0.05

(
+0.006
−0.007 stat.

)
RM5 0.28+0.17

−0.14

(
+0.10
−0.11 stat.

)
545+332

−273

(
+205
−226 stat.

)
0.04+0.06

0.03

(
+0.04
−0.03 stat.

)
0.24+0.07

−0.06

(
+0.021
−0.023 stat.

)
0.34+0.06

−0.05

(
+0.017
−0.021 stat.

)
Notes. The reported values correspond to the median of the distribution, and the uncertainties account for both the statistical uncertainties in the
power spectrum measurement and the scatter in the relation derived by Zhuravleva et al. (2023). The uncertainties obtained when ignoring the
scatter are given in parenthesis. (†) These results were obtained with the scaling of Equation (26) (sum) but no significant change is observed when
using Equation (27) (product) instead.

Fig. 9. Constraints on the non-thermal ICM parameters. From left to right: constraints on the 3D Mach number, the velocity dispersion, the kinetic
to total pressure, and the hydrostatic mass bias at R500 . The constraints for the different radial models are shown with different colours, as indicated
in the legend. The top panels provide the constraints obtained without accounting for the scatter in the relation by Zhuravleva et al. (2023), while
in the bottom panels this scatter is accounter for.

or

M3D
√

3
= a ×

(
r

R500

)b

×

(
δξ

ξ

)c

, (27)

where a, b and c are coefficients that depend on the dynamical
state and the choice of scaling relation (see their Table 1 and
their Fig. 6, for the pressure). Here, we have converted our nor-
malization to the natural logarithm based normalization used by

Zhuravleva et al. (2023), σln =

√
log

((
1 +

√
1 + 4σ2

P

)
/2

)
, and

we have used their notation, δξ/ξ = 2
√

2log (2)/log (10)σln.
Applying the results from Zhuravleva et al. (2023), ignoring the
radial dependence and accounting for the ellipticity of our mod-
els (their Fig. 6), we obtain the 3D Mach number values listed
in Table 4; Figure 9 shows the corresponding probability dis-
tribution of the Mach number. For the intermediate model RM3,
M3D ∼ 0.6. Error bars were computed by propagating the uncer-
tainty on the power spectrum parameters and including the scat-
ter from the relation by Zhuravleva et al. (2023) via Monte Carlo
realizations. As we can see, the scatter in the relation dominates

over the statistical error, but it remains smaller than the system-
atic effect due to the choice of the radial model.

The 3D Mach number is related to the velocity dispersion σv
via

M3D =
σv
cs
, (28)

where cs is the sound speed, which depends on the gas tempera-
ture Tgas as

cs =

√
γkBTgas

µgasmp
. (29)

Here γ = 5/3 is the gas adiabatic index, kB the Boltzmann con-
stant, µgas ' 0.61 the gas mean molecular weight and mp the
mass of the proton. Here we assume a mean temperature Tgas =
15 keV (Adam et al. 2017a). This implies that cs = 1981 km/s.
We list the corresponding values in Table 4 and show the proba-
bility distribution of this parameter in Figure 9. For the interme-
diate model RM3, we obtain σv ∼ 1200 km/s.
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The ratio between kinetic and thermal ICM pressure is
related to the Mach number as

X =
Pkin

Pth
=

1
2
γ (γ − 1)M2

3D. (30)

We use this equation to derive the kinetic to kinetic plus ther-
mal pressure ratio. Our findings are listed in Table 4, and are
displayed in Fig. 9. We obtain Pkin/Pth+kin ∼ 0.16 for RM3.

The hydrostatic equilibrium assumption is often used to
obtain estimates of the mass of galaxy cluster via (Pratt et al.
2019)

MHSE(< r) = −
r2

Gρgas(r)
dPth(r)

dr
, (31)

using the gas density, ρgas, and thermal pressure estimates, Pth,
derived from SZ or X-ray observations, with G being New-
ton’s constant. However, turbulent gas motions will contribute
to balance the gravitational field and will induce a bias in the
hydrostatic mass if they are non-negligible. Turbulent motions
expected to dominate the hydrostatic mass bias (Pratt et al.
2019). Thanks to Equation (30), we can compute a corrected
mass profile, Mcorr, by substituting the thermal pressure with
the thermal plus kinetic pressure: Pth(r) → Pth(r) + Pkin(r) =
(1 + X(r)) Pth(r). The mass bias profile is then obtained from

bHSE = 1 −
MHSE(< r)
Mcorr(< r)

. (32)

The mass bias at an overdensity ∆ is given by bHSE,∆ = 1 −
MHSE(R∆,HSE)
Mcorr(R∆,corr)

, where R∆ is estimated by integrating the mass pro-
file such that the enclosed density within R∆ reaches ∆ times the
critical density of the Universe. In the following, we perform
our calculations by using as a reference the gas density profile
obtained from XMM-Newton observation used in Adam et al.
(2017a) and the pressure profile of model RM1, as it is cen-
tered on the X-ray peak. The kinetic pressure correction, X, is
obtained via Equation (30) using the Mach number derived from
the scaling by Zhuravleva et al. (2023) given in Equation (26),
as a function of radius. The statistical uncertainties arising from
the pressure fluctuation power spectrum are also accounted for,
but these are subdominant. Our estimates of the kinetic pressure
correction, except for model RM1, use radial pressure models
for which the centre is not fully consistent with that for the ther-
mal model (density and pressure). However, the results obtained
for the hydrostatic mass bias are barely affected by the exact
choice of thermal model. This is because to first order the bias
corresponds to a relative difference with respect to the perfect
hydrostatic equilibrium model, such that changes in the exact
reference model are not important, at least compared to other
uncertainties. Our findings are listed in Table 4 and shown in
Figure 9. We obtain bHSE,∆=2500 ∼ 0.3 and bHSE,∆=500 ∼ 0.4.

6.2. Discussions: Comparison with previous work

Recently, Heinrich et al. (2024) used Chandra data to infer the
ICM turbulence from X-ray surface brightness density fluctu-
ations. In their sample of 80 clusters, they found the highest
characteristic velocities for MACS J0717.5+3745. For this clus-
ter, they obtain measurable density perturbations in the range of
scale of about k ∈ [2, 10] Mpc−1, which presents a good overlap
with our measurement, as we have a significant signal at scales of
about k ∈ [0.8, 4] Mpc−1. They obtained a Mach numberM3D '

0.47, a velocity dispersion in the range ∼1000–1300 km/s, and

a kinetic to total pressure fraction Pkin/ (Pkin + Pth) in the range
∼7.8–18.9%. These results are in excellent qualitative agreement
with our findings (Table 4), indicating that we are indeed probing
the same physical process with these SZ observations, and that
systematic effects are limited. In fact, combining the SZ pressure
and X-ray density fluctuations, it is possible to constrain the ther-
modynamic nature of the turbulence itself. The pressure (P) and
density (ρ) perturbations are related via

δP
P̄

= Γ
δρ

ρ̄
, (33)

with Γ = [0, 1, 5
3 ] for isobaric, isothermal, and adi-

abatic fluctuations, respectively. Heinrich et al. (2024)

measured (δρ/ρ̄)k ≡ Aδρ/ρ̄(k3D) =

√
4πk3

3DPρ,3D(k3D)
at R2500 = 507 kpc for MACS J0717.5+3745, obtain-
ing Aδρ/ρ̄(1/R2500) = 0.329+0.164

−0.110. Combined with our
measurement at the same scale, AδP/P̄(1/R2500) =

[0.47+0.04
−0.02, 0.39+0.02

−0.02, 0.37+0.02
−0.02, 0.40+0.03

−0.04, 0.15+0.06
−0.06] we esti-

mate Γ = [1.43+0.72
−0.50, 1.18+0.59

−0.40, 1.12+0.56
−0.38, 1.22+0.62

−0.42, 0.46+0.29
−0.25] for

models RM1 to RM5, respectively. These values agree with
those expected for adiabatic or isothermal perturbations, but
exclude isobaric perturbations (except for RM5, which sits
between isobaric and isothermal). Nevertheless, we note that the
two analyses are not necessarily self-consistent since the radial
model may be incompatible (e.g. the cluster centre differs).
In the future, a joint analysis of SZ and X-ray perturbations
at the surface brightness level, with joint radial modelling,
may be effective in better constraining the nature of the ICM
fluctuations.

We also compared the velocity dispersion obtained via the
pressure fluctuations measurement to that obtained directly using
the kinetic SZ effect (Sayers et al. 2013; Adam et al. 2017b). We
used the ICM line of sight velocity maps derived by Adam et al.
(2017b) under the assumptions of their two ICM density mod-
els F1 and F2. The image standard deviation, extracted within
their mask, which roughly matches our region of interest, gives
σkSZ ' 1500 km/s and σkSZ ' 1300 for their models F1 and
F2, respectively. Although the comparison is limited because
of projection effects, noise contamination in the kSZ velocity
image, and because the kSZ is only sensitive to the line of
sight velocity component, the two measurements compare well.
This could indicate that the velocity measured via kSZ, which
is essentially dominated by the bulk velocity of the sub-cluster
components, corresponds well to the injection of turbulence on
the largest scales, that will eventually cascade and dissipate at
smaller scales.

The kinetic to thermal pressure support in galaxy clusters has
been predicted using numerical simulations (Shaw et al. 2010;
Battaglia et al. 2012; Nelson et al. 2014). Using the relation
between Mach number and the pressure fluctuation power spec-
trum obtained by Zhuravleva et al. (2023), we can estimate this
quantity via Equation (30) and compare our results with expecta-
tions. The comparison is shown in Figure 10, where we account
for both statistical uncertainties in the power spectrum constraint
and the scatter in the relation by Zhuravleva et al. (2023) that we
use. As we can see, our estimates compare well with expecta-
tions, although we are limited by the uncertainty in the shape
of the radial dependence both in the predictions from numerical
simulations and in the scaling relation that we use. Apart from
model RM5, our results are generally slightly above the predic-
tions, which might be anticipated since MACS J0717.5+3745 is
one of the most dynamically active clusters in the Universe.
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Fig. 10. Kinetic to thermal plus kinetic pressure ratio and hydrostatic mass bias as a function of radius. Constraints are obtained using the scaling
relation of Zhuravleva et al. (2023) given in Equation (26) (sum, left panel) and Equation (27) (product, right panel). Error contours account for
the statistical uncertainties in the power spectrum measures and the scatter in the relation by Zhuravleva et al. (2023). Top: kinetic to thermal plus
kinetic pressure ratio constraint and comparison to expectations from numerical simulations (Shaw et al. 2010; Battaglia et al. 2012; Nelson et al.
2014). Here we assumed M500 = 26.5 × 1014 M� according to the result from model RM3, but this choice does not significantly affect our results.
Bottom: hydrostatic mass bias profile computed as b ≡ 1 − MHSE

Mcorr
. The results from RM2 and RM4 were omitted for clarity, but they lie between

models RM1 and RM3, and RM3 and RM5, respectively.

In Figure 10, we also derived a constraint on the hydro-
static mass bias profile, for which we observed a strong radial
shape dependence on the choice of the scaling relation used to
obtain the constraint. The two converge at r & 300 kpc and we
obtain a bias of ∼0.15–0.3. When comparing directly the recov-
ered masses at overdensity ∆, this increases to bHSE,∆=2500 ∼ 0.3
and bHSE,∆=500 ∼ 0.4. Such a value corresponds to that generally
assumed to reconcile CMB cosmological constraints with cluster
counts from Planck (e.g. Planck Collaboration XX 2014). How-
ever, it is obtained for a single cluster exhibiting extreme dynam-
ical activity, that is not representative of the full population.
Application of the same analysis to other clusters is likely to lead
to much lower values for the bias. Moreover, these results are
affected by strong assumptions and limitations, which we dis-
cuss next, and which prevent us from drawing any strong con-
clusions.

6.3. Discussion: Limitations, approximations, and systematic
effects

The results presented in this paper are intrinsically limited
by choices in the analysis and systematic effects, in addi-
tion to assumptions regarding the nature of the signal that

we are actually probing. It should again be stressed that
MACS J0717.5+3745 is an extremely complex system. While
it is an excellent target to develop the methodology presented in
this paper, the signal that we are extracting is likely to be affected
not only by turbulent motions, but also by bulk motions, clump-
ing, or a residual kSZ signal.

Considering MACS J0717.5+3745 as a single cluster is also
a strong approximation: it could be thought as a single object
with strong internal activity and strong pressure fluctuations, as
we did, or could be considered as a set of still nearly indepen-
dent sub-clusters. Consequently, we could wonder what part of
the signal should be included in the hydrostatic component and
what part should go to the fluctuations. This question reflects
in the issue of the choice of the radial model, which has been
intensively discussed in the literature. It is an obvious issue for
MACS J0717.5+3745, but it should affect all clusters to some
extent, not only strong mergers (e.g. Romero et al. 2023, for
discussion). Here we have attempted to estimate the associated
uncertainty by applying a number of radial models and bracketing
our results with two extreme models. Despite these limitations,
our results provide a step forward in the attempt of characterizing
the non-thermal physics of the ICM from resolved SZ data, and
we can still compare our finding with alternative observations.
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The model which we use to describe the power spectrum of
the pressure fluctuations consists in a single power law that is
truncated with an exponential cutoff at the injection scale and
at the dissipation scale. However, the true power spectrum is
likely to be more complicated, especially in a merging clus-
ter with multiple components such as MACS J0717.5+3745.
Indeed, different physical processes could inject turbulence at
different scales, with different power spectra, and in different
regions of the cluster. The present model will therefore encapsu-
late all these contributions into a single global component. The
large-scale cutoff may also differ from an exponential. Although
it would be very difficult to constrain its shape from the data,
because uncertainties are strongly increasing at these scales, this
choice could affect the results. We expect that a sharper (softer)
cutoff would lead to a smaller (larger) Mach number since the
latter scales with the integral of the power spectrum in our anal-
ysis. The choice of the power spectrum model is likely to be one
of the strongest assumptions of the present work.

In the present paper, we have implemented an analysis frame-
work based on the projection of the 3D pressure fluctuation power
spectrum to the 2D SZ fluctuation power spectrum. This involves
a linear scaling between the 2D and the 3D spectra, which is com-
pletely accurate only for a flat surface brightness and at scales that
are sufficiently small, particularly compared to the injection scale.
While we have shown that this method leads to only.10% bias on
the model predictions in our context, future work will likely ben-
efit from avoiding such approximations to obtain a more reliable
model in any configuration and at all scales. This could be done
via the use of simulation based inference techniques, as applied
in (e.g. Dupourqué et al. 2023, 2024).

The pressure fluctuation power spectrum measure is directly
obtained from SZ data. When deriving the non-thermal ICM
physical properties in Section 6, we relied on scaling relations,
calibrated from numerical simulations, to connect the pressure
fluctuation power spectrum to the turbulence via the 3D Mach
number. Here we have focused on the relations calibrated by
Zhuravleva et al. (2023), but testing the implications of different
relations based on different simulations could be valuable. We
also noted that the scatter in the relation between the pressure
fluctuation power spectrum and the 3D Mach number was one
of the main sources of uncertainty when extracting non-thermal
information on the ICM.

In the present work, we did not attempt to measure the evo-
lution of the power spectrum in different radial bins because we
were already limited in terms of the spatial scales accessible with
the NIKA data. This implied that our measurement was only
used to fix the normalization of the 3D Mach number, and we
relied on the radial trend given by the scaling relations from
Zhuravleva et al. (2023) when deriving the non-thermal radial
profiles. In the future, the NIKA2 data should allow us to probe
larger scales, owing to the larger field of view of its camera
(Adam et al. 2018a), thus allowing us measure pressure fluctu-
ations further out of the cluster core and split the data into differ-
ent radial bins to directly constrain the radial evolution from the
data.

We used a fixed mean gas temperature across the clus-
ter when extracting the turbulent velocity dispersion. However,
MACS J0717.5+3745 contains complex temperature structure
which significantly varies over the core region (Adam et al.
2017a). This implies that even when using a fixed Mach number,
the velocity dispersion should present significant spatial varia-
tions, which we did not consider here.

Finally, and as already mentioned in Section 6.2, the combi-
nation of X-ray and SZ fluctuation measures is in principle very

valuable to constrain the nature of the fluctuations. However, we
only used the measured constraints on the power spectra and
combined pressure and density fluctuation estimates a posteriori.
In addition to the coherence of the radial model that is not guar-
anteed here, such a combination does not allow one to truly test
that the measured fluctuations arise from the same physical ori-
gin. In the future, applying cross correlation techniques between
the different observables should be efficient in testing the true
nature of the fluctuations, and in limiting systematic effects that
are not correlated between SZ and X-ray observables.

7. Summary and conclusions

In this paper, we presented new developments made to mea-
sure the pressure fluctuation power spectrum of the diffuse gas
in galaxy clusters using resolved SZ data. This led to the con-
struction of the PITSZI software suite, which is publicly avail-
able. PITSZI allows one to model the ICM pressure distribution,
accounting for the radial (possibly triaxial) component and the
fluctuations (gaussian or lognormal) described by a power spec-
trum. The software can be used to produce mock data and to
constrain SZ pressure fluctuations via different fitting methods.
PITSZI has been developed and extensively tested with NIKA
and NIKA2 data, but it can in principle work with any SZ imag-
ing data (e.g. Planck, SPT, ACT, Bolocam, MUSTANG, MUS-
TANG2, NIKA, NIKA2).

The code was applied to the triple merging cluster
MACS J0717.5+3745. We summarize our main findings below.

– The methodological framework developed in PITSZI
improves over previous analyses. In particular, the power
spectrum model prediction was shown to be accurate to
within less than 10% for realistic ICM models. Addition-
ally, PITSZI allows us directly to constrain the 3D pres-
sure fluctuation power spectrum parameters using a Bayesian
approach.

– We reported a high significance detection of pressure fluc-
tuations within ∼θ500/2. By modelling and fitting the power
spectrum with an exponential cutoff powerlaw with a single
injection scale, we obtained a large amplitude, σP ' 0.6.
The injection scale, Linj ' 800 kpc corresponds to expecta-
tions from merger driven energy injection. Given the scales
sampled by the data and the sensitivity that was achieved, it
was not possible to constrain the slope, which was fixed to
the canonical value of α = −11/3.

– Because of projection effects, the instrument response and
the noise in the data, it was not possible to distinguish Gaus-
sian from lognormal perturbations despite the large ampli-
tude of the fluctuations. As projection effects dominate, we
anticipate that it will be extremely challenging to differen-
tiate the two, even with improved observations. This result
contrasts with the measurement reported in Khatri & Gaspari
(2016) for the Coma cluster with Planck.

– The origin and nature of the detected fluctuations may be
questionable in such a complex merging system, particu-
larly given the presence of a known kSZ signal, and the fact
that the choice of the radial (smooth) model plays a crucial
role regarding this issue. We have provided a first attempt to
quantify the induced systematic effects. We found that fitting
a radial model to the data filters the fluctuations by a fac-
tor that increases with increasing model complexity, reach-
ing 80% for the most complex test models. On the other
hand, a model that is too simplistic was found to induce
spurious fluctuations that could overshoot the true signal,
even for large fluctuations for the most simple model. These

A182, page 17 of 23



Adam, R., et al.: A&A, 694, A182 (2025)

systematic effect were found to act mainly on scales k .
1/Linj. By testing radial models with different complexity,
we have attempted to bracket the systematics linked to the
choice of radial model, but we conclude that this issue is
still the most critical when performing quantitative fluctua-
tion analyses.

– Assuming that the measured pressure fluctuations are
related to turbulence, the estimated power spectrum of
MACS J0717.5+3745 implies a 3D Mach number of about
M3D ∼ 0.6. This corresponds to a kinetic to thermal pressure
fraction Pkin/Pth+kin ∼ 0.2. Given the cluster mean tempera-
ture, this implies a very large velocity dispersion σv ∼ 1200
km/s. Our measurement aligns very well with previous con-
straints from X-ray surface brightness fluctuations based on
the ICM density. This may indicate that the ICM perturba-
tions are likely adiabatic in nature. Interestingly, we note that
the turbulent velocity dispersion constraint also qualitatively
matches the direct measurement obtained from kinetic SZ
measures (Sayers et al. 2013; Adam et al. 2017b).

– Assuming that turbulence is the main driver of the hydro-
static mass bias, we derive a value of bHSE ∼ 0.3−0.4,
depending on radius and on the considered model.
Future high-resolution X-ray spectroscopic data will allow

us to calibrate the relation between the pressure fluctuation spec-
trum and the true turbulent velocity spectrum using real data.
As high-resolution X-ray spectroscopy will remain much more
expensive than deep SZ imaging, especially at high redshift,
pressure fluctuation analyses are likely to become an impor-
tant tool for investigating ICM turbulence. In fact, the method-
ology presented in this paper should be applied to any other
cluster sample. PITSZI is in continuous development. In par-
ticular, the implementation of simulation based inference meth-
ods (Dupourqué et al. 2023, 2024) are ongoing, with the aim of
accounting for sample variance in a more efficient way, which is
crucial when dealing with cluster samples. In addition, joint con-
straints from SZ plus X-ray images are also being considered,
and could provide further interesting insights into the nature of
the perturbations at play.

Data availability

The data used in this work are publicly available at https:
//lpsc.in2p3.fr/NIKA2LPSZ/nika2sz.release.php. See
Adam et al. (2018b) for the corresponding article. The PITSZI
code, together with several example notebooks, is available at
https://github.com/remi-adam/pitszi.
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Fig. A.1. Example of a CIB realization at 150 GHz obtained using the
PYSIDES code (Béthermin et al. 2022).

Appendix A: Contribution from diffuse
backgrounds and foregrounds

A.1. Cosmic infrared background (CIB)

The CIB is one of the major contaminants in SZ fluctuation anal-
yses, at least in the case of the scales probed with NIKA data.
We use the method developed in Béthermin et al. (2017) to con-
struct the mock realizations used in this paper. We apply the
PYSIDES code (Béthermin et al. 2022) to the UCHUU simula-
tions (Ishiyama et al. 2021). We obtain a source catalogue with
sky positions, redshift and the NIKA 150 GHz fluxes over a
2 deg2 region. We then split the catalogue into 1000 indepen-
dent regions of 10 × 10 arcmin2. From each of them, a CIB map
was generated by summing the contribution from the sources in
the catalogue, which we modelled given their flux, relative posi-
tion with respect to the centre, and the NIKA 150 GHz Gaus-
sian beam. Catalogue entries for which the flux is above the
NIKA detection threshold (taken as 0.4 mJy, corresponding to
2σ, Adam et al. 2017b) were removed to avoid including sources
that would be subtracted or masked in real data. In Figure A.1,
we show an example of one of the CIB realizations. These Monte
Carlo realizations were used to model and account for the CIB
along the analysis.

A.2. Undetected low mass halos

We also considered the contribution from undetected low mass
galaxy clusters in the field. We estimated the expected number of
clusters in a 30× 30 arcmin2 field by integrating the Tinker et al.
(2008) mass function across bins of redshift (0 < z < 3) and
mass (2 × 1013M� < M500 < 3 × 1015M�). We then drew the
number of clusters from a Poisson distribution based on this esti-
mate, and assigned each cluster a mass and redshift drawn from
the mass function, along with a random position in the field. We
repeated this process to obtain a 1000 mock cluster catalogues.
Assuming spherical symmetry, we modelled the cluster’s elec-
tronic pressure profile with a gNFW profile (Nagai et al. 2007),
which was then integrated along the line of sight to obtain the
Compton parameter profile of the cluster. By summing each
cluster’s contribution we obtained simulated maps of the tSZ

signal. The modelling was undertaken using the minot Python
package (Adam et al. 2020). The maps were convolved with the
NIKA instrument response function (beam and transfer function)
and used to compute its associated power spectrum as described
in Section 4.2.3. We found that given the present analysis frame-
work and the scales that we probe, the contribution from unde-
tected low mass clusters is about two orders of magnitude lower
than that of the CIB, and therefore fully negligible.

Appendix B: Uncertainties and systematics in the
recovered power spectrum due to the
methodology

In this Appendix, we quantify the systematic uncertainties in the
power spectrum modelling discussed in Section 4. We first com-
pared the SZ fluctuation power spectrum measured after per-
forming Monte Carlo simulations to that predicted using the
framework discussed in Section 4.1.4, in order to test the pro-
jection assumptions (Equation 13). We then compared the power
spectrum obtained from Monte Carlo realizations, including the
instrument response function and data weighting, to that pre-
dicted from the modelling methodology discussed in Section 4
in order to test the overall uncertainties associated with the mod-
elling of the pressure fluctuation power spectrum.

Figure B.1 presents the comparison between the Monte Carlo
and the model for projection only (top) and accounting for
instrumental and weighting effects (bottom). The comparison is
performed assuming a morphologically disturbed Arnaud et al.
(2010) pressure profile, but we also show the impact of chang-
ing this model to a cool-core profile. The fluctuations were set to
σP = 0.5, α = −11/3, Ldis = 1 kpc, and Linj was varied to change
the power spectrum shape since this is key for the comparison.
As we can see, the model predictions are accurate within ∼ 10%
at scales above or near the peak, k & 1/Linj. At large scales,
we observe larger deviations for k << 1/Linj, as expected (see
Section 4.1.4). These deviations are larger for more peaked pro-
files, such as the cool-core profile in the test shown here. How-
ever, they appear in a regime where the power spectrum drops
significantly with respect to the peak value and where it cannot
be measured in practice.

We conclude that systematic uncertainties in the power spec-
trum modelling are negligible compared to other uncertainties
in the present work. While we only show the case of a refer-
ence spectrum and profile, we have checked that these results
are robust against the choice of the model and analysis param-
eters. We also note that the methodology developed here sig-
nificantly improves over currently used derivations of the power
spectrum, which essentially rely on the delta variance framework
from Arévalo et al. (2012). For more details, we point the reader
to the extensive discussions in Romero (2024), who show that
power spectrum modelling uncertainties can reach a factor of a
few, depending on the input power spectrum.

Appendix C: Systematic uncertainties associated
with the radial model

The systematic effects associated with the radial model are
twofold. Firstly, the chosen radial model may not adequately
represent the cluster, such that differences will induce spurious
SZ fluctuations. Secondly, fitting the radial model to the data is
likely to absorb part of the fluctuations. In this Appendix, we
attempt to estimate the magnitude of these systematic effects.
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Fig. B.1. Comparison between the expected and the recovered (mean of
Monte Carlo realizations) pressure fluctuation power spectra. The bias,
shown at the bottom of each panel, is defined as the ratio between the
two and we show the ±10% interval as a dashed line. Error bars corre-
spond to the uncertainties on the mean associated with the variability of
Monte Carlo realizations. Top: comparison after projection only, i.e. we
are testing the validity of Equation 13. The bias is larger than a factor
of 1.3 only for the lowest bin for the blue curve, at scales well above
the peak. Bottom: comparison when including projection effects, the
instrument response function and masking, i.e. we are testing the frame-
work discussed in Section 4. The labels A10MD and A10CC refer to
the morphologically disturbed and cool-core pressure profile models of
Arnaud et al. (2010), respectively.

Fluctuation removal from the radial model fit The first test
consists of simulating SZ images, fitting the radial component
according to the different models used in this paper, and compar-
ing the resulting fluctuation power spectra to the one expected.
Since any change in the radial model will also affect the con-
version from the SZ 2D to the pressure 3D power spectrum, the
SZ fluctuation power spectrum has to be normalized by C(eff)

3D→2D.
Instrumental and masking effects are neglected because they
affect all the simulated data in the same way. The induced bias is
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Fig. C.1. Estimate of the bias induced by the radial model as a func-
tion of wavenumber. Top: bias induced by the removal of fluctuations
implied by the fit of the radial model (Equation C.1). Bottom: excess
fluctuations induced by the mismodelling, relative to a reference pres-
sure fluctuation power spectrum (σP = 0.5, Linj = 750 kpc, α = −11/3
and Ldis = 1 kpc). The different colours represent the different models,
according to Section 5.1. In the right panel, the different line styles refer
to the different input radial model. In both panels, the vertical dashed
line gives k = 1/Linj.

thus computed as

bias =

(
Pωδy/ȳ/C

(eff)
3D→2D

)
fitted RM(

Pωδy/ȳ/C
(eff)
3D→2D

)
true RM

. (C.1)

In the top panel of Figure C.1, we show the mean bias
induced by radial model fitting to the data, as a function of k,
obtained by averaging 100 mock realizations. The model used
to generate the noiseless mocks was set to a spherical, morpho-
logically disturbed (Arnaud et al. 2010) pressure profile (M500 =
2.5 × 1015 M�), and the pressure fluctuations were defined as
lognormal with σP = 0.5, Linj = 750 kpc, α = −11/3 and
Ldis = 1 kpc. The fitted radial models are those discussed in
Section 5.1. We note that in the context of this test, the models
should perfectly fit the mocks in the absence of fluctuations. We
can see that increasing the model complexity implies an increas-
ing removal of fluctuations. Most of the filtering appears on large
scales since the models are relatively smooth. Up to about 50%
filtering is observed near the power spectrum peak and up to
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80% on larger scales, for the most complex models. The bias
converges to ∼ 1 on small scales.

Incorrect radial model-induced bias Quantification of the
impact of an incorrect radial model choice on the results is
more difficult, since the true model of MACS J0717.5+3745 is
unknown. Moreover, the excess fluctuation bias should be quan-
tified relative to a given fluctuation model. We thus proceeded
as follows. We simulated SZ data given a radial model, without
fluctuations, fit the image with another (different) radial model,
and computed the SZ fluctuation power spectrum of the resid-
uals. We then compare the induced spurious surface brightness
fluctuations to a reference pressure fluctuation model given by
σP = 0.5, Linj = 750 kpc, α = −11/3 and Ldis = 1 kpc.
The input radial models were defined in terms of increasing
complexity: 1) a centered, spherical, morphologically disturbed
Arnaud et al. (2010) profile ; 2) as input model 1, but miscen-
tered by 20 arcsec along R.A. and 20 arcsec along Dec. (this
compares well with the difference between the X-ray and SZ
peak for MACS J0717.5+3745); 3) as input model 2, but with an
elliptical profile with qint,maj = 0.7; and 4) as input model 3, but
changing the slopes of the pressure profile with a → a + 0.1,
b → b − 0.7, c → c − 0.2, which typically corresponds to
the difference one may have between different clusters (e.g.
Arnaud et al. 2010; Planck Collaboration Int. V 2013).

In Figure C.1, bottom panel, we can observe that the excess
power generally increases with input model complexity, and
decreases with fit model complexity. This is expected since more
complex models are better able to account for a mismatch with
the data. The bias is also more prominent on large scales, at least
given the tested models. As expected, no bias is observed when
the model is able to fit the data perfectly. For instance, this is the
case for the first input model, regardless of the fit model.

According to this test, RM1 may lead to an excess in the
power spectrum larger than 10 times the reference power spec-
trum on large scales, because of miscentering. RM2 may lead to
a bias which is of the same order of magnitude as the reference
spectrum, essentially because it does not account for ellipticity.
RM3 may lead to up to 40% bias due to the mismatch of the
shape of the pressure profile (given the different shapes for the
input and the fit used here). RM4 is able to mitigate the mis-
match in the shape by fitting P0 and rp so that the bias reaches
1% at most. Finally, RM5 is able to perfectly match all the input
pressure profiles so that it does not lead to any bias. Although
these tests give an insight into the level of bias induced by the
choice of the radial model, we stress that they strongly depend
on the choice of the input models, and should only be taken as a
qualitative estimate.

Nevertheless, these two tests indicate that systematic effects
in the choice of the radial model are likely to alter the mea-
sured power spectrum on scales comparable to or larger to the
peak, and may thus alter the recovery of the peak power spec-
trum (e.g. Linj, A(kpeak)). Given the results obtained here, RM3
appears as a reasonable baseline choice since the induced excess
power expected compares well to the filtering, so that in the end
the associated systematic effects may be minimal.

Appendix D: Systematic uncertainties associated
the kinetic Sunyaev-Zel’dovich signal

MACS J0717.5+3745 is known to host significant kSZ signal.
Following the recommendation from the public release of NIKA
SZ data (see Section 7), we used the kSZ corrected map to

test the stability of the results. Figure D.1 displays the residu-
als between the data and the considered models, as in Figure 6,
but accounting for the kSZ correction prior the fit. Similarly,
Figure D2 shows the 3D pressure fluctuation power spectra
accounting for the kSZ correction. The residual and recovered
spectra are comparable to those of the baseline results, although
model RM5 is not able to fit the map as well as in the earlier
version, and its resulting power spectra aligns better with RM2,
RM3 and RM4. The results of the power spectrum constraints are
listed in Table 3.

Appendix E: Impact of the choice of the pressure
fluctuation power spectrum slope

The results presented in this paper have been obtained using a
fixed value of the slope of the pressure fluctuation power spec-
trum, α = −11/3. This choice corresponds to the canonical value
for a Kolmogorov cascade. However, the true power spectrum
slope may slightly differ, and the power spectra associated with
merging clusters are often rather steep. While the slope of the
power spectrum cannot be constrained from the data, due to
the combination of beam smoothing and noise that dominates
on small scales, this appendix quantifies the dependence on the
results of our baseline choice.

We use the reference analysis framework together with
model RM3 and reproduce the results assuming AδP/P(k3D) ∝
k−1/5 (shallow) and AδP/P(k3D) ∝ k−4/5 (steep), which bracket
reasonable values of the slope (Gaspari et al. 2014). This corre-
sponds to α = −3.4 (shallow) and α = −4.6 (steep), respectively,
to be compared with α = −11/3 ' −3.7 in the canonical case. As
we can see in Figure E1, the data are not sufficiently sensitive to
clearly distinguish between these different models, although we
note that a slightly better residual is obtained for the steep spec-
trum.

We report the changes of the main analysis parameters
in Table E.1 when varying the slope of the power spectrum.
Because the model parameters are degenerate, using the shallow
(steep) spectrum implies an increase (decrease) of the normal-
ization σP of about 25%. The injection scale is more stable and
remains stable within 10%. The derived Mach number, velocity
dispersion, kinetic to thermal pressure and hydrostatic mass bias
all decrease (increase) when increasing (decreasing) the steep-
ness of the power spectrum. The changes are smaller than for
the amplitude of the power spectrum due to the anticorrelation
between α and σP and because we are using the integrated spec-
trum as a proxy for the Mach number. While the results of the
analysis are affected by the choice of the slope of the pressure
fluctuation power spectrum, fixing this parameter within a rea-
sonable range does not alter our conclusions.

Table E.1. Change in the values of the key parameters derived from the
reference analysis when varying the slope of the pressure fluctuations
power spectrum.

Slope (α) σP Linj M3D σv
Pkin

Pkin+Pth
bHSE,∆=2500

(–) (–) (kpc) (km/s) (–) (–)

Shallow (−3.4) 0.74 880 0.68 1350 0.20 0.31

Reference (' −3.7) 0.58 873 0.59 1176 0.16 0.29

Steep (−4.6) 0.45 790 0.47 925 0.11 0.27

Notes. These results are obtained using the radial model RM3.
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Fig. D.1. Same as Figure 6 but with kSZ correction included.
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Fig. D2. Same as Figure 7 right panel but with kSZ correction included.
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Fig. E1. Same as Figure 7 left panel but when fixing the slope of the
power spectrum of pressure fluctuations to α = −3.4 (top), α ' −3.7
(middle), and α = −4.6 (bottom).
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