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Abstract

This article presents a novel and robust approach to se-
mantic segmentation based on the fusion of different image
modalities (conventional and non-conventional images).
The robustness of fusion methods and their ability to toler-
ate sensor failures are crucial challenges for their deploy-
ment in real-world environments. It is essential to develop
unique fusion models that can operate even in the absence
of certain modalities during inference. However, current fu-
sion methods have a strong dependence on the RGB branch,
resulting in significant performance losses in case of its un-
availability. To address this issue we propose ECoLaF (Evi-
dential Conflict-guided Late Fusion), a ’late fusion’ method
based on Dempster-Shafer theory. This method adaptively
reduces the output of each modality according to their con-
flicts before fusing them. Experimental results show that
our approach outperforms state-of-the-art methods in terms
of robustness on the MCubeS and DeLiVER datasets, espe-
cially when the RGB sensor is not operational. This study
offers new perspectives for improving the robustness of se-
mantic segmentation in multimodal contexts. Code is avail-
able at https://github.com/deregnaucourtlucas/ECoLaF.

1. Introduction
Road scene analysis is a fundamental task for au-

tonomous driving systems. To move safely, an autonomous
system should thoroughly analyze and understand the envi-
ronment in which it navigates. Advances in computer vi-
sion continuously attempt to propose the best solutions to
improve the vehicle’s perception. Besides road scene object
detection task which gains a huge interest recent years [14],
semantic segmentation [18] is still one of the most interest-
ing ways for analyzing and understanding the road scene.

The advent of fully connected networks significantly
boosted interest in semantic segmentation [1, 3, 15, 23].
These networks deliver outstanding performances due to
the ability of convolutional filters to effectively capture lo-
cal information. Recently, the advent of transformers in se-
mantic segmentation architectures [35] pushed considerably
the performances, as local patches more effectively capture
global information in the input image compared to convolu-
tional filters. However, the ambiguity between the classes is
still an open problem and can lead to misclassifications. In-
deed, the probabilistic theorical framework typically used to
train neural networks tends to make them overconfident and
by so unable to express any kind of uncertainty [12]. In au-
tonomous driving applications, an overconfident model that
can strongly fail in some situations is hardly trustworthy and
therefore might never be used for real-life applications.

One promising approach to overcome the ambiguity is-
sue is provided by the Dempster-Shafer theory (DST) that
allows the models to express themselves not only on sin-
gle classes but also on set of classes [4, 29]. The power of
this theory is its ability to model and reason about impre-
cise and uncertain problems, and has more obvious advan-
tages in the representation and combination of uncertain or
incomplete information. Moreover, in recent years, neural
networks based on DST were proposed to better model the
uncertainty [6,28,37], showing an improved handling of the
classes ambiguity.

Another key challenge related to semantic segmenta-
tion in autonomous driving applications is the robustness
of the model while facing uncommon scenarios such as bad
weather conditions [44] or sensor failure [10]. This is the
reason why attention was drawn to multimodal fusion to
overcome the weaknesses of the RGB modality as a stan-
dalone source. Nevertheless, most of the works only con-
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sider fusing two modalities [11,27,33], which is not enough
to cover every real-life situation. Recent works focused on
adding even more modalities [2,20,43] to push forward the
complementarity of sensors and thus the performances in
perception. Despite its outstanding performances on the
challenging MCubeS [20] and DeLiVER [43] datasets, the
state-of-the-art architecture CMNeXt [43] based on the mid-
dle fusion strategy drops from 51.54% in mIoU to 5.05%
when the RGB images are not available on the MCubeS
dataset and from 53.01% to 20.54% when the depth im-
ages are not available on the DeLiVER dataset. This lack
of robustness clearly shows that the middle fusion strategy
almost exclusively relies on one modality. Otherwise, an-
other fact that could drop the performances in using multi-
modality comes from a discordance between some modali-
ties prior to fusion. This can be highly problematic in real-
life applications such as autonomous driving where human
lives are at stake.

To address this robustness issue, to overcome the middle
fusion strategy issue and the conflict between modalities,
we propose a late fusion method based on Dempster-Shafer
theory using the distance-based conflict between the mass
functions [26]. This method adaptively weakens the output
of each modality according to their conflicts before fusing
them. This fusion module is purely conflict-oriented and
therefore requires no additional parameters to be trained,
making it adaptive and completely agnostic to the choosen
encoder-decoder architecture. The idea is that if a modality
is highly in conflict with the others given a certain pixel,
it is reasonable to consider that either the model associated
with this modality struggles to classify this pixel or there is
a sensor failure. Therefore, it is suitable to weaken the mass
function of this conflicting modality at this particular pixel
according to its conflict in order to make the information
fusion easier.
By averaging the mIoU on all combinations of sensors, our
method surpasses the state-of-the-art model by +13.01% on
MCubeS and +1.41% on DeLiVER. Despite not showing
the best performances when every sensor is operational our
method proves to be a good trade off between performances
and robustness.

2. Related Work

2.1. Semantic segmentation

Since the introduction of fully convolutional networks
(FCN) [1, 3, 15, 23], computer vision tasks, in particular se-
mantic segmentation, have seen significant progress. Re-
cently, the emergence of attention mechanisms in computer
vision architectures [8] pushed forward even further the per-
formances. Indeed, Vision Transformer models [1,22] tack-
led the main issue of the FCN which is their poor capability
to extract global features. Despite these improvements, the

models using only RGB images struggle to segment cor-
rectly complex scenes where the contrast is low or when the
weather conditions are not optimal (night, fog, rain, snow).

2.2. Multimodal semantic segmentation

To overcome the weaknesses of RGB images, attention
has turned to the addition of complementary modalities [45]
such as thermal [30, 38], depth [19, 27] and polarization
[17, 39]. Most of the existing methods explore the mid-
dle fusion strategy. In MCubeSNet [20], the feature maps
of each separated backbone are concatenated and passed
through a convolutional region-guided filter selection layer.
CMX [42] and CMNeXt [43] propose a highly scalable fu-
sion framework with multi-level cross-modal interactions.
The main issue with most of these works is their insuffi-
cient robustness and adaptability, primarly because they es-
sentially rely on the RGB branch and maintain fixed weights
for fusion layers at the end of the training.

2.3. Evidential neural networks

The distance-based evidential neural network classifier
proposed in [5] paved the way to incorporate the Dempster-
Shafer Theory(DST) in neural network architectures [13,
28, 41]. This work was extended to deep neural networks
for classification and semantic segmentation tasks [36, 37].
However, these attempts have been confined to relatively
small and well-structured datasets. The primary impedi-
ment has been the algorithmic complexity of DST, which
scales exponentially with the size of the frame of discern-
ment Ω, containing 2K subsets where K = |Ω| is the num-
ber of classes in our case. To this end, [6] proposes algorith-
mic optimizations to render the evidential networks highly
scalable.

3. Dempster-Shafer Theory
3.1. Background on belief functions

Dempster-Shafer theory [4, 29] is a generalized mathe-
matical framework making it possible to reason about un-
certain problems. This framework also has advantages in
the representation and fusion of uncertain or incomplete in-
formation.

Let consider the frame of discernment Ω as a finite set of
variables ω which refers to K elementary events to a given
problem (Ω = {ω1, ω2, ..., ωK}). For classification or se-
mantic segmentation tasks, the elementary events are the
dataset classes. The power set of Ω is defined as the set of
all the 2K possible subsets of Ω. It is presented as follows:

2Ω = {∅, {ω1}, ...., {ωk}, {ω1, ω2}, {ω1, ω3}, ....,Ω} (1)

where the {wi} elements are called singletons and ∅ denotes
the empty set.



The main point of the Dempster-Shafer theory is the pos-
sibility of representing partial knowledge of the value of ω
with the basic belief assignment (bba). A bba is a function
m from 2Ω to [0, 1] defined as follows:

m : 2Ω → [0, 1]

A 7→ m(A)
(2)

where m satisfies the following constraint:∑
A∈2Ω

m(A) = 1 (3)

An element A of Ω is called a focal element when
m(A)>0, and the set containing all these elements is called
a body of evidence (BOE) or focal set.

3.2. Conflict measure and mass discounting

In Dempster-Shafer theory, the conflict can be repre-
sented by the contradiction between mass functions. There-
fore, two experts (e.g. modalities, sensors,. . . ) are in con-
flict if they are far from each other in the bba’s space. To
this end, [25] propose a distance-based definition of the con-
flict between two mass functions m1 and m2 (Eq. (4)). F1

and F2 are respectively the focal sets of m1 and m2 and |.|
denotes the cardinality function.

Conf1,2 =

(
1− 1

|F1||F2|
×
∑

X∈F1

∑
Y ∈F2

1{X⊆Y }

)
× d1,2

(4)
where d1,2 is the Jousselme distance [16] between m1 and
m2:

d1,2 =

√
1

2
(m1 −m2)TD(m1 −m2) (5)

where D is a 2|Ω| × 2|Ω| matrix defined as follows:

D(A,B) =
|A ∩B|
|A ∪B|

∀A,B ∈ 2Ω (6)

The conflict associated with the mass function mi is defined
by:

Confi =
1

M − 1

M∑
j=1,i̸=j

Confi,j (7)

where M is the number of experts. This conflict allows to
assess the reliability α of each expert which can be used to
weaken the bbas by the discounting procedure before fusing
them: {

mα(X) = αm(X)
mα(Ω) = 1− α(1−m(Ω))

(8)

A way to compute the reliability αi from the conflict
Confi is proposed in [26]:

αi = (1− Confλ
i )

1
λ (9)

with λ > 0.

3.3. Information fusion

As mentioned in Sec. 3.1, the fusion of information is a
central feature of the DST. The most common way to com-
bine two bbas m1 and m2 defined on the same frame of
discernment Ω is the Dempster’s rule [29], denoted here by
⊕. It is defined by mDS(∅) = 0 and ∀A ∈ 2Ω\{∅} by:

mDS(A) = (m1⊕m2)(A) =
1

1− κ

∑
B∩C=A
B,C∈2Ω

m1(B)m2(C)

(10)
where κ represents the degree of conflict between the two
bbas defined by:

κ =
∑

B∩C=∅
B,C∈2Ω

m1(B)m2(C) (11)

This fusion can be seen as the normalized version of the
conjunctive rule [31] which is defined by:

m∩(A) =
∑

B∩C=A
B,C∈2Ω

m1(B)m2(C) (12)

3.4. Probability transformation

For semantic segmentation task, the decision is made
among elements of the frame of discernment. However
a non-zero mass can be assigned to a set of disjunctive
classes, making it harder to make a precise decision. There-
fore, it is required to transform the bbas into probabilities
by redistributing the partial conflicts among the singletons.
The most common transformation, proposed in [31], is the
pignistic probability transformation denoted by BetP (.):

BetP (ωk) =
∑

ωk∈A⊆Ω

m(A)

|A|
, ∀ωk ∈ Ω (13)

This transformation redistributes uniformly the partial con-
flict m(A) among the singletons ωk ∈ A ⊆ Ω. A general-
ized pignistic transformation was proposed in [7]:

DSmPε(ωk) =
∑
A∈2Ω

m(A)

∑
a∈ωk∩A

m(a) + ε · |ωk ∩A|∑
a∈A

m(a) + ε · |A|

(14)
where ε > 0 is a parameter that controls the effect of ele-
ment’s cardinality in the partial conflict redistribution.

4. Proposed framework
To achieve evidential multimodal semantic segmenta-

tion, the proposed ECoLaF architecture is based on a clas-
sical late fusion approach along with Dempster-Shafer the-
orical framework presented in Sec. 3 where each encoder-
decoder outputs mass functions instead of probabilities. We



Figure 1. ECoLaF architecture. Each modality is associated with an independant encoder-decoder model such as DeepLabV3+ [3] or
Segformer [40]. The mass functions of each modality are weakened by the adaptative discounting layer and fused by the Dempster’s rule
(Eq.10). The final decision is made after converting the mass functions into probabilities (Eq.14).

describe the evidential encoder-decoders in Sec 4.1, the
adaptative discounting layer in Sec. 4.2 and the fusion and
decision making process in Sec. 4.3.

4.1. Evidential encoder-decoders

In Figure 1, each of the M modalities is associated with
an independent encoder-decoder network. Following the
recommendations of [5] to apply Dempster-Shafer theory
to neural networks, we reduce the possible focal elements
of the mass functions to singletons ωk ∈ Ω and the frame of
discernment Ω itself where ωk corresponds to the kth class
of the dataset and Ω corresponds to the set of all classes
with K = |Ω|. Each evidential encoder-decoder is given
an image of shape Cm × H × W where Cm corresponds
to the number of channels of the m-th modality. Each
encoder-decoder outputs a mass functions maps of shape
(K + 1)×H ′ ×W ′ by applying a softmax to the last fea-
ture maps of the decoder. A probabilistic encoder-decoder
can thus be seen as a particular evidential one that always
outputs mij(Ω) = 0 ∀(i, j) ∈ J1, H ′K × J1,W ′K.
The mass functions maps are then concatenated and weak-
ened by the adaptative discounting layer presented in the
next section.

4.2. Adaptative discounting layer

We present here a method to discount the mass func-
tions of each modality pixel-wise depending on their con-
flict with the others. This method is purely conflict-
guided and requires no additional parameters to be trained,
making it highly adaptative. Given that we only con-
sider singletons and Ω to construct the mass functions,
the cardinality of their focal sets is equal to K + 1:

m(ω1), . . . ,m(ωK),m(Ω). Equation (4) can be simplified
as follows:

Conf1,2 =

(
1− 2K + 1

(K + 1)2

)
× d1,2 (15)

Moreover, the D matrix defined in the Eq. (6) is now re-
duced to a (K + 1)× (K + 1) matrix:

D(A,B) =


1 if A = B
1
K if A = Ω xor B = Ω

0 else
(16)

which leads to a computational simplification of the Eq. (5):

d1,2 =

√
1

2
S1,2 (17)

where
S1,2=

∑
A∈Ω∪{Ω}

(m1(A)−m2(A))2 +
2

K
(m1(Ω)−m2(Ω))×

∑
A∈Ω

(m1(A)−m2(A)).

Given an element (i, j) ∈ J1, H ′K × J1,W ′K, the con-
flicts between the M mass functions’ maps are computed
pair-wise following Eq. (15). The conflicts associated with
each modality are then computed following the Eq. (7). The
discounting factors are finally obtained with the Eq. (9). We
choose here λ = 2 for the good mathematical properties of
the resulting function linked to the l2 norm, as explained
in [26]. By doing so, the more a mass function is in conflict
with the others, the more it will be discounted.

Following the Equation (8), the resulting discounting
maps of shape M ×H ′ ×W ′ are used to discount the mass
functions maps of each modality element-wise. The idea is
that if a modality is highly in conflict with the others given



a certain pixel, it is reasonable to consider that either the
model associated with this modality struggles to classify
this pixel or there is a sensor failure. Therefore, it is suit-
able to weaken the mass function of this conflicting modal-
ity at this particular pixel according to its conflict in order to
ease the information fusion. The discounted mass functions
maps are then fused using the Dempster’s rule.

4.3. Dempster fusion layer and decision making

Following the Equation (10) the discounted mass func-
tions maps of each modality are fused element-wise, lead-
ing to a final mass functions maps of shape (K+1)×H×W .
Algorithm 1 shows the computationally optimized Demp-
ster’s rule proposed in [6]. In our case, M is the number of
modalities and K is the number of classes.
The decision is made by transforming the mass functions
into probabilities following the Eq. (14). We choose here
ε = 0.001 as recommended in [7] since the smaller ε, the
bigger probability information content value [32], facilitat-
ing the decision making.

Algorithm 1 Scalable Dempster’s rule (Eq.10)
Require: M mass functions m1, . . . , mM

m∩(Ω) =

M∏
i=1

mi(Ω)

for j = 1, . . . ,K do

m∩({ωj}) =
M∏
i=1

(mi({ωj}) +mi(Ω))−m∩(Ω)

end for
return mDS(.) =

m∩(.)∑
A∈{ω1,...,ωK ,Ω}

m∩(A)

5. Experiments
5.1. Datasets and implementation details

MCubeS [20] is an outdoor dataset which contains paired
images of four modalities, namely RGB, Angle of Linear
Polarization (AoLP), Degree of Linear Polarization (DoLP)
and Near-Infrared (NIR), to study semantic material
segmentation of 20 classes. It has 302/96/102 image pairs
for training/validation/testing at the size of 1224×1024.
DeLiVER [43] is a synthetic dataset which contains
paired images of four modalities, namely RGB, Depth,
Event and LiDAR in various weather conditions along
with sensor failure scenarios, namely motion blur,
over-exposure, under-exposure, LiDAR-jitter and Event
low-resolution, to study semantic segmentation of 25
classes. It has 3983/2005/1897 front-view image pairs for
training/validation/testing at the size of 1042×1042.

Implementation details. All experiments are per-
formed on a A100 GPU. We train our models based on

DeepLabV3+ encoder-decoder with an initial learning rate
of 0.05. The optimizer is SGD [34] with momentum 0.9
and weight-decay 5e−4. The models based on Segformer
encoder-decoder are trained with an initial learning rate of
6e−5. The optimizer is AdamW [24] with epsilon 1e−8

and weight-decay 0.01. The data augmentation includes
random horizontal flips and random scaled crops for the
MCubeS dataset along with random gaussian blur and ran-
dom color jitter for the DeLiVER dataset. The models are
respectively trained over 500 and 200 epochs with a batch
size of 8 and 16 on the MCubeS and the DeLiVER datasets.
For all experiments, the learning rates are scheduled with a
polynomial strategy with power 0.9 including 10 warm-up
epochs. We use cross-entropy loss function.

Experimental setup. The models are trained with every
available modalities once, meaning that we don’t retrain a
new model for every combination of sensors. To evaluate
the robustness of the models, we follow the same experi-
mental setup as in [20]: when a certain modality is excluded
during testing, the encoder is fed with a zeroed-out image
for that modality to simulate a sensor failure. To ensure fair
comparison, we load the provided trained MCubeSNet [20]
and CMNeXt [43] models with all modalities and apply the
aforementioned experimental setup.

5.2. Robustness comparison against state-of-the-art
methods

To verify the efficiency of the proposed ECoLaF archi-
tecture in terms of robustness, we evaluate it on the chal-
lenging MCubeS [20] and DeLiVER [43] datasets with ev-
ery combination of sensors and compare it against the state-
of-the-art. We use the mean Intersection over Union (mIoU)
metric [9, 21] to evaluate the models.
Results on MCubeS Table 1 summarizes robustness com-
parison between our ECoLaF method, MCubeSNet [20] and
CMNeXt [43] on MCubeS dataset. A striking observa-
tion is that both MCubeSNet and CMNeXt performances
heavily fall down when the RGB sensor is not available.
Therefore, despite showing the best performances when ev-
ery sensor is available, CMNeXt can’t be considered robust
and adaptative. Indeed, our ECoLaF-DeepLabV3+ outper-
forms it by +13.01% in mIoU when we average the perfor-
mances on all possible scenarios. Another interesting ob-
servation is that our transformer-based ECoLaF-Segformer
is still strongly affected by the RGB sensor failure. This
is essentially due to the fact that it is very hard to train a
transformer-based encoder-decoder from scratch with only
302 images.
The per-class detailed performances of the ECoLaF-
DeepLabV3+ is shown in Table 2. We can see that the
per-class best performances are not always reached when
all the sensors are available, showing the negative impact
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✓ ✓ ✓ 39.53 45.57 50.02 49.85

✓ ✓ ✓ 2.74 41.72 5.05 33.31
✓ ✓ ✓ ✓ 43.26 45.74 51.54 49.85

mean 21.29 40.21 27.20 36.04

Table 1. Performances comparison of using different modalities in mIoU(%) on MCubeS dataset. Bold values represent the best perfor-
mances to the nearest rounding for each combination of modalities.
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Table 2. Results of ECoLaF-DeeplabV3+ on MCubeS in per-class IoUs(%). Bold values represent the best performances to the nearest
rounding for each combination of modalities.

of the classes ambiguity when fusion multiple experts. The
most striking example is the class human body. When look-
ing at the single-modality performances, it seems that the
NIR modality is the only one to be able to detect human
body. However, when looking at the two-modalities per-
formances, we can clearly observe an improvement when
the NIR modality is combined with any of the others which
shows their complementarity to better handle the ambigu-
ity for the human body class. Nevertheless, when the NIR
modality is available with at least two others the perfor-
mances drop. It means that those other modalities agree to
confuse the human body pixels with other classes, increas-

ing the class ambiguity instead of decreasing it. Figure 2
and Figure 3 respectively show qualitative results when all
the modalities are available and when the RGB modality
is partially blackened. The difference of MCubeSNet and
CMNeXt predictions between Fig. 2 and Fig. 3 clearly high-
lights their sensitivity to RGB sensor failures. On the other
hand, the proposed ECoLaF-DeepLabV3+ is only slightly
impacted by this sensor failure. This shows that ECoLaF
does not exclusively relies on the RGB modality and is
able to extract and fuse enough information from the non-
conventional modalities to output a satisfying semantic seg-
mentation mask.



Results on DeLiVER Table 3 summarizes robustness com-
parison between our ECoLaF method and CMNeXt [43]
on DeLiVER dataset. The experiments are not carried
out with MCubeSNet [20] since this method needs seman-
tic segmentation masks that are not provided in the De-
LiVER dataset. This time, the transformers-based ECoLaF-
Segformer outperforms both CMNeXt and the convolution-
based ECoLaF-DeepLabV3+ in terms of robustness. This
can be explained by the diversity and the amount of train-
ing images, namely 3983, compared to MCubeS making
it easier for transformers-based architectures to converge.
When looking at the single-modality performances, we can
see that our models better distribute the information among
the RGB and the Depth modalities whereas CMNeXt al-
most exclusively relies on the Depth images. Therefore,
even our ECoLaF-DeepLabV3+ surpasses the transformers-
based CMNeXt when the Depth sensor is out.

In the light of these experiments, it seems that the Event
and LiDAR modalities are too weakly informative to make a
significant contribution to improving performances. More-
over, these modalities can’t insure on their own a minimum
level of performances. These kind of observations are very
important to take into account while building perception
systems since some sensors can work alone and some can-
not but may be useful by bringing complementary informa-
tion.

5.3. Ablation studies

To attest the contribution of the adaptive discounting
layer to robustness, we carry out performances comparison
of ECoLaF-DeepLabV3+ and ECoLaF-Segformer with and
without this layer. The performances on the MCubeS and
DeLiVER datasets are respectively summarized in Tab. 4
and Tab. 5.

By averaging the performances over all the possible
combinations of sensors, the addition of the adaptive
conflict layer respectively increased the performances of
ECoLaF-DeepLabV3+ and ECoLaF-Segformer by +9.96%
and +8.90% on MCubeS, and +5.55% and +4.17% on De-
LiVER in mIoU. It is striking that the models trained with-
out the discounting layer behave similarly to CMNeXt and
MCubeSNet by almost exclusively taking the information
from one modality, namely RGB on the MCubeS dataset
and Depth on the DeLiVER dataset. Therefore, their per-
formances heavily drop when the RGB and Depth sensors
are respectively out on MCubeS and DeLiVER datasets.

6. Conclusion
In this work, we tackle the issue of robustness in se-

mantic segmentation task for road scene analysis applica-
tion. We propose a late fusion approach based on Dempster-
Shafer theory which adaptively discounts the information
provided by each modality depending on its conflict with

the others. Our ECoLaF method shows a great resistance to
sensor failures even when RGB images are not available,
achieving overall best performances on the MCubeS and
DeLiVER datasets considering all possible combinations
of available sensors. On the other hand, the state-of-the-
art CMNeXt strongly struggles to maintain satisfying per-
formances when the most informative sensor fails, namely
RGB on the MCubeS dataset and Depth on the DeLiVER
dataset. ECoLaF better distributes the information among
the modalities, making it more robust to sensor failures. In
order to remediate the performances drop of all-modality
fusion in some cases compared to the state-of-the-art (e.g.
when the RGB modality is available), we will focus on the
inclusion of additional sub-sets as focal elements in order to
better model the ambiguity in decision-making.

(a) RGB (b) AoLP (c) DoLP (d) NIR

(e) MCubeSNet (f) CMNeXt (g) ECoLaF-
DeepLabV3+

(h) Ground truth

Figure 2. Predictions on MCubeS with all modalities available.

(a) RGB (b) AoLP (c) DoLP (d) NIR

(e) MCubeSNet (f) CMNeXt (g) ECoLaF-
DeepLabV3+

(h) Ground truth

Figure 3. Predictions on MCubeS with partial RGB failure.
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CMNeXt [43] ECoLaF-DeepLabV3+(ours) ECoLaF-Segformer(ours)

✓ 20.62 25.20 31.44
✓ 40.29 40.35 38.77

✓ 2.82 0.39 1.87
✓ 2.76 0.12 2.40

✓ ✓ 52.96 46.25 49.23
✓ ✓ 20.37 22.93 31.44
✓ ✓ 20.79 24.93 31.72

✓ ✓ 40.46 40.40 38.77
✓ ✓ 40.29 40.34 38.86

✓ ✓ 2.81 0.39 2.40
✓ ✓ ✓ 53.11 46.39 49.23
✓ ✓ ✓ 52.88 46.25 49.25
✓ ✓ ✓ 20.54 22.79 31.72

✓ ✓ ✓ 40.39 40.40 38.86
✓ ✓ ✓ ✓ 53.01 46.39 49.25

mean 30.94 29.57 32.35

Table 3. Performances comparison of using different modalities in mIoU(%) on DeLiVER dataset. Bold values represent the best perfor-
mances to the nearest rounding for each combination of modalities.

without adaptive discounting with adaptive discounting

R
G

B

A
oL

P

D
oL

P

N
IR ECoLaF-DeepLabV3+ ECoLaF-Segformer ECoLaF-DeepLabV3+ ECoLaF-Segformer

✓ 43.48 48.11 43.49 46.48
✓ 5.74 2.49 21.45 10.45

✓ 14.42 3.29 35.44 19.84
✓ 7.86 2.11 32.81 16.79

✓ ✓ 43.70 48.11 43.36 46.48
✓ ✓ 44.96 48.38 44.95 48.11
✓ ✓ 44.49 48.29 44.39 45.01

✓ ✓ 15.86 3.29 36.35 27.61
✓ ✓ 8.05 2.11 36.81 13.14

✓ ✓ 20.89 3.36 41.53 27.19
✓ ✓ ✓ 45.61 48.38 45.26 48.75
✓ ✓ ✓ 45.03 48.29 44.25 47.77
✓ ✓ ✓ 45.93 48.29 45.57 49.85

✓ ✓ ✓ 21.58 3.36 41.72 33.31
✓ ✓ ✓ ✓ 46.20 49.28 45.74 49.85

mean 30.25 27.14 40.21 36.04

Table 4. Performances comparison of using different modalities in mIoU(%) with and without adaptative discounting on MCubeS dataset.
Bold values represent the best performances to the nearest rounding for each combination of modalities.

without adaptive discounting with adaptive discounting

R
G

B

D
ep

th

E
ve

nt

L
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A
R

ECoLaF-DeepLabV3+ ECoLaF-Segformer ECoLaF-DeepLabV3+ ECoLaF-Segformer

✓ 1.13 12.67 25.20 31.44
✓ 41.53 41.70 40.35 38.77

✓ 1.13 1.99 0.39 1.87
✓ 1.13 1.99 0.12 2.40

✓ ✓ 45.51 49.81 46.25 49.23
✓ ✓ 1.13 12.67 22.93 31.44
✓ ✓ 1.13 12.67 24.93 31.72

✓ ✓ 42.69 41.70 40.40 38.77
✓ ✓ 41.60 41.69 40.34 38.86

✓ ✓ 1.13 1.99 0.39 2.40
✓ ✓ ✓ 46.41 49.81 46.39 49.23
✓ ✓ ✓ 45.50 49.81 46.25 49.25
✓ ✓ ✓ 1.13 12.67 22.79 31.72

✓ ✓ ✓ 42.77 41.69 40.40 38.86
✓ ✓ ✓ ✓ 46.42 49.81 46.39 49.25

mean 24.02 28.18 29.57 32.35

Table 5. Performances comparison of using different modalities in mIoU(%) with and without adaptative discounting on DeLiVER dataset.
Bold values represent the best performances to the nearest rounding for each combination of modalities.
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