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Silicon carbide (SiC) is an important industrial material that enables the thermal stability of power elec-
tronics. However, the nanoscale phenomenon of ballistic thermal conduction, which may further improve the
thermal performance, remains unexplored in SiC. Here, we reveal the length and temperature scales at which
SiC exhibits quasi-ballistic thermal conduction. Our time-domain thermoreflectance measurements probe the
thermal conductivity of SiC nanowires as a function of their length and temperature. The deviation of the ther-
mal conductivity from the diffusive limit in nanowires shorter than a few microns indicates the transition into
a quasi-ballistic thermal conduction regime. Naturally, the deviation is greater at lower temperatures, yet the
effect persists even above room temperature. Our Monte Carlo simulations of phonon transport support our ex-
perimental results and show how phonons with long mean free paths carry a substantial amount of heat, causing
quasi-ballistic conduction. These findings show that quasi-ballistic heat conduction can persist at the microscale
at operating temperatures of power devices, and thus may help improve the thermal design in electronics based
on SiC.

Heat in semiconductors is primarily conducted by
phonons—the quantized vibrations of the crystal lattice. At
the macro scale, heat conduction is seen as a diffusive pro-
cess driven by random collisions between phonons. The av-
erage distance between phonon collisions is called mean free
path (MFP). Remarkably, the phonon MFP can exceed hun-
dreds of nanometers [1, 2], so that in nanostructures, phonons
can travel across the structure with minimal scattering. Such
heat conduction regime with reduced resistive scattering is no
longer diffusive and is called ballistic. This improved ther-
mal transport regime has implications for heat dissipation at
nanoscale. Therefore, understanding the length and tempera-
ture scales of ballistic heat conduction is crucial for improving
the thermal performance of modern semiconductor electron-
ics.

Among semiconductors, silicon carbide (SiC) has a special
place in the industry as the leading material for power mi-
croelectronics. Transistors made of SiC power a wide range
of devices, from electric cars to interplanetary spacecrafts
[3]. SiC is also used in nanoelectronics [4], photonics [5, 6],
MEMS [7], and countless other applications [8]. Yet, despite
the importance of this material, its ballistic thermal properties
remain to be uncovered.

Observations of ballistic thermal transport are particularly
convenient in nanowires [9]. The one-dimensional shape of
nanowires enables measurements of their thermal conductiv-
ity as a function of their length, making them an ideal platform
for studying ballistic thermal transport. Indeed, in the case
of diffusive transport, the thermal resistance of a nanowire
should be linearly proportional to its length R ∝ L. Any degree
of ballistic transport reduces the thermal resistance and breaks
this relation. In this non-diffusive case, the thermal conduc-
tivity relates to the length as κ ∝ Lα , where α is the rate of
divergence from the diffusive limit. Heat conduction regime
that is neither diffusive (α = 0) nor ballistic (α = 1) is called
quasi-ballistic (0 < α < 1), which implies that only a portion
of phonons traveled ballistically through only some portions
of a nanowire.

Over the past decade, researchers have measured the length
dependence of the thermal conductivity in various nanowires
[9]. Some experiments showed purely ballistic conduction
(α ≈ 1) in GaP, SiGe, and Ta2Pd3Se8 nanowires [10–12].
By contrast, other experiments sensed only a weak presence
of ballistic conduction (α ≈ 1/3) in Si, SiGe, and NbSe3
nanowires [13–16]. Simulations tend to support this more
modest estimation of ballistic contribution [17–19]. More-
over, some experiments detected no length dependence of the
thermal conductivity [13, 19, 20], at least at room tempera-
ture.

Here, we study ballistic thermal transport in SiC nanowires
at different length scales and temperatures. By measuring the
length dependence of the nanowire thermal conductivity, we
aim to demonstrate how the heat conduction in SiC nanowires
transitions into quasi-ballistic regime below a certain length
and how the strength of the ballistic contribution depends on
temperature. Our Monte Carlo simulations will help to gain a
deeper insight into this process.

Our samples were fabricated on a 150-nm-thick membrane
of single-crystalline 3C-SiC suspended in a thick frame[21],
as illustrated in Fig. 1a. The suspended SiC membrane con-
tained a set of samples with three copies of a sample for each
nanowire length. Each sample consisted of an Al pad on a SiC
island connected to the heat sink by three SiC nanowires of
250 nm in width and 150 nm in thickness. Figure 1b shows a
scanning electron microscope (SEM) image of a typical sam-
ple. Our electron backscatter diffraction study reveals the
Kikuchi pattern of crystalline 3C-SiC (Fig. 1c), while the ori-
entation mapping demonstrates that the crystal preserves the
(001) orientation over the entire membrane (Fig. 1d). The
roughness of the top surface was measured with atomic force
microscope, shown in Fig. 1e, and its r.m.s. value was es-
timated around 0.2 nm. The side wall roughness cased by
ion etching is considerably higher and was estimated at 2 nm
based on measurements and models in our previous works
[21, 22].

The thermal conductivity was measured using the micro
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FIG. 1. (a) Scheme of µTDTR experiment showing an optical objec-
tive and a suspended SiC membrane. (b) An SEM image of a typical
sample that consists of a central island with an Al pad suspended
on three SiC nanowires. (c) Kikuchi pattern and (d) crystal orienta-
tion maps show 3C-SiC crystallinity over the entire membrane. (e)
Atomic force microscopy scan of the top surface. (f) Example of an
experimental signal matched by FEM simulations.

time-domain thermoreflectance (µTDTR) technique. In short,
pump (642 nm) and probe (785 nm) laser beams were focused
with a ×50 optical objective on the sample placed in a He-flow
cryostat with a high vacuum. Each pulse of the pump beam
quickly increased the temperature of the Al pad at the center
of each sample. As heat dissipated to the heat sink through
the nanowires, the temperature of the central island returned
to ambient temperature. The heating and cooling processes of
the aluminum pad were monitored using a probe beam. The
intensity of the probe beam reflected from the aluminum pad

was measured using a photodiode detector and was propor-
tional to the temperature of the aluminum pad via the ther-
moreflectance coefficient.

Typical µTDTR signal is shown in Fig. 1c. The cooling
part of the curve can be well described by an exponential de-
cay exp(−t/τ), where t is the time and τ is the decay time
constant that describes heat dissipation through the nanowires.
The measured decay time constants were then converted into
the thermal conductivity using finite element method (FEM)
modeling. The model, illustrated in the inset of Fig. 1f, repro-
duced the geometry of the sample with the thermal conduc-
tivity of the nanowires κNW set as a free parameter to obtain
the best fit for the exponentially measured cooling curve, as
shown in Fig. 1f. More details on this method and error anal-
ysis can be found in our previous works [14, 21].

Figure 2 shows the measured length dependence of
nanowire thermal conductivity at different temperatures. For
comparison, values are normalized by the thermal conductiv-
ity of long nanowires: 9.69, 59.9, 63.4, and 52.1 W/m·K at
100, 200, 300, and 400 K, respectively. The thermal conduc-
tivity of nanowires longer than three microns appears to be a
constant, which is characteristic of the diffusive regime. How-
ever, as nanowires become shorter, heat conduction gradually
enters the quasi-ballistic regime, and the thermal conductiv-
ity deviates from the constant value as κ ∝ Lα . The length at
which the quasi-ballistic regime occurs depends on the tem-
perature and increases from about 1.5 µm at 400 K to more
than 3 µm at 100 K. Likewise, the maximum divergence rate
α fitted for the shortest nanowires increases from α ≈ 0.2 at
400 K to α ≈ 0.34 at 100 K. In other words, quasi-ballistic
heat conduction becomes more prominent and persists over
longer distances at lower temperatures.

However, the length-dependent thermal conductivity may
be caused by non-negligible thermal contact resistance and
thus might be a false indicator of ballistic transport, as dis-
cussed by Chang et al. [23, 24]. To address this aspect, we
studied the length dependence of the thermal resistance per
unit area, represented by A/K, where A denotes the cross-
sectional area and K represents the thermal conductance. The
results, presented in Fig. 3, reveal a linear trend for data points
corresponding to nanowires longer than three microns at all
temperatures, suggesting diffusive heat conduction. This lin-
ear trend extrapolates to zero resistance at zero length, indi-
cating a negligible contact resistance. In contrast, the data
points for nanowires shorter than three microns exhibit non-
linear behavior, indicating quasi-ballistic thermal conduction.
The nonlinearity is most prominent at 100 K but weakens as
the temperature is increased.

The observed degree of ballistic conduction at room tem-
perature, as measured by the divergence rate α , is greater
than α ⩽ 0.13 previously measured on Si nanowires using
the same experimental method [13, 14]. This observation is
consistent with our measurements of phonon MFPs in 150-
nm-thick Si [25] and SiC [21] membranes, which showed that
SiC membranes display longer MFPs. Indeed, SiC has one
of the longest phonon MFPs among semiconductors [1], and
a greater contribution of ballistic transport is expected in this
material. Moreover, the measured α is similar to α = 0.33
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FIG. 2. Experimentally measured normalized thermal conductivity
of SiC nanowires depends on the nanowire length when the length is
shorter than a certain threshold value. This threshold value increases,
and the slope becomes steeper as the temperature is decreased, sug-
gesting a stronger contribution of ballistic transport at low tempera-
tures. The error bars show the standard deviation between measure-
ments on three different samples.

FIG. 3. Experimentally measured normalized thermal resistance in
short SiC nanowires displays deviation from the linear behavior. The
deviation from the linear trend is especially prominent at low temper-
atures and indicates the quasi-ballistic heat conduction. Insert shows
the same data on the logarithmic scale.

observed on aligned atomic chains [16] and α = 0.26 on SiGe
thin films [26]. Yet, the observed length-dependence of ther-
mal conductivity is nowhere near the perfectly linear depen-
dence with α = 1 reported in some works [10–12].

To better understand the length dependence of thermal
transport, we conducted Monte Carlo simulations of phonon
transport in SiC nanowires. Details of the Monte Carlo
algorithm—FreePATHS [27]—were reported in our previous
work [28]. In short, thousands of phonon wave packets ap-
proximated by quasi-particles are launched from the hot side
of a SiC nanowire and travel to the cold side. Frequencies of
phonons follow Planck distribution at the given temperature,
while their group velocities are given by the phonon disper-
sion of bulk SiC. The algorithm traces trajectories of phonons
across the nanowire, as shown in Fig. 4a. On their paths,
phonons can experience scattering events on the nanowire sur-
faces. The surface scattering can be either specular or dif-
fuse, as determined by Soffer’s equation [29] depending on
the phonon frequency, incident angle, and roughness of the
surface, which was set to 0.2 nm to top and bottom walls and
2 nm etched side walls, based on our previous work [21].

Also, phonons can experience various phonon-phonon and
impurity scattering processes. These scattering processes oc-
cur when the time since the previous scattering event exceeds
time t =− ln(r)τ , where r is a random value between zero and
one and τ is the relaxation time given by:

τ
−1 = τ

−1
i + τ

−1
u + τ

−1
4p

where relaxation times are calculated as τ
−1
i = Aω4 for impu-

rity scattering, τ−1
u = BT ω2 exp(θ/T ) with θ = 1200 K for

Umklapp scattering, and τ
−1
4p = CT 2ω2 for four-phonon pro-

cesses. The constants A = 8.46× 10−45, B = 6.16× 10−20,
and C = 6.9× 10−23 were obtained by Joshi et al. [30] by
fitting the data on bulk SiC. These constants are known to fit
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FIG. 4. Monte Carlo simulations of thermal transport in SiC
nanowires of different lengths. Examples of (a) phonon trajectories
and (b) a thermal energy map inside a nanowire. (c) MFP spectrum
of phonons in a SiC nanowire and (d) their contribution to the ther-
mal conductivity compared to that of SiC membranes [21]. (e) The
thermal conductivity for nanowires of different lengths obtained in
the Monte Carlo simulations. The error bars show the standard devi-
ation between four independent simulations.

experimental data on various SiC nanostructures [21], albeit
not perfectly. Upon these phonon-phonon and impurity scat-
tering processes, the phonons are scattered in a random di-
rection but preserve their frequency, while normal scattering
processes are not taken into account. By tracing thousands
of phonons, the algorithm calculates the MFP distributions,
temperatures, and heat fluxes in the structure (Fig. 4b).

Figures 4c shows the distributions of phonon MFPs.
Remarkably, most phonons have MFPs shorter than 100
nm, which appears to contradict to the observed length-
dependence over a few microns. Nevertheless, phonons with
longer MFP are known to contribute to heat conduction more
substantially than phonons with short MFPs [31]. To demon-
strate this fact, we calculated the contribution of phonons with
various MFPs (Λ) to the total thermal conductivity (κ) at a
given temperature (T ) given by:

κ =
1

6π2 ∑
j

∫ ℏ2ω2
j (q)

kbT 2
exp [ℏω j(q)/kbT ]

(exp [ℏω j(q)/kbT ]−1)2 v j(q)Λ j(q,T )q2dq,

where kb is the Boltzmann constant, ω j(q) and v j(q) are
the frequency and group velocity on the branch j of the SiC
phonon dispersion at the wavevector q.

Figure 4d shows that a relatively small portion of phonons
with long MFPs carries a substantial part of heat. At 100 K,
phonons with the MFPs in the 100 – 600 nm range contribute
to more than half of total thermal conductivity, which explains
the observed strong quasi-ballistic heat conduction at this tem-
perature. At higher temperatures, the MFPs become shorter
due to the increased frequency of phonon-phonon and diffuse
surface scattering events. Yet, in terms of the contribution to
thermal conductivity, phonons with MFPs over 100 nm still
contribute to heat conduction even at 400 K. This explains the
persistence of quasi-ballistic thermal transport at high temper-
atures.

The overall shape, range, and temperature dependence of
these MFP spectra are consistent with those measured exper-
imentally on SiC membranes of the same thickness [21], as
shown in Fig. 4d. The MFP spectra of nanowires show more
phonons with short MFPs due to additional phonon scatter-
ing on the nanowire side walls. This scattering also reduces
the thermal conductivity of nanowires by about a quarter as
compared to that of the membranes [21]. Despite this addi-
tional surface scattering, phonons with long MFP persist in
the MFP spectra and are likely the reason behind observed
quasi-ballistic thermal transport.

Finally, Fig. 4e shows the length-dependent thermal con-
ductivity of nanowires obtained with Monte Carlo simulations
as the ratio of the average heat flux to the temperature gradi-
ent across the nanowire. The slopes closely resemble exper-
imental curves. For example, at 100 K, the divergence from
the diffuse limit occurs around four microns and follows the
κ ≈ L0.38 trend, which slightly overestimates the experimen-
tal results. As temperature is increased, the divergence weak-
ens, as observed experimentally. Thus, both experiments and
simulations demonstrate quasi-ballistic heat conduction at the
scale of hundreds of nanometers.
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In summary, we studied the thermal transport in SiC
nanowires at different lengths and temperature scales. The
measured length dependence of thermal conductivity indi-
cates that quasi-ballistic heat conduction occurs in nanowires
shorter than a few microns in a wide range of temperatures.
Our phonon Monte Carlo simulations reproduce the observed
length-dependent behavior and explain it by the contribution
of phonons with long MFP, which persist despite the surface
and phonon-phonon scattering. Our data suggest that ballis-
tic thermal transport can substantially impact heat conduction
in microscale SiC at operating temperatures of power devices
and may help engineering heat dissipation in microelectronics
based on SiC.

Future studies should investigate the dependence of ballis-
tic conduction on the nanostructure cross-section. Indeed, one
could assume that larger cross-sections would make surface
scattering less frequent and thus enhance ballistic condition.
Conversely, recent experiments indicated that small cross-
section of wires might enhance ballistic conduction [10, 16].
Moreover, the role of surface roughness remains unclear as
simulations show that lower surface roughness could enhance

ballistic conduction [17] due to less frequent diffuse scatter-
ing, while some studies assume that imperfect boundaries at-
tenuate contribution of diffuse phonons and leave only ballis-
tic phonons to carry the heat [10]. Thus, various aspects of
ballistic conduction in semiconductors require further investi-
gation.
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