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MONOTONICITY FOR SOLUTIONS TO SEMILINEAR PROBLEMS
IN EPIGRAPHS

NICOLAS BEUVIN†, ALBERTO FARINA†, BERARDINO SCIUNZI∗

Abstract. We consider positive solutions, possibly unbounded, to the semilinear equation
−∆u = f(u) on continuous epigraphs bounded from below. Under the homogeneous
Dirichlet boundary condition, we prove new monotonicity results for u, when f is a (locally
or globally) Lipschitz-continuous function satisfying f(0) ≥ 0. As an application of our
new monotonicity theorems, we prove some classification and/or non-existence results. To
prove our results, we first establish some new comparison principles for semilinear problems
on general unbounded open sets of RN , and then we use them to start and to complete a
modified version of the moving plane method adapted to the geometry of the epigraph Ω.
As a by-product of our analysis, we also prove some new results of uniqueness and symmetry
for solutions (possibly unbounded and sign-changing) to the homogeneous Dirichlet BVP
for the semilinear Poisson equation in fairly general unbounded domains.

1. Introduction and main results

We consider solutions, possibly unbounded, to the problem

(1.1)


−∆u = f(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where f is a (locally or globally) Lipschitz-continuous function satisfying

f(0) ≥ 0,

and Ω is an epigraph of RN , with N ≥ 2, i.e.

Ω := {x = (x′, xN) ∈ RN−1 × R : xN > g(x′)} ,
where g : RN−1 → R is a continuous function bounded from below.

The main results of the present paper prove that the solution u is strictly increasing in the
xN -direction, i.e.,

∂u
∂xN

> 0 in Ω. Our monotonicity results are new. They cover the case

of uniformly continuous epigraphs (not necessarily locally Lipschitz-continuous), coercive
epigraphs, as well as that of a large family of merely continuous epigraphs (with possibly
arbitrary growth at infinity and not necessarily coercive). Furthermore, we do not assume
that u is bounded.
Half-spaces and coercive epigraphs are a very special case of the geometries covered by our
analysis. Thus, our results recover, extend and complete existing ones, which mainly deal
with the case of a half-space ([1]-[4],[8],[9],[17],[19],[20],[21],[22],[26]) or a locally Lipschitz-
continuous coercive epigraph ([4],[14],[19]).

Key words and phrases. Semilinear elliptic equations on unbounded domains, monotonicity of solutions,
comparison principles.
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Our results apply to classical solutions of (1.1) as well as to those in the sense of distribu-
tions. To deal with the latter case and settle the general framework in which we work, we
introduce the following functional space :

(1.2) H1
loc(Ω) = {u : Ω 7→ R, u Lebesgue-mesurable : u ∈ H1(Ω ∩B(0, R)) ∀R > 0}.1

The choice of the distributional framework is quite natural and justified by the fact that,
in many cases, the epigraphs we consider are merely continuous (i.e., the functions g that
define them are assumed to be continuous and nothing more).

Let us first state the main results for uniformly continuous epigraphs.

Theorem 1.1. Let Ω be a uniformly continuous epigraph bounded from below.
Assume f ∈ Liploc([0,+∞)) with

(1.3) lim inf
t→0+

f(t)

t
> 0

and let u ∈ C0(Ω)∩H1
loc(Ω) be a distributional solution to (1.1) which is uniformly contin-

uous on finite strips.2

Then u is strictly increasing in the xN -direction, i.e.,
∂u
∂xN

> 0 in Ω.3

The epigraphs considered in the previous result could be very wild, as shown by the following
two-dimensional examples constructed by using the Weierstrass-type functions gb,α(x) =∑∞

n=1 b
−nα cos(bnπx), where b > 1 is an integer and α ∈ (0, 1). The function gb,α is uniformly

continuous, bounded and nowhere differentiable ([25]).

If we further assume that the epigraph satisfies a weak regularity assumption, we can
prove the monotonicity result for any (locally or globally) Lipschitz-continuous function f
satisfying f(0) ≥ 0 (and this by also weakening the assumptions on u).

Theorem 1.2. Let Ω be a uniformly continuous epigraph bounded from below and satisfying
a uniform exterior cone condition.
Assume f ∈ Liploc([0,+∞)) with f(0) ≥ 0 and let u ∈ C0(Ω) ∩H1

loc(Ω) be a distributional
solution to (1.1) which is bounded on finite strips.4

Then u is strictly increasing in the xN -direction, i.e.,
∂u
∂xN

> 0 in Ω.

Theorem 1.3. Let Ω be a uniformly continuous epigraph bounded from below and satisfying
a uniform exterior cone condition.
Assume f ∈ Lip([0,+∞)) with f(0) ≥ 0 and let u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional
solution to (1.1) with at most exponential growth on finite strips.5

Then u is strictly increasing in the xN -direction, i.e.,
∂u
∂xN

> 0 in Ω.

1 i.e., u is Lebesgue-measurable on Ω and u ∈ H1(U) for any open bounded set U ⊂ Ω.
2 i.e., for any R > 0, u is uniformly continuous on the strip Ω ∩ {xN < R}.
3 Continuous distributional solutions of −∆u = f(u) in Ω belong to C2(Ω), by standard elliptic theory.
4 i.e., for any R > 0,

(1.4) sup
Ω∩{xN<R}

u < +∞.

5 i.e., for any R > 0, there are positive numbers A = A(R), B = B(R) such that

u(x) ≤ AeB|x| ∀x ∈ Ω ∩ {xN < R} .
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Note that Theorem 1.2 and Theorem 1.3 cover the case of uniformly continuous epigraphs
bounded from below, which are not necessarily locally Lipschitz-continuous. See Example
7.1 in Section 7.

Although the following results are special cases of the preceding theorems, even in this
weaker form, they are new.

Corollary 1.4. Let Ω be a uniformly continuous epigraph bounded from below. Assume
f ∈ Liploc([0,+∞)) with

(1.5) lim inf
t→0+

f(t)

t
> 0

and let u ∈ C2(Ω) ∩ C0(Ω) be a classical solution of (1.1) such that ∇u ∈ L∞(Ω). Then u
is strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

Corollary 1.5. Let Ω be a globally Lipschitz-continuous epigraph bounded from below. As-
sume f ∈ Liploc([0,+∞)) with f(0) ≥ 0 and let u ∈ C2(Ω) ∩ C0(Ω) be a classical solution
of (1.1) such that ∇u ∈ L∞(Ω). Then u is strictly increasing in the xN -direction, i.e.,
∂u
∂xN

> 0 in Ω.

Corollary 1.6. Assume α ∈ (0, 1) and let Ω be a globally Lipschitz-continuous epigraph
bounded from below with g ∈ C1,α

loc (RN−1). Assume f ∈ Liploc([0,+∞)) with f(0) ≥ 0 and
let u ∈ C2(Ω) ∩ C0(Ω) be a classical solution of (1.1) which is bounded on finite strips.
Then u is strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

When the epigraph is coercive, the monotonicity result holds under the sole assumption
of continuity of g, i.e., we do not need to require either uniform continuity or the uniform
exterior cone condition for the epigraph. Moreover, this result holds regardless of the value
of f(0). More precisely, we have

Theorem 1.7. Let Ω be a coercive continuous epigraph. Assume f ∈ Liploc([0,+∞)) and
let u ∈ C0(Ω) ∩H1

loc(Ω) be a distributional solution to (1.1). Then u is strictly increasing
in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

To prove our main results, we first establish some new comparison principles for semilinear
problems on general unbounded open sets of RN , and then we use them to start and to
complete a modified version of the moving plane method adapted to the geometry of the
epigraph Ω. Then, by a delicate analysis based on the translation invariance of the equation
and on some fine compactness and regularity arguments, we obtain the desired results of
monotonicity.

The flexibility of our methods also allows to prove various extensions of our main results to a
large class of merely continuous epigraphs bounded from below (see the class G introduced in
definition 5.1 and the list of examples that follows it). Those general results (see Theorems
5.1, 5.2 and 5.3) are stated, discussed and proven in Section 5. Below we illustrate them
with some particularly evocative examples.

Theorem 1.8. Let N ≥ 2 and let g : RN−1 7→ R be a continuous function such that :

(1) N = 2 and limx 7→−∞ g(x) ∈ (−∞,+∞], limx 7→+∞ g(x) ∈ (−∞,+∞];
(2) N = 2 and g is quasiconvex (resp. quasiconcave) and bounded from below (in

particular monotone or convex functions bounded from below qualify);
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(3) N ≥ 2 and g of class C2, bounded from below and with bounded second derivatives;
(4) N ≥ 2 and g bounded from below, g = φ ◦ θ, where θ is uniformly continuous on

RN−1 and φ : R 7→ R is a continuous bijection;
(5) g(x1, . . . , xN−1) = g(x1, . . . , xn−1), where 2 ≤ n < N and g : Rn−1 → R is one of

the functions defined in one of the items (1)− (4).

Let Ω be the epigraph defined by g and assume f ∈ Liploc([0,+∞)) with

(1.6) lim inf
t→0+

f(t)

t
> 0.

(i) If u ∈ C0(Ω)∩H1
loc(Ω) is a distributional solution to (1.1) which is uniformly continuous

on finite strips.
Then u is strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

(ii) If u ∈ C2(Ω)∩C0(Ω) is a classical solution of (1.1) such that ∇u ∈ L∞(Ω). Then u is
strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

Typical examples of functions g, for which Theorem 1.8 applies but not Theorem 1.1 (resp.
Corollary 1.4), are provided by : g1(x1) = ex1 − 4 arctan(x1) − 2, g2(x1) = ee

x1 if N = 2

and g(x1, . . . , xN−1) = (x1)
2 +

∏N−1
j=2 sin(jxj), g(x1, . . . , xN−1) = ex1+

∑N−1
j=2 cosj(xj) if N ≥ 3.

Theorem 1.9. Let N ≥ 2 and let Ω be as in the statement of Theorem 1.8. Also suppose
that Ω satisfies a uniform exterior cone condition.

(i) Assume f ∈ Lip([0,+∞)) with f(0) ≥ 0 and let u ∈ C0(Ω) ∩ H1
loc(Ω) be a distribu-

tional solution to (1.1) with at most exponential growth on finite strips. Then u is strictly
increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

(ii) Assume f ∈ Liploc([0,+∞)) with f(0) ≥ 0 and let u ∈ C0(Ω) ∩H1
loc(Ω) be a distribu-

tional solution to (1.1) which is bounded on finite strips. Then u is strictly increasing in
the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

Notice that Theorem 1.9 applies (for instance) to epigraphs defined by g(x1, . . . , xN) = ee
x1

or g(x1, . . . , xN) = ex1 − 4 arctan(x1)− 2 if N ≥ 1 and to g(x1, . . . , xN) = x4
1+ ex2 if N ≥ 2.

The next result applies to solutions of (1.1) where Ω is merely a continuous epigraph and
f is a non-increasing function, possibly discontinuous, and with no restriction on the sign
of f(0) (see Theorem 5.3 in Section 5).

Theorem 1.10. Let Ω be a continuous epigraph bounded from below and let f : [0,∞) 7→ R
be any non-increasing function. Let u ∈ C0(Ω)∩H1

loc(Ω) be a distributional solution to (1.1)
with subexponential growth on finite strips 6.
Then u is non-decreasing, i.e., ∂u

∂xN
≥ 0 in Ω.7

Moreover, if f ∈ Liploc, then u is strictly increasing, i.e., ∂u
∂xN

> 0 in Ω.

6i.e., for any R > 0,

lim sup
|x|→∞,

x∈Ω∩{xN<R}

lnu(x)

|x|
≤ 0.

7 Note that u ∈ C1(Ω), since f(u) ∈ L∞
loc(Ω).
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We conclude the introduction by observing that

1) the new comparisons principles we have demonstrated have also allowed us to prove
some new results of uniqueness and symmetry for solutions (possibly unbounded and sign-
changing) to the homogeneous Dirichlet BVP for the semilinear Poisson equation in fairly
general unbounded domains (see Corollary 2.6 and Corollary 2.7 in Section 2);

2) as an application of our new monotonicity theorems, we also prove some new classification
and/or non-existence results for solutions to the nonlinear problem (1.1) (see Section 6).

For the reader’s convenience, the notations used in the paper are collected in Section 8.

The paper is organized as follows :

1. Introduction and main results

2. Some new comparison principles on unbounded domains and their applications to the
uniqueness and symmetry of solutions to the semilinear Poisson equation

3. Some uniform estimates in unbounded domains

4. Proofs

5. Extensions to merely continuous epigraphs bounded from below and further observations

6. Some applications to classification and non-existence results

7. Some examples

8. Notations

2. Some new comparison principles on unbounded domains and their
applications to the uniqueness and symmetry of solutions to the

semilinear Poisson equation

In this section we prove some new comparison principles for solutions of semilinear problems
on unbounded open sets, whose section has some ”good properties”. Those results recover
and considerably improve the comparison principle on strips (or on open subsets included
in strips) proved by the second author in [17]. Their role in this paper is twofold:

1) they are crucial for proving our monotonicity results on epigraphs,

2) they allow us to prove some new results of uniqueness and symmetry for solutions (pos-
sibly unbounded and sign- changing) to the homogeneous Dirichlet BVP for the semilinear
Poisson equation in fairly general unbounded domains.

To this end we need the following

Definition 2.1. Assume N ≥ 2. Let Ω be an open subset of RN and let ν be a unit vector
of RN .
We denote by Rν the vector space spanned by the unit vector ν and by {ν}⊥ the orthogonal
complement of ν in RN .

(i) We shall say that Ω is locally bounded in the direction ν if

(2.1) ∀R > 0 Cν(R) = (B′(0′, R)× Rν) ∩ Ω is a bounded subset of RN .

Here B′(0′, R) denotes the N − 1-dimensional open ball of radius R centered at the origin
0′ of {ν}⊥.
(ii) For every x′ ∈ {ν}⊥ let us define the set Sν

x′ := ({x′} × Rν) ∩ Ω.
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We shall say that Ω has bounded section in the direction ν if

(2.2) Sν(Ω) := sup
x′∈{ν}⊥

L1(Sν
x′) < +∞,

where L1 denotes the 1-dimensional Lebesgue measure.

The positive number Sν(Ω) will be called the section of Ω in the direction ν.

(iii) We shall say that Ω has good section in the direction ν if it is locally bounded
in the direction ν and if it also has bounded section in the direction ν (that is, if it satisfies
both (2.1) and (2.2)).

The following remark shows how large the families of sets defined above are.

Remark 2.1. (i) Open sets (possibly unbounded and not necessarily connected) that are
bounded in a fixed direction ν (i.e., open sets such that, up to a rotation, are included in a
finite strip {x = (x′, xN) ∈ RN : α < xN < β}, with α, β ∈ R) have good section in the
direction ν. Indeed, they clearly satisfy (2.1) as well as (2.2) with Sν(Ω) ≤ β − α.

(ii) The family of open sets with good section in a fixed direction ν is much larger than the
one of sets that are bounded in the direction ν. Indeed, the unbounded open connected set
Ω1 = {(x, y) ∈ R2 : |x| − h(x) < y < |x| + h(x)} ∪ {(x, y) ∈ R2 : −|x| − h(x) < y <
−|x| + h(x)} ∪ {(x, y) ∈ R2, |y| < 1}, where h(x) = sinh−1(e−|x|),(see Figure 1) has good
section in the direction e2 = (0, 1), with Se2(Ω1) ≤ 4, but it is unbounded in any direction.
Actually, it is not contained in any affine half-plane. Also note that the Lebesgue measure
of Ω1 is infinite.

Figure 1. Ω1

(iii) We also note that open sets with bounded section in a fixed direction ν are not
necessarily locally bounded in the direction ν and vice versa. Consider the open sets
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Ω2 =
⋃

n≥1

{
(x, y) ∈ R2 : n < y < n+ 1

2n

}
and Ω3 = {(x, y) ∈ R2 : 0 < y < x2}, then Ω2

has bounded section in the direction e2, but it is not locally bounded in that direction, while
Ω3 is locally bounded in the direction e2, but it has not bounded section in the direction e2.

Our first comparison principle is the content of the next result.

Theorem 2.2. Assume N ≥ 2. Let Ω be an open subset of RN and let ν be a unit vector
of RN .

(i) Assume that Ω has good section in the direction ν. Let f ∈ Liploc(R), M > 0 and
u, v ∈ H1

loc(Ω) ∩ C0(Ω) satisfying

(2.3)

 −∆u− f(u) ≤ −∆v − f(v) in D′(Ω),
|u|, |v| ≤ M in Ω,

u ≤ v on ∂Ω.

Then, there exists ε = ε(f,M) > 0 such that

(2.4) Sν(Ω) < ε =⇒ u ≤ v in Ω.

(ii) Assume that Ω has good section in the direction ν. Let f ∈ C0(R) be a non-increasing
function, M > 0 and u, v ∈ H1

loc(Ω) ∩ C0(Ω) satisfying

(2.5)

 −∆u− f(u) ≤ −∆v − f(v) in D′(Ω),
|u|, |v| ≤ M in Ω,

u ≤ v on ∂Ω.

Then, u ≤ v in Ω.

(iii) Assume that Ω has bounded section in the direction ν. Let f ∈ Liploc(R), M > 0 and
u, v ∈ Liploc(Ω) satisfying

(2.6)


−∆u− f(u) ≤ −∆v − f(v) in D′(Ω),

|u|, |v| ≤ M in Ω,
|∇u|, |∇v| ≤ M a.e. in Ω,

u ≤ v on ∂Ω.

Then, there exists ε = ε(f,M) > 0 such that

(2.7) Sν(Ω) < ε =⇒ u ≤ v in Ω.

More generally, we have the following results8

Theorem 2.3. Assume γ ≥ 0, δ ≥ 0, N ≥ 2 and let Ω be an open subset of RN with good
section in the direction eN , the last vector of the canonical base of RN , such that

(2.8) sup
x′∈RN−1

(∫
S
eN
x′

|xN |2δe2γ|xN |dxN

)
< +∞.

Let f = f1 + f2, with f1 ∈ Lip(R) and f2 : R 7→ R be a non-increasing function.

8 For sake of clarity, Theorem 2.3 and Theorem 2.5 are stated with respect to the direction eN , the
last vector of the canonical base of RN . Since the considered problems are invariant by rotation, it is clear
that they also hold true if the unit vector eN is replaced by any unit vector ν (and with the corresponding
natural modification of condition (2.8) in the case of Theorem 2.3).
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Let a > 0 and u, v ∈ H1
loc(Ω) ∩ C0(Ω) such that −∆u− f(u) ≤ −∆v − f(v) in D′(Ω),

|u|, |v| ≤ a|x|δeγ|x| in Ω,
u ≤ v on ∂Ω.

Then, there exists ε = ε(Lf1 , γ) > 0 such that

SeN (Ω) < ε =⇒ u ≤ v in Ω.

Here, Lf1 denotes the Lipschitz constant of f1.

Some remarks are in order

Remark 2.4. (i) Any open set Ω included in a strip {x = (x′, xN) ∈ RN : α < xN < β},
with α, β ∈ R, clearly satisfies the assumption (2.8) for every γ, δ ≥ 0.

(ii) Notice that the preceding theorem applies to the set Ω1 described in Remark 2.1. Indeed,
Ω1 satisfies the assumption (2.8) for any δ ≥ 0 and any γ ∈ [0, 1/2].

(iii) The previous comparison result applies, in particular, to the case where f is globally
Lipschitz-continuous. We shall use it in this form to prove Theorem 1.3.

When f is non-increasing on R, the comparison principle holds even without the smallness
assumption on the section of Ω. More precisely we have the following

Theorem 2.5. Assume N ≥ 2 and let Ω be an open subset of RN bounded in the direction
eN , the last vector of the canonical base of RN . Let f : R 7→ R be a non-increasing function
and u, v ∈ H1

loc(Ω) ∩ C0(Ω) such that −∆u− f(u) ≤ −∆v − f(v) in D′(Ω),
|u|, |v| ≤ a|x|δeγ|x| in Ω,

u ≤ v on ∂Ω,

for some a > 0, δ ≥ 0 and γ ∈
[
0, π

4SeN (Ω)
√
e−1

)
.

Then, u ≤ v in Ω.

The smallness assumption on the section of Ω is necessary for the validity of both Theorem
2.2 (item (i) and item (iii)) and Theorem 2.3. Indeed, the functions u = sin(y) and v ≡ 0
satisfy −∆u−u = 0 = −∆v−v on the two-dimensional strip Ω = {(x, y) ∈ R2 : 0 < y < π}
and u ≤ v on ∂Ω, but the conclusion of the comparison principles fails.

That the growth assumption on u in Theorem 2.5 is necessary to ensure the comparison
principle is seen from the following classical example involving harmonic functions on finite
strips of R2, namely, when f ≡ 0. It is well-known that, for any integer k ≥ 1, the function
uk(x, y) =

∑k
m=1(e

mx + e−mx) sin(mx) is harmonic on the strip Ω = {(x, y) ∈ R2 : 0 <
y < π} and vanishes on ∂Ω. Therefore, a restriction on the exponential growth must be
prescribed in order to get the desired results.

As an immediate consequence of our comparison principles, we have the following result
about the uniqueness of the homogeneous Dirichlet problem.
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Corollary 2.6. Let Ω and f be as in the statement of Theorem 2.2 (resp. Theorem 2.3 or
Theorem 2.5). Then, the Dirichlet problem

(2.9)

{
−∆u = f(u) in D′(Ω),

u = 0 on ∂Ω,

has, at most, one solution u satisfying the regularity and the growth conditions stated in
Theorem 2.2 (resp. Theorem 2.3 or Theorem 2.5).
In particular, if f(0) = 0, the function u ≡ 0 is the only solution to the Dirichlet problem
(2.9).

The examples considered after Theorem 2.5, prove that the preceding result is no longer
true if either the assumptions on the size of Ω or those on the growth of u are not met.

An immediate consequence of Corollary 2.6 is the following general symmetry result for
solutions to the homogeneous Dirichlet problem (2.9).

Corollary 2.7. Let Ω, f be as in the statement of Corollary 2.6 and assume that the
Dirichlet problem

(2.10)

{
−∆u = f(u) in D′(Ω),

u = 0 on ∂Ω,

has a solution u satisfying the regularity and the growth conditions stated in Corollary 2.6.

Let ρ be an isometry of RN , N ≥ 2. If Ω is invariant with respect to ρ, i.e., Ω satisfies
ρ(Ω) = Ω, then the solution u inherits the same symmetry, namely, u(x) = u(ρ(x)) for any
x ∈ Ω.

Let us illustrate the above result on the torsion problem for an infinite solid bar. Let us
start with the case of an infinite solid straight bar with spherical cross section. That is, the
study of the solutions to the problem

(2.11)

{
−∆u = K in D′(Ω),

u = 0 on ∂Ω,

where Ω = ΩK,R := RN−K × BK
R , where 1 ≤ K < N is an integer, and BK

R denotes the
open ball of RK centered at the origin and of radius R > 0.

Since ΩK,R is invariant with respect to any translation in the variables x1, . . . , xN−K and also
to any rotation in the variables xN−K+1, . . . , xN , Corollary 2.79 tell us that the unique solu-
tion u of (2.11), with subexponential growth at infinity, must be independent of x1, . . . , xN−K

and radially symmetric in the variables xN−K+1, . . . , xN .
It is therefore easy to check that the function

u(x) =
R2 − (x2

N−K+1 + . . .+ x2
N)

2
, x ∈ ΩK,R

is the only solution to the problem (2.11) with subexponential growth at infinity.

The previous analysis extends to general infinite solid bars (not necessarily straight). For
instance, it applies to the following examples :

9 applied with the non-increasing function f ≡ K.
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1) Ω = RN−K × ω, where 1 ≤ K < N is an integer and ω is an open bounded subset of
RK . In this case, the unique solution u of (2.11) with subexponential growth at infinity,
depends only on the variables xN−K+1, . . . , xN .

2) Ω = {(x1, x2) ∈ R2 : −φ(x1) < x2 < φ(x1)}, where φ : R 7→ (0,+∞) is a bounded
continuous function. In this case the solution u must be symmetric with respect to the line
x2 = 0.

3) Ω is a domain of revolution of RN ,N ≥ 3, i.e., Ω =
{
x ∈ RN :

√
x2
2 + . . .+ x2

N < φ(x1)
}
,

where φ : R 7→ (0,+∞) is a bounded continuous function. Here, u must have the form

u = u(x1,
√
x2
2 + . . .+ x2

N).

Also observe that, if φ is T -periodic, with T > 0, then the solution u is T -periodic in the
x1 variable.

It is clear that the above discussions and results also hold true for general non linear function
f satisfying the assumptions of Corollary 2.7.

Now we are ready to prove our comparison principles.

Proof of Theorem 2.2. Since our problem is invariant under rotation, we may and do
suppose that ν = eN , the last vector of the canonical base of RN . By assumption, for every
ϕ ∈ C∞

c (Ω), ϕ ≥ 0, we have

(2.12)

∫
Ω

∇(u− v)∇ϕ ⩽
∫
Ω

(f(u)− f(v))ϕ.

Let us first consider the cases (i) and (ii), where we suppose that Ω has good section in
the direction eN .

Observe that, for any Ψ ∈ C0,1
c (RN−1) and for any open ball B′ ⊂ RN−1 with supp(Ψ) ⊂ B′,

we have g := (u− v)+Ψ2 ∈ C0(Ω). Let us prove that g also belongs to H1
0 (Ω ∩ (B′ × R)).

The assumption (2.1) ensures that Ω∩ (B′×R) is a bounded open subset of RN thus, from
the assumption u, v ∈ H1

loc(Ω) ∩ C0(Ω), it follows that (u − v)+ is a bounded, continuous

function on the set Ω ∩ (B′ × R) such that (u − v)+ ∈ H1(Ω ∩ (B′ × R)). Also, since
Ψ2 ∈ C0,1

c (RN−1), we have g ∈ H1(Ω ∩ (B′ × R)) and
(2.13) ∇g = ∇((u− v)+)Ψ2 + 2Ψ(u− v)+∇Ψ in D′(Ω ∩ (B′ × R)).
Also note that

• if x ∈ ∂Ω ∩ (B′ × R), then g(x) = 0, since u(x) ⩽ v(x) on ∂Ω,
• if x = (x′, xN) ∈ Ω ∩ ∂(B′ × R), then Ψ(x′) = 0, and so g(x) = 0,

hence g = 0 on ∂(Ω∩(B′×R)) = (∂Ω∩(B′×R))∪(Ω∩∂(B′×R)). Then g ∈ H1
0 (Ω∩(B′×R)),

g ≥ 0, and so we can find a sequence of functions ϕn ∈ C∞
c (Ω ∩ (B′ × R)), ϕn ≥ 0, such

that
lim

n→+∞
∥ϕn − g∥H1(Ω∩(B′×R)) = 0.

By (2.12), for any n ≥ 1 we have∫
Ω∩(B′×R)

∇(u−v)∇ϕn =

∫
Ω

∇(u−v)∇ϕn ≤
∫
Ω

(f(u)−f(v))ϕn =

∫
Ω∩(B′×R)

(f(u)−f(v))ϕn
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and passing to the limit, we obtain

(2.14)

∫
Ω

∇(u− v)∇g ≤
∫
Ω

(f(u)− f(v))g,

since the support of g is contained in Ω ∩ (B′ × R). Plugging (2.13) into (2.14) yields

(2.15)

∫
Ω

∇(u− v)(∇(u− v)+Ψ2 + (u− v)+2Ψ∇Ψ) ≤
∫
Ω

(f(u)− f(v))(u− v)+Ψ2

and so

(2.16)

∫
Ω

|∇(u− v)+|2Ψ2 +

∫
Ω

(u− v)+2Ψ∇(u− v)+∇Ψ ≤ Lf,M

∫
Ω

((u− v)+)2Ψ2,

where Lf,M is any positive number greater or equal to the Lipschitz constant of f on the
compact set [−M,M ] if we are in the case (i), while Lf,M = 0 if the case (ii) is in force.
Hence∫

Ω

|∇(u− v)+|2Ψ2 ≤ −2

∫
Ω

(u− v)+Ψ∇(u− v)+∇Ψ+ Lf,M

∫
Ω

((u− v)+)2Ψ2∫
Ω

|∇(u− v)+|2Ψ2 ≤ −2

∫
Ω

(
√
2(u− v)+∇Ψ)

(
Ψ∇(u− v)+√

2

)
+ Lf,M

∫
Ω

((u− v)+)2Ψ2∫
Ω

|∇(u− v)+|2Ψ2 ≤ 2

∫
Ω

(
√
2(u− v)+|∇Ψ|)

(
|Ψ||∇(u− v)+|√

2

)
+ Lf,M

∫
Ω

((u− v)+)2Ψ2

and by Young’s inequality∫
Ω

|∇(u− v)+|2Ψ2 ≤
∫
Ω

2((u− v)+)2|∇Ψ|2 +
∫
Ω

Ψ2|∇(u− v)+|2

2
+ Lf,M

∫
Ω

((u− v)+)2Ψ2.

Therefore we have

(2.17)

∫
Ω

|∇(u− v)+|2Ψ2 ≤ 4

∫
Ω

((u− v)+)2|∇Ψ|2 + 2Lf,M

∫
Ω

((u− v)+)2Ψ2.

Since

|∇(u− v)+|2 ≥ |∂N(u− v)+|2 a.e. on Ω,

we get∫
Ω

|∇(u− v)+|2Ψ2 ≥
∫
Ω

|∂N(u− v)+|2Ψ2 =

∫
B′

∫
S
eN
x′

|∂N(u− v)+(x′, xN)|2Ψ2(x′)dxNdx
′ =

=

∫
B′

Ψ2(x′)
(∫

S
eN
x′

|∂N(u− v)+(x′, xN)|2dxN

)
dx′.

Now we observe that, for every x′ ∈ B′, the one-dimensional set SeN
x′ can be written as

the disjoint union of an at most countable family of open bounded intervals (its connected
components), i.e., SeN

x′ = ⊔j∈J(x′)Ix′,j, with J(x′) ⊂ N and Ix′,j an open bounded interval.
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Therefore, by Poincaré’s inequality, we have∫
S
eN
x′

|∂N(u− v)+(x′, xN)|2dxN =
∑

j∈J(x′)

∫
Ix′,j

|∂N(u− v)+(x′, xN)|2dxN ≥

≥
∑

j∈J(x′)

π2

(L1(Ix′,j))2

∫
Ix′,j

((u− v)+(x′, xN))
2dxN ≥

≥ π2

(SeN (Ω))
2

∑
j∈J(x′)

∫
Ix′,j

((u− v)+(x′, xN))
2dxN =

=
π2

(SeN (Ω))
2

∫
S
eN
x′

((u− v)+(x′, xN))
2dxN

and so

(2.18)

∫
Ω

|∇(u− v)+|2Ψ2 ≥ π2

(SeN (Ω))
2

∫
Ω

((u− v)+)2Ψ2.

Now, thanks to (2.17) and (2.18), we deduce that

(2.19)
( π2

(SeN (Ω))
2
− 2Lf,M

)∫
Ω

((u− v)+)2Ψ2 ≤ 4

∫
Ω

((u− v)+)2|∇Ψ|2.

If the case (i) is in force, we set ε(f,M) = π√
2Lf,M

. Then, if SeN (Ω) < ε(f,M) we have

(2.20)

∫
Ω

((u− v)+)2Ψ2 ≤ C1(f,M,Ω)

∫
Ω

((u− v)+)2|∇Ψ|2,

with C1(f,M,Ω) =
4

π2

(SeN (Ω))2
− 2Lf,M

> 0.

When the case (ii) is in force, equation (2.19) yields

(2.21)

∫
Ω

((u− v)+)2Ψ2 ≤ C2(Ω)

∫
Ω

((u− v)+)2|∇Ψ|2

where C2(Ω) =
4S2eN

(Ω)

π2 (and without any restriction on the size of SeN (Ω)).

For 0 < a < b, set h = b− a and consider the Lipschitz-continuous function

ηh :R+ → R

t 7→

 1 if t ∈ [0, a],
b−t
h

if t ∈ [a, b],
0 if t ∈ [b,+∞).

For any x′ ∈ RN−1, set Ψh(x
′) := ηh(|x′|), then Ψh ∈ C0,1

c (RN−1) and |∇′Ψh(x
′)| ≤ 1

h
for

almost every x′ ∈ RN−1.
For r > 0, recall that CeN (r) = Ω ∩ (B′(0′, r)× R) and consider the function defined by

(2.22) w(r) :=

∫
CeN

(r)

((u− v)+)2.
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If the case (i) is in force, from (2.20) we have

w(a) =

∫
CeN

(a)

((u− v)+(x))2 ≤
∫
Ω

((u− v)+(x))2Ψ2
h(x

′)

≤ C1(f,M,Ω)

∫
Ω

((u− v)+(x))2|∇Ψh(x
′)|2

≤ C1(f,M,Ω)

h2

∫
CeN

(b)\CeN
(a)

((u− v)+(x))2

and by adding C1(f,M,Ω)
h2 w(a) to both sides of the latter, we have

w(a) ≤ 1
h2

C1(f,M,Ω)
+ 1

w(a+ h), ∀ a, h > 0.

To conclude it is enough to prove that w ≡ 0. If not, we can find A > 0 such that

(2.23) w(A) > 0,

and so, we can apply Lemma 3.1 in [5] with α = 1
C1(f,M,Ω)

> 0, δ = 0, γ = 2 and β = 1 to

infer that, for any h > 0, the function w satisfies

(2.24) w(R) ≥ w(A)(αh2 + 1)
R−A

h
−1, ∀R ≥ A+ h.

If we take h =
√

e−1
α

> 0, then

(2.25) w(R) ≥ w(A)(αh2 + 1)
R−A

h
−1 = w(A)e−(A

h
+1)e

R
h , ∀R >> 1.

On the other hand, the boundedness of u and v leads to

(2.26) w(R) ≤ 4M2LN(CeN (R)) ≤ 4M2SeN (Ω)ωN−1R
N−1, ∀R > 0,

where LN denotes the N -dimensional Lebesgue measure and ωN−1 is the Lebesgue measure
of unit ball of RN−1. Inequality (2.26) is in contradiction with (2.25), so w ≡ 0 and the
desired conclusion follows.

The case (ii) is proven in exactly the same way. Simply replace the constant C1(f,M,Ω) by
the constant C2(Ω) in the previous argument. Indeed, since f is non-increasing, inequality
(2.15) becomes∫

Ω

∇(u− v)(∇(u− v)+Ψ2 + (u− v)+2Ψ∇Ψ) ≤
∫
Ω

(f(u)− f(v))(u− v)+Ψ2 ≤ 0

and so (2.16) holds true with Lf,M = 0.

The proof in the case (iii) is similar to the one of the case (i). However, we must pay
attention to the fact that in this case we do not assume that Ω is locally bounded in the
direction eN , and therefore we have to use a different path to prove that g ∈ H1

0 (Ω∩(B′×R)).
To this end, we set ω = Ω ∩ (B′ × R) and we observe that LN(ω) < +∞. Indeed,

LN(ω) =

∫
ω

dx =

∫
B′

(∫
S
eN
x′

dxN

)
dx′ ≤ SeN (Ω)LN−1(B′) < +∞,

where LN−1 denotes the (N−1)-dimensional Lebesgue-measure of the open ball B′ ⊂ RN−1.
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We already know that g ∈ C0(ω) and g = 0 on ∂ω. Moreover g ∈ L2(ω) since∫
ω

g2(x)dx =

∫
ω

((u− v)+(x))2Ψ4(x′)dx ≤ 4M2∥Ψ∥4L∞(RN−1)L
N(ω) < +∞.

Also, g is locally Lipschitz-continuous in Ω, since u, v ∈ Liploc(Ω) by assumption. Hence,
formula (2.13) holds true and so g ∈ H1(Ω ∩ (B′ × R)), since∫

ω

(∂j((u− v)+)2Ψ4 ≤ 4M2∥Ψ∥4L∞(RN−1)L
N(ω),

∫
ω

Ψ2((u− v)+)2(∂jΨ)2 ≤ 4M2∥Ψ∥2L∞(RN−1)∥∂jΨ∥2L∞(RN−1)L
N(ω).

Then, g ∈ H1
0 (ω) and so, we can proceed as in the proof of the case (i) to obtain the desired

conclusion. □

Proof of Theorem 2.3. We proceed as in the proof of the case (i) of Theorem 2.2 until (2.15).
(This is possible, since in this case (2.14) holds even under the assumption f = f1 + f2,
where f2 is a non-increasing function, possibly discontinuous. Indeed, in this case f(u)
and f(v) are bounded measurable functions on the bounded set Ω ∩ (B′ × R)). Then we
obtain (2.16), where now Lf,M is any positive number greater or equal to Lf1 , the Lipschitz
constant of f1. Here we have used that (f(u) − f(v))(u − v)+ ≤ (f1(u) − f1(v))(u − v)+,
since f2 is non-increasing. After that, the same proof leads to inequality (2.19).

To complete the proof we set ε(Lf1 , γ) =
π√

16(e− 1)γ2 + 2Lf,M

and we observe that (2.20)

is still satisfied if SeN (Ω) < ε(Lf1 , γ). Therefore, we can consider once again the function w
defined by (2.22) and then follow the proof until (2.25), i.e.,

(2.27) w(R) ≥ w(A)e−(A
h
+1)e

R
h , ∀R >> 1,

where h =
√

e−1
α
, A > 0 and w(A) > 0. On the other hand, for R > 1, we also have

w(R) =

∫
CeN

(R)

((u− v)+)2dx ≤ 4a2
∫
CeN

(R)

|x|2δe2γ|x|dx(2.28)

≤ 4a2
∫
CeN

(R)

(R + |xN |)2δe2γ(R+|xN |)dx(2.29)

≤ 4a2(2R)2δe2γR
∫
B′(0′,R)

(∫
S
eN
x′

e2γ|xN |dxN

)
dx′+(2.30)

4a222δe2γR
∫
B′(0′,R)

(∫
S
eN
x′

|xN |2δe2γ|xN |dxN

)
dx′(2.31)

≤ 4a2(2R)2δe2γR
∫
B′(0′,R)

(∫
S
eN
x′

(1 + |xN |2δ)e2γ|xN |dxN

)
dx′(2.32)
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Now we obeserve that∫
S
eN
x′

(1 + |xN |2δ)e2γ|xN |dxN =(2.33) ∫
S
eN
x′ ∩{|xN |≤1}

(1 + |xN |2δ)e2γ|xN |dxN +

∫
S
eN
x′ ∩{|xN |>1}

(1 + |xN |2δ)e2γ|xN |dxN(2.34)

≤ 2e2γSeN (Ω) +

∫
S
eN
x′

2|xN |2δe2γ|xN |dxN ≤ 2e2γSeN (Ω) + 2C3 := C4 < +∞,(2.35)

where C3 := supx′∈RN−1

(∫
S
eN
x′

|xN |2δe2γ|xN |dxN

)
< +∞, by (2.8).

From the previous inequalities we infer that, for R > 1,

w(R) ≤ 4a2(2R)2δe2γRC4LN−1(B′(0′, R)) = 4a222δC4LN−1(B′(0′, 1))R2δ+N−1e2γR(2.36)

The latter inequality contradicts (2.27), since

2γ <
1

h
⇐⇒ SeN (Ω) <

π√
16(e− 1)γ2 + 2Lf,M

,

therefore w ≡ 0 and so u ≤ v on Ω. □

Proof of Theorem 2.5. We proceed as in the proof of the case (ii) of Theorem 2.3 until (2.21).
(This is possible, since (2.14) holds even when f is a non-increasing function, possibly
discontinuous. Indeed, in this case f(u) and f(v) are bounded measurable functions on the
bounded set Ω ∩ (B′ × R)). Then we consider the function w defined by (2.22) and then
follow the proof until (2.25), i.e.,

(2.37) w(R) ≥ w(A)e−(A
h
+1)e

R
h , ∀R >> 1,

where h =
√

e−1
α
, A > 0 and w(A) > 0. On the other hand, we also have

w(R) =

∫
CeN

(R)

((u− v)+)2dx ≤ 4a2
∫
CeN

(R)

|x|2δe2γ|x|dx(2.38)

≤ 4a2
∫
CeN

(R)

(R + |xN |)2δe2γ(R+|xN |)dx(2.39)

≤ 4a2e2γR
∫
B′(0′,R)

(∫
S
eN
x′

(R + |xN |)2δe2γ|xN |dxN

)
dx′(2.40)

≤ 4a2LN−1(B′(0′, 1))SeN (Ω)(1 + β)2δe2γβRN+2δ−1e2γR, ∀R > 1,(2.41)

where in the latter we have used that Ω ⊆ {x = (x′, xN) ∈ RN : −β < xN < β}, with
β > 0, since Ω is bounded in the direction eN .

The latter inequality contradicts (2.37), since γ ∈
[
0, π

4SeN (Ω)
√
e−1

)
implies 2γ < 1

h
. □
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3. Some uniform estimates in unbounded domains

In order to prove some of our results we need to establish some uniform estimates for
solutions to semilinear problems on epigraphs satisfying a uniform exterior cone condition.
Let us recall that an open set ω ⊂ RN (not necessarily an epigraph) satisfies a uniform
exterior cone condition if for any x0 ∈ ∂ω there exists a finite right circular cone Vx0 , with
vertex x0, such that ω ∩ Vx0 = {x0} and the cones Vx0 are all congruent to some fixed cone
V. The cone V is called the reference cone.
Any globally Lipschitz-continuous epigraph satisfies a uniform exterior cone condition, but
the converse is not true. Indeed, the epigraph defined by the function x 7→ ex is bounded
from below, it satisfies a uniform exterior cone condition (by convexity) without being
uniformly continuous.

In the following we consider a (merely) continuous function h : RN−1 → R, its epigraph

ω :=
{
x = (x′, xN) ∈ RN−1 × R : xN > h(x′)

}
and, for any R > 0 and any τ > sup

B′(0′,R)

|h|, we set

(3.1) Ch(0′, R, τ) =
{
x = (x′, xN) ∈ RN , x′ ∈ B′(0′, R) and h(x′) < xN < τ

}
,

the intersection of the epigraph ω with the truncated cylinder B′(0′, R)× (−τ, τ) and

Ĉh(0′, R, τ) = Ch(0′, R, τ) ∪ {x = (x′, xN) ∈ B′(0′, R)× R, xN = h(x′)} .

Then, the next uniform estime holds true.

Proposition 3.1. Let ω be the epigraph of a continuous function h : RN−1 → R and
suppose that ω satisfies a uniform exterior cone condition (with reference cone V ).

Let R̃ > 0, τ̃ > max

R̃, 4 sup
B′(0′,R̃)

|h|

 and u ∈ H1(Ch(0′, R̃, τ̃)) ∩ C0(Ch(0′, R̃, τ̃)) satisfy

(3.2)

{
−∆u = f(u) in D′(Ch(0′, R̃, τ̃)),

u = 0 on ∂ω ∩ Ĉh(0′, R̃, τ̃),

where f ∈ Liploc(R). Then, there exists α = α(N, V ) ∈ (0, 1) such that u ∈ C0,α(Ch(0′, r, t))

for any 0 < r < R̃
2
and any sup

B′(0′,r)

|h| < t <
3

4
τ̃ and

(3.3) ∥u∥
C0,α(Ch(0′,r,t))

≤ C (Lf + |f(0)|+ 1)
(
∥u∥L∞(Ch(0′,R̃,τ̃)) + 1

)
,

where C = C(r, R̃, τ̃ , V,N) > 0 and Lf is the Lipschitz constant of f on the interval[
−∥u∥L∞(Ch(0′,R̃,τ̃)), ∥u∥L∞(Ch(0′,R̃,τ̃))

]
.

In order to prove the previous proposition we need two preliminary results.

Lemma 3.2. Let N ≥ 1, U ⊂ RN be a domain and u ∈ C2(U) be a solution of

(3.4) −∆u = f in U,



MONOTONICITY FOR SOLUTIONS TO SEMILINEAR PROBLEMS IN EPIGRAPHS 17

with f ∈ C0(U).

Let δ > 0 and y ∈ U such that B(y, δ) ⊂ U . Then, for any x ∈ B(y, δ
2
) we have

(3.5) |u(x)− u(y)| ≤
√
N

21−γ

(
2N∥u∥L∞(B(y,δ))δ

−γ + ∥f∥L∞(B(y,δ))δ
2−γ
)
|x− y|γ,

with γ ∈]0, 1].

Proof. By the mean value theorem, for any γ ∈]0, 1],

|u(x)− u(y)| ≤ sup
z∈B(y, δ

2
)

|∇u(z)||x− y| ≤ δ1−γ

21−γ
sup

z∈B(y, δ
2
)

|∇u(z)||x− y|γ.(3.6)

Moreover, for any z ∈ B(y, δ
2
) we have B(z, δ

2
) ⊂ B(y, δ), and so by Brandt’s inequality

(see [6] or Theorem 3.9 in [23])

|∂iu(z)| ≤
2N

δ
∥u∥L∞(∂B(z, δ

2
)) +

δ

4
∥f∥L∞(B(y,δ)) ∀ i ∈ {1, · · · , N}.

Thus, for any z ∈ B(y, δ
2
)

(3.7) |∇u(z)| ≤
√
N
(2N

δ
∥u∥L∞(B(y,δ)) +

δ

4
∥f∥L∞(B(y,δ))

)
.

The claim then follows by combining (3.6) and (3.7). □

To prove the next result, let us recall that a domain ω satisfies a uniform exterior regularity
condition, if

(3.8) ∃ γ > 0, ρ0 > 0 : ∀ ρ ∈ (0, ρ0], ∀x0 ∈ ∂ω,
LN(ωc ∩B(x0, ρ))

LN(B(x0, ρ))
≥ γ.

Condition (3.8) will be denoted by Cγ,ρ0 . It is well-known that any domain that satisfies a
uniform exterior cone condition, also satisfies a uniform exterior regularity condition Cγ,ρ0 ,
with suitable parameters γ and ρ0 depending only on the reference cone. Consequently, the
following result applies to any epigraph that satisfies a uniform exterior cone condition.

Proposition 3.3. Let ω be the epigraph of a continuous function h : RN−1 → R and
suppose that ω satisfies the condition Cγ,ρ0.

Let R̃ > 0, τ̃ > max

R̃, sup
B′(0′,R̃)

|h|

, f ∈ LN(Ch(0′, R̃, τ̃)) and u ∈ H1(Ch(0′, R̃, τ̃)) ∩

C0(Ch(0′, R̃, τ̃)) satisfy

(3.9)

{
−∆u = f in D′(Ch(0′, R̃, τ̃)),

u = 0 on ∂ω ∩ Ĉh(0′, R̃, τ̃).

Then, there are constants C = C(N, ρ0, γ, R̃) > 0 and α = α(N, γ) ∈ (0, 1) such that for

any r > 0 and for any x0 ∈ ∂ω ∩
(
B′(0′, R̃/2)× R

)
,

osc
Ĉh(0′,R̃,τ̃)∩B(x0,r)

u ≤ C(∥u∥L∞(Ch(0′,R̃,τ̃)) + ∥f∥LN (Ch(0′,R̃,τ̃)))r
α.
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Proof. To simplify the exposition we set Ω = Ch(0′, R̃, τ̃), T = ∂ω ∩
(
B′(0′, R̃/2)× R

)
,

r = min( R̃
8
, ρ0

2
, 1) and, for r > 0 and x0 ∈ T , we also let Ωr = Ω ∩B(x0, r).

For any r ∈ (0, r] we set M4 = sup
Ω4r

u, m4 = inf
Ω4r

u, M1 = sup
Ωr

u and m1 = inf
Ωr

u and we

apply Theorem 8.26 in [23] to the function W4 = M4−u, with q = 2N and p = 1, to obtain

r−N∥W−
4,m∥L1(B2r(x0)) ≤ C1(N)

[
inf

Br(x0)
W−

4,m + r∥f∥LN (Ω)

]
,(3.10)

where m = inf∂Ω∩B4r(x0) W4 (here we have used the notations of Theorem 8.26 in [23]). To

proceed further, we observe that m = M4, since τ̃ > R̃ ≥ 4r ≥ 4r implies ∂Ω ∩ B4r(x0) ⊂
∂ω ∩ Ĉh(0′, R̃, τ̃). Hence

r−N∥W−
4,m∥L1(B2r(x0)) ≤ C1(N)

[
inf

Br(x0)
W−

4,m + r∥f∥LN (Ω)

]
≤ C1(N)[M4 −M1 + r∥f∥LN (Ω)].

(3.11)

Moreover, since 2r ≤ ρ0, we also have

(3.12) r−N∥W−
4,m∥L1(B2r(x0)) ≥ r−NM4LN(Ωc ∩B(x0, 2r)) ≥ M4γLN(B(0, 2)).

In the latter we have used that the epigraph ω satisfies the uniform condition Cγ,ρ0 at x0.

Therefore, from (3.11) and (3.12) we deduce that

(3.13) LN(B(0, 2))γM4 ≤ C1[M4 −M1 + r∥f∥LN (Ω)].

The same argument applied to the function w4 = u−m4 yields

(3.14) −LN(B(0, 2))γm4 ≤ C1[m1 −m4 + r∥f∥LN (Ω)],

hence, by adding (3.13) and (3.14) we obtain

LN(B(0, 2))γ(M4 −m4) ≤ C1(M4 −m4)− C1(M1 −m1) + 2rC1∥f∥LN (Ω).

Thus

(3.15) osc
Ωr

u ≤
(
1− LN(B(0, 2))γ

C1

)
osc
Ω4r

u+ 2r∥f∥LN (Ω).

Now, we observe that the function w(R) := osc
ΩR

u + 2R∥f∥LN (Ω) is well-defined and non-

decreasing on (0, r] and satisfies

w(R/4) = osc
ΩR/4

u+
R

2
∥f∥LN (Ω) ≤

(
1− LN(B(0, 2))γ

C1

)
osc
ΩR

u+
R

2
∥f∥LN (Ω) +

R

2
∥f∥LN (Ω)

=
(
1− LN(B(0, 2))γ

C1

)
osc
ΩR

u+
1

2
× 2R∥f∥LN (Ω)

≤ max

[
1− LN(B(0, 2))γ

C1

,
1

2

] [
osc
ΩR

u+ 2R∥f∥LN (Ω)

]
= C2w(R)

where C2 = C2(N, γ) := max
[
1− LN (B(0,2))γ

C1
, 1
2

]
∈ (0, 1). Hence, we can apply Lemma 8.23

in [23] to get

(3.16) w(R) ≤ C3

(
R

r

)α

w(r) ∀R ∈ (0, r],
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where C3 = C3(N, γ) > 0 and α = α(N, γ) ∈ (0, 1). From the latter we immediately infer
that

(3.17) osc
Ωr

u ≤ w(r) ≤ C3

(r
r

)α
w(r) ≤ 2C3

(r
r

)α
(∥u∥L∞(Ω) + ∥f∥LN (Ω)) ∀ r ∈ (0, r].

Now, if r > r then for any x, y ∈ Ωr

u(x)− u(y) ≤ |u(x)− u(y)| ≤ 2∥u∥L∞(Ω) × 1 ≤ 2∥u∥L∞(Ω)

(r
r

)α
,

thus

(3.18) osc
Ωr

u ≤ 2∥u∥L∞(Ω)

(r
r

)α
∀ r > r.

Finally, (3.17) and (3.18) imply the desired conclusion. □

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1.

Set Ω = Ch(0′, R̃, τ̃), R1 = min( R̃
2
− r, τ̃

2
) and pick x, y ∈ Ch(0′, r, t) with x ̸= y.

1. If |x− y| ≥ R1

4
then, for any γ ∈ (0, 1), we have

|u(x)− u(y)| ≤ 2∥u∥L∞(Ω) = 2∥u∥L∞(Ω)

( 4

R1

)γ(R1

4

)γ
≤ 2
( 4

R1

)γ
∥u∥L∞(Ω)|x− y|γ = M1∥u∥L∞(Ω)|x− y|γ.

(3.19)

2. If |x− y| < R1

4
, then we consider the set

T :=
{
x = (x′, xN) ∈ RN : x′ ∈ B′(0′, R̃/2) and xN = h(x′)

}
and, by observing that x and y play a symmetric role, we distinguish (only) three cases.

Case 2.1(see Figure 2) : d(y, T ) > R1

2
.

In this case we have B(y, R1

2
) ⊂ Ch(0′, R̃, τ̃). To see this, we first observe that B(y, R1

2
) ⊂ ω,

thanks to the assumption d(y, T ) > R1

2
and by the definition of R1, and thus, for any

z ∈ B(y, R1

2
), we have

h(z′) < zN = zN − yN + yN < zN − yN + t ≤ R1

2
+

3τ̃

4
<

τ̃

4
+

3τ̃

4
= τ̃ ,

and

|z′| ≤ |z′ − y′|+ |y′| ≤ R1

2
+ r <

R̃

2
− r + r < R̃.

Now by applying Lemma 3.2 10 with δ = R1

2
and for any γ ∈ (0, 1), we deduce

|u(x)− u(y)| ≤
√
N

21−γ

(
2N∥u∥L∞(Ω)

(R1

2

)−γ

+ ∥f(u)∥L∞(Ω)

(R1

2

)2−γ)
|x− y|γ

≤ M2(Lf + |f(0)|+ 1)(∥u∥L∞(Ω) + 1)|x− y|γ
(3.20)

10 Note that u ∈ C2 by standard elliptic regularity results, since u is continuous and f is locally
Lipschitz-continuous.
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Figure 2. Case 2.1

where M2 =

√
N

21−γ

(
2N
(R1

2

)−γ

+
(R1

2

)2−γ)
.

Case 2.2 (see Figure 3) : d(x, T ) ≤ d(y, T ) ≤ R1

2
and |x− y| ≥ 1

4
d(y, T ).

Figure 3. Case 2.2

Since T is a compact set, there exists y0 = (y′0, h(y
′
0)) ∈ T such that d(y, T ) = |y − y0|.

Therefore

x, y ∈ B(y0, 6|x− y|),
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since

|x− y0| ≤ |x− y|+ |y − y0| ≤ |x− y|+ 4|x− y| = 5|x− y|,

and

|y − y0| = d(y, T ) ≤ 4|x− y|.

Now, we apply Proposition 3.3 with r = 6|x − y| and x0 = y0, thus there exist constants

C ′ = C ′(N, V, R̃) > 0 and α = α(N, V ) ∈ (0, 1) such that

|u(x)− u(y)| ≤ 6αC ′(∥u∥L∞(Ω) + ∥f(u)∥LN (Ω))|x− y|α

≤ M3(Lf + |f(0)|+ 1)(∥u∥L∞(Ω) + 1)|x− y|α.
(3.21)

where M3 = 6αC ′
[
1 +

(
2τ̃LN−1(B′(0′, 1))R̃N−1

) 1
N

]
.

Case 2.3 (see Figure 4): d(x, T ) ≤ d(y, T ) ≤ R1

2
and |x− y| < 1

4
d(y, T ).

Figure 4. Case 2.3

By applying Lemma 3.2 with δ = d(y,T )
2

and γ = α,

|u(x)− u(y)| ≤
√
N

21−α

(
∥f(u)∥L∞(Ω)

(d(y, T )
2

)2−α

+ 2N∥u∥
L∞(B(y,

d(y,T )
2

))

(d(y, T )
2

)−α)
|x− y|α.

(3.22)

Now, we want to estimate ∥u∥
L∞(B(y,

d(y,T )
2

))
. Let z ∈ B(y, d(y,T )

2
) and y0 = (y′0, h(y

′
0)) ∈ T

such that d(y, T ) = |y0 − y|. Then z ∈ Ω ∩B(y0, 2d(y, T )) since

|z − y0| = |z − y + y − y0| ≤ |z − y|+ |y − y0| ≤
3

2
d(y, T ) < 2d(y, T ).
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Thus we can apply Proposition 3.3 with r = 2d(y, T ) and x0 = y0 to get

|u(z)| = |u(z)− u(y0)| ≤ 2αC ′(∥u∥L∞(Ω) + ∥f(u)∥LN (Ω))d(y, T )
α.

Hence

(3.23) ∥u∥
L∞(B(y,

d(y,T )
2

))
≤ 2αC ′(∥u∥L∞(Ω) + ∥f(u)∥LN (Ω))d(y, T )

α,

and by (3.22) and (3.23), we have

(3.24) |u(x)− u(y)| ≤ M4(Lf + |f(0)|+ 1)(∥u∥L∞(Ω) + 1)|x− y|α.

where M4 =

√
N

21−α

{(R1

4

)2−α

+ 2N22αC ′
[
1 +

(
2τ̃LN−1(B′(0′, 1))R̃N−1

) 1
N

]}
.

The desired conclusion (3.3) then follows from (3.19),(3.20),(3.21) and (3.24) by taking
C = max(M1,M2,M3,M4). □

4. Proofs

Thanks to the translation invariance of problem (1.1), we may and do suppose that the
function g : RN−1 → R, defining ∂Ω, satisfies infRN−1 g = 0.

The proofs of our main results are based on the moving planes method suitably adapted to
the geometry of the epigraph Ω. To this end, we first set the notations that will be used in
our analysis.

For 0 < a < b and λ > 0 we set (see Figures 5 and 6):

Σλ := {x ∈ RN : 0 < xN < λ },
Σg

b = {x = (x′, xN) ∈ RN : g(x′) < xN < b},
Σg

a,b = {x = (x′, xN) ∈ RN : g(x′) + a < xN < b},

∀x ∈ Σg
λ, uλ(x) = u(x′, 2λ− xN).

Figure 5. Case 2.1 Figure 6. Case 2.2

In the following, for any subset S ⊆ RN , we denote by UC(S) the set of uniformly contin-
uous functions defined on S.
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Proof of Theorem 1.1.

We set Λ := {t > 0 : u ⩽ uθ in Σg
θ , ∀ 0 < θ < t} and we aim at proving that

t̃ := supΛ = +∞.

To this end we split the remaining part of the proof into three steps.

Step 1 : Λ is not empty.

For any θ > 0 small enough, we have u, uθ ∈ H1
loc(Σ

g
θ) ∩ UC(Σg

θ) and{
−∆u− f(u) = 0 = −∆uθ − f(uθ) in Σg

θ,
u ≤ uθ on ∂Σg

θ.

For the latter, notice that ∂Σg
θ = ({xN = θ} ∩ Ω) ∪ (∂Ω ∩ {xN < θ}) and so

• if x ∈ {xN = θ} ∩ Ω, then u(x) = uθ(x),
• if x ∈ ∂Ω ∩ {xN < θ}, then u(x) = 0 and uθ(x) = u(x′, 2θ − xN) > 0, since
(x′, 2θ − xN) ∈ Ω.

Since Σg
θ ⊆ {x ∈ RN : 0 < xN < θ }, we also have that SeN (Σ

g
θ) ≤ θ. Moreover, u has at

most linear growth on Σg
θ, since u is uniformly continuous on Σg

θ by assumption. Therefore,
we can apply Theorem 2.3 (see Remark 2.4), with any θ < ε(Lf , γ),

11 to get

u ≤ uθ on Σg
θ.

Hence, (0, ε(Lf , γ)) ⊂ Λ.

Step 2 : t̃ = supΛ = +∞.

If t̃ := supΛ < +∞, then we have

Proposition 4.1. For every δ ∈ (0, t̃
2
) there is ε(δ) > 0 such that

(4.1) ∀ ε ∈ (0, ε(δ)) u ≤ ut̃+ε on Σg

δ,t̃−δ
.

Proof of Proposition 4.1. If the claim were not true, there would exist δ ∈ (0, t̃
2
) such that

(4.2) ∀ k ≥ 1 ∃ εk ∈
(
0,

1

k

)
, ∃xk ∈ Σg

δ,t̃−δ
: u(xk) > ut̃+ϵk

(xk),

and so

(4.3) δ ≤ g((xk)′) + δ < xk
N < t̃− δ, ∀k ≥ 1.

Therefore, the sequence (xk
N) is bounded, and so, up to a subsequence, we may and do

suppose that xk
N → x∞

N , as k → ∞.

Now, set

(4.4) gk(x
′) = g(x′ + (xk)′) ∀x′ ∈ RN−1, ∀k ≥ 1,

and observe that the sequence (gk) is uniformly equicontinuous on RN−1 (since g ∈ UC(RN−1))
and that 0 ≤ gk(0

′) = g((xk)′) ≤ t̃, thanks to (4.3). Therefore, by Ascoli-Arzelà theorem
(and a standard diagonal procedure) there exists a function g∞ ∈ UC(RN−1) such that, up

11 Here γ can be any positive real number.
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to a subsequence, gk → g∞ in C0
loc(RN−1).

We also observe that, passing to the limit in (4.3), we obtain

(4.5) δ ≤ g∞(0′) + δ ≤ x∞
N ≤ t̃− δ.

For any k ≥ 1, let us consider Ωk = {(x′, xN) ∈ RN , xN > gk(x
′)}, the epigraph of gk,

Ω∞ = {(x′, xN) ∈ RN , xN > g∞(x′)}, the epigraph of g∞ and define

(4.6) ũ(x) =

{
u(x) if x ∈ Ω,
0 if x ∈ RN \ Ω.

Clearly, ũ ∈ UC({xN < R}) for every R > 0, and so the sequence (ũk) defined by

(4.7) ũk(x) = ũ(x′ + (xk)′, xN) ∀x = (x′, xN) ∈ RN , ∀k ≥ 1,

is uniformly equicontinuous on {xN < R}, for any R > 0. We also notice that, for k large
enough, the point (0′,−1) belongs to RN \Ωk, since gk → g∞ in C0

loc(RN−1) and gk ≥ 0 on
RN−1. Hence, ũk(0

′,−1) = 0, for k large enough, and the sequence (ũk(0
′,−1)) is bounded

in R. Therefore, using once again the Ascoli-Arzelà theorem, there exists ũ∞ ∈ C0(RN)
such that, up to a subsequence, ũk → ũ∞ in C0

loc(RN) and

(4.8)

 −∆ũ∞ = f(ũ∞) in D′(Ω∞),
ũ∞ ≥ 0 in Ω∞,
ũ∞ = 0 on ∂Ω∞,

where the boundary condition follows by observing that,

∀ k ≥ 1, ∀x′ ∈ RN−1 0 = ũk(x
′, gk(x

′)),

and thus

0 = ũk(x
′, gk(x

′)) −→ ũ∞(x′, g∞(x′)) as k → ∞,

thanks to the uniform convergence of (ũk) and (gk) on compact sets.

By construction, u∞ := ũ∞|Ω∞ ∈ C0(Ω∞). Furthermore, u∞ ∈ C2(Ω∞) by (4.8) and
standard interior regularity theory for elliptic equations, and it satisfies

(4.9)

 −∆u∞ = f(u∞) in Ω∞,
u∞ ≥ 0 in Ω∞,
ũ∞ = 0 on ∂Ω∞.

Since u ≤ ut̃ in Σg

t̃
, then ũk ≤ ũk,t̃ in Σgk

t̃
, for any k ≥ 1. Passing to the limit, we get

(4.10) u∞ ≤ u∞,t̃ in Σg∞
t̃

.

Also,

uk(0
′, xk

N) = u(xk) > ut̃+εk
(xk) = uk,t̃+εk

(0′, xk
N),

so, taking the limit as k → +∞, we have

(4.11) u∞(0′, x∞
N ) ≥ u∞,t̃(0

′, x∞
N ).

In view of (4.5) we see that (0′, x∞
N ) ∈ Σg∞

δ,t̃−δ
⊂ Σg∞

t̃
and so, by combining (4.10) and (4.11),

we obtain

(4.12) u∞(0′, x∞
N ) = u∞,t̃(0

′, x∞
N ).
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Next we use the assumption (1.5) to prove that u∞ > 0 on Ω∞. We first observe that, by
(1.5), we can find η > 0 and ε0 > 0 such that

(4.13) f(t) ≥ ηt for any t ∈ [0, ε0],

then, we choose R large enough so that the first eigenvalue λ1(R) of −∆ on the open ball
B(0, R) ⊂ RN (with homogeneous Dirichlet boundary condition) satisfies λ1(R) < η.

Since gk → g∞ in C0
loc(RN−1), there is C(R) > 0 such that

∀k ≥ 1 0 ≤ g, gk ≤ C(R) on B′(0′, 2R) ⊂ RN−1.

In particular, for T > 2(C(R) +R), the open ball B := B((0′, T ), R) ⊂ RN satisfies

(4.14) B ⊂ Ω, B ⊂ Ωk ∀k ≥ 1, and B ⊂ Ω∞

and so, also

(4.15) B + ((xk)
′, 0) ⊂ Ω ∀k ≥ 1.

Now, set m0 = minB u > 0 and denote by ϕ1 the positive first eigenfunction of −∆ on B
such that maxB ϕ1 = 1. Therefore, the first eigenfunction ϕ := min

{
m0

2
, ε0
}
ϕ1 satisfies 0 < ϕ < u in B,

∆ϕ+ f(ϕ) ≥ 0 in B,
ϕ = 0 on ∂B,

where in the latter we have used that (4.13) is in force.

Now, since Ω is an epigraph and (4.14)-(4.15) hold, we can use the sliding method (see for
instance [4]) to get

ϕ(x′ − (xk)
′, xN) < u(x) ∀ x ∈ B + ((xk)

′, 0) ⊂ Ω,

that is,

ϕ(x) < uk(x) ∀ x ∈ B.
By passing to the limit, we deduce that

0 < ϕ(x) ≤ u∞(x) ∀ x ∈ B,
therefore, by (4.9) and the strong maximum principle, we deduce that u∞ > 0 on Ω∞.

Now we are ready to complete the proof of Proposition 4.1.

To this aim, we set wt̃ := u∞,t̃ − u∞ on Σg∞
t̃

and we claim that

(4.16) wt̃ ≡ 0 in the connected component of Σg∞
t̃

containing the point (0′, x∞
N ).

Indeed, denote by O the connected component of Σg∞
t̃

containing the point (0′, x∞
N ) and let

B = B((0′, x∞
N ), R) be any open ball such that B ⊂ O. Then −∆wt̃ = f(u∞,t̃)− f(u∞) ≥ −Lfwt̃ in B,

wt̃ ≥ 0 in B,
wt̃(0

′, x∞) = 0,

where Lf is the Lipschitz constant of f on the compact set [0,maxB u∞,t̃] (here we have
also used (4.10)).
Since (0′, x∞

N ) ∈ B and (4.12) holds, the strong maximum principle ensures that wt̃ ≡ 0 in
B and thus, a standard connectedness argument implies (4.16).
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Since Ω∞ is an epigraph, the continuity of u∞ on Ω∞ and (4.16) imply that u∞ must vanish
at some point x ∈ Ω∞. This contradicts u∞ > 0 on Ω∞ and so, the proof of Proposition
4.1 is complete.

To conclude the proof of step 2, let us pick δ > 0 such that 3δ < min( t̃
2
, ε(Lf , γ)). By

Proposition 4.1, there exists ε(δ) ∈ (0, δ) such that, for any ε ∈ (0, ε(δ)) we have u ≤ ut̃+ε

in Σg

δ,t̃−δ
.

On Σg

t̃+ε
\Σg

δ,t̃−δ
, we have u, ut̃+ε ∈ H1

loc(Σ
g

t̃+ε
\Σg

δ,t̃−δ
) ∩ UC(Σg

t̃+ε
\Σg

δ,t̃−δ
) and

{
−∆u− f(u) = 0 = −∆ut̃+ε − f(ut̃+ε) on Σg

t̃+ε
\Σg

δ,t̃−δ

u ≤ ut̃+ε on ∂
(
Σg

t̃+ε
\Σg

δ,t̃−δ

)
For the latter, notice that

∂
(
Σg

t̃+ε
\Σg

δ,t̃−δ

)
= ({xN = t̃+ ε} ∩ Ω)

⋃
(∂Ω ∩ {xN < t̃+ ε})

⋃
∂(Σg

δ,t̃−δ
),

and so

• if x ∈ {xN = t̃+ ε} ∩ Ω then u(x) = ut̃+ε(x),
• if x ∈ ∂Ω ∩ {xN < t̃+ ε} then 0 = u(x) < ut̃+ε(x),

• if ∂(Σg

δ,t̃−δ
), then Proposition 4.1 implies that u(x) ≤ ut̃+ε(x).

Notice that SeN (Σ
g

t̃+ε
\Σg

δ,t̃−δ
) ≤ 2δ + ε < 3δ < ε(Lf , γ) and that Σg

t̃+ε
\Σg

δ,t̃−δ
⊆ {0 < xN <

t̃ + ε} (see Figure 7). Hence, since u is uniformly continuous, we can apply Theorem 2.3,
as in Step 1, to get

u ≤ ut̃+ε in Σg

t̃+ε
\Σg

δ,t̃−δ
.

Figure 7. Proof of Step 2

The latter and Proposition 4.1 imply that u ≤ ut̃+ε in Σg

t̃+ε
. This contradicts the definition

of t̃, thus t̃ = +∞.

Step 3 : End of the proof.
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For each t > 0, let (x′, t) ∈ Ω ∩ {xN = t} and pick r > 0 such that B((x′, t), r) ⊂ Ω. From
the previous step we infer that −∆(ut − u) + Lf,t(ut − u) ≥ 0 in Σg

t ∩B((x′, t), r),
ut − u ≥ 0 in Σg

t ∩B((x′, t), r),
ut − u = 0 on {xN = t} ∩B((x′, t), r),

where Lf,t is the Lipschitz constant of f in the compact set

[
0, max

Σg
t∩B((x′,t),r)

ut

]
.

So, by the Hopf lemma, we have

(4.17) −2 ∂u
∂xN

(x′, t) = ∂(ut−u)
∂xN

(x′, t) < 0.

The latter proves the desired conclusion. □

Proof of Theorem 1.3. We follow the proof of Theorem 1.1. However, this strategy requires
significant changes in Step 2 (recall that Step 2 in the proof of Theorem 1.1 was crucially
based on the assumption (1.5), as well as on the uniform continuity of u on Ω ∩ {xN < R}
for any R > 0).

Step 1 : Λ is not empty.

It is enough to observe that Step 1 in the proof of Theorem 1.1 holds true irrespectively of
the value of f(0) and that we can apply Theorem 2.3 (see also Remark 2.4), since u has at
most exponential growth on finite strips by assumption.

Step 2 : t̃ = supΛ = +∞.

To prove the claim, it is enough to show that Proposition 4.1 is still true under the (more
general) assumptions of Theorem 1.3. Unfortunately, the method used in the proof of
Theorem 1.1 no longer works if the assumption (1.5) is not in force. Indeed, in this case we
cannot exclude that the limit profile u∞ coincides with the function identically equal to 0,
and this prevents us from proceeding as before. Also, the fact that u is no longer uniformly
continuous on finite strips adds new difficulties. To circumvent those problems we use a
different strategy based on translation and scaling arguments.

Proof of Proposition 4.1 under the assumptions of Theorem 1.3. We proceed as in the proof
of Proposition 4.1 (in Theorem 1.1) until formula (4.5) and, for any k ≥ 1, we consider
again Ωk = {(x′, xN) ∈ RN , xN > gk(x

′)} and Ω∞ = {(x′, xN) ∈ RN , xN > g∞(x′)}.
Since g∞(0′) < t̃−2δ, by the continuity of g∞ and (4.5), we can choose R > 0 small enough
such that

(4.18) sup
x′∈B′(0′,4R)

g∞(x′) < t̃− δ,

where B′(0′, 4R) ⊂ RN−1. Since gk → g∞ in C0
loc(RN−1), there exists k1 = k1(R) ≥ 1 such

that

(4.19) ∀k ≥ k1, ∀x′ ∈ B′(0′, 4R), g∞(x′)− δ

4
≤ gk(x

′) ≤ g∞(x′) +
δ

4
.
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Moreover, in view of (4.3),(4.5) and (4.19) there exists k2 = k2(R) ≥ k1 such that for any
k ≥ k2

(4.20) (0′, xk
N) ∈

{
x = (x′, xN) ∈ RN : x′ ∈ B′(0′, 2R), g∞(x′) +

δ

2
≤ xN

}
.

Pick T > 2t̃+ 2R and define the compact set

C =
(
B′(0′, 2R)× R

)
∩ Σ

g∞+ δ
2

2T ,

and the bounded open set

O = (B′(0′, 4R)× R) ∩
{
x = (x′, xN) ∈ RN : g∞(x′) +

δ

4
< xN < 2T + 1

}
,

then, by (4.19) and (4.20), we have (see Figure 8)

(4.21) ∀k ≥ k2, (0′, xk
N) ∈ C ⊂⊂ O ⊂ Ωk.

Figure 8. C ⊂⊂ O ⊂ Ωk

Now, for any k ≥ k2 and any x ∈ Ωk we define

(4.22) vk(x) =
u((xk)′ + x′, xN)

u(xk)
=

u((xk)′ + x′, xN)

αk

,

where αk = u(xk) > 0, and

(4.23) wk(x) = vk(x) +
f(0)

2αk

(
xN − xk

N

)2
.



MONOTONICITY FOR SOLUTIONS TO SEMILINEAR PROBLEMS IN EPIGRAPHS 29

Then, for any x ∈ O we have

−∆wk(x) = −∆vk(x)−
f(0)

αk

=
f(u((xk)′ + x′, xN))− f(0)

αk

(4.24)

=
f(u((xk)′ + x′, xN))− f(0)

αkwk(x)
wk(x) := ck(x)wk(x),(4.25)

where ck(x) =
f(u((xk)′ + x′, xN))− f(0)

αkwk(x)
is a bounded continuous function satisfying

(4.26) ∥ck∥L∞(O) ≤ Lf , ∀ k ≥ k2.

Indeed, for any k ≥ k2 and any x ∈ O,

(4.27) |ck(x)| ≤
|f(u((xk)′ + x′, xN))− f(0)|

αkwk(x)
≤ Lf

u((xk)′ + x′, xN)

αkwk(x)
= Lf

vk(x)

wk(x)
≤ Lf ,

since f is globally Lipschitz-continuous and vk ≤ wk in Ωk, in view of f(0) ≥ 0.

We also note that

(4.28) wk(0
′, xk

N) = vk(0
′, xk

N) =
u(xk)

u(xk)
= 1, ∀ k ≥ k2.

Therefore, for any k ≥ k2, the function wk satisfies

(4.29)

 −∆wk = ckwk in O,
wk > 0 in O,
|ck| ≤ Lf in O,

and so we can apply Harnack inequality on the compact set C to obtain

(4.30) ∀k ≥ k2, sup
C

wk ≤ C7 inf
C
wk,

for some constant C7 = C7(N,Lf , C,O) > 0.

By combining (4.30), (4.28) and (4.21) we get that

(4.31) ∀k ≥ k2, sup
C

vk ≤ sup
C

wk ≤ C7 inf
C
wk ≤ C7wk(0

′, xk
N) ≤ C7.

From the latter we also deduce that

(4.32) ∀k ≥ k2, 0 ≤ f(0)

αk

≤ 2C7

δ2
,

indeed, since the point (0′, xk
N + δ) ∈ C, from (4.31) we have

(4.33) 0 ≤ f(0)δ2

2αk

≤ wk((0
′, xk

N + δ)) ≤ C7.

Furthermore, for k ≥ 1, if x ∈ Σgk
t̃
∩ (B′(0′, 2R) × R) then (x′ + (xk)′, xN) ∈ Σg

t̃
, therefore

by definition of Λ we get
∂u

∂xN

(x′ + (xk)′, xN) > 0,

and so, from (4.22) we deduce that

(4.34) ∀k ≥ 1, ∀x ∈ Σgk
t̃
∩ (B′(0′, 2R)× R),

∂vk
∂xN

(x) =
1

αk

∂u

∂xN

(x′ + (xk)′, xN) > 0.
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The latter combined with (4.31) immediately leads to the following uniform bound

(4.35) ∀k ≥ k2, ∀x ∈ Σgk
2T ∩ (B′(0′, 2R)× R), vk(x) ≤ C7.

To proceed further we observe that Σgk
2T ∩ (B′(0′, 2R) × R) = Cgk(0′, 2R, 2T ) and that, for

any k ≥ k2,

(4.36)

 −∆vk =
f(αkvk)

αk

= fk(vk) in Cgk(0′, 2R, 2T ),

vk = 0 on ∂Ωk ∩ (B′(0′, R/2)× R),

where, for any t ≥ 0, we have set fk(t) =
f(αkt)

αk

. Notice that fk ∈ Lip([0,+∞)) with

(4.37) Lfk ≤ Lf , 0 ≤ fk(0) =
f(0)

αk

≤ 2C7

δ2
, ∀k ≥ k2.

By definition of gk, all the epigraphs Ωk satisfy a uniform exterior cone condition on ∂Ωk

with the same reference cone V (the reference cone for the epigraph Ω), therefore we can

apply Proposition 3.1 with h = gk, ω = Ωk, u = vk, R̃ = 2R, τ̃ = 2T , r = R̃
4
= R

2
, t = τ̃

2
= T

and k ≥ k2, to get

(4.38) ∃α = α(N, V ) ∈ (0, 1) : ∀k ≥ k2 vk ∈ C0,α(Cgk(0′, R/2, T ))

and

∥vk∥C0,α(Cgk (0′,R/2,T )) ≤ C5(R, T, V,N) (Lfk + |fk(0)|+ 1)
(
∥vk∥L∞(Cgk (0′,2R,2T )) + 1

)
(4.39)

≤ C5(R, T, V,N)

(
Lf +

2C7

δ2
+ 1

)
(C7 + 1) = C8,(4.40)

for some constant C8 = C8(R, T, V,N, Lf , δ) > 0.

Now we consider the compact set K = B′(0′, R/2)× (−T, T ) (see Figure 9) and, for any
k ≥ k2, we set

ṽk(x) =

{
vk(x) if x ∈ Cgk(0′, R/2, T ),

0 if x ∈ K \ Cgk(0′, R/2, T ),

then, by (4.38) and (4.39), ṽk ∈ C0,α(K) and

(4.41) ∥ṽk∥C0,α(K) ≤ C8,

and so, by Ascoli-Arzelà theorem,

(4.42) ∃ v∞ ∈ C0,α(K) : ṽk → v∞ in C0(K),

along a subsequence.

In view of (4.36), for any k ≥ k2, we have that

(4.43)


−∆ṽk = fk(ṽk) in Cgk(0′, R/2, T ) ⊂ K,

ṽk > 0 in Cgk(0′, R/2, T ),
ṽk = 0 on ∂Ωk ∩ (B′(0′, R/2)× R),

ṽk(0
′, xk

N) = vk(0
′, xk

N) = 1.

Since fk ∈ Lip([0,+∞)) and (4.37) is in force, another application of Ascoli-Arzelà theorem
tell us that, up to a subsequence,

(4.44) fk → f∞ in C0
loc([0,+∞)),
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Figure 9. K = B′(0′, R/2)× (−T, T )

for some f∞ ∈ Lip([0,+∞)) satisfying f∞(0) ≥ 0.

Now we recall that, xk
N −→ x∞

N ∈
[
g∞(0′) + δ, t̃− δ

]
, gk −→ g∞ in C0

loc(RN−1) and that,
(4.42) and (4.44) are in force, therefore we can pass to the limit, as k −→ +∞, into (4.43)
to get

(4.45)


−∆v∞ = f∞(v∞) in D′(Cg∞(0′, R/2, T )),

v∞ ≥ 0 in Cg∞(0′, R/2, T ),
v∞ = 0 on ∂Ω∞ ∩ (B′(0′, R/2)× R),

(0′, x∞
N ) ∈ Cg∞(0′, R/2, T ), v∞(0′, x∞

N ) = 1.

By standard interior regularity theory for elliptic equations we see that v∞ is a classical
solution to (4.45) and the strong maximum principle then implies

(4.46) v∞ > 0 in Cg∞(0′, R/2, T ).

By letting k −→ +∞ into (4.34), and recalling the definition of ṽk, we deduce that

(4.47) v∞(x) ≤ v∞,t̃(x) ∀x ∈ Σg∞
t̃

∩ (B′(0′, R/2)× R).

We notice that (4.2) implies uk(0
′, xk

N) > uk,t̃+εk
(0′, xk

N), for any k ≥ 1. Then, by definition

of vk and ṽk, we deduce that ṽk(0
′, xk

N) > ṽk,t̃+εk
(0′, xk

N), for any k ≥ 1. Passing to the limit
in the latter we deduce

v∞(0′, x∞
N ) ≥ v∞,t̃(0

′, x∞
N ),

and so

v∞(0′, x∞
N ) = v∞,t̃(0

′, x∞
N )

since (0′, x∞
N ) ∈ Σg∞

t̃
∩ (B′(0′, R/2)× R) and (4.47) holds true.

Now, for any x ∈ Σg∞
t̃

∩ (B′(0′, R/2)× R) we set

w∞(x) = v∞,t̃(x)− v∞(x),
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then w∞ satisfy

(4.48)


−∆w∞ = f∞(v∞,t̃)− f∞(v∞) ≥ −Lfw∞ in Σg∞

t̃
∩ (B′(0′, R/2)× R),

w∞ ≥ 0 in Σg∞
t̃

∩ (B′(0′, R/2)× R),
(0′, x∞

N ) ∈ Σg∞
t̃

∩ (B′(0′, R/2)× R), w∞(0′, x∞
N ) = 0.

By applying the strong maximum principle to (4.48), we infer that w∞ ≡ 0 on the domain
Σg∞

t̃
∩ (B′(0′, R/2)× R). Therefore, we have

0 = v∞(x′, g∞(x′)) = v∞(x′, 2t̃− g∞(x′)), ∀x′ ∈ B′(0′, R/2),

which contradicts (4.46), since 0 < 2t̃ − g∞(x′) < T whenever x′ ∈ B′(0′, R/2). This
completes the proof of Proposition 4.1 when f(0) = 0.

The remaining part of the proof of Step 2 is the same of the one of Step 2 in Theorem
1.1, just observe that one can use Theorem 2.3 (see also Remark 2.4), since u has at most
exponential growth on finite strips by assumption.

Step 3 is unchanged. □

Proof of Theorem 1.2. The proof of Theorem 1.2 is a straightforward adaptation of the one
of Theorem 1.3. Indeed, any step of the proof of Theorem 1.3 remains unchanged if one
observes that

i) one can apply Theorem 2.2, since by assumption u is bounded on any finite strip and f
is a locally-Lipschitz continuous function,

ii) Step 2 only requires that u is bounded on any finite strip and that f belongs to
Liploc([0,+∞)) and satisfies f(0) ≥ 0. Indeed, those properties imply the validity of (4.26)
and (4.27), where Lf is replaced by the Lipschitz constant of f on the interval [0,M ]. Here,
we have set M := supΩ∩{xN < 2T+1} u, which is finite by assumption.

Step 3 is unchanged, since it only requires that f belongs to Liploc([0,+∞)). □

Proof of Corollary 1.4.

Since ∇u is bounded on Ω, u ∈ C0(Ω) and u = 0 on ∂Ω, it is straightforward to check that u
satisfies |u(x)−u(y)| ≤ ∥∇u∥∞|x−y| for any x, y ∈ Ω. Then, u is uniformly continuous on
Ω and u ∈ W 1,∞

loc (Ω) ⊆ H1
loc(Ω). The conclusion then follows by applying Theorem 1.1. □

Proof of Corollary 1.5.

u ∈ W 1,∞
loc (Ω) ⊆ H1

loc(Ω), since u ∈ C0(Ω), u = 0 on ∂Ω and ∇u is bounded in Ω by
assumption. The latter assumption also implies (via the mean value theorem) that u is
bounded on finite strips. The conclusion then follows by applying Theorem 1.2. □

Proof of Corollary 1.6.

Since ∂Ω is locally of class C1,α and u ∈ C2(Ω) ∩ C0(Ω), standard regularity results for
elliptic equations implies that u ∈ C1,α

loc (Ω). Therefore u ∈ H1
loc(Ω) and the conclusion then

follows from Theorem 1.2. □

Proof of Theorem 1.7.

The proof is similar to the one of Theorem 1.1, but it is easier, since the coercivity assump-
tion on g implies that any cap Σg

θ is a bounded open set of RN . Thus, we provide only the
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modifications necessary to deal with the new points of the proof related to the fact that g
is supposed to be merely continuous and that no restriction on the sign of f(0) is imposed.
Since every cap Σg

θ is bounded, the comparison principle immediately gives the conclusion
of Step 1.

To achieve the conclusion of Step 2 we need to show that Proposition 4.1 still holds under
the assumptions of Theorem 1.7.
To this end we first observe that the sequence of points (xk) appearing in (4.2) is bounded
(since the cap Σg

t̃−δ
is bounded) and so, up to a subsequence, we may and do suppose that

xk → x∞ := ((x∞)
′
, x∞

N ), as k → ∞. Therefore, the sequence of continuous functions (gk)
defined by (4.4) is again relatively compact in C0

loc(RN−1). Hence, up to a subsequence,
gk → g∞ in C0

loc(RN−1). Note that g∞(x′) = g(x′ + (x∞)
′
) for any x′ ∈ RN−1.

Moreover, the sequence (ũk) defined by (4.7) is again relatively compact in C0
loc(RN). This

is because the sequence (ũk(0
′,−1)) is bounded in R and the function ũ is bounded and

uniformly continuous on any finite strip. Hence, up to a subsequence, ũk → ũ∞ in C0
loc(RN),

where ũ∞(x) = ũ(x′ + (x∞)
′
, xN) for any x ∈ RN .

Thanks to those information, we can follow the proof until (4.12). Now, if we set wt̃ :=
u∞,t̃ − u∞ on Σg∞

t̃
, we see that

(4.49)


−∆wt̃ = f(u∞,t̃)− f(u∞) ≥ −Lfwt̃ in Σg∞

t̃
,

wt̃ ≥ 0 in Σg∞
t̃

,
wt̃(0

′, x∞) = 0,

where now Lf denotes the Lipschitz-constant of f on the closed interval
[
0,max

Σg∞
t̃

u∞,t̃

]
(note that Σg∞

t̃
is a compact set, since g∞ is coercive). Since (0′, x∞

N ) ∈ Σg∞
t̃

, the strong
maximum principle and the continuity of wt̃ ensure that

wt̃ ≡ 0 in the connected component of Σg∞
t̃

containing the point (0′, x∞
N ).

Since Ω∞ is an epigraph, the latter implies that u∞ must vanish at some point of Ω∞. But
(in view of the form of g∞ and ũ∞) the latter implies that the solution u must vanish at
some point of Ω. A contradiction. This proves the claim of Proposition 4.1.

The remaining part of the proof of Step 2 is the same of the one of Step 2 in Theorem 1.1,
since u is bounded on finite strips.

Step 3 is unchanged, since it only requires that f belongs to Liploc([0,+∞)). □

5. Extensions to merely continuous epigraphs bounded from below
and further observations

In this section we prove some monotonicity results for solutions of (1.1) on certain merely
continuous epigraphs Ω bounded from below, i.e.,where the function g defining ∂Ω is con-
tinuous but not necessarily uniformly continuous. To this end we observe that the uniform
continuity of the function g enters into the proofs of Theorems 1.1-1.2 only to use the fol-
lowing classical compactness result (via the Ascoli-Arzelà theorem): let (gk) be a sequence
of translations of a uniformly continuous g : RN−1 → R, i.e., gk(·) = g(· + xk), for some
sequence (xk) of points of RN−1. If the sequence (gk) is bounded at a fixed point of RN−1,
then it admits a subsequence converging uniformly on every compact sets of RN−1 .
Therefore, all we need for the above mentioned proofs to work, is that the continuous
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function g : RN−1 → R is bounded from below and it satisfies the following compactness
property :

(P) Any sequence (gk) of translations of g, which is bounded at some fixed point of RN−1,
admits a subsequence converging uniformly on every compact sets of RN−1.

The above discussion leads to the following

Definition 5.1. Assume N ≥ 2. We say that a continuous function g : RN−1 7→ R belongs
to the class G, if it satisfies the compactness property (P).

Before stating the new monotonicity results, let us show how large the class G is. Hereafter,
we provide a wide (but non-exhaustive) list of members of G.

(1) Uniformly continuous functions on RN−1 belong to G.
(2) Coercive continuous functions on RN−1 belong to G.12

In particular, any continuous function on RN−1 such that lim|x|7→∞ g(x) ∈ (−∞,+∞]
belongs to G.

(3) Let us denote by G(RN−1) the set of continuous functions g : RN−1 → R enjoying
the following property : there exists a continuous bijection ϕ : R → R such that
ϕ ◦ g ∈ G.
It is immediate to check that G(RN−1) ⊂ G.13 Moreover, the family G(RN−1) strictly
contains the one of uniformly continuous functions on RN−1 and the one of coercive
continuous functions on RN−1, as shown by the next examples.14

(3a) For instance, the functions g1(x1) = ex1 if N = 2, and g(x) = ex1+
∑N−1

j=2 cosj(xj) if
N ≥ 3, are neither uniformly continuous nor coercive on RN−1. Nevertheless,
they belong to the class G(RN−1) (consider, for instance, the function

ϕ(t) =

{
t if t ≤ 0,

log(t+ 1) if t > 0,

in the previous definition and observe that ϕ ◦ g ∈ G is uniformly continuous,
hence ϕ ◦ g ∈ G). The same argument also proves that g(x1) = ee

x1 and g(x) =

ee
x1+

∑N−1
j=2

cosj(xj)

do belong to G(RN−1). Since this argument can be iterated, we
see that the class G(RN−1) contains smooth functions, bounded from below,
that are neither uniformly continuous nor coercive, and with arbitrary large
growth at infinity. Also note that, g1 being convex, its epigraph satisfies a
uniform exterior cone condition.

(3b) Assume N ≥ 2 and let g ∈ C2(RN−1) be any positive function such that ∇2g ∈
L∞(RN−1), then

√
g is globally Lipschitz-continuous on RN−1 (see Lemma I

12Since the sequence (gk) := (g(·+ xk)) is bounded at some point of RN−1 and g is coercive, it follows
that the sequence (xk) is bounded in RN−1. Therefore (gk) is uniformly equicontinuous on compact sets
of RN−1 , and the compactness follows from the Ascoli-Arzelà theorem.

13Assume that (gk) is bounded at some point of RN−1, say x̄, then the sequence of functions ((ϕ◦g)k) :=
((ϕ ◦ g)(·+ xk)) is bounded at x̄. Therefore, up to a subsequence, (ϕ ◦ g)k → φ uniformly on compact sets
of RN−1, since ϕ ◦ g ∈ G by assumption. But then we also have gk = ϕ−1((ϕ ◦ g)k) → ϕ−1 ◦φ uniformly on
compact sets of RN−1.

14 Taking the identity function as ϕ, we immediately see that uniformly continuous functions, as well
as coercive continuous functions g : RN−1 → R do belong to G(RN−1).
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in [24] for N = 2). Therefore, we have g ∈ G(RN−1).15 More generally, any
g ∈ C2(RN−1), bounded from below and such that ∇2g ∈ L∞(RN−1) is a
member of the class G(RN−1).

For instance, the function g = g(x1, . . . , xN−1) = (x1)
2+
∏N−1

j=2 sin(jxj) belongs

to G(RN−1) for any N ≥ 3.

(4) For N = 2, any continuous function g : R → R such that ℓ− := limx 7→−∞ g(x) ∈
(−∞,+∞] and ℓ+ := limx 7→+∞ g(x) ∈ (−∞,+∞] belongs to G. Therefore, any
quasiconvex (resp. quasiconcave) continuous function bounded from below belongs
to G. In particular, any monotone continuous function bounded from below and
any convex functions bounded from below belongs to G.

(5) Assume 2 ≤ n < N and let g : Rn−1 → R be a member of G. Then, the function
g̃ : RN−1 → R defined by g̃(x1, . . . , xN−1) = g(x1, . . . , xn−1) satisfies the compactness
property (P), as a function on RN−1. Therefore, g̃ ∈ G, as a function on RN−1.
In particular, for N ≥ 2, the functions g(x1, . . . , xN) = ee

x1 and g(x1, . . . , xN) =
ex1 − 4 arctan(x1) − 2 belong to G, are bounded from below and their epigraphs
satisfy a uniform exterior cone condition.

(6) Assume N ≥ 2. Let g ∈ G and let T : RN−1 → RN−1 be a transformation of
the form T (x) = Ax + b, where A an invertible real matrix and b ∈ RN−1. Then,
g ◦ T ∈ G. In particular, this results applies when T is an isometry of RN−1.

(7) Assume N ≥ 2 and λ ≥ 0. Let g, g̃ ∈ G be bounded from below. Then, λg ∈ G and
g + g̃ ∈ G.
In particular, for N ≥ 2, the function g(x1, . . . , xN) = x4

1 + ex2 belongs to G, is
bounded from below and its epigraph satisfies a uniform exterior cone condition.

(8) By combining items (1)-(7), one can easily build further examples of functions g
belonging to G in any dimension N ≥ 2. In particular, one can construct members
of G bounded from below, that are neither uniformly continuous nor coercive, with
arbitrary large growth at infinity, and such that their epigraphs satisfy a uniform
exterior cone condition.

In view of the above discussions, we can now state the monotonicity results for continuous
epigraphs defined by functions g belonging to the class G. Let us start with the extension
of Theorem 1.1 and Corollary 1.4.

Theorem 5.1. Let N ≥ 2 and let Ω be an epigraph bounded from below and defined by a
function g ∈ G. Assume f ∈ Liploc([0,+∞)) with

(5.1) lim inf
t→0+

f(t)

t
> 0.

(i) If u ∈ C0(Ω)∩H1
loc(Ω) is a distributional solution to (1.1) which is uniformly continuous

on finite strips.
Then u is strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

(ii) If u ∈ C2(Ω)∩C0(Ω) is a classical solution of (1.1) such that ∇u ∈ L∞(Ω). Then u is
strictly increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

15Choose the function

ϕ(t) =

{
−
√
−t if t < 0,√
t if t ≥ 0,
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If we also assume that the epigraph satisfies a uniform exterior cone condition, then we can
prove the following extensions of Theorem 1.3 and Theorem 1.2.

Theorem 5.2. Let N ≥ 2 and let Ω be an epigraph defined by a function g ∈ G. Also
suppose that Ω is bounded from below and satisfies a uniform exterior cone condition.

(i) Assume f ∈ Lip([0,+∞)) with f(0) ≥ 0 and let u ∈ C0(Ω) ∩ H1
loc(Ω) be a distribu-

tional solution to (1.1) with at most exponential growth on finite strips. Then u is strictly
increasing in the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

(ii) Assume f ∈ Liploc([0,+∞)) with f(0) ≥ 0 and let u ∈ C0(Ω) ∩H1
loc(Ω) be a distribu-

tional solution to (1.1) which is bounded on finite strips. Then u is strictly increasing in
the xN -direction, i.e.,

∂u
∂xN

> 0 in Ω.

Note that Theorem 5.1 and Theorem 5.2 apply to the explicite examples of functions g
provided in the above items (1)-(7). They also recover the results in the very recent preprint
[22], where the monotonicity is proved for some classical solutions to (1.1) with f(t) = tq

and q ≥ 1.16

The next result applies to solutions of (1.1) where Ω is merely a continuous epigraph and
f is a non-increasing function, possibly discontinuous, and with no restriction on the sign
of f(0).

Theorem 5.3. Let Ω be any continuous epigraph bounded from below and let f : [0,∞) 7→ R
be any non-increasing function. Let u ∈ C0(Ω)∩H1

loc(Ω) be a distributional solution to (1.1)
with subexponential growth on finite strips 17.
Then u is non-decreasing, i.e., ∂u

∂xN
≥ 0 in Ω.18

Moreover, if f ∈ Liploc, then u is strictly increasing, i.e., ∂u
∂xN

> 0 in Ω.

Proof. The proof is a straightforward application of Theorem 2.5. Indeed, for any θ > 0 we
have u, uθ ∈ H1

loc(Σ
g
θ) ∩ C0(Σg

θ) and{
−∆u− f(u) = 0 = −∆uθ − f(uθ) in Σg

θ,
u ≤ uθ on ∂Σg

θ.

Since u and uθ have subexponential growth on Σg
θ (which is bounded in the direction eN)

we can apply Theorem 2.5 to get that

u ≤ uθ in Σg
θ.

Therefore, u is non-decreasing in the xN -direction.
If f is locally Lipschitz-continuous, we conclude as in Step 3 of Theorem 1.2. □

16It is immediate to see that any semicoercive and continuous function is bounded from below and
belongs to our class G (see items (5) and (6) above). This observation and Lemma A.2 in [22] also show
that the convex epigraph case is covered by the techniques we have developed in the present article.

17i.e., for any R > 0,

lim sup
|x|→∞,

x∈Ω∩{xN<R}

lnu(x)

|x|
≤ 0.

18 Note that u ∈ C1(Ω), since f(u) ∈ L∞
loc(Ω).
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Some remarks are in order.

Remark 5.4. (i) We note that the proof of Theorem 5.3 also applies to some unbounded
domains that are not necessarily epigraphs. Indeed, given any domain Ω ⊂ RN bounded
from below, it is immediate to see that the proof of Theorem 5.3 applies if Ω contains the
reflection (with respect to the hyperplane {xN = θ}) of any cap Ω ∩ {xN < θ}. Since the
latter property is clearly satisfied if Ω ⊊ RN supports a monotone solution to (1.1), we
see that the above result actually caracterizes the euclidean proper domains for which the
homogeneous Dirichlet BVP (1.1) admits a monotone solution.19

For example, the domain Ω4 =
⋃

k∈Z{x ∈ R2 : |x1 − (3 + 4k)| < 1 , x2 > −1}
⋃
{x ∈ R2 :

x2 > 0} (see Figure 10) and the open orthant Ω5 = {x ∈ RN : x1 > 0, . . . , xN > 0} satisfy
this property, but they are not epigraphs with respect to eN (in fact, Ω4 is never an epigraph,
that is, there is no unit vector ν of R2 that allows it to be represented as an epigraph with
respect to ν).
Another example is depicted in Figure 11.

Figure 10. Ω4
Figure 11

(ii) We also observe that the first conclusion of Theorem 5.3, namely that u is non-
decreasing, is sharp. See the explicit example 7.2 in Section 7.

We conclude this section with the following general result, which we believe to be of in-
dependent interest. This is a straightforward application of our comparison principles (see
Step 1 in the proof of our monotonicity theorems). It shows that the moving plane method
can be started irrespectively of the value of f(0) and for a large class of unbounded domains.
Specifically we have the following

Corollary 5.5 (Starting the moving planes method). Assume N ≥ 2. Let Ω be a
domain contained in the upper half-space RN

+ and also assume that Ω contains the reflection
(with respect to the hyperplane {xN = R}) of a finite strip Ω ∩ {xN < R} ̸≡ ∅.

19 this can be formulated in the following equivalent way : Problem (1.1) with f non-increasing, admits
a monotone solution on a domain Ω ⊊ RN , if and only if, Ω is contained in an affine half-space (whose
inner normal is denoted by ν) and, for any x ∈ Ω the open half-line {x+ tν, t > 0} is contained in Ω. That
is, if and only if, Ω is contained in an affine half-space (whose inner normal is denoted by ν) and Ω is
ν-invariant.
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Let u be a distributional (resp. classical) solution to (1.1). Suppose that one of the following
assumptions is in force :

(i) f ∈ Liploc([0,+∞)) and u is bounded on Ω ∩ {xN < R};
(ii) f ∈ Lip([0,+∞)) (resp. a non-increasing function) and u has at most exponential
growth on Ω ∩ {xN < R}.
Then there exists R0 ∈ (0, R) such that Ω ∩ {xN < R0} ̸≡ ∅ and

∂u

∂xN

> 0 in Ω ∩ {xN < R0} .

The above result extends the one proved in [17] for the special case of a half-space.

For sake of clarity (and simplicity) we have stated the above result in the case Ω ⊆ RN
+ .

Since the considered problem is invariant by isometry, it is clear that the same result holds
if Ω is contained in an affine open half-space H. In this case, the monotonicity will be
obtained with respect to ν, the inner normal to H.

6. Some applications to classification and non-existence results

In this section, we apply our monotonicity results to prove some classification and nonex-
istence results for the problem (1.1) on general continuous epigraphs defined by a function
g ∈ G (see Section 5).

Theorem 6.1. Let Ω be an epigraph defined by a function g ∈ G. Also suppose that Ω is
bounded from below and satisfies a uniform exterior cone condition.
Let u ∈ C0(Ω) ∩H1

loc(Ω) be a bounded distributional solution to

(6.1)

 −∆u = f(u) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

Assume that f ∈ C1([0,+∞)), f(t) > 0 for t > 0 and 2 ≤ N ≤ 11, then u ≡ 0 and
f(0) = 0.

Proof. By standard interior regularity theory for elliptic equations u belongs to C2(Ω)
hence, either u ≡ 0 in Ω or u > 0 in Ω by the strong maximum principle. Let us rule
out the second case. Suppose u > 0 in Ω, then we can apply Theorem 5.2 to prove that
∂u

∂xN

> 0 in Ω. Hence, u is a bounded stable solution to (6.1) of class C2(Ω) and so, the

function

v(x′) = lim
xN→+∞

u(x′, xN), x′ ∈ RN−1,

is a positive stable classical solution to −∆v = f(v) in RN−1, with N − 1 ≤ 10. We can
therefore apply Theorem 1 in [10] to get that v ≡ const. = a > 0 et f(a) = 0. Since the
latter contradicts the positivity assumption on f , we infer that u ≡ 0 and so f(0) = 0. □

The previous theorem remains true even for N ≥ 12, if we add an assumption about the
behaviour of f at the origin. In this case, the desired conclusion is obtained by making
use of some Liouville-type theorems for stable solutions established in [16], [11] and [18]
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(instead of Theorem 1 in [10]).
The desired results are the contents of Theorem 6.2 and Theorem 6.4 below.

Theorem 6.2. Assume N ≥ 12 and let Ω be an epigraph defined by a function g ∈ G. Also
suppose that Ω is bounded from below and satisfies a uniform exterior cone condition.
Let u ∈ C0(Ω)∩H1

loc(Ω) be a bounded distributional solution to (6.1) where f ∈ C1([0,+∞))

satisfies f(t) > 0 for t > 0 and lim inft→0+
f(t)
ts

> 0, for some s ∈
[
0, N−3

N−5

)
.

Then u ≡ 0 and f(0) = 0.

Proof. By proceeding as in the proof of Theorem 6.1, if u > 0 in Ω we can construct
v ∈ C2(RN−1) which is a positive, bounded, stable solution to −∆v = f(v) in RN−1. Now,

pick z > supRN−1 v > 0 and consider the new nonlinear function f̃ ∈ C1([0,+∞)) defined

as follows : f̃ = f on [0, supRN−1 v], f̃ > 0 on [supRN−1 v, z), f̃ ≤ 0 on [z,+∞).20 Hence, v
is also a bounded stable solution to

(6.2)

{
−∆v = f̃(v) in RN−1,

v > 0 on RN−1.

Since lim inft→0+
f̃(t)
ts

= lim inft→0+
f(t)
ts

> 0 and f̃ > 0 on (0, supRN−1 v), we see that

∃ δ1 > 0 : ∀x ∈ RN−1 f̃(v(x)) ≥ δ1v
s(x).

Therefore we can apply Theorem 1.2 of [18] to v (with M = N − 1) and find that v ≡ 0. A
contradiction. Hence u ≡ 0 and f(0) = 0. □

Notice that Theorem 6.1 and Theorem 6.2 immediately imply the following non-existence
result when f(0) > 0.

Corollary 6.3. Assume N ≥ 2 and let Ω ⊂ RN be a uniformly continuous epigraph bounded
from below and satisfying a uniform exterior cone condition.
If f ∈ C1([0,+∞)) satisfies f(t) > 0 for t ≥ 0, then problem (6.1) does not admit any
bounded distributional solution of class C0(Ω) ∩H1

loc(Ω).

The next result concerns the following natural class of nonlinearities introduced in [11]:

(6.3)


f ∈ C1([0,+∞)) ∩ C2((0,+∞)), f(0) = 0,

f > 0, nondecreasing and convex in (0,+∞)

s.t. limu→0+
f ′(u)2

f(u)f ′′(u)
:= q0 ∈ [0,+∞]

where, in the latter, we agree to set f ′(u)2

f(u)f ′′(u)
= +∞ if f ′′(u) = 0.

Notice that, we necessarily have q0 ∈ [1,+∞] (see Lemma 1.4 in [11]).

The typical representative of this class is given by the function f(u) = up, p > 1. In this

case f ′(u)2

f(u)f ′′(u)
= p

p−1
and so q0 coincides with the conjugate exponent of p. Consequently, if

we define p0 ∈ [1,+∞] as the conjugate exponent of q0 by 1
p0

+ 1
q0

= 1, we have that the

exponent p0 can be considered as a ”measure” of the flatness of f at the origin.

20Note that, thanks to the assumptions on f and z, such a function f̃ does exist.
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Other members of the preceding class are provided by the functions fn(u) = eu −
∑n

k=0
uk

k!
,

where n ≥ 1 is an integer. It is easily seen that q0(fn) =
n+1
n

and so p0(fn) = n+ 1.

Theorem 6.4. Assume N ≥ 12 and let Ω be an epigraph defined by a function g ∈ G. Also
suppose that Ω is bounded from below and satisfies a uniform exterior cone condition.
Let u ∈ C0(Ω)∩H1

loc(Ω) be a bounded distributional solution to (6.1) where f satisfies (6.3).
Suppose that p0, the conjugate exponent of q0, satisfies

(6.4) 1 ≤ p0 < pc(N − 1),

where pc is the Jospeh-Lundgren stability exponent given by

pc(N) =
(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
.

Then u ≡ 0.

Note that the preceding theorem applies to f(u) = up if 1 ≤ p < pc(N − 1) and to fn if
n+ 1 < pc(N − 1).

Proof of Theorem 6.4. By proceeding as in the proof of Theorem 6.1, if u > 0 in Ω we can
construct v ∈ C2(RN−1) which is a positive, bounded, stable solution to −∆v = f(v) in
RN−1. Since the assumption (6.4) is in force, we can apply Theorem 1.5 in [11] to get that
v ≡ const. = a > 0 et f(a) = 0. A contradiction, hence u ≡ 0. □

Next we state the following immediate consequence of Theorem 1.7.

Corollary 6.5. When the epigraph Ω is coercive, the conclusion of Theorems 6.1-6.4 and
Corollary 6.3 holds true under the sole assumption of continuity of g, i.e., we do not need
to require the uniform exterior cone condition for the epigraph.

Theorems 6.1-6.4 and Corollary 6.5 recover and extend/complement some results in [16],
[10], [7], [12] and [22].

We conclude this section with the following classification result for solutions of (6.1) that
tend to zero at infinity.

Theorem 6.6. Assume N ≥ 2 and let Ω be an epigraph defined by a function g ∈ G. Also
suppose that Ω is bounded from below and satisfies a uniform exterior cone condition.
Assume f ∈ Liploc([0,+∞)) and let u ∈ C0(Ω) ∩ H1

loc(Ω) be a distributional solution to
(6.1) such that

(6.5) lim
x∈Ω,

|x|−→∞

u(x) = 0.

Then u ≡ 0 and f(0) = 0.
When the epigraph Ω is coercive, the above conclusion holds true under the sole assumption
of continuity of g.

Note that, in the previous result, we make no assumptions on f (beside f ∈ Liploc([0,+∞)))
or the boundedness of u.

The above result recovers and improves upon a result of [14], where the conclusion has been
obtained for a smooth coercive epigraph.
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Proof of Theorem 6.6. First we prove that u is bounded and then we use this information
to deduce that f(0) = 0. The boundedness of u easily follows from the continuity of u
on Ω and (6.5). Then, pick an open ball B ⊂⊂ Ω and, for any integer k ≥ 1 and any
x ∈ B, consider the function uk(x) = u(x′, xN + k). By the boundedness of u and standard
elliptic estimates, we have that a subsequence of (uk) (still denoted by (uk)) converges
in the C2

loc(B)-topology to a solution v ∈ C2(B) of −∆v = f(v) in B. Since (6.5) is in
force, we necessarily have v ≡ 0 which, in turn, yields f(0) = 0. By the latter and the
strong maximum principle, either u ≡ 0 in Ω or u > 0 in Ω. Let us prove that the second
case cannot occur. Since u is bounded and f(0) = 0, we can apply Theorem 5.2 (resp.

Theorem 1.7, when Ω is coercive) to prove that
∂u

∂xN

> 0 in Ω. But the latter contradicts

the assumption (6.5). Hence u ≡ 0 and f(0) = 0. □

7. Some examples

Example 7.1. Let us consider the following two functions g1, g2 : R 7→ R defined by

g1(x) =


0 if x ∈ (−∞,−4],√

4− (x+ 2)2 if x ∈ [−4, 0],√
4− (x− 2)2 if x ∈ [0, 2],

2 if x ∈ [2,+∞),

Figure 12. g1

g2(x) =


0 if x ∈ (−∞,−4],√

4− (x+ 2)2 if x ∈ [−4, 0],√
4− (x− 2)2 if x ∈ [0, 2],

2 if x ∈ [2, 6],
x− 4 if x ∈ [6,+∞).

Figure 13. g2

Note that g1 is globally 1
2
-Hölder-continuous and g2 is locally 1

2
-Hölder-continuous, but

neither g1 nor g2 are locally α-Hölder-continuous, for any α ∈ (1
2
, 1]. Also observe that

g2(x) = g1(x)+(x−6)+ for any x ∈ R, therefore the two-dimensional epigraphs defined by g1
and g2 are uniformly continuous, bounded from below, but not locally Lipschitz-continuous.
Moreover, it is easily seen that both of them satisfy a uniform exterior sphere condition (of
radius 1

2
). Hence, they also satisfy a uniform exterior cone condition.
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Example 7.2. Assume N ≥ 2 and let Ω be the half-space {x ∈ RN : xN > 0}.
The bounded function

(7.1) u(x) =

{
1− (xN − 1)4 if 0 ≤ xN ≤ 1,

1 if xN > 1,

is a classical C2 solution to (1.1), where f is given by the following non-increasing function

(7.2) f(t) =

 12 if t < 0,
12
√
1− t if 0 ≤ t ≤ 1,
0 if t > 1.

Note that f is globally Hölder-continuous, but not locally Lipschitz-continuous on R.

The following example (inspired from [15]) shows that we cannot remove the assumption
on the Lipschitz character of f in our main results.

Example 7.3. Assume N ≥ 2 and let Ω be the half-space {x ∈ RN : xN > 0}.
The bounded function (see Figure 14)

(7.3) u(x) =


0 if 0 ≤ xN ≤ 1,

(1− (xN − 2)4)4 if 1 < xN ≤ 3,
(1− (xN − 4)4)4 if 3 < xN ≤ 4,

1 if xN > 4,

is a classical C2 solution to (1.1), where f is given by the following globally Hölder-
continuous function

(7.4) f(t) =


0 if t < 0,

−192(t(1− t
1
4 ))

1
2 (1− 5

4
t
1
4 ) if 0 ≤ t ≤ 1,

0 if t > 1.

Note that f is not locally Lipschitz-continuous on R and that ∂u
∂xN

changes sign on RN
+ .

Figure 14. Graph of u
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8. Notations

RN
+ = {x = (x′, xN) ∈ RN−1 × R | xN > 0}, the open upper half-space of RN .

| · | : the Euclidean norm.

B(x,R) : the Euclidean N -dimensional open ball of center x and radius R > 0.

B′(x′, R) : the Euclidean N − 1-dimensional open ball of center x′ and radius R > 0.

BR := B(0, R) and B′
R := B′(0′, R), where 0 = (0′, 0) ∈ RN−1 × R is the origin of RN .

UC(X) : the set of uniformly continuous functions on X.

Lip(X) : the set of globally Lipschitz-continuous functions on X.

Liploc(X) : the set of locally Lipschitz-continuous functions on X.

Ck(U) : the set of functions in Ck(U) all of whose derivatives of order ≤ k have continuous
(not necessarily bounded) extensions to the closure of the open set U .

C0,α(U) : the vector space of bounded and globally α-Hölder-continuous functions h on the
open set U endowed with the norm :

∥h∥C0,α(U) := ∥h∥L∞(U) + [h]C0,α(U) := supx∈U |h(x)|+ supx,y∈U,x ̸=y
|h(x)−h(y)|

|x−y|α .

Ck,α(U) : the vector space of functions in Ck(U) all of whose derivatives of order ≤ k
belong to C0,α(U), endowed with the norm :

∥h∥Ck,α(U) :=
∑

0≤|β|≤k ∥∂βh∥C0,α(U) .

D′(U) : the space of distributions on the open set U .

H1
loc(U) = {u : U 7→ R, u Lebesgue-mesurable : u ∈ H1(U ∩B(0, R)) ∀R > 0},

i.e., u is Lebesgue-measurable on the open set U and u ∈ H1(V ) for any open bounded set
V ⊂ U .

W 1,∞
loc (U) = {u : U 7→ R, u Lebesgue-mesurable : u ∈ W 1,∞(U ∩B(0, R)) ∀R > 0},

i.e., u is Lebesgue-measurable on the open set U and u ∈ W 1,∞(V ) for any open bounded
set V ⊂ U .
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