
HAL Id: hal-04941963
https://hal.science/hal-04941963v1

Submitted on 12 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Incremental clustering based on Wasserstein distance
between histogram models

Xiaotong Qian, Guénaël Cabanes, Parisa Rastin, Mohamed Alae Guidani,
Ghassen Marrakchi, Marianne Clausel, Nistor Grozavu

To cite this version:
Xiaotong Qian, Guénaël Cabanes, Parisa Rastin, Mohamed Alae Guidani, Ghassen Marrakchi, et al..
Incremental clustering based on Wasserstein distance between histogram models. Pattern Recognition,
2025, 162, pp.111414. �10.1016/j.patcog.2025.111414�. �hal-04941963�

https://hal.science/hal-04941963v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Pattern Recognition 162 (2025) 111414

A
0

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/pr

Incremental clustering based on Wasserstein distance between histogram
models✩

Xiaotong Qian a ,∗, Guénaël Cabanes b , Parisa Rastin b, Mohamed Alae Guidani c,
Ghassen Marrakchi d , Marianne Clausel b, Nistor Grozavu a

a ETIS, UMR 8051, CY Cergy Paris Université, Cergy, 95000, France
b LORIA, UMR 7503, Université de lorraine, Vandoeuvre-lès-Nancy, 54500, France
c École nationale supérieure des mines de Nancy, Campus Artem, Nancy, 54042, France
d LIPN, UMR 7030, Université Sorbonne Paris Nord, Villetaneuse, 93430, France

A R T I C L E I N F O

Keywords:
Unsupervised learning
Static and dynamic clustering
Large datasets
Data streams
Sliding windows
Histogram models
Wasserstein distance

A B S T R A C T

In this article, we present an innovative clustering framework designed for large datasets and real-time data
streams which uses a sliding window and histogram model to address the challenge of memory congestion
while reducing computational complexity and improving cluster quality for both static and dynamic clustering.
The framework provides a simple way to characterize the probability distribution of cluster distributions
through histogram models, regardless of their distribution type. This advantage allows for efficient use
with various conventional clustering algorithms. To facilitate effective clustering across windows, we use a
statistical measure that allows the comparison and merging of different clusters based on the calculation of
the Wasserstein distance between histograms.
1. Introduction

Machine learning is a prominent field of research that focuses on
learning patterns and relationships within datasets to make intelligent
predictions or analyzes. It includes two main types of algorithms: su-
pervised learning and unsupervised learning. They are often referred to
as classification and clustering [1], respectively. Although both aim to
separate and group objects, there is a fundamental difference between
them. In classification, the categories are predetermined and objects
are assigned to a specific category (called a label). The labels are
therefore necessary to train a classification model. In clustering, on
the other hand, labels are not needed to train a clustering model; the
goal is to group similar objects based on some definition of distance
or similarity. Depending on how the data are processed, clustering
analysis can be divided into two forms: conventional clustering and
data stream clustering.

Conventional clustering algorithms [2] focus more on static datasets
that are fixed and remain the same throughout training. With the
rapidly increasing volume of data collection, clustering approaches
capable of handling large and high-dimensional data have become a
popular topic. In [2], the authors present clustering components and

✩ This work was funded through the ANR project Pro-TEXT (project N◦ ANR-18-CE23-0024-01). More details are available at: https://pro-text.huma-num.fr/le-
projet/.
∗ Corresponding author.
E-mail address: xiaotong.qian@ensea.fr (X. Qian).

detail key concepts related to clustering algorithms, new variants, sim-
ilarity/dissimilarity measures, optimization challenges, validation, and
data types. Although there are subtle differences in categorizing clus-
tering algorithms, several broad categories are popular: hierarchical,
partition, graph, density, model and grid-based clustering. Hierarchical-
based clustering iteratively divides the dataset into subsets from top
to bottom, or merges individual objects from bottom to top, form-
ing a dendrogram by grouping data objects into a tree of clusters;
popular examples of this type include BIRCH [3] and Agglomerative
clustering [4]. Partition-based clustering aims to separate objects into K
groups by optimizing some criterion such as minimizing the total intra-
cluster distance; K-means [5] and ORCLUS [6] are typical examples.
Graph-based clustering, such as Spectral clustering [7], uses the concept
of graphs to represent data points and their relationships and involves
the task of dividing nodes into clusters. Density-based clustering, such
as DBSCAN [8], relies on notions of density within ‘‘neighborhoods’’
to determine clusters, growing a cluster as long as the density in the
neighborhood exceeds some threshold. Model-based clustering assumes
models for clusters and tries to best fit the data to the assumed model,
for example, Gaussian Mixture [9] assumes that data points are derived
from a combination of Gaussian distributions with different parameters.
https://doi.org/10.1016/j.patcog.2025.111414
Received 11 August 2023; Received in revised form 6 January 2025; Accepted 25 J
vailable online 4 February 2025
031-3203/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
anuary 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/pr
https://www.elsevier.com/locate/pr
https://orcid.org/0009-0005-8249-3156
https://orcid.org/0000-0002-8225-7242
https://orcid.org/0009-0006-2538-783X
https://orcid.org/0000-0001-7502-8022
https://pro-text.huma-num.fr/le-projet/
https://pro-text.huma-num.fr/le-projet/
mailto:xiaotong.qian@ensea.fr
https://doi.org/10.1016/j.patcog.2025.111414
https://doi.org/10.1016/j.patcog.2025.111414
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2025.111414&domain=pdf
http://creativecommons.org/licenses/by/4.0/

X. Qian et al.

t
t
t
f
c
i

i
o

f
t
m
s
o
f
t
f

a
k

a
p
I
D

S

p
a
s
p

S
a
b

a

c

t
G
e
t
c
c
m
t
c
d
d
g

Pattern Recognition 162 (2025) 111414
Finally, grid-based clustering divides the data space into multiple cells
o form a grid structure and obtains clusters based on cells within
he same grid; algorithm such as CLIQUE [10] is a representation of
his type. These clustering algorithms provide valuable insights and
orm the basis for data analysis in various fields. In addition, several
lustering algorithms could be classified into multiple categories, for
nstance KASP [11], which is considered as a member of the large-

scale clustering algorithms because it uses a sampling approach to deal
with very large datasets. It works by applying K-means to identify
subsets of the datasets and then performing Spectral clustering on those
subsets; or like HDBSCAN [12] which uses a hierarchical approach to
dentify clusters after determining relationships between objects based
n density.

Data stream clustering [13] differs from conventional clustering.
It operates on continuous data streams, eliminating the need to wait
or the entire dataset to be collected. This real-time nature allows it
o dynamically process incoming data points and adapt the clustering
odels to any changes in the data distribution over time. Many data

tream clustering approaches can be considered extensions or variations
f conventional clustering, resulting in different categories within the
ield. The first proposed data stream clustering STREAM [14] is of
he partition-based type. This algorithm reads a data stream over
ixed size batches or windows, applies KMedian clustering to each

batch, and merges the obtained centers into K medians to find final
clusters. A few years later, the authors proposed an improved version,
STREAMLSEARCH [15], by adding local search techniques. Other al-
gorithms such as StreamK-means [15], and SequentialK-means [16] are
lso representations of the partition-based type. CluStream [17], a well-
nown hierarchical and partition-based approach, extends the cluster-

ing feature tree (CF-tree) structure of BIRCH. By using an online-offline
lgorithm with K-means, it effectively summarizes micro-clusters and
reserves them at specific points in time within a pyramidal time frame.
n addition, density-based approaches have been proposed, such as
enStream [18], which is based on the DBSCAN algorithm with the

addition of a CF-tree structure, DBStream [19], which uses a shared
density graph to connect micro-clusters, eliminating gaps in dense areas
during online clustering refinement. These types of algorithms have
the ability to detect clusters of any shape without prior knowledge of
the number of clusters, and are able to deal with outliers. Apart from
these, there are other types of data stream clustering, including grid-
based approach such as DGClust [20], as well as model-based algorithm
WEM [21].

A wide variety of clustering algorithms exist for both static and dy-
namic datasets. However, no clustering algorithm is universally perfect;
each type of clustering algorithm has its advantages and disadvantages.
For example, partition-based algorithms have limitations: they require
the number of clusters to be specified in advance and struggle with
outliers, but they work efficiently and can handle large datasets with
relatively low time complexity. Meanwhile, density-based clustering
algorithms work on any kind of cluster distribution, automatically
detect the number of clusters, and handle outliers very well, but are
slower and more difficult to parameterize. Consequently, clustering
algorithms can be applied in different domains and the applicability
of different clustering approaches depends strongly on the context of
the specific problem to solve. The application or choice of different
algorithms is therefore highly dependent on the specific requirements
or needs of the task. In this article, we present a fast, innovative
clustering framework that is able to adapt most clustering approaches
to both static and dynamic datasets. The proposed framework operates
on sliding windows and uses histogram models to characterize clus-
tering distributions. Histogram models provide simple representations
of clusters without requiring prior knowledge of their distribution.
To compare and merge different clusters in different windows, we
take advantage of the calculation of the Wasserstein distance between
histograms [22], facilitating effective cluster analysis and synthesis. A
2
major advantage of the proposed framework is that it allows fast ap-
lication of most clustering algorithms, minimizing computational cost
nd memory consumption without using resource-intensive techniques
uch as distributed/parallel processing or GPU computing. The work
resented in this paper fits into the context of frugal clustering [23],

which is particularly relevant in resource-constrained environments
where traditional clustering algorithms may not be feasible or efficient.

The paper is organized as follows. In Section 2, we provide an
overview of the theoretical background, including the construction of
the histogram models, the computation of the similarities between
distributions using Wasserstein distance. In Section 3, we delve into
the details of the approach, outlining the process of modeling clusters
as histograms and the subsequent merging of different windows. In
ection 4, we conduct experiments to compare the static and dynamic
pproaches to conventional clustering and data stream clustering on
oth artificial and real datasets. Finally, in Section 5, we summarize

the results and discuss potential perspectives for future research.

2. Background

In this section, we present the theoretical background on which our
pproach is based, aiming at efficiently comparing cluster distributions

with minimal computational cost to determine if clusters should remain
separate or be merged. For this purpose, representing the distribution of
each cluster as a set of histograms, and then compare these distributions
using Wasserstein distance adapted to this representation can be an
efficient solution. Finally, a specific two-sample test is computed from
this measure to assess the significance of the distance obtained.

2.1. Data distributions using histograms

Estimating probabilistic data distributions [24] is a fundamental
part of data science and machine learning, especially in unsupervised
learning. Unraveling the distribution of data allows the discovery of
hidden patterns in datasets and is a powerful tool for analyzing large
amounts of data in an unsupervised manner. In clustering applications,
lusters are often assumed to be normally distributed (i.e., have a

multivariate Gaussian distribution) or sometimes have a more complex
distribution, such as gamma distributions. All subsequent analysis is
then based on this assumption. These parametric approaches can pro-
vide good results, but they have limited applications when it comes to
representing clusters of arbitrary distributions, which is an important
requirement for many real-world scenarios. One possible solution is
o model the distribution as a mixture of simple functions (usually
aussian). However, Gaussian mixture models can be computationally
xpensive and slow to train, especially when the number of mix-
ure components is large. They are also sensitive to initialization, and
hoosing the number of mixture components in the model is often
hallenging. Another solution, which we focus on in this paper, is to
odel the cluster distributions using a set of histograms computed from

he empirical distribution [25] of the data. Although this representation
an lead to a loss of fine variations of the underlying distribution
epending on the number of bins, it has the advantage of being in-
ependent of any assumptions and is fast and easy to compute. It also
reatly simplifies the computation of the Wasserstein distance [26].

The term histogram was first proposed by [27], who described a
histogram as a series of rectangles of equal width whose height could
represent the number of values falling within the interval formed by
their two edges. Using histograms to represent data could be a concise
and flexible case of symbolic or summarized data analysis when faced
with large amounts of data. In this case, the weight of each rectangle
of the histogram is no longer the number of observations, but the
probability or proportion of values over a set of intervals, formally
defined that a histogram is a model for representing the empirical
distribution of a continuous variable 𝑌 divided into a set of contiguous

𝐼𝜙 intervals (bins) with associated 𝜋𝜙 weights. A histogram 𝐻 is thus

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 1. Two types of histogram representations which display a Gaussian distribution  (𝜇 , 𝜎2) where 𝜇 is 0 and 𝜎 is 0.01.
represented by a set of 𝛷 ordered pairs (𝐼𝜙, 𝜋𝜙), where 𝜋𝜙 is a non-
negative measure of a probability distribution on the domain of 𝑌 such
that: (1) ∑𝛷

𝜙=1 𝜋𝜙 = 1 with 𝜋𝜙 ≥ 0; (2) 𝐼𝜙 ∩ 𝐼𝜙′ = ∅, 𝜙 ≠ 𝜙′; (3)
⋃

𝜙=1,…,𝛷 𝐼𝜙 = [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥].
There are two ways of displaying histograms. The first type allows

each bin to have a fixed uniform length, but not a uniform weight,
expressed as: |𝐼𝜙| =

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
𝐻 . The second type allows each bin to have a

fixed uniform weight, but not a uniform length, expressed as: |𝜋𝜙| =
1
𝐻 .

Fig. 1 illustrates the difference.
The time complexity of computing a univariate histogram depends

on the number of bins 𝛷 in the histogram and the number of data
points 𝑛 being processed which is O(𝑛 ∗ 𝛷), where 𝛷 is usually much
smaller than 𝑛 and need not be proportional to 𝑛. However, computing a
multivariate histogram is much more expensive because the number of
bins 𝛷 in each dimension should be considered, with a time complexity
of O(𝑛 ∗ 𝛷𝑣), where 𝑣 is the dimensionality of the dataset. One
way to reduce the computational cost of multivariate histograms is
to compute separate independent histogram for each variable, which
reduces the complexity to O(𝑛 ∗ 𝑣 ∗ 𝛷), but correlation information
is lost in this approach. If some attributes are correlated, we cannot
treat their histogram representation independently. For these reasons,
in this paper we focus on independent histograms and deal with the
loss of correlation information by using random projections which will
be presented in Section 3.1.

2.2. Distribution comparison

To increase storage efficiency and achieve more consistent cluster-
ing results, it is imperative to compare the distributions of different
clusters once they have been identified. Then, clusters with similar
distributions should be merged to achieve better clustering results.
However, comparing different distributions can be challenging and
requires a suitable metric to assess the similarity between two distribu-
tions 𝜇 and 𝜐 on the same sample space  . A widely used measure is the
Kullback–Leibler divergence (KL divergence expressed in Eq. (1)) [28],
which computes the expectation of the logarithmic difference between
the probability distributions 𝜇 and 𝜐:

𝐾 𝐿(𝜇 , 𝜐) = ∫
𝜇(𝑥)𝑙 𝑜𝑔(𝜇(𝑥)

𝜐(𝑥)
)𝑑 𝑥. (1)

Since the KL divergence is not symmetric, the Jensen–Shannon
divergence (JS divergence expressed in Eq. (2)) [29] has been proposed
to solve the symmetry problem, known as the total divergence to the
average, the square root of the JS divergence is a metric often referred
to as the JS distance.

𝐽 𝑆(𝜇 , 𝜐) =
𝐾 𝐿(𝜇 , 𝜇+𝜐2) +𝐾 𝐿(𝜐, 𝜇+𝜐2)

2
(2)

The KL and JS divergences suffer from several drawbacks, as non
robustness to outliers. In addition, KL and JS are not distances and
they do not satisfy triangle inequality. For all these reasons, another
metric, the so called Wasserstein distance has gained in popularity.
3
Wasserstein distance takes into account the cost of moving the mass
from one distribution to another, which helps to mitigate the impact
of outliers. The Wasserstein distance is also a continuous function,
meaning that small changes in the input distributions result in small
changes in the distance measurement. This is not the case with KL
divergence, which can exhibit discontinuities and is therefore less suit-
able for some applications. In addition, Wasserstein distance satisfies
the properties of a metric, such as symmetry, triangle inequality, and
non-negativity. This property is not satisfied by JS and KL distances,
making Wasserstein distance more suitable for use in optimization
and clustering algorithms. Finally, Wasserstein distance has a natural
interpretation as the minimum cost of transforming one distribution to
another, which makes it easier to understand and explain in comparison
to other distance measures.

Originally introduced in the context of optimal transport theory
[30], this metric quantifies the minimum cost required to transform
one probability distribution into another, where cost is defined as the
amount of ‘‘work’’ required to move a given amount of mass from one
point to another. The traditional approach to estimating the Wasser-
stein distance is outlined in [31] with a computational complexity of
𝑂(𝑛3𝑙 𝑜𝑔(𝑛)) using the EMD definition of this distance.

𝑊𝑒𝑚𝑑 (𝜇 , 𝜐) = 𝑚𝑖𝑛
𝛾∈ ∫ ‖𝑥 − 𝑦‖𝛾(𝑥, 𝑦)𝑑 𝑥𝑑 𝑦 = 𝐄

(𝑥,𝑦)∼𝛾
[‖𝑥 − 𝑦‖] (3)

where  is the set of all joint distributions 𝛱(𝜇 , 𝜐) whose marginals are
𝜇 and 𝜐, ‖𝑥−𝑦‖ gives the cost of transporting a unit of mass from point
𝑥 to point y. A transport plan to move 𝜇 to 𝜈 can be described by a
function 𝛾(𝑥, 𝑦) which gives the amount of mass to be moved from 𝑥 to
y.

The Sinkhorn distance [32] is a faster alternative to Wasserstein
distance that uses an entropy regularization term into the optimal
transport problem, making the problem more computationally efficient
to solve with computational complexity up to 𝑂(𝑛2). Given a cost matrix
𝑀 , the cost of mapping 𝜇 to 𝜐 using the joint probability  can be
qualified as ⟨ , 𝑀⟩, and the Sinkhorn distance directly regularizes the
original transport problem with a regularization parameter 𝜆 and the
entropy ℎ() = −∑

𝑖,𝑗=1 𝑖,𝑗 𝑙 𝑜𝑔𝑖,𝑗 defined as follow:

𝜆 > 0, 𝑊 𝜆
𝑠𝑖𝑛𝑘𝑜𝑟𝑛(𝜇 , 𝜐) ∶= ⟨𝜆, 𝑀⟩, 𝜆 = argmin⟨ , 𝑀⟩ − 1

𝜆
ℎ() (4)

Computation of the Wasserstein distance (including Sinkhorn dis-
tance) can become exceedingly complex for large datasets, making it
necessary to explore alternative methods. One such approach, which
is specifically designed for histograms, can be found in [22]. This
approach introduces an elegant formulation of the Wasserstein distance
between two histograms 𝐻 𝑖 and 𝐻 𝑗 expressed as:

𝑊 2
ℎ𝑖𝑠𝑡(𝐻

𝑖, 𝐻 𝑗) =
𝛷
∑

𝜙=1
𝜋𝜙𝑑

2(𝐼 𝑖𝜙, 𝐼 𝑗𝜙) =
𝛷
∑

𝜙=1
𝜋𝜙

[

(𝑐𝑖𝜙 − 𝑐𝑗𝜙)
2 + 1

3
(𝑟𝑖𝜙 − 𝑟𝑗𝜙)

2
]

, (5)

which simply compute the sum of the differences between each pair of
centers 𝐶 and radius 𝑅 of two histograms, where 𝜋𝜙 is the probability
weight associated to each bin, and 𝐼 𝑖 represents an interval ([𝑦𝑖 , 𝑦𝑖])
𝜙 𝜙 𝜙

X. Qian et al.

i
i
a
a
h

w

t

r
𝛼

l
t
t

w
𝑊
a
𝑍
𝑇
o
d
a
f

a

s
c
u
v
v
p
S

i
p
w

d
a
t

(
t

Pattern Recognition 162 (2025) 111414
of histogram 𝐻 𝑖, 𝐼 𝑗𝜙 represents an interval ([𝑦𝑗𝜙, 𝑦
𝑗
𝜙]) of histogram 𝐻 𝑗 ,

with:

𝑐𝑖𝜙 =
𝑦𝑖𝜙 + 𝑦𝑖𝜙

2
; 𝑐𝑗𝜙 =

𝑦𝑗𝜙 + 𝑦𝑗𝜙

2
; 𝑟𝑖𝜙 =

𝑦𝑖𝜙 − 𝑦𝑖𝜙

2
; 𝑟𝑗𝜙 =

𝑦𝑗𝜙 − 𝑦𝑗𝜙

2
.

They also propose a way to compute the Wasserstein distance between
multivariate histograms. Suppose there are p histogram variables for
observation i and j (𝐻 𝑖

1 ⋯𝐻 𝑖
𝑝 and 𝐻 𝑗

1 ⋯𝐻 𝑗
𝑝), under the hypothesis that

the variables are independent, the process is expressed like:

𝑊 2
ℎ𝑖𝑠𝑡[(𝐻

𝑖
1 ⋯𝐻 𝑖

𝑝), (𝐻
𝑗
1 ...𝐻

𝑗
𝑝)] =

𝑝
∑

𝑞=1
𝑊 2
ℎ𝑖𝑠𝑡(𝐻

𝑖
𝑞 , 𝐻 𝑗

𝑞) (6)

The proposed approach described in this paper is to compute his-
tograms that model the data distribution before computing the distance
between the centers and the radius of each interval. The time com-
plexity of computing the Wasserstein distance between histograms is
O(𝛷𝑣) for multivariate histograms and O(𝛷 ∗ 𝑣) for independent
histograms. Overall, since 𝛷 is usually chosen as a constant positive
parameter, the total time complexity of this approach for a set of 𝑣
ndependent histograms can be efficient compared to the complex-
ty of multivariate histograms. Moreover, the time complexity of an
lgorithm also depends on its implementation and hardware. For ex-
mple, parallelization can greatly reduce the complexity of independent
istograms.

It is possible to compute the barycenter of a set of histograms by
defining a distance measure between histograms. This barycenter is
essentially a single histogram that minimizes the squared Wasserstein
distance between itself and each member of the set. In other words,
it is the optimal representative histogram that captures the essential
features of the entire set. In the case of histograms with uniform bins

eight, each one is described by the centers 𝐶 and radius 𝑅 of its bins,
this involves computing new centers 𝐶𝑏 and radius 𝑅𝑏 while keeping
he weight of each bin constant. The Eq. (7), mentioned in [22], shows

that this simply requires computing the mean center and radius of each
bin, where 𝑁ℎ is the number of histograms in the set, in our case 𝑁ℎ
is set to 2:

𝐶𝑏 = 𝑁−1
ℎ

𝑁ℎ
∑

𝑗=1
𝐶𝑗 and 𝑅𝑏 = 𝑁−1

ℎ

𝑁ℎ
∑

𝑗=1
𝑅𝑗 . (7)

2.3. Wasserstein two-samples testing

Performing non parametric two sample testing allows to detect,
given samples 𝑋1,… , 𝑋𝑛 ∼ 𝜇 and 𝑌1,… , 𝑌𝑚 ∼ 𝜈 from the two unknown
distributions 𝜇 and 𝜈, if they are significantly different. One classical
test is the Kolmogorov–Smirnov test (see [33]), or K-S test, which is
commonly used to compare an empirical distribution to a theoretical
distribution or to compare two empirical distributions. In the case of
deciding whether two one-dimensional probability distributions (𝜇 , 𝜈)
differ from each other by computing Eq. (8):

𝐷𝜇 ,𝜈 = 𝑠𝑢𝑝
𝑥
|𝐹𝜇(𝑥) − 𝐹𝜈 (𝑥)| (8)

and test the null hypothesis (𝐻0) ∶ 𝜇 = 𝜈 versus (𝐻1) ∶ 𝜇 ≠ 𝜈. One then
ejects the null hypothesis (𝐻0) and accepts (𝐻1) with significance level
if

𝐷𝜇 ,𝜐 > 𝐶(𝛼)
√

𝑛 + 𝑚
𝑛 ⋅ 𝑚

, where 𝐶(𝛼) =
√

−𝑙 𝑛(𝛼
2
) × 1

2
.

An alternative distribution free statistical test based on the Wasser-
stein distance has been proposed in [34]. This test is based on the fol-
owing preliminary result on the asymptotic empirical Wasserstein dis-
ance between two samples. Denote 𝐹𝑛, 𝐺𝑚, the two empirical cumula-
ive distribution functions (CDF) associated to the samples 𝑋1,… , 𝑋𝑛 ∼
𝜇 and 𝑌1,… , 𝑌𝑚 ∼ 𝜈. Under the null hypothesis 𝐻0 : 𝜇 = 𝜈, one has

𝑇𝑚,𝑛 ∶=
𝑛 ⋅ 𝑚 1 (

𝐺𝑚
(

𝐹−1(𝑡) − 𝑡)2
)

𝑑 𝑡→𝑤 𝑍
𝑛 + 𝑚 ∫0 𝑛

4
∶= ∫

1

0
𝐁(𝑡)2 𝑑 𝑡 as 𝑛, 𝑚 → ∞ (9)

where 𝐵(𝑡) represents the Brownian bridge [35]. The Brownian bridge
is defined as 𝐵(𝑡) = 𝑊𝑝𝑟(𝑡) − 𝑡

𝑇𝑊𝑝𝑟(𝑇), where 𝑡 ∈ [0, 𝑇] (in the assumption
𝑇 = 1) and 𝑊𝑝𝑟 is a standard Wiener process [36]. It describes a random

alk from 0 to 𝑇 starting at 0 and ending at 0, such as 𝑊𝑝𝑟(0) =
𝑝𝑟(𝑇) = 0. We emphasize that on can simulate the Brownian Bridge

nd then compute empirically the quantiles of the random variable
. Using the test statistic 𝑇𝑚,𝑛, we then rejects 𝐻0 and accepts 𝐻1 if
𝑚,𝑛 > 𝑧𝛼 where 𝑧𝛼 is the 𝛼-quantile of distribution 𝑍. In short, instead
f testing the vanishing of Wasserstein distance between 𝐺𝑚 and 𝐹𝑛
irectly, this test computes the Wasserstein distance between 𝐺𝑚(𝐹−1

𝑛)
nd a uniform distribution U[0,1] on [0, 1] which makes it distribution
ree.

3. Proposed approach

The proposed approach uses a non-overlapping sliding window
model to run a clustering algorithm on batches of data samples that
re briefly held in memory. Then allowing any type of clustering

algorithms to be applied across sliding windows. This flexibility is a key
trength of our approach, allowing the selection of the most appropriate
lustering method for the data at hand. The ability to remove noise
sing algorithms such as those in the DBSCAN family is particularly
aluable in this context, as histograms can be sensitive to extreme
alues and outliers. However, our approach has shown excellent overall
erformance in tests with other types of clustering algorithms (see
ection 4). This allows incremental clustering of large datasets and

handling of data streams. The distribution of each cluster in a window
s modeled as a set of unidimensional histograms computed in a random
rojection space, capturing correlation information between variables
ithout the need to compute a costly multivariate histogram.

As shown in Fig. 2, input data points are continuously collected
within a sliding window. A conventional clustering algorithm is then
applied to identify clusters within the current window. Random projec-
tions of these data points are then computed (see Section 3.1), and the
istributions of the detected clusters is modeled using a histogram plot
pplied on each of the projection axes (see Section 3.2). To compare
he newly computed clusters with those from previous windows, we

use the Wasserstein two-sample test based on the Wasserstein distance,
a statistical test that aims to identify clusters with similar distributions
see Section 3.3). These similar clusters are merged and replaced by
heir barycentric histograms using a modified calculation form (see

Section 3.4). Once this process is complete, the histogram models are
stored and the data samples are discarded to leave space for a new
window of data samples in memory. The main steps of the approach
are also summarized in the Algorithm 2 (see Section 3.5).

3.1. Multivariate histogram extension

Multivariate histogram models to represent the data distribution
can be very computationally costly when the number of dimensions is
high. Instead of using a multivariate histogram, the distribution can be
modeled as a set of univariate histograms at very low computational
cost, but all correlation information is lost. One solution inspired by
Sliced Wasserstein distance proposed in [37] is to compute random
projections of the data onto new axes drawn uniformly on the unit
sphere. If the number of new axes is large enough, the resulting model
of the distribution is very close to the multivariate model in terms of
computing the Wasserstein distance, while reducing the computational
complexity very significantly. The axes of the projections of the data
points are obtained via the dot product between the sample vectors X
and 𝑀𝑝, the intermediate matrix 𝑀𝑝 is expressed in Eq. (10) as follow:

𝑀𝑝 =
𝑀2

𝛹
√

∑𝑣 1 2
√

∑𝑣 𝑝 2
, 𝑋𝑝 = 𝑋 ⋅𝑀𝑝 (10)
[𝑖=1 (𝜓𝑖) ,… , 𝑖=1(𝜓𝑖)]

X. Qian et al.

f
W
p
F
s
q
e

Pattern Recognition 162 (2025) 111414
Fig. 2. Proposed approach.
d
t
b

s

where 𝑀𝛹 is a matrix which follows a standard normal distribution
with shape (𝑣, 𝑝), 𝑣 is the number of variables, and 𝑝 is the number of
projections, and 𝜓 𝑗𝑖 ∈𝑀𝛹 .

3.2. Histograms computation

As mentioned in Section 2.1, we favor a fixed weight representation
or the histograms, which greatly simplifies the computation of the

asserstein distance introduced in Eq. (5), Eq. (6). In the proposed ap-
roach, each cluster is represented by a set of independent histograms.
or this purpose, the samples of a cluster 𝑋𝑝

𝑐 obtained in the previous
tep must be divided into 𝛷 intervals by computing the 1 to 𝛷-th
uantile of 𝑋𝑝

𝑐 along each dimension, keeping the same weight 𝜋𝜙 for
ach interval, which is equal to 1

𝛷 . This process is repeated for all
clusters in the current window.

3.3. Cluster similarity test

With respect to Eq. (9), the detailed procedures for defining the
similarity between two cluster distributions in the form of histograms
are as follows:

1. Determine the Brownian bridge threshold 𝛿 corresponding to the
dimension 𝑝 using linear regression.

2. Obtain the CDF 𝐹𝑛 and 𝐺𝑚 for each pairwise histogram distribu-
tion 𝜇 and 𝜐 of two clusters.

3. Compute the composition function of 𝐺𝑚 and the inverse func-
tion 𝐹−1

𝑛 of 𝐹𝑛: 𝐺𝑚(𝐹−1
𝑛).

4. Compute the sum of WD between each 𝐺𝑚(𝐹−1
𝑛) and U[0,1] by

using Eq. (6), then multiply with 𝑛∗𝑚
𝑛+𝑚 .

5. Compare result of step 4 with the threshold 𝛿.
6. If the result < 𝛿, it means two clusters are similar and must be

merged.

To define the threshold 𝛿, we used simulations of Brownian bridges
for multivariate observations. Since the threshold 𝛿 corresponds to
a Wasserstein distance between a random Brownian bridge and the
5
uniform walk 𝐵𝑡 = 0 with a probability of occurrence below 5%. The
algorithm which computes the threshold 𝛿 correspond of p variables
could be developed as described in Algorithm 1.

Experiments show that the threshold 𝛿 has a linear relationship with
the number of dimensions 𝑝. Therefore, instead of repeating the process
of Algorithm 1, a simple linear regression model trained by 𝛿1 and 𝛿2
could be applied to any dimension p, allowing a fast computation of
𝛿𝑝. Incidentally, the values of M and 𝑁 do not matter much for the
efinition of the threshold; to maintain consistency, it is enough to keep
hem constant for the computation of 𝛿1 and 𝛿2. Precisely, we set them
oth to 10000.

Algorithm 1: Computation of threshold 𝛿 corresponding to 𝑝 dimen-
ions
Input: 𝑝, 𝑀 , 𝑁
Output: 𝛿𝑝

1 for i in 1,..,p do
/* Create M synthetic Brownian Bridges, each

one includes N 1d points, i.e. a randomly
normal increase/decrease at each time step
*/

2 B[i] ← Create_Brownian_Bridge(M, N);
3 MeanB[i] ← mean(B[i]2, axis=1) ; /* Mean of B[i]2 by

columns */
4 Sum_MeanB ← Sum_MeanB(MeanB, axis=0) ; /* Sum of

MeanB by rows */
/* Extract (95%×M)-th element of sorted

Sum_MeanB as threshold */
5 𝛿𝑝 ← sort(Sum_MeanB)[M*0.95];

3.4. Merging process

Once similar clusters found, merging them by computing their
barycenter in order to reduce the complexity of time and space. Since
some clusters may have similar distributions but large differences in

X. Qian et al.

c
d

T

s

d

a
a
t

u
a

Pattern Recognition 162 (2025) 111414
Table 1
Datasets summary.
Real datasets Nb samples Nb dimensions Nb clusters

Outdoor 3501 21 40
Gassenor 13 377 128 6
IGBN 24 150 33 6
IABN 52 848 33 6
Rialto 82 250 27 10
IIAIN 452 044 33 6
IIRIN 452 044 33 6
Covtype 549 829 10 7

Artificial datasets Nb samples Nb dimensions Nb clusters

Comet 3,20(*104) 50,100 15,50
Meteorite 3,20(*104) 50,100 15,50
Square 3,20(*104) 50,100 15,50
Gaussian 3,20(*104) 50,100 15,50
Moon 3,20(*104) 50,100 15,50
Circle 3,20(*104) 50,100 15,50
MixSmall 1,2,3 (*104) 50,50,50 24,36,48
MixLarge 10,20,50 (*104) 100,100,100 54,66,90
d
t

1
(
a
R
R

the number of data, the barycenter distributions must be computed as
a weighted sum of the mean centers and radius by modifying Eq. (7):

𝐶𝑏 =

∑𝑁ℎ
𝑗=1 𝑛𝑗 ∗ 𝐶

𝑗

∑𝑁ℎ
𝑗=1 𝑛𝑗

; 𝑅𝑏 =

∑𝑁ℎ
𝑗=1 𝑛𝑗 ∗ 𝑅

𝑗

∑𝑁ℎ
𝑗=1 𝑛𝑗

(11)

Finally, the process of cluster detection and subsequent merging
within a current window is achieved. By repeating this process for
each window, it is possible to efficiently handle large datasets and data
streams.

3.5. Detailed algorithm

The proposed framework can be summarized as follows: First, a
lustering algorithm 𝐶 𝑙 𝑢𝑠(𝜃 , 𝑋[𝑛𝑏_𝑤]) with parameters 𝜃 is applied to
ata points 𝑋[𝑛𝑏_𝑤] temporarily stored in memory within the 𝑛𝑏𝑤-

th time window, and the resulting clusters are stored as 𝑋𝑐 [𝑛𝑏_𝑤].
he sliding window ensures incremental data collection both for large

datasets and data streams. Random projections are then performed to
map the data into a p-dimensional space, stored as 𝑋𝑝

𝑐 [𝑛𝑏_𝑤]. Next,
the clusters are modeled as empirical distributions in the form of a
et of 1-D histograms, notated as 𝐻_𝑋𝑝

𝑐 [𝑛𝑏_𝑤], applied on each random
projection axis. The set of 1-D histograms on random projections ap-
proximates the full multidimensional histogram with reduced memory
and computational cost. These histograms allow the representation of
clusters in arbitrary shapes, which is critical for applying the framework
to various clustering algorithms. Data points in the current window
are then discarded to save memory. Finally, the computed cluster
distributions update the overall data stream model 𝛩 by adding new
istributions and merging similar ones, as discussed in Sections 3.3

and 3.4 using the Wasserstein distance metric. The detailed process is
shown in the algorithm 2.

4. Experimental protocol and results

4.1. Datasets

To evaluate the proposed approach, we performed a series of ex-
periments on different datasets, including real datasets and artificial
datasets, with a variety of number of samples, dimensions and clusters
(). Detection of clusters in arbitrary shapes plays an important role in
the proposed approach, besides real popular datasets used in recent
research, artificial datasets with different cluster distributions are nec-
essarily generated. Right after the creation and collection of real and
rtificial datasets, two ways of dataset preprocessing are followed. This
llows clustering in both static and dynamic contexts, demonstrating
he flexibility of the proposed approach.

4.1.1. Artificial datasets
Generate several artificial databases in different distributions to sim-

ulate real scenarios, such as comet, meteorite, square, moon, circular,
and Gaussian, by adding orientation to some clusters to replicate the
real case. For the square distribution, the first dimension follows a
nivariate Gaussian distribution, then the remaining dimensions follow
 uniform distribution. Then comes the comet distribution, where
6
Algorithm 2: Proposed approach
Input: Number of projections 𝑝, number of bins 𝛷, data points

arriving by windows 𝐗 = {𝑋[1], 𝑋[2]...}, conventional
clustering algorithm with 𝜃 parameters 𝐶 𝑙 𝑢𝑠(𝜃),
similarity threshold 𝛿𝑝 computed by Algorithm 1, stored
clusters in current model 𝛩

Output: Updated clusters 𝛩
1 𝑛𝑏_𝑤 ← Index of current window ;
2 while length(X[nb_w]) != 0 do
3 𝑋𝑐 [𝑛𝑏_𝑤]) ← 𝐶 𝑙 𝑢𝑠(𝜃 , 𝑋[𝑛𝑏_𝑤]) ; /* Detect clusters in

the 𝑛𝑏_𝑤-th window */
4 𝑋𝑝

𝑐 [𝑛𝑏_𝑤] ← 𝑝 Random Projections of 𝑋𝑐 [𝑛𝑏_𝑤] by Eq. (10) ;
5 𝐻_𝑋𝑝

𝑐 [𝑛𝑏_𝑤] ← Convert all the clusters 𝑋𝑝
𝑐 [𝑛𝑏_𝑤] to

histogram models as described in Section. 3.2;
6 for each cluster 𝑖 in 𝛩 do
7 for each cluster 𝑗 in 𝐻_𝑋𝑝

𝑐 [𝑛𝑏_𝑤] do
8 if 𝑖 and 𝑗 are not significantly different with respect to

Eq. (9) then
9 Update 𝑖 which is stored in 𝛩 by the barycenter

of 𝑖 and 𝑗 using Eq. (11)
10 else
11 𝛩 ← 𝛩 .𝑎𝑑 𝑑(𝑗) ; /* Add 𝑗 to the entire set

𝛩 */

12 𝑛𝑏_𝑤 ← 𝑛𝑏_𝑤 + 1;

the first dimension follows a gamma distribution, then the remaining
imensions follow a univariate distribution. Similar to the comet dis-
ribution, the meteorite distribution follows a gamma distribution for

all dimensions. Another type of distribution is the circle distribution,
which is based on cosine and sine elements, and the moon distribution
could be treated as a semicircle distribution. Then there is the Gaussian
distribution, best known as the multinomial Gaussian distribution. An
example of the visualization of all artificial distributions could be seen
in Fig. 3

4.1.2. Real datasets
The real datasets used in the experimental sections have already

mentioned in including Outdoor which consists of 4000 images of
40 different objects taken with a smartphone camera in a garden
environment. The images were taken under different lighting condi-
tions and from different distances and positions; Gassor [38] contains
3910 recordings from 16 chemical sensors measuring six pure gases
ammonia, acetaldehyde, acetone, ethylene, ethanol and toluene) in
 gas delivery platform at the University of California, San Diego;
ialto [39] contains 82,250 examples of ten colorful buildings near the
ialto Bridge in Venice; Covtype [40] contains 581012 instances with

54 attributes related to forest cover type obtained from the US Forest
Service Region 2 Resource Information System. And datasets from [41]
that involve the identification of disease-carrying insects using optical
sensors. The following abbreviations are used to name them based on
different impact of temperature: IABN, IGBN, IIAIN, IIRIN.

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 3. Artificial datasets of different distributions.
4.1.3. Datasets preprocessing
Since the proposed framework supports both static (batch) and

dynamic (data stream) clustering, the experiments are performed on ar-
tificial and real datasets suitable for both types of clustering. Therefore,
the setup steps are adapted to these two types of scenarios:

• Static Clustering: For the static experiments, the results are com-
pared with conventional clustering applied to the whole datasets.
The order of the data is randomly shuffled, then the windows
are defined according to a predefined number of data instances
per window, usually expressed as a proportion of the number of
instances.

• Dynamic Clustering: For the dynamic experiments, the results
were compared with popular data stream clustering algorithms.
To simulate a dynamic process in the artificial datasets, each
data instance was randomly assigned a timestamp. Real datasets
were kept with their original timestamps, if available, or were
timestamped according to their original order. Windows were
defined according to a chosen time interval, and the number of
data instances in different windows can vary according to the
timestamps of the instances.

In both cases, the goal is to apply conventional clustering on non-
overlapping windows to detect clusters before merging similar clusters
using the proposed framework.

4.2. Clustering evaluation strategy

The Adjusted Rand Index (ARI), Normalized Mutual Informations
(NMI) and Purity are becoming increasingly popular for assessing the
quality of clustering, as they are regularly used in a large number of
studies. Each of them is an external index based on a priori knowledge
of the data structure. Internal indices typically check the compactness
and separability of clusters and work well to evaluate clusters that
are close to a Gaussian distribution. Due to the diversity of cluster
distributions in the experimental datasets, we decided to restrict the
evaluation to external indices. For both ARI and NMI, we used the
functions implemented in the scikit-learn [42] Python package, which
compute the ARI score, bounded between −0.5 and 1, and the NMI
score in the range [0,1]. Both indexes are based on the computation of
a contingency table (see Table 2).

• Adjusted Rand Index (ARI) [43]: By considering all sample pair
assignments in both the expected and actual clusterings, as well
7
as counting sample pair assignments in the predicted or actual
clusterings the ARI formula is as follow:

𝐴𝑅𝐼 =

∑

𝑖,𝑗
(𝑛𝑖,𝑗

2

)

−
∑

𝑖 (𝑎𝑖2)
∑

𝑗 (𝑏𝑗2)
(𝑁2)

1
2 (
∑

𝑖
(𝑎𝑖
2

)

+
∑

𝑗
(𝑏𝑗
2

)

) −
∑

𝑖 (𝑎𝑖2)
∑

𝑗 (𝑏𝑗2)
(𝑁2)

• Purity [44]: Each cluster is given a description based on the
class that makes up the majority of the cluster. Purity is then
computed as the fraction of all data points divided by the number
of successfully matched class and cluster labels. The formula is
summarized as follows, where n is the number of samples and K
is the number of clusters.

𝑃 𝑢𝑟𝑖𝑡𝑦 =
∑𝐾
𝑘=1 𝑚𝑎𝑥(number of majority cluster in k)

𝑛

• Normalized Mutual Information (NMI) [45]: Widely used and
increasingly popular metric for evaluating community detection
methods, it measures the similarity between two partitions by
calculating their mutual information, normalized by the entropies
of the partitions. Unlike overlap metrics, NMI does not require
that the two partitions have the same number of groups. This
makes it particularly useful for assessing the agreement between
two independent labeling strategies on the same dataset, even
when the true underlying labels are unknown.

𝑁 𝑀 𝐼 =
−2

∑

𝑖,𝑗 𝑛𝑖,𝑗 log(
𝑁 ⋅𝑛𝑖,𝑗
𝑏𝑗 ⋅𝑎𝑖

)

∑

𝑗 𝑏𝑗 log(
𝑏𝑗
𝑁) +∑

𝑖 𝑎𝑖 log(
𝑎𝑖
𝑁)

As discussed in [46], it is sometimes valuable to consider the ‘‘trade-
off’’ between computation time and clustering quality as an additional
analysis of clustering performance. This consideration is important
because the proposed approach may not always be the best when
evaluated solely by the traditional metrics mentioned above. In some
cases, its clustering quality may be slightly lower than others. However,
if this difference in quality is limited while the approach significantly
reduces the computation time, the practical value of the proposed
framework is worth considering. To facilitate this discussion, we use
a simple index:

Trade-off =
Clustering quality

.
Normalized time

X. Qian et al. Pattern Recognition 162 (2025) 111414
Table 2
Each element 𝑛𝑖,𝑗 of this table correspond to the number of data points in common between cluster 𝐶𝑝(𝑖) and cluster 𝐶𝑟(𝑗).

Real/Predicted clusters 𝐶𝑟(1) ... 𝐶𝑟(𝑗) ... 𝐶𝑟(𝑁𝑟) 𝑎𝑖 =
∑

𝑗 𝑛𝑖,𝑗

𝐶𝑝(1) 𝑛1,1 𝑛1,𝑗 𝑛1,𝑁𝑟
𝑎1

...
𝐶𝑝(𝑖) 𝑛𝑖,1 ... 𝑛𝑖,𝑗 ... 𝑛𝑖,𝑁𝑟

𝑎𝑖
...
𝐶𝑝(𝑁𝑝) 𝑛𝑁𝑝 ,1 𝑛𝑁𝑝 ,𝑗 𝑛𝑁𝑝 ,𝑁𝑟

𝑎𝑁𝑝

𝑏𝑗 =
∑

𝑖 𝑛𝑖,𝑗 𝑏1 𝑏𝑗 𝑏𝑁𝑟
𝑁 =

∑

𝑖,𝑗 𝑛𝑖,𝑗
Fig. 4. Results with increasing the number of bins — Artificial datasets.
Here, ‘‘normalized time’’ refers to the computation time normalized by
the total time of all algorithms for each dataset. This normalization is
useful for visualization purposes. Unlike standard evaluation metrics,
this ‘‘trade-off’’ metric provides a quick comparison that highlights the
balance between time consumption and clustering quality. While the
exact scores/values are not the primary focus of the experiments, the
resulting visualizations of this metric help to discuss the importance
and efficiency of the proposed approach.

4.3. Parameter analysis

An analysis of the impact of different parameters of the proposed
approach on its quality has been carried out. In particular, the number
of bins of the histogram model, the number of random projections,
and the number of windows (also related to the number of samples
in a window), which could change the quality and complexity of the
clustering, all these parameters could have an impact on the result
of our approach. We ran each test 10 times and report the average
performance with the corresponding standard deviation.

4.3.1. Number of bins
As can be seen from the results in Figs. 4–6, the proposed approach

performs quite similarly regardless of the number of bins, on both
artificial and real datasets. In fact, the quality of the clustering did not
change significantly when the number of bins was adjusted. However, it
is clear that the computation time is higher when the number of bins is
increased. Therefore, in the following experiments, we set the number
of bins to 10 in order to be efficient without losing quality.
8
4.3.2. Number of projections
We found that the quality of clustering does not vary significantly

when the number of projections is changed, both on real and artificial
datasets, according to the results shown in Figs. 7–9. This seems that
reducing the data dimensions still preserves the histogram’s ability
to efficiently detect clusters with similar distributions. The algorithm
runs faster with fewer projections than variables in the dataset, but
computation time increases with more projections. Therefore, we set
the number of projections to 4 for the following experiments.

4.3.3. Window size
When the datasets are divided into more windows, the proposed

cluster similarity test is applied more often on clusters with few sam-
ples, potentially leading to more errors, but the process is faster. The
aim of testing the effect of changing the number of windows is the same
as testing the effect of the number of samples in a window, as well as
the effect of the number of times we apply the similarity test. As can
be seen in Figs. 10–12, there is a gradual decrease in quality as the
number of windows increases, as the number of comparisons increases,
although there is also an initial dramatic decrease in computation time
followed by convergence after a certain number of windows.

Therefore, to achieve better performance, we set the number of
samples or time intervals in each window differently for different
datasets. In our experiments, we carefully choose the number of data
points (or time intervals) in each batch to ensure the effectiveness
of our approach. Striking a balance is essential; using too few data
points can result in scattered points, making it difficult to find clusters.
Conversely, too many data points would lead to an over-reliance on

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 5. Results with increasing the number of bins — Real datasets (PART I).
Fig. 6. Results with increasing the number of bins — Real datasets (PART II).
standard clustering within each batch, potentially obscuring the impact
of the proposed approach.

To address this, we have developed a systematic configuration for
the experiments on both static datasets and dynamic datasets. For
smaller datasets, we ensure that the number of data points in each
batch is approximately 10% of the total number. For larger datasets,
this proportion is reduced to 5%. For artificial datasets, we keep
the percentage constant. However, real-world datasets may consist of
varying amounts of samples, we allow for slight adjustments to avoid
inconsistent number of batches in the analysis. The number of samples
in each window for the batch clustering tests, the total duration and the
chosen time intervals of the windows for the dynamic clustering tests
are both described in .

4.4. Quality of the distribution comparisons

We performed an experiment to confirm that the statistical test
we use to identify similarity between identical distributions works
9
correctly, as this is important for the proposed framework. First, we
create pairs of clusters drawn from the same distribution. Each pair is
constructed with different distribution types and dimensions. We then
apply the similarity test to these pairs. As expected, the results show
that the percentage of similar clusters discovered for each distribution
is about 95%, in accordance with the chosen threshold 𝛿 = 5% (see
Fig. 13).

We also evaluated the robustness of the similarity detection by
shifting the position of a distribution by a fraction of its standard
deviation 𝜎 over a random axis, to check at what level the two clusters
are treated as not similar. therefore, we fix a cluster distribution and
shift the position of the cluster by 1+𝜎*std_per. After each shift, we
compute the similarity between the two cluster distributions (Fig. 14).

For datasets with different dimensions (see Fig. 15), as long as the
shift remains below about 10% of the standard deviation, we observe
only a slow decrease in the proportion of pairs detected as similar, from
95% to 80%. If we further increase the shift, we observe, as expected,
a sharp decrease in the proportion of pairs detected as similar.

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 7. Results with increasing the number of projections — Artificial datasets.
Fig. 8. Results with increasing the number of projections — Real datasets (PART I).
Table 3
Number of samples in the windows for each dataset.

Number of samples in the windows for each dataset

Datasets Nb_samples Datasets Nb_samples Datasets Nb_samples

Comet3 3000 Comet20 10 000 MixSmall1 1000
Meteorite3 3000 Meteorite20 10 000 MixSmall2 2000
Square3 3000 Square20 10 000 MixSmall3 3000
Gaussian3 3000 Gaussian20 10 000 MixLarge10 5000
Moon3 3000 Moon20 10 000 MixLarge20 10 000
Circle3 3000 Circle20 10 000 MixLarge30 20 000
Outdoor 1500 Gassenor 2000 IGBN 3000
IABN 6000 Rialto 8000 IIAIN 8000
IIRIN 40 000 Covtype 60 000

Total duration and time interval of the windows for each dataset

Datasets Total_dur Time_inter Datasets Total_dur Time_inter

Comet20 200 4 Meteorite20 200 4
Square20 200 4 Gaussian20 200 4
Moon20 200 4 Circle20 200 4
MixLarge10 100 5 MixLarge20 200 6
MixLarge50 500 7 Outdoor 30 6
Gassenor 50 5 IGBN 50 5
IABN 80 4 Rialto 80 4
IIAIN 150 5 IIRIN 150 5
Covtype 150 5
10

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 9. Results with increasing the number of projections — Real datasets (PART II).
Fig. 10. Results with increasing the number of windows — Artificial datasets.
4.5. Assessment of algorithm quality and complexity

We performed a series of experiments to evaluate the quality and
complexity of the resulting clustering in comparison to existing ap-
proaches (Fig. 16). The proposed framework can be used with any
clustering algorithm, depending on the required cluster properties, by
working on subsets (windows) of data and comparing the obtained
clusters between windows. For experiments on static datasets, we sepa-
rated the artificial datasets into small and large categories to apply two
sets of appropriate clustering algorithms, while applying all algorithms
to the real datasets. We expect the proposed framework to reduce
the computational speed and memory requirements of most existing
clustering algorithms, while preserving their interesting properties,
with minimal loss of quality. For experiments on dynamic datasets,
11
we applied the algorithms on large artificial datasets and all the real
datasets. We expect the proposed framework to be competitive with ex-
isting stream clustering approaches in terms of quality and complexity,
while allowing great flexibility in the choice of the clustering algorithm
to be applied. For all experiments, the mean and standard deviation
over five replicates are presented as results.

4.5.1. Experiments on static datasets
As mentioned above, our approach relies on sliding windows and

the basic idea is to first perform conventional clustering on each
window, then represent the resulting clusters in a histogram model
and merge the windows to obtain the final clustering results. This
part of the test compares conventional clustering algorithms applied to
the full dataset with the proposed approach using the same clustering

X. Qian et al.

Fig. 11. Results with increasing the number of windows — Real datasets (PART I).

Fig. 12. Results with increasing the number of windows — Real datasets (PART II).

Fig. 13. Similarity tests between similar distribution. The red line represent 95% of correct detection. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Pattern Recognition 162 (2025) 111414

12

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 14. Example of a similarity test between two similar clusters by changing the standard deviation percentage (std_per) to change the position of the second cluster.
Fig. 15. Similarity test on distinct distributions of different dimension numbers by increasing std_per.
Fig. 16. Overview of the experimental protocol for static and dynamic datasets.
algorithms applied to sliding windows (illustrated in Fig. 16). The
following clustering algorithms were selected for comparison in this
section: BIRCH, Agglomerative Clustering, OPTICS, Spectral Clustering,
K-means, Gaussian Mixture, HDBSCAN, and KASP. Except for spectral
clustering and KASP, other algorithms were implemented in the scikit-
learn package [42]. For algorithms that require a predefined number of
clusters, we set it based on true labels. For spectral clustering, we used
the STAGPy library [47], a C++ library with a Python wrapper, and set
the neighborhood parameter to 10. Due to high complexity, BIRCH, Ag-
glomerative, and Spectral clustering were only tested on small datasets.
KASP used scikit-learn’s K-means and STAGPy’s spectral clustering with
subsample size set to 5 ∗ √

𝑁 𝑏_𝑠𝑎𝑚𝑝𝑙 𝑒𝑠 and neighborhoods set to 10.
K-means, Gaussian Mixture, and KASP are optimized for large datasets,
while OPTICS has only been tested on small datasets due to slower
performance compared to HDBSCAN on larger datasets.

For small datasets, the ARI, Purity, NMI, and computation time
results are detailed in Tables 4, 5, 6, and 7. With the means of each
13
index separated between artificial and real datasets, show that for
artificial datasets, the proposed approaches perform similarly to BIRCH
and Agglomerative Clustering, with only slight differences. Compared
to OPTICS and Spectral clustering, the proposed approaches show
superior quality. For real datasets, the proposed approaches generally
outperform conventional clustering methods.

In addition, the proposed approaches consistently exhibit faster
computation time than the original algorithms. The Trade-off analysis
between clustering quality and computation time, shown in Figs. 17
and 18, further confirms the efficiency of the proposed framework.

For large datasets, the ARI, Purity, NMI and computation time
results are presented in Tables 8, 9, 10, and 11. From the results
of artificial datasets, the proposed approaches are comparable to K-
means and GaussianMixture and superior to HDBSCAN. The difference
with KASP is more noticeable for the ARI index, but the proposed
framework is superior for NMI and Purity. It also always outperforms
the conventional algorithms on real datasets.

X. Qian et al.

p
h
i
t
t
t
c
o
b

Pattern Recognition 162 (2025) 111414
Table 4
ARI results of static experiments — Small datasets.

Datasets BIRCH Agglomerative OPTICS SpectralClustering

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet3 0.930 <1e−4 0.959 <1e−4 0.932 <1e−4 0.958 <1e−4 0.337 <1e−4 0.745 <1e−4 0.305 <1e−4 0.182 <1e−4
Meteroit3 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.999 <1e−4 1.000 <1e−4 0.836 <1e−4 0.598 <1e−4 0.431 <1e−4
Circle3 0.981 <1e−4 0.963 <1e−4 0.981 <1e−4 0.966 <1e−4 0.025 <1e−4 0.945 <1e−4 0.186 <1e−4 0.294 <1e−4
Gaussian3 1.000 <1e−4 0.896 <1e−4 1.000 <1e−4 0.709 <1e−4 1.000 <1e−4 0.999 <1e−4 0.098 <1e−4 0.319 <1e−4
Square3 1.000 <1e−4 0.978 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.993 <1e−4 0.326 <1e−4 0.431 <1e−4
Moon3 1.000 <1e−4 0.903 <1e−4 1.000 <1e−4 0.904 <1e−4 0.865 <1e−4 0.978 <1e−4 0.264 <1e−4 0.168 <1e−4
MixSmall1 0.982 <1e−4 0.955 <1e−4 0.979 <1e−4 0.956 <1e−4 0.696 <1e−4 0.953 <1e−4 0.298 <1e−4 0.356 <1e−4
MixSmall2 0.927 <1e−4 0.879 <1e−4 0.931 <1e−4 0.881 <1e−4 0.988 <1e−4 0.955 <1e−4 0.407 <1e−4 0.412 <1e−4
MixSmall3 0.994 <1e−4 0.984 <1e−4 0.994 <1e−4 0.984 <1e−4 0.996 <1e−4 0.984 <1e−4 0.208 <1e−4 0.443 <1e−4

Average mean(Artificial) 0.979 <1e−4 0.946 <1e−4 0.980 <1e−4 0.929 <1e−4 0.767 <1e−4 0.932 <1e−4 0.299 <1e−4 0.337 <1e−4

Outdoor 0.003 <1e−4 0.425 <1e−4 0.404 <1e−4 0.445 <1e−4 0.248 <1e−4 0.265 <1e−4 0.404 <1e−4 0.354 <1e−4
Gassenor 0.127 <1e−4 0.275 <1e−4 0.127 <1e−4 0.284 <1e−4 0.013 <1e−4 0.022 <1e−4 0.240 <1e−4 0.312 <1e−4
IGBN 0.009 <1e−4 0.286 <1e−4 0.065 <1e−4 0.227 <1e−4 0.006 <1e−4 0.013 <1e−4 0.137 <1e−4 0.201 <1e−4
IABN 0.111 <1e−4 0.100 <1e−4 0.110 <1e−4 0.062 <1e−4 0.003 <1e−4 0.007 <1e−4 0.122 <1e−4 0.078 <1e−4

Average mean(Real) 0.062 <1e−4 0.272 <1e−4 0.177 <1e−4 0.255 <1e−4 0.068 <1e−4 0.077 <1e−4 0.226 <1e−4 0.236 <1e−4

Total average mean 0.697 <1e−4 0.739 <1e−4 0.733 <1e−4 0.721 <1e−4 0.552 <1e−4 0.669 <1e−4 0.276 <1e−4 0.306 <1e−4
Table 5
Purity results for static experiments — Small datasets.

Datasets BIRCH Agglomerative OPTICS SpectralClustering

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet3 0.999 <1e−4 1.000 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.676 <1e−4 0.825 <1e−4
Meteroit3 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.757 <1e−4 0.913 <1e−4
Circle3 0.998 <1e−4 0.999 <1e−4 0.998 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 0.556 <1e−4 0.855 <1e−4
Gaussian3 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.449 <1e−4 0.904 <1e−4
Square3 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.573 <1e−4 0.838 <1e−4
Moon3 1.000 <1e−4 0.998 <1e−4 1.000 <1e−4 0.998 <1e−4 1.000 <1e−4 1.000 <1e−4 0.621 <1e−4 0.798 <1e−4
MixSmall1 0.999 <1e−4 0.999 <1e−4 0.999 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 0.669 <1e−4 0.896 <1e−4
MixSmall2 0.998 <1e−4 0.999 <1e−4 0.998 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 0.686 <1e−4 0.895 <1e−4
MixSmall3 0.999 <1e−4 1.000 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.608 <1e−4 0.915 <1e−4

Average mean(Artificial) 0.999 <1e−4 0.999 <1e−4 0.999 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 0.622 <1e−4 0.871 <1e−4

Outdoor 0.057 <1e−4 0.617 <1e−4 0.564 <1e−4 0.656 <1e−4 0.955 <1e−4 0.931 <1e−4 0.559 <1e−4 0.629 <1e−4
Gassenor 0.425 <1e−4 0.680 <1e−4 0.425 <1e−4 0.680 <1e−4 0.993 <1e−4 0.987 <1e−4 0.500 <1e−4 0.714 <1e−4
IGBN 0.235 <1e−4 0.557 <1e−4 0.320 <1e−4 0.632 <1e−4 0.659 <1e−4 0.697 <1e−4 0.375 <1e−4 0.648 <1e−4
IABN 0.308 <1e−4 0.374 <1e−4 0.349 <1e−4 0.414 <1e−4 0.670 <1e−4 0.647 <1e−4 0.325 <1e−4 0.428 <1e−4

Average mean(Real) 0.256 <1e−4 0.557 <1e−4 0.414 <1e−4 0.596 <1e−4 0.819 <1e−4 0.816 <1e−4 0.440 <1e−4 0.605 <1e−4

Total average mean 0.771 <1e−4 0.863 <1e−4 0.819 <1e−4 0.875 <1e−4 0.944 <1e−4 0.943 <1e−4 0.566 <1e−4 0.789 <1e−4
Table 6
NMI results for static experiments — Small datasets.

Datasets BIRCH Agglomerative OPTICS SpectralClustering

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet3 0.973 <1e−4 0.965 <1e−4 0.974 <1e−4 0.964 <1e−4 0.765 <1e−4 0.803 <1e−4 0.612 <1e−4 0.601 <1e−4
Meteroit3 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.997 <1e−4 1.000 <1e−4 0.948 <1e−4 0.756 <1e−4 0.708 <1e−4
Circle3 0.986 <1e−4 0.958 <1e−4 0.986 <1e−4 0.963 <1e−4 0.386 <1e−4 0.815 <1e−4 0.529 <1e−4 0.661 <1e−4
Gaussian3 1.000 <1e−4 0.955 <1e−4 1.000 <1e−4 0.911 <1e−4 1.000 <1e−4 0.999 <1e−4 0.431 <1e−4 0.702 <1e−4
Square3 1.000 <1e−4 0.990 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.989 <1e−4 0.687 <1e−4 0.728 <1e−4
Moon3 1.000 <1e−4 0.923 <1e−4 1.000 <1e−4 0.924 <1e−4 0.707 <1e−4 0.938 <1e−4 0.600 <1e−4 0.587 <1e−4
MixSmall1 0.991 <1e−4 0.973 <1e−4 0.990 <1e−4 0.973 <1e−4 0.813 <1e−4 0.933 <1e−4 0.726 <1e−4 0.751 <1e−4
MixSmall2 0.982 <1e−4 0.955 <1e−4 0.982 <1e−4 0.957 <1e−4 0.959 <1e−4 0.945 <1e−4 0.788 <1e−4 0.780 <1e−4
MixSmall3 0.996 <1e−4 0.987 <1e−4 0.996 <1e−4 0.987 <1e−4 0.981 <1e−4 0.961 <1e−4 0.678 <1e−4 0.802 <1e−4

Average mean(Artificial) 0.992 <1e−4 0.967 <1e−4 0.992 <1e−4 0.964 <1e−4 0.846 <1e−4 0.926 <1e−4 0.645 <1e−4 0.702 <1e−4

Outdoor 0.068 <1e−4 0.731 <1e−4 0.715 <1e−4 0.737 <1e−4 0.779 <1e−4 0.774 <1e−4 0.694 <1e−4 0.699 <1e−4
Gassenor 0.275 <1e−4 0.471 <1e−4 0.275 <1e−4 0.475 <1e−4 0.419 <1e−4 0.438 <1e−4 0.424 <1e−4 0.510 <1e−4
IGBN 0.087 <1e−4 0.431 <1e−4 0.124 <1e−4 0.412 <1e−4 0.257 <1e−4 0.297 <1e−4 0.197 <1e−4 0.409 <1e−4
IABN 0.138 <1e−4 0.216 <1e−4 0.137 <1e−4 0.191 <1e−4 0.245 <1e−4 0.242 <1e−4 0.173 <1e−4 0.216 <1e−4

Average mean(Real) 0.142 <1e−4 0.462 <1e−4 0.313 <1e−4 0.454 <1e−4 0.425 <1e−4 0.438 <1e−4 0.372 <1e−4 0.459 <1e−4

Total average mean 0.730 <1e−4 0.812 <1e−4 0.783 <1e−4 0.807 <1e−4 0.716 <1e−4 0.776 <1e−4 0.561 <1e−4 0.627 <1e−4
In order to analyze the potential limitations of the proposed ap-
roach in more detail, it is important to set out the prerequisites for a
igh quality result. First, since the framework decomposes the dataset
nto smaller subsets, it is necessary that the clustering algorithm applied
o each subset maintains good performance (in terms of computation
ime and result quality) compared to the same algorithm applied to
he entire dataset. Second, since the distribution of the data in each
luster is estimated according to a set of univariate distributions based
n random projections, this estimation must be reliable, which may not
e the case for some specific non-convex distributions.
14
The first case is illustrated in our experimental result with the
slight decrease in quality observed when using KASP in the proposed
framework. KASP operates on a subsample of the original dataset
distribution generated using K-means prototypes, followed by applying
spectral clustering to this subsample to obtain preliminary partitions
that guide the final clustering process. The size of the subsample has
a significant impact on the clustering quality, and depends on the
number of data points, leading to different performances on the whole
dataset compared to its decomposition into smaller subsets. Indeed,
clustering quality in KASP shows considerable variability as the number
of samples changes, and the relationship between performance and

X. Qian et al. Pattern Recognition 162 (2025) 111414
Table 7
Computation time for static experiments — Small datasets.

Datasets BIRCH Agglomerative OPTICS SpectralClustering

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet3 46.399 5.525 7.841 0.243 127.408 58.311 5.026 0.387 493.379 29.105 163.468 4.287 12.357 1.412 8.769 1.257
Meteroit3 67.044 7.569 8.112 0.412 98.868 3.322 4.885 0.161 918.683 38.070 150.940 2.901 13.534 2.371 8.857 1.275
Circle3 58.836 14.692 7.689 0.115 385.324 380.004 4.635 0.046 549.950 93.681 200.485 9.385 11.447 1.409 6.992 0.041
Gaussian3 50.604 6.429 7.934 0.260 149.074 54.408 4.911 0.121 907.935 7.840 156.065 15.702 8.010 0.036 6.942 0.016
Square3 48.930 13.221 10.005 0.339 269.327 26.808 5.556 0.319 517.414 57.988 183.234 5.660 8.706 0.077 6.885 0.056
Moon3 50.688 8.058 8.957 0.777 116.288 12.716 5.423 0.418 616.353 81.158 177.262 2.302 9.945 0.044 7.074 0.038
MixSmall1 10.356 1.137 2.038 0.042 11.855 0.824 1.266 0.021 227.003 9.311 31.719 0.944 2.887 0.004 2.572 0.011
MixSmall2 54.298 11.138 6.528 0.140 46.100 1.544 4.892 0.646 544.662 77.890 139.102 4.347 9.112 0.070 5.603 0.046
MixSmall3 90.402 9.046 11.934 0.188 173.702 75.256 8.875 0.303 762.134 181.823 291.226 7.313 13.905 0.043 8.832 0.034

Average mean(Artificial) 53.062 8.535 7.893 0.280 153.105 68.133 5.052 0.269 615.279 64.096 165.945 5.871 9.989 0.607 6.947 0.308

Outdoor 0.062 <1e−4 1.026 0.030 0.312 <1e−4 0.821 0.009 4.584 1.552 10.977 0.176 0.972 0.015 1.085 0.006
Gassenor 22.957 2.199 3.475 0.046 19.527 1.609 2.107 0.046 335.529 21.115 225.419 8.425 3.443 0.045 3.243 0.158
IGBN 0.743 0.006 0.685 0.037 34.408 3.658 3.480 0.150 422.940 131.530 161.536 2.347 9.125 0.925 8.629 1.812
IABN 0.921 0.001 1.327 0.007 48 190.256 3384.368 15.942 0.300 974.319 0.373 687.564 21.508 21.413 2.743 17.525 3.143

Average mean(Real) 6.171 0.551 1.628 0.030 12 061.126 847.409 5.588 0.126 434.343 38.642 271.374 8.114 8.738 0.932 7.620 1.280

Total average mean 38.634 6.079 5.965 0.203 3817.111 307.910 5.217 0.225 559.607 56.264 198.384 6.561 9.604 0.707 7.154 0.607
Fig. 17. Trade-off – Mean values of ARI (left), Purity (center) and NMI (right) for static experiments — Small datasets (Artificial).
Fig. 18. Trade-off – Mean values of ARI (left), Purity (center) and NMI (right) for static experiments — Small datasets (Real).
dataset size is non-linear. This contrasts with other algorithms, such as
K-means, where performance is more stable. As a result, the proposed
framework may not fully benefit from the decomposition when using
KASP or similar algorithms, as their instability on smaller subsets may
lead to less accurate clustering despite a better computation time.

The second case is visible in the slightly suboptimal results obtained
on the Circle20 dataset. Its artificial clusters have the shape of circles,
a highly non-convex shape with a hole in the center. The cluster
distributions estimated from univariate distribution models based on
random projections do not correctly capture the real distribution. In
particular, the central hole can never be modeled from a univariate
projection. This leads to a loss of structural information present in
the original distribution. Since the clustering process is based on these
projections, any bias introduced by the projection can negatively affect
the efficiency of the final clustering process. This is obviously an ex-
treme case, as most distributions can be reliably modeled using random
projections.
15
The trade-off results in Figs. 19 and 20 confirm the efficiency of
the proposed framework (except, again, for KASP according to the ARI
index, while the trade-off is better according to the Purity and NMI).
Overall, the proposed framework significantly accelerates the clustering
process for both real and artificial datasets without compromising
quality, proving to be effective across different clustering algorithms
and offering great flexibility on massive datasets.

4.5.2. Experiments on dynamic datasets
To evaluate our approach on dynamic datasets, we compared it

with traditional methods such as CluStream and DenStream (discussed
in Section 1) and two methods from the Python package River [48]:
SequentialK-means (a mini-batch K-means variant with a parameter
halflife that shifts cluster centers toward more recent observations)
and StreamK-means (a STREAMLSEARCH variant that uses incremen-
tal K-means for efficiency). CluStream and DenStream were imple-
mented based on their respective papers. For our approaches, we
chose HDBSCAN and K-means as conventional clustering in each win-
dow, and named it HistStream(HDBSCAN) and HistStream(K-means)

X. Qian et al. Pattern Recognition 162 (2025) 111414
Table 8
ARI results of static experiments — Large datasets.

Datasets KMeans GaussianMixture HDBSCAN KASP

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet20 1.000 <1e−4 0.931 <1e−4 0.979 0.015 0.932 0.014 0.300 <1e−4 0.936 <1e−4 0.541 0.071 0.206 0.011
Meteroit20 1.000 <1e−4 0.987 <1e−4 0.998 0.002 0.963 0.017 0.741 <1e−4 0.948 <1e−4 0.477 0.119 0.324 0.011
Circle20 1.000 <1e−4 0.765 0.001 0.911 <1e−4 0.779 0.012 0.140 <1e−4 0.906 <1e−4 0.510 0.126 0.176 0.012
Gaussian20 1.000 <1e−4 0.974 <1e−4 1.000 <1e−4 0.978 0.004 0.909 <1e−4 0.982 <1e−4 0.625 0.042 0.277 0.017
Square20 1.000 <1e−4 0.984 <1e−4 1.000 <1e−4 0.945 0.011 0.634 <1e−4 0.963 <1e−4 0.631 0.059 0.348 0.052
Moon20 1.000 <1e−4 0.975 <1e−4 1.000 <1e−4 0.972 0.005 0.269 <1e−4 0.964 <1e−4 0.304 0.038 0.314 0.013
MixLarge10 1.000 <1e−4 0.976 0.001 0.993 0.005 0.932 0.013 0.466 <1e−4 0.975 <1e−4 0.548 0.087 0.317 0.017
MixLarge20 0.936 0.002 0.883 0.005 0.940 0.003 0.864 0.010 0.187 <1e−4 0.979 <1e−4 0.535 0.031 0.468 0.010
MixLarge50 0.948 <1e−4 0.855 0.004 0.926 0.009 0.792 0.004 0.177 <1e−4 0.948 <1e−4 0.420 0.086 0.336 0.013

Average mean(Artificial) 0.987 0.000 0.926 0.001 0.972 0.004 0.906 0.010 0.425 <1e−4 0.956 <1e−4 0.510 0.073 0.307 0.017

Outdoor 0.411 0.008 0.454 0.012 0.432 <1e−4 0.454 0.009 <1e−4 <1e−4 0.563 <1e−4 0.300 0.019 0.360 0.016
Gassenor 0.138 <1e−4 0.278 0.008 0.123 <1e−4 0.306 0.011 0.383 <1e−4 0.044 <1e−4 0.174 0.013 0.282 0.011
IGBN 0.080 <1e−4 0.217 0.009 0.166 <1e−4 0.249 0.007 <1e−4 <1e−4 0.306 <1e−4 0.086 0.012 0.200 0.011
IABN 0.100 0.018 0.078 0.001 0.262 <1e−4 0.113 0.014 <1e−4 <1e−4 0.116 <1e−4 0.091 0.003 0.090 0.012
Rialto 0.068 <1e−4 0.063 0.002 0.058 <1e−4 0.048 0.001 0.056 <1e−4 0.081 <1e−4 0.055 0.001 0.059 0.002
IIAIN 0.048 <1e−4 0.021 0.001 0.299 <1e−4 0.032 0.002 <1e−4 <1e−4 0.021 <1e−4 0.064 0.003 0.019 0.001
IIRIN 0.049 <1e−4 0.037 0.001 0.178 <1e−4 0.057 0.001 <1e−4 <1e−4 0.073 <1e−4 0.063 0.001 0.035 0.001
Covtype 0.014 <1e−4 0.015 <1e−4 0.020 <1e−4 0.015 <1e−4 <1e−4 <1e−4 0.023 <1e−4 0.016 0.004 0.010 0.001

Average mean(Real) 0.113 0.003 0.145 0.004 0.192 <1e−4 0.159 0.006 0.055 <1e−4 0.153 <1e−4 0.106 0.007 0.132 0.007

Total average mean 0.576 0.002 0.558 0.003 0.605 0.002 0.555 0.008 0.251 <1e−4 0.578 <1e−4 0.320 0.042 0.225 0.012
Table 9
Purity results of static experiments — Large datasets.

Datasets KMeans GaussianMixture HDBSCAN KASP

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet20 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.760 0.040 0.873 0.006
Meteroit20 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.618 0.060 0.748 0.004
Circle20 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.749 0.044 0.844 0.005
Gaussian20 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.705 0.029 0.761 0.010
Square20 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.706 0.028 0.788 0.010
Moon20 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.432 0.036 0.650 0.010
MixLarge10 1.000 <1e−4 1.000 <1e−4 0.999 0.001 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 0.705 0.052 0.775 0.014
MixLarge20 1.000 <1e−4 0.999 <1e−4 0.999 0.001 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 0.613 0.023 0.760 0.010
MixLarge50 1.000 <1e−4 1.000 <1e−4 0.999 <1e−4 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.682 0.043 0.705 0.011

Average mean(Artificial) 1.000 <1e−4 1.000 <1e−4 1.000 0.000 1.000 <1e−4 1.000 <1e−4 1.000 <1e−4 0.663 0.039 0.767 0.009

Outdoor 0.573 0.001 0.655 0.004 0.589 <1e−4 0.672 0.007 0.053 <1e−4 0.877 <1e−4 0.432 0.011 0.539 0.018
Gassenor 0.430 <1e−4 0.668 0.001 0.394 <1e−4 0.727 0.003 0.835 <1e−4 0.987 <1e−4 0.458 0.002 0.688 0.002
IGBN 0.326 <1e−4 0.611 0.005 0.409 <1e−4 0.688 0.009 0.284 <1e−4 0.554 <1e−4 0.332 0.016 0.611 0.026
IABN 0.335 0.016 0.458 0.001 0.455 <1e−4 0.544 0.008 0.230 <1e−4 0.300 <1e−4 0.331 0.002 0.442 0.003
Rialto 0.224 <1e−4 0.331 <1e−4 0.205 <1e−4 0.295 0.002 0.824 <1e−4 0.335 <1e−4 0.217 0.004 0.318 0.004
IIAIN 0.382 <1e−4 0.439 0.001 0.660 <1e−4 0.563 0.013 0.298 <1e−4 0.402 <1e−4 0.423 0.005 0.445 0.003
IIRIN 0.382 <1e−4 0.499 0.002 0.530 <1e−4 0.619 0.009 0.298 <1e−4 0.524 <1e−4 0.420 0.004 0.518 0.002
Covtype 0.484 <1e−4 0.631 <1e−4 0.480 <1e−4 0.617 <1e−4 0.474 <1e−4 0.555 <1e−4 0.489 0.004 0.535 0.002

Average mean(Real) 0.392 0.002 0.536 0.002 0.465 <1e−4 0.591 0.006 0.412 <1e−4 0.567 <1e−4 0.388 0.006 0.512 0.007

Total average mean 0.714 0.001 0.782 0.001 0.748 0.000 0.807 0.003 0.723 <1e−4 0.796 <1e−4 0.534 0.024 0.647 0.008
Table 10
NMI results of static experiments — Large datasets.

Datasets KMeans GaussianMixture HDBSCAN KASP

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet20 1.000 <1e−4 0.975 <1e−4 0.995 0.003 0.977 0.004 0.730 <1e−4 0.979 <1e−4 0.847 0.016 0.723 0.005
Meteroit20 1.000 <1e−4 0.992 <1e−4 0.999 0.001 0.981 0.005 0.863 <1e−4 0.981 <1e−4 0.806 0.044 0.711 0.003
Circle20 1.000 <1e−4 0.947 <1e−4 0.987 <1e−4 0.941 0.005 0.673 <1e−4 0.939 <1e−4 0.825 0.029 0.696 0.004
Gaussian20 1.000 <1e−4 0.989 <1e−4 1.000 <1e−4 0.989 0.002 0.885 <1e−4 0.991 <1e−4 0.864 0.011 0.714 0.006
Square20 1.000 <1e−4 0.990 0.001 1.000 <1e−4 0.981 0.004 0.767 <1e−4 0.987 <1e−4 0.863 0.016 0.715 0.006
Moon20 1.000 <1e−4 0.990 <1e−4 1.000 <1e−4 0.986 0.001 0.732 <1e−4 0.986 <1e−4 0.744 0.026 0.683 0.007
MixLarge10 1.000 <1e−4 0.984 0.001 0.997 0.002 0.967 0.005 0.808 <1e−4 0.984 <1e−4 0.834 0.035 0.711 0.008
MixLarge20 0.988 <1e−4 0.965 0.001 0.989 0.001 0.960 0.003 0.716 <1e−4 0.984 <1e−4 0.837 0.014 0.751 0.006
MixLarge50 0.994 <1e−4 0.964 0.001 0.989 0.002 0.944 0.002 0.718 <1e−4 0.978 <1e−4 0.851 0.022 0.714 0.003

Average mean(Artificial) 0.998 <1e−4 0.977 0.000 0.995 0.001 0.970 0.003 0.766 <1e−4 0.979 <1e−4 0.830 0.024 0.713 0.005

Outdoor 0.708 0.002 0.733 0.005 0.736 <1e−4 0.748 0.002 <1e−4 <1e−4 0.813 <1e−4 0.626 0.006 0.674 0.007
Gassenor 0.284 <1e−4 0.484 0.009 0.239 <1e−4 0.520 0.007 0.649 <1e−4 0.459 <1e−4 0.309 0.005 0.489 0.005
IGBN 0.127 0.001 0.397 0.007 0.275 <1e−4 0.460 0.004 <1e−4 <1e−4 0.457 <1e−4 0.135 0.008 0.395 0.015
IABN 0.132 0.008 0.217 <1e−4 0.335 <1e−4 0.287 0.004 <1e−4 <1e−4 0.216 <1e−4 0.124 0.002 0.212 0.002
Rialto 0.155 <1e−4 0.205 0.001 0.133 <1e−4 0.185 0.001 0.406 <1e−4 0.241 <1e−4 0.155 0.005 0.203 0.002
IIAIN 0.084 <1e−4 0.101 0.001 0.345 <1e−4 0.173 0.004 <1e−4 <1e−4 0.073 <1e−4 0.097 0.004 0.094 0.002
IIRIN 0.084 <1e−4 0.140 0.002 0.247 <1e−4 0.212 0.005 <1e−4 <1e−4 0.173 <1e−4 0.092 0.006 0.141 0.002
Covtype 0.063 <1e−4 0.141 <1e−4 0.033 <1e−4 0.134 <1e−4 <1e−4 <1e−4 0.100 <1e−4 0.060 0.002 0.069 0.001

Average mean(Real) 0.205 0.001 0.302 0.003 0.293 <1e−4 0.340 0.003 0.132 <1e−4 0.317 <1e−4 0.200 0.005 0.285 0.005

Total average mean 0.625 0.001 0.660 0.002 0.665 0.001 0.673 0.003 0.467 <1e−4 0.667 <1e−4 0.533 0.015 0.511 0.005
16

X. Qian et al. Pattern Recognition 162 (2025) 111414
Table 11
Computation time of static experiments — Large datasets.

Datasets KMeans GaussianMixture HDBSCAN KASP

Original Proposed Original Proposed Original Proposed Original Proposed

mean std mean std mean std mean std mean std mean std mean std mean std

Comet20 23.734 2.791 19.337 1.458 222.994 78.158 65.818 7.758 4213.044 171.537 214.139 13.723 44.895 4.278 35.147 0.149
Meteroit20 24.148 1.002 18.958 0.441 132.950 34.525 85.222 13.100 4406.303 56.387 222.485 14.603 59.371 2.900 34.722 0.230
Circle20 16.433 1.387 20.670 0.554 113.119 2.273 104.328 13.320 3383.867 187.844 289.187 1.569 45.265 1.233 43.100 3.870
Gaussian20 23.563 0.489 14.661 0.249 115.247 1.359 58.952 5.740 3979.659 184.060 144.848 1.269 54.484 1.281 41.287 1.863
Square20 34.939 1.601 13.419 0.436 115.244 1.931 57.755 7.963 5379.374 519.370 153.297 2.101 47.494 0.984 39.315 2.496
Moon20 27.831 4.163 12.889 0.304 114.948 1.686 44.908 1.449 3994.732 237.748 142.009 2.100 41.096 0.809 32.762 0.108
MixLarge10 18.324 3.399 14.327 0.363 72.196 5.959 42.049 6.500 1205.131 74.827 49.496 0.889 18.909 0.328 23.478 0.196
MixLarge20 50.899 1.612 26.494 2.309 391.995 121.818 130.698 16.686 5014.705 408.986 191.287 4.018 56.267 3.025 39.175 0.879
MixLarge50 95.487 27.448 79.692 5.588 1076.031 390.764 812.565 88.755 18 195.626 4904.393 787.725 55.214 245.408 19.075 112.379 1.000

Average mean(Artificial) 35.040 4.877 24.494 1.300 261.636 70.941 155.811 17.919 5530.271 749.461 243.830 10.610 68.132 3.768 44.596 1.199

Outdoor 0.302 0.007 1.035 0.049 0.766 0.013 1.928 0.174 0.266 0.013 2.995 0.087 0.340 0.007 0.714 0.015
Gassenor 0.406 0.066 0.557 0.013 19.528 1.907 4.792 0.605 16.792 0.332 71.868 1.691 2.168 0.276 2.001 0.040
IGBN 0.507 0.017 1.192 0.078 5.265 2.509 2.424 0.422 12.455 2.896 5.787 0.116 2.554 0.102 2.565 0.054
IABN 0.989 0.181 1.690 0.031 15.504 1.708 11.095 0.324 35.226 2.451 17.093 0.020 7.354 0.315 5.927 0.264
Rialto 2.737 0.374 3.271 0.034 14.258 1.003 14.315 1.294 12.315 0.132 10.889 0.287 11.539 0.900 12.881 0.284
IIAIN 11.121 0.706 15.691 1.426 262.002 2.598 220.794 25.076 2503.787 263.043 367.586 38.623 168.647 7.423 72.061 3.659
IIRIN 30.035 2.565 15.250 1.923 292.251 9.682 192.213 15.150 2871.159 13.816 353.679 11.625 175.862 9.507 66.223 1.020
Covtype 12.711 1.346 6.836 0.261 88.757 1.030 28.667 0.561 3187.865 138.144 102.875 3.611 177.251 14.071 79.992 2.320

Average mean(Real) 7.351 0.658 5.690 0.477 87.291 2.556 59.529 5.451 1079.983 52.603 116.596 7.008 68.214 4.075 30.296 0.957

Total average mean 22.010 2.891 15.645 0.913 179.591 38.760 110.501 12.052 3436.018 421.528 183.956 8.914 68.171 3.913 37.866 1.085
Fig. 19. Trade-off – Mean values of ARI (left), Purity (center) and NMI (right) for static experiments — Large datasets (Artificial).
Fig. 20. Trade-off – Mean values of ARI (left), Purity (center) and NMI (right) for static experiments — Large datasets (Real).
for comparison with partition-based methods such as SequentialK-
means, StreamK-means, and CluStream, and density-based clustering
DenStream, respectively. The parameter settings were the same as in
the static experiments, but the window size was defined by fixed time
intervals instead of a fixed number of data points, which allows more
flexibility in dynamic scenarios.

The results of ARI, NMI, Purity and Computation time are stored in
Tables 12, 13, 14 and 15. Similar to the previous experimental section,
to gain a more complete understanding of the overall performance
differences between the algorithms, we computed the mean value of
each index for each approach, separated into artificial datasets and
real datasets. The results from both artificial and real datasets pro-
vide compelling evidence of the superiority of HistStream(K-means)
over other algorithms in terms of clustering quality across multiple
scenarios, consistently maintaining competitive performance. Similarly,
HistStream(HDBSCAN) consistently achieves better clustering quality
17
than DenStream. It is also faster than DenStream on high-dimensional
datasets, which is particularly evident here with the artificial dataset,
while DenStream appears to be faster than HistStream(HDBSCAN) on
lower-dimensional datasets. Another interesting observation is that
the stability of DenStream seems to be worse, especially when deal-
ing with larger datasets, compared to the consistent performance of
HistStream(HDBSCAN).

The results presented in terms of trade-off between clustering evalu-
ation index and computation time (seen in Figs. 21 and 22) clearly high-
light the better performance of the proposed approach over other algo-
rithms in terms of clustering quality, without any significant compro-
mise in computational efficiency. In particular, HistStream(K-means)
exhibits significantly faster running time compared to both
SequentialK-means and StreamK-means, while still being slightly faster
than CluStream. Moreover, interestingly, the application of the pro-
posed framework with HDBSCAN and K-means reveals noticeable dif-
ferences. These differences highlight the distinct advantages of each

X. Qian et al.

t
o

d

b
u
f
t
c
r
e

Pattern Recognition 162 (2025) 111414
Table 12
ARI results of dynamic experiments.

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream

Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 0.7955 <1e−4 0.6770 0.0005 0.8516 0.0107 0.9713 <1e−4 0.9321 <1e−4 0.9537 <1e−4
Meteroit20 0.8112 <1e−4 0.6125 0.0034 0.8713 0.0021 0.9559 0.0002 0.9330 <1e−4 0.8531 <1e−4
Circle20 0.8849 <1e−4 0.7163 0.0027 0.8174 0.0452 0.8399 <1e−4 0.9508 <1e−4 0.8059 <1e−4
Gaussian20 0.9999 <1e−4 0.9996 <1e−4 0.8892 0.0049 0.9690 0.0008 0.9798 <1e−4 0.7939 <1e−4
Square20 0.9412 <1e−4 0.7284 0.0058 0.9507 0.0001 0.9784 <1e−4 0.9901 <1e−4 0.9452 <1e−4
Moon20 0.8476 <1e−4 0.5151 0.0091 0.8572 0.0080 0.9741 <1e−4 0.9440 <1e−4 0.9907 <1e−4
MixLarge10 0.8324 <1e−4 0.7487 0.0103 0.9236 0.0259 0.9566 0.0062 0.9823 <1e−4 0.8750 <1e−4
MixLarge20 0.9369 <1e−4 0.8850 0.0016 0.8841 0.0215 0.8850 0.0038 0.9621 <1e−4 0.9104 <1e−4
MixLarge50 0.8576 <1e−4 0.8507 0.0022 0.0036 <1e−4 0.8696 0.0025 0.9544 <1e−4 0.8750 <1e−4

Average mean(Artificial) 0.8786 <1e−4 0.7481 0.0040 0.7832 0.0132 0.9333 0.0015 0.9587 <1e−4 0.8892 <1e−4

Outdoor 0.0909 <1e−4 0.0477 0.0027 0.3670 0.0052 0.4500 <1e−4 0.5843 <1e−4 0.1301 <1e−4
Gassenor 0.0385 <1e−4 0.0425 <1e−4 0.0588 0.0002 0.4020 0.0001 0.8362 <1e−4 0.1978 <1e−4
IGBN 0.0101 <1e−4 0.2069 0.0892 0.0406 0.0023 0.2076 <1e−4 0.3301 <1e−4 0.0839 <1e−4
IABN 0.0046 <1e−4 0.0605 0.0074 0.0545 0.0003 0.0698 0.0003 0.2430 <1e−4 0.0714 <1e−4
Rialto 0.0017 <1e−4 0.0002 0.0001 0.0517 0.0036 0.0514 0.0002 0.0802 <1e−4 0.0655 <1e−4
IIAIN <1e−4 <1e−4 0.0087 0.0043 0.0421 0.0077 0.0202 <1e−4 0.0122 <1e−4 0.0395 <1e−4
IIRIN 0.0016 <1e−4 0.0195 0.0116 0.0331 0.0020 0.0331 0.0007 0.0318 <1e−4 0.0259 <1e−4
Covtype 0.0063 0.0034 0.0015 0.0004 0.0114 0.0009 0.0057 0.0015 0.0092 <1e−4 <1e−4 <1e−4

Average mean(Real) 0.0192 0.0004 0.0484 0.0145 0.0824 0.0028 0.1550 0.0004 0.2659 <1e−4 0.0768 <1e−4

Total average mean 0.4742 0.0002 0.4189 0.0089 0.4534 0.0083 0.5670 0.0010 0.6327 <1e−4 0.5069 <1e−4
Table 13
Purity results of dynamic experiments.

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream

Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 0.8709 <1e−4 0.7531 0.0005 0.9627 0.0060 1.0000 <1e−4 1.0000 <1e−4 1.0000 <1e−4
Meteroit20 0.8590 <1e−4 0.6799 0.0069 0.9079 0.0043 1.0000 <1e−4 0.9999 <1e−4 1.0000 <1e−4
Circle20 0.9549 <1e−4 0.8063 0.0051 0.9206 0.0047 0.9998 <1e−4 1.0000 <1e−4 0.9998 <1e−4
Gaussian20 1.0000 <1e−4 0.9997 <1e−4 0.9179 <1e−4 1.0000 <1e−4 1.0000 <1e−4 0.8565 <1e−4
Square20 0.9301 <1e−4 0.7653 0.0141 0.9535 <1e−4 0.9999 <1e−4 1.0000 <1e−4 0.9994 <1e−4
Moon20 0.8918 <1e−4 0.6072 0.0094 0.9181 0.0100 1.0000 <1e−4 0.9998 <1e−4 0.9950 <1e−4
MixLarge10 0.8978 <1e−4 0.8330 0.0089 0.9597 0.0088 0.9996 <1e−4 1.0000 <1e−4 0.9996 <1e−4
MixLarge20 0.9347 <1e−4 0.8736 0.0018 0.9437 0.0113 0.9998 <1e−4 0.9998 <1e−4 0.9992 <1e−4
MixLarge50 0.9403 <1e−4 0.9206 0.0024 0.1055 <1e−4 0.9998 <1e−4 0.9998 <1e−4 0.9996 <1e−4

Average mean(Artificial) 0.9199 <1e−4 0.8043 0.0055 0.8433 0.0050 0.9999 <1e−4 0.9999 <1e−4 0.9832 <1e−4

Outdoor 0.2031 <1e−4 0.1724 0.0015 0.5004 0.0133 0.6786 <1e−4 0.8928 <1e−4 0.1969 <1e−4
Gassenor 0.3093 <1e−4 0.3181 <1e−4 0.3882 0.0019 0.6922 0.0010 0.8050 <1e−4 0.4967 <1e−4
IGBN 0.2138 <1e−4 0.3853 0.0738 0.2680 0.0105 0.5453 0.0001 0.5743 <1e−4 0.3789 <1e−4
IABN 0.2020 <1e−4 0.2660 0.0122 0.2950 0.0003 0.4523 0.0009 0.5175 <1e−4 0.2772 <1e−4
Rialto 0.1225 <1e−4 0.1086 0.0010 0.1953 0.0038 0.3224 0.0001 0.3132 <1e−4 0.2115 <1e−4
IIAIN 0.2980 <1e−4 0.3227 0.0075 0.3848 0.0122 0.4284 <1e−4 0.3674 <1e−4 0.4315 <1e−4
IIRIN 0.3156 <1e−4 0.3539 0.0233 0.3685 0.0011 0.5127 0.0023 0.4426 <1e−4 0.3764 <1e−4
Covtype 0.4762 0.0017 0.4742 0.0003 0.4846 0.0001 0.5318 0.0005 0.5312 <1e−4 0.4740 <1e−4

Average mean(Real) 0.2676 0.0002 0.3002 0.0150 0.3606 0.0054 0.5205 0.0006 0.5555 <1e−4 0.3554 <1e−4

Total average mean 0.6129 <1e−4 0.5671 0.0099 0.6161 0.0052 0.7743 0.0003 0.7908 <1e−4 0.6878 <1e−4
n

a
d
f

conventional clustering method, such as the efficiency of K-means and
he better clustering quality of HDBSCAN on arbitrary clusters. This
bservation shows the exceptional flexibility of the proposed frame-

work in adapting to different tasks by judiciously selecting different
conventional clustering algorithms.

5. Conclusion

A significant advancement in clustering, especially for large
atasets, is the modeling of cluster distributions using innovative rep-

resentations. In this research, we present a novel approach designed for
oth static and dynamic clustering, based on a histogram representation
sing Wasserstein distance to compare distributions. The proposed
ramework can be used with any clustering algorithm, depending on
he required cluster properties, by working on subsets of data and
omparing the obtained clusters between subsets. The main goal is to
educe computation time and improve clustering quality. Specifically,
xperiments on real and artificial datasets show that the proposed
 s

18
framework can increase the computational speed and memory require-
ments of most traditional clustering algorithms with minimal loss of
quality. For dynamic datasets, the proposed framework is competitive
with existing approaches in terms of quality and complexity, while
allowing great flexibility in the application of clustering algorithm.

The proposed framework is relatively easy to parameterize due to
its robustness with respect to most parameters. The only parameter that
eeds to be adjusted is the ‘‘window size’’, as larger windows often lead

to better quality at the cost of slower computation. However, defining
an optimal size is not straightforward. It is also worth noting that in
some cases, the proposed approach may be slower than conventional
algorithms without an improvement in quality, and is therefore not
optimal for such situations. This is especially the case when compared
to clustering algorithms known for their low complexity (notably K-
means and related algorithms) applied to relatively small datasets
nd/or with well-defined clusters, or algorithms that show a significant
rop in performance on smaller datasets, such as KASP, which suffer
rom the decomposition of the original dataset into a collection of sub-

ets. Nevertheless, the good experimental performance of the proposed

X. Qian et al. Pattern Recognition 162 (2025) 111414
Table 14
NMI results of dynamic experiments.

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream

Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 0.9391 <1e−4 0.8062 0.0002 0.9499 0.0040 0.9848 <1e−4 0.9734 <1e−4 0.9843 <1e−4
Meteroit20 0.9180 <1e−4 0.7239 0.0018 0.9558 0.0014 0.9782 0.0001 0.9750 <1e−4 0.9119 <1e−4
Circle20 0.9664 <1e−4 0.8156 0.0025 0.9302 0.0082 0.9517 <1e−4 0.9164 <1e−4 0.9303 <1e−4
Gaussian20 0.9999 <1e−4 0.9994 <1e−4 0.9627 0.0011 0.9861 0.0005 0.9900 <1e−4 0.9010 <1e−4
Square20 0.9746 <1e−4 0.7986 0.0034 0.9753 0.0003 0.9848 0.0001 0.9909 <1e−4 0.9656 <1e−4
Moon20 0.9296 <1e−4 0.6858 0.0071 0.9557 0.0024 0.9854 <1e−4 0.9774 <1e−4 0.9950 <1e−4
MixLarge10 0.9572 <1e−4 0.8468 0.0058 0.9694 0.0068 0.9802 0.0015 0.9890 <1e−4 0.9579 <1e−4
MixLarge20 0.9662 <1e−4 0.8986 0.0014 0.9662 0.0072 0.9655 0.0013 0.9756 <1e−4 0.9761 <1e−4
MixLarge50 0.9615 <1e−4 0.9302 0.0015 0.0840 <1e−4 0.9652 0.0008 0.9797 <1e−4 0.9579 <1e−4

Average mean(Artificial) 0.9569 <1e−4 0.8339 0.0026 0.8610 0.0035 0.9758 0.0005 0.9742 <1e−4 0.9533 <1e−4

Outdoor 0.3402 <1e−4 0.2249 0.0027 0.7041 0.0019 0.7346 <1e−4 0.8258 <1e−4 0.5115 <1e−4
Gassenor 0.0920 <1e−4 0.1149 <1e−4 0.1958 0.0010 0.5079 0.0005 0.6968 <1e−4 0.3671 <1e−4
IGBN 0.0232 <1e−4 0.3047 0.1116 0.0705 0.0079 0.4189 <1e−4 0.5319 <1e−4 0.1705 <1e−4
IABN 0.0073 <1e−4 0.1614 0.0106 0.0875 0.0007 0.2152 0.0011 0.3623 <1e−4 0.1185 <1e−4
Rialto 0.0036 <1e−4 0.0006 0.0001 0.1288 0.0059 0.2059 <1e−4 0.2449 <1e−4 0.1336 <1e−4
IIAIN 0.0002 <1e−4 0.0142 0.0093 0.0836 0.0151 0.1024 <1e−4 0.0723 <1e−4 0.1384 <1e−4
IIRIN 0.0023 <1e−4 0.0240 0.0122 0.0589 0.0013 0.1479 0.0009 0.1440 <1e−4 0.0884 <1e−4
Covtype 0.0044 0.0015 0.0021 0.0002 0.0582 0.0009 0.0824 0.0011 0.0739 <1e−4 <1e−4 <1e−4

Average mean(Real) 0.0592 0.0002 0.1059 0.0183 0.1734 0.0043 0.3019 0.0004 0.3690 <1e−4 0.1910 <1e−4

Total average mean 0.5345 <1e−4 0.4913 0.0100 0.5374 0.0039 0.6587 0.0005 0.6894 <1e−4 0.5946 <1e−4
Table 15
Computation time of dynamic experiments.

Datasets SequentialKmeans StreamKmeans CluStream HistStream DenStream

Kmeans HDBSCAN

mean std mean std mean std mean std mean std mean std

Comet20 601.1789 0.8627 4173.0255 5.8701 111.1533 10.8181 20.0096 0.0576 136.5564 1.9086 103.7651 2.6580
Meteroit20 598.7418 0.3835 4048.3590 0.5028 99.2521 4.6470 20.7868 0.1174 127.1455 1.1586 9854.3365 87.1560
Circle20 612.8237 3.0160 4321.1806 116.6523 100.8072 5.9999 29.4217 0.5364 494.6203 7.7403 141.2185 0.5147
Gaussian20 603.9073 0.2887 4199.7799 3.8610 107.0685 9.2846 24.4203 0.4745 76.8281 0.5030 3105.9656 6.6823
Square20 602.7990 0.6457 4173.3107 3.6656 106.2824 11.4305 25.6883 2.3608 82.2653 0.9315 4769.8329 32.2027
Moon20 637.8218 3.3549 4435.9815 18.2940 93.5763 5.8634 25.0204 3.4944 96.8381 1.1616 85.1582 2.9777
MixLarge10 343.2683 0.5161 2501.5632 5.0294 56.7119 4.6763 14.6774 0.6988 52.6882 1.3952 15 544.6931 345.2638
MixLarge20 841.1053 1.8018 7051.6518 51.9163 137.4155 9.9892 33.4324 2.2048 179.6185 11.3344 2597.6667 59.2815
MixLarge50 2867.8369 7.7141 32 481.0794 1056.8821 318.0409 8.9821 117.0566 10.4723 483.7691 17.7896 15 544.6931 345.2638

Average mean(Artificial) 856.6092 2.0648 7487.3257 140.2971 125.5898 7.9657 34.5015 2.2686 192.2588 4.8803 5749.7033 98.0001

Outdoor 1.9826 0.0119 12.0543 0.0459 18.3913 0.9477 1.3999 <1e−4 3.1280 <1e−4 0.3405 0.0117
Gassenor 7.6274 0.2071 19.1491 0.7072 1.0658 0.0581 0.6815 0.2587 4.3237 0.0406 8.5452 0.0990
IGBN 3.7845 0.2189 6.1328 0.1192 2.9484 2.3777 0.6990 0.1686 9.8378 0.0485 2.9768 0.1999
IABN 8.4413 0.2436 14.6793 0.5363 4.2191 0.8793 1.6813 0.1438 14.7541 0.0692 2.6717 0.1316
Rialto 15.5729 0.0744 47.5999 0.2665 12.2390 1.1187 2.8241 0.1433 11.8558 0.0565 8.0523 0.1978
IIAIN 70.0952 3.2963 125.4809 3.5934 30.6166 0.1338 10.3653 <1e−4 312.6661 <1e−4 82.7187 0.2978
IIRIN 68.3161 0.9216 123.9349 0.8913 30.1934 0.0635 24.9010 0.7840 378.9039 12.6035 103.2595 1.5032
Covtype 32.2408 0.4028 86.6200 1.5781 43.3229 1.1053 12.2326 1.1983 142.8380 3.6063 21.7024 0.1732

Average mean(Real) 26.0076 0.6721 54.4564 0.9672 17.8746 0.8355 6.8481 0.3371 109.7884 2.0531 28.7834 0.3268

Total average mean 465.7379 1.4094 3989.5049 74.7301 74.9003 4.6103 21.4881 1.3596 153.4492 3.5498 3057.5057 52.0362
Fig. 21. Trade-off – Mean ARI (left), Purity (center) and NMI (right) values for dynamic experiments (Artificial datasets) – approaches based on K-Means are in blue and on
DBSCAN are in orange – ‘‘§’’ denote the proposed approaches in respective categories. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
approach in most cases shows its flexibility and applicability to many
clustering algorithms, especially in real-world scenarios.

In this article, we have compared the performance of standard
clustering algorithms independently and when integrated with the
proposed framework. In order to assess the quality of the proposed
approach to data stream clustering, we have selected the standard
19
clustering algorithms to be integrated into the framework so as to
ensure comparability with other families of data stream clustering,
specifically prototype-based and density-based approaches. Ultimately,
the choice of which clustering algorithm to use within the frame-
work should be tailored to each particular application, based on prior
knowledge of the dataset or specific expectations about the resulting

X. Qian et al. Pattern Recognition 162 (2025) 111414
Fig. 22. Trade-off – Mean ARI (left), Purity (center) and NMI (right) values dynamic experiments (Real datasets) – approaches based on K-Means are in blue and on DBSCAN
are in orange – ‘‘§’’ denote the proposed approaches in respective categories. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
clustering. While we did not further investigate the question of the
optimal choice of clustering algorithm, an issue of obvious importance,
it remains a promising area for further research. Indeed, future studies
may benefit from advanced techniques such as meta-learning or ensem-
ble clustering, which may help identify the most appropriate standard
clustering algorithms for specific scenarios or broader applications, thus
improving the overall performance of the framework.

In conclusion, our research highlights a promising new approach
that uses histogram modeling with Wasserstein distance for clustering
in both static and dynamic scenarios. It provides an efficient option
for real-world applications, offering significant advantages in terms of
computational time and clustering quality. A critical focus of our future
studies will be to automatically determine the optimal window size to
achieve the best trade-off between quality and speed, to propose more
robust clustering results and to investigate the question of the selection
of the clustering algorithm to integrate into the framework.

CRediT authorship contribution statement

Xiaotong Qian: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Resources, Project admin-
istration, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Guénaël Cabanes: Writing – review & editing,
Writing – original draft, Supervision, Project administration, Method-
ology, Funding acquisition, Formal analysis, Conceptualization. Parisa
Rastin: Writing – review & editing, Writing – original draft, Valida-
tion, Supervision, Project administration, Methodology, Funding acqui-
sition, Formal analysis, Conceptualization. Mohamed Alae Guidani:
Resources, Investigation, Formal analysis. Ghassen Marrakchi: Vali-
dation, Resources, Investigation. Marianne Clausel: Writing – review
& editing, Writing – original draft, Validation, Supervision, Project
administration, Methodology, Funding acquisition, Formal analysis,
Conceptualization. Nistor Grozavu: Writing – review & editing, Writ-
ing – original draft, Validation, Supervision, Project administration,
Methodology, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.
20
References

[1] W.Z. Tareq, M. Davud, Classification and clustering, in: Decision-Making Models,
Elsevier, 2024, pp. 351–359.

[2] G.J. Oyewole, G.A. Thopil, Data clustering: Application and trends, Artif. Intell.
Rev. 56 (7) (2023) 6439–6475.

[3] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method
for very large databases, ACM Sigmod Rec. 25 (2) (1996) 103–114.

[4] F. Murtagh, P. Legendre, Ward’s hierarchical agglomerative clustering method:
which algorithms implement Ward’s criterion? J. Classification 31 (2014)
274–295.

[5] J.A. Hartigan, M.A. Wong, Algorithm AS 136: A k-means clustering algorithm,
J. R. Stat. Soc. Ser. C (Appl. Statistics) 28 (1) (1979) 100–108.

[6] C.C. Aggarwal, P.S. Yu, Redefining clustering for high-dimensional applications,
IEEE Trans. Knowl. Data Eng. 14 (2) (2002) 210–225.

[7] N. Cristianini, J. Shawe-Taylor, J. Kandola, Spectral kernel methods for
clustering, Adv. Neural Inf. Process. Syst. 14 (2001).

[8] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Kdd, Vol. 96, 1996,
pp. 226–231.

[9] C.M. Bishop, N.M. Nasrabadi, Pattern Recognition and Machine Learning, vol. 4,
Springer, 2006.

[10] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace cluster-
ing of high dimensional data for data mining applications, in: Proceedings of the
1998 ACM SIGMOD International Conference on Management of Data, 1998, pp.
94–105.

[11] D. Yan, L. Huang, M.I. Jordan, Fast approximate spectral clustering, in: Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2009, pp. 907–916.

[12] C. Malzer, M. Baum, A hybrid approach to hierarchical density-based cluster
selection, in: 2020 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, MFI, IEEE, 2020, pp. 223–228.

[13] X. Wang, Z. Wang, Z. Wu, S. Zhang, X. Shi, L. Lu, Data stream clustering: An
in-depth empirical study, Proc. ACM Manag. Data 1 (2) (2023) 1–26.

[14] G. Sudipto, N. Mishra, R. Motwant, L. O’callaghan, Clustering data streams, in:
Proc. 41st FOCS, 2000, pp. 359–366.

[15] L. O’callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani, Streaming-
data algorithms for high-quality clustering, in: Proceedings 18th International
Conference on Data Engineering, IEEE, 2002, pp. 685–694.

[16] D. Sculley, Web-scale k-means clustering, in: Proceedings of the 19th
International Conference on World Wide Web, 2010, pp. 1177–1178.

[17] C.C. Aggarwal, S.Y. Philip, J. Han, J. Wang, A framework for clustering evolving
data streams, in: Proceedings 2003 VLDB Conference, Elsevier, 2003, pp. 81–92.

[18] F. Cao, M. Estert, W. Qian, A. Zhou, Density-based clustering over an evolv-
ing data stream with noise, in: Proceedings of the 2006 SIAM International
Conference on Data Mining, SIAM, 2006, pp. 328–339.

[19] M. Hahsler, M. Bolaños, Clustering data streams based on shared density between
micro-clusters, IEEE Trans. Knowl. Data Eng. 28 (6) (2016) 1449–1461.

[20] J. Gama, P.P. Rodrigues, L. Lopes, Clustering distributed sensor data streams
using local processing and reduced communication, Intell. Data Anal. 15 (1)
(2011) 3–28.

[21] X.H. Dang, V.C. Lee, W.K. Ng, K.L. Ong, Incremental and adaptive clustering
stream data over sliding window, in: Database and Expert Systems Applications:
20th International Conference, DEXA 2009, Linz, Austria, August 31–September
4, 2009. Proceedings 20, Springer, 2009, pp. 660–674.

[22] A. Irpino, R. Verde, A new wasserstein based distance for the hierarchical
clustering of histogram symbolic data, in: Data Science and Classification,
Springer, 2006, pp. 185–192.

[23] M.-F. Balcan, T. Sandholm, E. Vitercik, Learning to optimize computational
resources: Frugal training with generalization guarantees, in: Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34, 2020, pp. 3227–3234.

http://refhub.elsevier.com/S0031-3203(25)00074-3/sb1
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb1
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb1
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb2
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb2
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb2
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb3
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb3
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb3
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb4
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb4
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb4
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb4
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb4
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb5
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb5
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb5
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb6
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb6
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb6
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb7
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb7
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb7
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb8
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb8
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb8
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb8
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb8
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb9
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb9
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb9
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb10
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb11
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb11
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb11
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb11
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb11
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb12
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb12
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb12
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb12
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb12
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb13
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb13
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb13
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb14
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb14
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb14
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb15
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb15
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb15
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb15
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb15
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb16
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb16
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb16
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb17
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb17
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb17
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb18
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb18
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb18
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb18
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb18
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb19
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb19
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb19
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb20
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb20
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb20
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb20
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb20
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb21
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb22
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb22
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb22
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb22
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb22
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb23
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb23
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb23
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb23
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb23

X. Qian et al.

P
n
u

i
M

H

Pattern Recognition 162 (2025) 111414
[24] P. Brito, S. Dias, Analysis of Distributional Data, CRC Press, 2022.
[25] A. Irpino, R. Verde, Basic statistics for distributional symbolic variables: a new

metric-based approach, Adv. Data Anal. Classif. 9 (2015) 143–175.
[26] C. Villani, C. Villani, The Wasserstein distances, Optim. Transp. Old New (2009)

93–111.
[27] K. Pearson, Contributions to the mathematical theory of evolution, Philos. Trans.

R. Soc. Lond. A 185 (1894) 71–110.
[28] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22

(1) (1951) 79–86.
[29] D. Endres, J.E. Schindelin, A new metric for probability distributions, IEEE Trans.

Inform. Theory 49 (2003) 1858–1860.
[30] C. Villani, et al., Optimal Transport: Old and New, vol. 338, Springer, 2009.
[31] Y. Rubner, C. Tomasi, L.J. Guibas, The earth mover’s distance as a metric for

image retrieval, Int. J. Comput. Vis. 40 (2) (2000) 99–121.
[32] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Adv.

Neural Inf. Process. Syst. 26 (2013).
[33] V.W. Berger, Y. Zhou, Kolmogorov–Smirnov test: Overview, in: Wiley statsref:

Statistics reference online, Wiley Online Library, 2014.
[34] A. Ramdas, N.G. Trillos, M. Cuturi, On Wasserstein two-sample testing and

related families of nonparametric tests, Entropy 19 (2017) 47.
[35] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, vol. 293,

Springer Science & Business Media, 2013.
[36] R. Durrett, Probability: Theory and Examples, vol. 49, Cambridge University

Press, 2019.
[37] N. Bonneel, J. Rabin, G. Peyré, H. Pfister, Sliced and radon wasserstein

barycenters of measures, J. Math. Imaging Vision 51 (1) (2015) 22–45.
[38] A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical

gas sensor drift compensation using classifier ensembles, Sensors Actuators B 166
(2012) 320–329.

[39] V. Losing, B. Hammer, H. Wersing, KNN classifier with self adjusting memory
for heterogeneous concept drift, in: 2016 IEEE 16th International Conference on
Data Mining, ICDM, IEEE, 2016, pp. 291–300.

[40] J.A. Blackard, D.J. Dean, Comparative accuracies of artificial neural networks
and discriminant analysis in predicting forest cover types from cartographic
variables, Comput. Electron. Agric. 24 (3) (1999) 131–151.

[41] V.M.A. Souza, D.M. Reis, A.G. Maletzke, G.E.A.P.A. Batista, Challenges in
benchmarking stream learning algorithms with real-world data, Data Min. Knowl.
Discov. 34 (2020) 1805–1858, http://dx.doi.org/10.1007/s10618-020-00698-5.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[43] N.X. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings
comparison: is a correction for chance necessary? in: Proceedings of the 26th
Annual International Conference on Machine Learning, 2009, pp. 1073–1080.

[44] G.G. Chowdhury, Introduction to Modern Information Retrieval, Facet publishing,
2010.

[45] L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community structure
identification, J. Stat. Mech. Theory Exp. 2005 (09) (2005) P09008.

[46] S. Dhar, M.K. Kundu, Accurate multi-class image segmentation using weak
continuity constraints and neutrosophic set, Appl. Soft Comput. 112 (2021)
107759.
21
[47] A. Morison, M. Ulvrova, S. Labrosse, B4rsh, theofatou, tfrass49, Stag-
Python/StagPy: v0.20.1, Zenodo, 2024, http://dx.doi.org/10.5281/zenodo.
13684760.

[48] J. Montiel, M. Halford, S.M. Mastelini, G. Bolmier, R. Sourty, R. Vaysse, A.
Zouitine, H.M. Gomes, J. Read, T. Abdessalem, et al., River: machine learning
for streaming data in python, J. Mach. Learn. Res. 22 (110) (2021) 1–8.

Xiaotong Qian received a Master’s degree Data Mining and Decision-Making (EID2)
at Sorbonne Paris Nord University, France in 2021. She is currently pursuing a Ph.D.
degree at CY Cergy Paris University, France. Her research interest include unsupervised
learning and data mining.

Guénaël Cabanes is an academic researcher at the University of Lorraine, France,
member of the Lorraine Research Laboratory in Computer Science and its Application.
His main research interest lies in data mining, particularly in unsupervised learning for
dynamic and complex data, with applications in image and text mining and complex
systems modeling.

Parisa Rastin received her Ph.D. in Computer Science from the University of Sorbonne
aris Nord. She is currently an associate professor at the University of Lorraine, École
ationale supérieure des mines de Nancy. Her main research interests are in the area of
nsupervised learning of dynamic and complex data with applications to text mining.

Mohamed Alae Guidani has graduated as an engineer from École nationale supérieure
des mines de Nancy in 2018 with a major in Applied Mathematics, Mohamed Alae
Guidani currently works in Data and Analytics consulting at EY. He analyzes complex
datasets and implements data-driven strategies to drive innovation and optimize
business performance.

Ghassen Marrakchi is a Master’s Degree Student in Data Mining and Decision-
Making (EID2) at Sorbonne Paris Nord University. He received his bachelor’s degree in
Computer Science from the University of Monastir. As a research enthusiast, he explores
different Machine Learning fields, such as unsupervised learning.

Marianne Clausel is a Professor at the University of Lorraine. Her research is
n statistical learning and time series analysis. She received her Ph.D. in Applied
athematics from University of Creteil, France in 2008.

Nistor Grozavu is a full professor of Computer Science at CY Cergy Paris University.
e holds a Ph.D. in Unsupervised Machine Learning (2009) from the University Paris

13 and an HdR (2020) from the University Sorbonne Paris Nord. His research interests
include unsupervised learning, transfer learning, dimensionality reduction, quantum
machine learning.

http://refhub.elsevier.com/S0031-3203(25)00074-3/sb24
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb25
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb25
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb25
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb26
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb26
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb26
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb27
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb27
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb27
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb28
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb28
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb28
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb29
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb29
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb29
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb30
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb31
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb31
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb31
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb32
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb32
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb32
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb33
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb33
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb33
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb34
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb34
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb34
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb35
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb35
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb35
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb36
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb36
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb36
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb37
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb37
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb37
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb38
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb38
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb38
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb38
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb38
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb39
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb39
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb39
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb39
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb39
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb40
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb40
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb40
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb40
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb40
http://dx.doi.org/10.1007/s10618-020-00698-5
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb42
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb43
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb43
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb43
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb43
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb43
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb44
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb44
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb44
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb45
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb45
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb45
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb46
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb46
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb46
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb46
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb46
http://dx.doi.org/10.5281/zenodo.13684760
http://dx.doi.org/10.5281/zenodo.13684760
http://dx.doi.org/10.5281/zenodo.13684760
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb48
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb48
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb48
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb48
http://refhub.elsevier.com/S0031-3203(25)00074-3/sb48

	Incremental clustering based on Wasserstein distance between histogram models
	Introduction
	Background
	Data distributions using histograms
	Distribution comparison
	Wasserstein two-samples testing

	Proposed Approach
	Multivariate histogram extension
	Histograms computation
	Cluster similarity test
	Merging process
	Detailed algorithm

	Experimental protocol and results
	Datasets
	Artificial datasets
	Real datasets
	Datasets preprocessing

	Clustering evaluation strategy
	Parameter analysis
	Number of bins
	Number of projections
	Window size

	Quality of the distribution comparisons
	Assessment of algorithm quality and complexity
	Experiments on static datasets
	Experiments on dynamic datasets

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

