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Abstract

Distributional Reinforcement Learning (DRL) aims at optimizing a risk measure of the return by
representing its distribution. However, finding a representation of this distribution is challenging
as it requires a tractable estimation of the risk measure, a tractable loss, and a representation with
enough approximation power. Although Gaussian mixtures (GM) are powerful statistical models
to solve these challenges, only very few papers have investigated this approach and most use the
L5 space norm as a tractable metric between GM. In this paper, we provide new theoretical results
on previously unstudied metrics. We show that the Lo metric is not suitable and propose alternative
metrics, a mixture-specific optimal transport (MW) distance and a maximum mean discrepancy dis-
tance. Focusing on TD learning, we prove a convergence result for a related dynamic programming
algorithm for the MW metric. Leveraging natural multivariate GM representations, we also high-
light the potential of MW in multi-objective RL. Our approach is illustrated on some environments
of the Atari Learning Environment benchmark and shows promising empirical results.

Keywords: Distributional Reinforcement Learning, Gaussian Mixtures, Probability Metrics, Wasser-
stein Distance, Multi-objective Reinforcement Learning

1. Introduction

Deep Reinforcement Learning (RL) has shown outstanding results in robotics (Li et al., 2018),
and more generally in control (Yaodong et al., 2018; Kaufmann et al., 2023), by estimating and
optimizing the expectation of the total reward (or return) given to an agent. Distributional RL
(DRL) (Bellemare et al., 2023) generalizes the approach by estimating the whole distribution of the
return, leading to better results than the non-distributional approach (Dabney et al., 2018a). DRL
has many other benefits. It fits better than the traditional approach in a stochastic setting (Martin
et al., 2020) and it allows for new exploration strategies taking into account aleatoric uncertainty
(Mavrin et al., 2019). DRL can also be used to design risk-aware RL agents using distortion risk
measures that could lead to better results depending on the environment. Indeed, risk-averse policies
lead to longer play times and better returns, in life-dependent games (Dabney et al., 2018a).

To derive practical DRL algorithms, two ingredients are required. First, tractable and informa-
tive representations of returns as probability distributions, which are infinite dimensional objects.
Second, an efficient quantitative way to compare them through tractable metrics, to define a rele-
vant and useful loss, based on a so-called distributional Bellman operator and typically similar to a
temporal difference (TD) learning loss in RL. The metric choice is also particularly important since
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each metric offers different theoretical convergence guarantees, e.g. to characterize the contraction
property of the distributional Bellman operator and its projection.

Choosing an appropriate representation of the return distribution remains challenging as it has
to meet somewhat opposite requirements. The representation has to be rich enough to capture the
return distribution complexity and simple enough to allow tractable implementations at reasonable
computing costs. Current state-of-the-art DRL methods need large computational resources and/or
are mainly based on convenient choices with no performance guarantee in terms of their ability to
represent actual return distributions. For instance, some methods use discrete distribution represen-
tations (C51 in Bellemare et al. (2017a), QR-DQN in Dabney et al. (2018b)) leading to low ap-
proximation rates and consequently large numbers of parameters, which increase the computational
cost. Another theoretical downside is that those algorithms learn statistics of the distribution and
not the distribution itself. It follows that they need to satisfy the approximate Bellman-closedness
property as most, such as C51, do not satisfy the exact Bellman-closedness property (Rowland
etal., 2019). Another set of methods use continuous representations (IQN by Dabney et al. (2018a),
FQF by Yang et al. (2019)) that do not lead to a proper distribution in practice as they approximate
the quantile function with non-monotonous surrogates, which questions their use with a risk-aware
agent (Théate et al., 2023). More generally, most approaches use nonparametric empirical measure
representations as opposed to parametric ones corresponding to a family of parametric distributions.

In this paper, we investigate parametric representations and more specifically Gaussian mixtures
(GM). Introduced in the DRL framework by Choi et al. (2019), Gaussian mixtures present a number
of interesting features. They often lead to closed-form formulas, more likely to yield tractable loss
and risk measure estimations. They are proper distributions, available in any dimension and with
good approximation power, see e.g. Nguyen et al. (2023) for a recent reference. When it comes to
computing metrics, there exists a number of closed-form expressions or efficient estimators specif-
ically tuned to handle comparison between GM. Surprisingly, the large variety of tractable diver-
gences between Gaussian mixtures has not been fully exploited yet in a DRL context. In this work,
we consider three such metrics, the Jensen-Tsallis (JT), the maximum mean discrepancy (MMD)
and a mixture-specific optimal transport distance, introduced by Delon and Desolneux (2020) and
named the Mixture-Wasserstein (MW) distance. We compare them in terms of their theoretical and
practical performance. More specifically, our main contributions can be summarized as follows:

* We prove that, although the JT metric has been used in DRL with GM (Choi et al., 2019), the
distributional Bellman operator is likely not to be a contraction mapping, leading to poor re-
sults for certain environments. We propose an extended JT formulation with more flexibility.

* We introduce MW in DRL as a new possible metric, which is more tractable than the classical
Wasserstein distance when comparing mixtures. We prove the contraction of the projected
distributional Bellman operator with MW and the convergence of a dynamic programming
algorithm related to TD learning. We then provide a generalization to multi-objective RL.

* We study various MMD kernels in the GM setting and give new insights on their performance
in DRL. We observe that the so-called unrectified kernel performs as well as other common
choices such as the mixture of Gaussian kernels. This is consistent with the good theoretical
properties of the former but contrasts with previous results by Nguyen-Tang et al. (2020).
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2. Distributional RL

In the standard RL setting, a Markov decision process (X, A, R, P,~y) models the interaction be-
tween an agent and an environment. X and A denote the state and action spaces, R(x, a) is a reward
random variable depending on a given state x and action a with distribution p(z,a)(-), P(-|x,a)
is a transition kernel to a new state from state z after taking action a, and v € (0, 1) is a discount
factor. In RL, we search for a policy 7(-|z) that maps a state = to a distribution over actions in
A. For an agent taking actions given by a policy 7, the return is the random variable denoted by
Z™(z,a) = Y ;20 V' R(Xt, Ay) where Xo =z, Ag = a, Xy ~ P(- | Xo—1, A1), Ae ~ (- | Xy).
The Q-value function is defined by the expected return Q™ (x, a) = E[Z7(z, a)] and can be charac-
terized by the Bellman equation, Q" (x,a) = E,(; o) [R(x, a)] + YEp(|z,q) (@7 (X', A")], follow-
ing from the random transition from (z,a) to (X', A’) given by X’ ~ P(- | z,a), A" ~ 7(- | x).
The objective is then to find the optimal policy 7* which maximizes the expected return, with
Q™ (x,a) > Q™(x,a) for all (x,a) and 7. Q™ satisfies the optimal Bellman equation and can
be found as the unique fixed point of the Bellman optimality operator 7 defined as Q(z,a) =
TQ(z,a) with TQ(z, a) =E, (3 o) [R(2, a)| +VE p(.|3,q) [maxe Q(X', a’)]. To this end, TD learning
consists of minimizing the squared temporal difference (TD) error, which is an estimation using
the observed states, actions and rewards of the squared difference between a parameterized (Jy and
its update via the operator 7 (Qy. In deep Q-learning, this is usually performed by considering an
e-greedy policy and a neural network to parameterize Q.

In distributional RL (Bellemare et al., 2023), the idea is to consider the whole random variable
Z™(x, a) rather than just its scalar expectation Q™ (z, a). An analogous distributional Bellman equa-
tion can be derived between random variables. Denoting by 7™ (z, a) the distribution of Z7(x, a),
1 * 12 the convolution between two distributions 7); and 72, and (7%)4 the pushforward operator
through function T,(z) = vz, we can write, 7" (2,a) = p(z,a) * Ep(|zq0)[(Ty)x7" (X', A')],
where the expectation corresponds to a mixture distribution over next states. This equation defines
the so-called distributional Bellman operator denoted by 7™ and so that 7" (z,a) = T™7"(x, a).
See Proposition 2.17 and Figure 2.6 of Bellemare et al. (2023) for an illustration. Note that if 77(z, a)
(resp. T™n(x,a)) is the probability density function of Z(x,a) (resp. 7" Z(x,a)), an equivalent

random variable formulation, with 4 meaning equality in distribution, is
T Z(z,0) £ R(z,a) +7Z(X’, A),

where X' ~ P(- | x,a),A" ~ 7(- | x). This is referred to as the random-variable Bellman
equation by Bellemare et al. (2023) (Proposition 2.16). The hope is then to find the return distri-
bution as a fixed point of the distributional Bellman operator. The TD learning principle can be
extended to differences between distributions leading to the minimization of quantities of the form
D(T™m(x,a),72(x,a)) where D is a discrepancy or quasi-metric between distributions, equiva-
lently denoted using random variables by D(7 " Z1(x, a), Z2(x,a)). We will refer to D as a proba-
bility metric. Unfortunately, searching for a solution in the whole space of probability distributions
is impossible. To use this approach, two main ingredients are required. We first need representa-
tions of distributions, rich enough to capture the return complexity and second, a choice of D for
which a tractable fixed point algorithm can be implemented. This requires tractable evaluations of
D(T™Zy(x,a), Za(z,a)) and T™ being a contraction mapping with respect to D the supremum

extension of D defined as D(71,72) =  sup  D(M(x,a),72(x,a)), where 7; and 72 denote
(z,0)eXxA
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two collections of distributions, also named return functions by Bellemare et al. (2023) (Definition
4.21).

2.1. Representations of the random return

For DRL, the goal is to define a good approximation (F, D) of the probability metric space to which
Z(x,a) belongs. Several ways to uniquely characterize a distribution are well known, such as the
probability density function (PDF), the cumulative distribution function (CDF), the quantile func-
tion or the inverse CDF (QF), the characteristic function (®), etc. Denoting by F a latent functional
space giving the neural networks architectures, these most used representations are recalled in Ap-
pendix A. In the DRL literature, most choices are based on empirical or particles representations of
the above, sometimes referred to as non parametric in statistics. In this work, we propose to inves-
tigate a parametric choice using the PDF representation and F = M = UgenM g where M is
the set of univariate K -component Gaussian mixtures (GM) whose PDFs are of the form,

K
n(z) =>_ mN (2, 03)

k=1

where N (+; pu, ai) or simply NV (s, ai) denotes the Gaussian PDF with 11;,’s (resp. o;’s) the com-
ponent means (resp. variances) and 7 ’s the components weights with 7, € [0, 1] and Zszl m = 1.

2.2. Probability metrics

To compare distributions, in principle, all divergences are suitable candidates, but only a few have
been used in DRL. The main used ones are the Kullback-Leibler (KL) divergence, the Cramer
distance (also named energy distance) and the Wasserstein distance. The goal of such metrics is to
provide a comparison of two random return distributions, generally in order to apply a TD learning
principle. The choice of the metric may be particularly important as each metric offers different
theoretical and practical properties. In DRL (Bellemare et al., 2017b), we have two first desirable
properties to look for. First, we need to provide a contraction property for the distributional Bellman
operator, i.e. to have o < 1 such that for all possible return functions 7j; and ijo, D(7 ™ i1, T " 7j2) <
aD(n1,72). This property is important as it implies the existence of a fixed point that can be reached
by applying repeatedly the Bellman operator. To obtain such a property, D is often proved to be
ideal, i.e. to satisfy (SI) (sum-invariant) and (S) (scale-sensitive), which is a sufficient condition
assuming that D is p-convex (Theorem 4.25 of Bellemare et al. (2023)). Thus, we ideally need, for
A, XY random variables, A € (0, 1),

S AL(X,Y)= D(A+X,A+Y)<D(X,Y)
(S)  Je>0,¥X,Y, DOX,\Y)<AD(X,Y).

In addition, as minimizing D (7™, 2) is usually done using stochastic gradient-based algorithms,
we also need to make sure the numerically found optimum is the good one. For instance, it is proved
by Bellemare et al. (2017b) that the Wasserstein distance has biased sample gradients which leads
to convergence towards a wrong optima in practice according to the authors. Although, it is possible
to deal with biased stochastic gradient algorithms, see e.g. Rhee and Glynn (2015); Demidovich
et al. (2023)), a second important property of the metric is thus that it satisfies the following (USG)
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(Unbiased Sample Gradient) property (Bellemare et al., 2017b). Let 19 be a probability distribution
parameterized by 6 and {Xi}ie[ M) @ collection of M i.i.d. random variables distributed as X ~ nx.
Define 7y, = ﬁ Zn]‘le 0x,, the empirical distribution of the {Xi}ie[ m)» the (USG) property is
satisfied if for all M € N,

(USG) Ex,,~yx [VoD(Nr1,m0)] = VoD (nx,m8).

As already mentioned, the Wasserstein distance does not satisfy the (USG) property.

Besides theoretical properties, an important feature is the tractability of D to allow practical im-
plementations. In this work, we are in particular interested in tractable D when comparing Gaussian
mixtures. The following Table 1 summarizes, for a number of distances D, whether the four main
characteristics important for practical DRL are satisfied. Details are given in the next sections.

Metric properties
Metric SI S USG GM Tractability
KL - X v X
MMD; /C || v |v |V v
MMDy,,, - X v v
MMDy,,, - - v v
Wasserstein v v X X
MW2 v v X v
J Tl 2 v X v v
JT,2 0 X v v v

Table 1: Metrics properties. v (resp.x ) means satisfied (resp. unsatisfied), — means unknown. The
KL, Cramer, MMD, Wasserstein metrics are studied by Bellemare et al. (2017b). The Jensen-Tsallis
(JT) is proved to satisfy (USG) by Choi et al. (2019). Properties showed in this paper are in red.

2.3. Analysis of GM dynamic programming

In practice, when choosing GM representations 179 € M g, we also have to handle the fact that the
result of the distributional Bellman operator on this class does not in general remain in the class.
Practical implementations thus require a projection back on M. When choosing a probability
metric, it is then also important to check whether this projection is non expansive, so that the com-
bination of the projection and the distributional Bellman operator is still a contraction with respect
to the chosen metric. We further discuss and specify this aspect in the case of TD learning.

In principle, a contraction property of 77 deduced from (S) and (SI) is sufficient to guarantee
the convergence of TD learning. However, a practical TD learning algorithm cannot represent the
full return function 77, which could be any return function. Hence, we need to take into account
the approximation made at each iteration by the stochastic gradient descent. In this paper, we are
only interested in the dynamic programming part of TD learning summarized in Algorithm 1, with
a projection ITpn that is typically defined as a solution of min,sc aq,. D(n, ') for any n € M. This
solution is not necessarily unique, so the projection needs to be parametrized with some parameter
w*. An example is provided in Section 5 and Appendix D.8. The full operator is then defined as
(I1%'7) (z, a) = 1% (7)(z, a)) for all return function 77 and (x, a) € X' x.A. Using this definition, we
can formulate our following main result below. As summarized in Table 1, only the MMD/Cramer
(C), the Wasserstein and Mixture Wasserstein (MW) satisfy the (SI) and (S) conditions, which limits
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the hope to get convergence results for the others. Among the former ones, only the Cramer distance
is (USG) but it is mentioned in Wiltzer et al. (2024) p.6 that the associated projection is not a non-
expansion. In contrast, we show in what follows that the MW, metric is not in general (USG)
(Theorem 8) but admits a non-expansive projection H}\";W2 (Theorem 9). It follows Theorem 1 that
states the projected Bellman operator is a contraction. All proofs are provided in the Supplementary
Materials.

Algorithm 1 Mixture Dynamic Programming

Require: Mixture parameters estimates ((0y(z))%_, : 2 € X), projection I

for x € X do

Let (x, R, X') be the random transition under 7

Update 6(x) to be the mixture parameters corresponding to the distribution of IIp (R +ymg(x7))
end
Return: 6

Theorem 1 Assume that p(z,a) € M for every state-action pair (x,a) (where p(z,a) is the law

of the reward R(x, a)), then HJ%,Q TT™ is a contraction mapping with respect to MWs.

Thus applying Banach’s fixed point theorem, Algorithm 1 converges towards a unique fixed point of
Hﬁ:NQ T™if R(z,a) is a Gaussian mixture. Unfortunately, as for quantile temporal difference (QTD)

learning (Rowland et al., 2024), the sample-estimate of Hi",[;vaﬁ is biased (see Appendix D.9),
so that we cannot straightforwardly deduce the convergence of our TD algorithm with stochastic
gradient descent (SGD). However, we could hope to prove such a convergence by using techniques
from Rowland et al. (2024) for QTD, with another metric that satisfies (USG) and for which the
SGD converges to the same optima as MWs.

3. Related work

Most methods (QR-DQN, IQN, FQF) use a quantile-based representation. The advantage of such
an approach is that it is straightforward to derive the Monte-Carlo calculation of risk-aware poli-
cies with a distortion risk measure (Dabney et al., 2018a) using the functions largely studied in
economics. Another advantage is that the change of variables, on the quantile function F 1,
F P (7)) =AFy, Y(7) + r, induced by the distributional Bellman operator is easier to manipu-
late. Among quantile-based solutions, state-of-the-art performance is reached by the FQF method
that builds a neural network supervising the choice of the sampled quantile fractions. However, it
seems to fix an imaginary problem since it does not arise from the original RL problem but from the
way we represent it and more particularly from the Monte-Carlo estimation of the 1D integral that
defines the loss. In addition, the monotonicity of the represented quantile function is not guaranteed
and the loss used (Huber variant of the Wasserstein loss) leads to biased gradient estimations. A
more detailed discussion is given in Supplementary Materials.

Therefore, it is interesting to search for alternative representations. In their paper, Choi et al.
(2019) take an architecture inspired from Gaussian mixtures where the output of their neural net-
work 79 (named neural Gaussian mixture) is :

K
no(a,a) = mio(@, )N (ug (e, a), of o (2, a)),
k=1
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where 7, 9(z, a), p0(2, a), Uz’e(.’L’, a) have the same architecture as in DQN (Mnih et al., 2015).
To compute the temporal difference, the authors use D(X,Y) = [, [nx(2) — ny(2)[*dz, where
Nx, resp. Ny, is the PDF of variable X, resp. Y. This metric is also used by Malekzadeh et al.
(2023) in a different setting. However, it was shown recently by Zhang et al. (2024) that the DRL
state-of-the-art could be outperformed using Gaussian neural mixtures with the Euclidean distance
between the mixtures parameters instead. In this work, we investigate two other metrics detailed in
the next sections.

4. Jensen-Tsallis divergence

The Jensen-Tsallis divergence is a generalization of the Jensen-Shannon divergence (Tsallis, 1988).
In their work on DRL, Choi et al. (2019) refer to this divergence but they use it only in its simplest
form JT1 o, which is the norm of the Ly space. To better understand the issue with this metric, we
consider a weighted version of it.

Definition 2 Ler w : R — R a measurable function. Let p € N, X and Y two random variables,
whose PDFs, nx and ny, are assumed to have their power p integrable with respect to the w(z)dz
measure. JT,, ,, is defined as,

Ty (X, V) = /R w(z)lnx (2) — v (2)Pdz

and also denoted by ||nx — ny Hip(w).

When w = 1 and p = 2, we recover the Jensen-Tsallis metric used in Choi et al. (2019). This
metric has the advantage to provide a closed-form formula for Gaussian mixtures when p = 2.
Let 71 ~ Zf:ll Tk g1k and Zy ~ Zfﬁl Tor gor two random variables distributed as Gaussian
mixtures, with g;;. denoting a Gaussian PDF,

JTw2(Z1, Z2) = mukmie{gie g1e)w + Y Tokmae(Goks 920w — 2> T1kT2e(Gk, G2)us
ke ke k¢

where (-,-),, denotes the weighted Ly scalar product, which for two univariate Gaussian PDFs
g1 = N (u1,0?) and go = N (2, 03) is closed-form,

(g1, 92)w = N (p1; pa, 07 + 03) Egw(G)],

p1o3+uzo?  oiol L .
where G ~ N o ez ) Unfortunately, in its tractable form, the Jensen-Tsallis is not
1 2 1 2

ideal. More specifically, the following result holds.

Theorem 3 JT1 5 is not ideal. Furthermore, if w : R — R is a measurable function such that
w(z) =0 = x =0, we have, for A, X,Y random variables, with A independent on X and Y,
and such that Ejw(A)] < oo,

JTw2(A+ X, A+Y) < JTyo(X,Y)E[w(A))? (1)
w(Az)
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In particular, it can be deduced from (2) that JT; » does not satisfy (.S). The distributional
Bellman operator 7™ is then not always a contraction mapping with respect to the associated metric.
Moreover, it seems not easy to correct the problem by taking another w. For instance, JT 2  satisfies
(S) but does not always satisfy (S7) according to the previous result. See details in Appendix D.3.

The following result shows that if the reward is not noisy enough, then the distributional Bellman
operator 7™ is likely not to be a contraction mapping with J77 o.

Theorem 4 Let~y € (0,1) and X, Y two non identically distributed random variables. There exists
Omax > 0 such that for all random variable A independent of X,Y, we have

V[A] < Omax = JTLQ(A + X, A+ ’)/Y) > JTLQ(X, Y),
where V[A] denotes the variance of A.

Hence, if in a deterministic setting and all states are accessible, 7™ is not a contraction mapping with
respect to JT1 2. To tackle the problem of contraction brought with the JT; » metric, we propose to
study other metrics that seem more promising.

5. Mixture-Wasserstein distance

Delon and Desolneux (2020) have introduced a distance specifically designed for Gaussian mix-
tures based on the Wasserstein distance. In an optimal transport context, by restricting the possible
coupling measures (i.e., the optimal transport plan) to a Gaussian mixture, they propose a discrete
formulation for this distance. This makes it tractable while in general using the standard Wasser-
stein distance between mixtures is problematic. Delon and Desolneux (2020) refer to the proposed
new distance as MWa, for Mixture Wasserstein. The MW, definition makes use of the tractability
of the Wasserstein distance between two Gaussians for a quadratic cost. The standard quadratic cost
Wasserstein distance between two univariate Gaussian PDFs g1 = N (p1, a%), g2 = N (pe, 0%) is,

W3 (g1, 92) = (11 — p2)® + (01 — 02). (3)

Section 4 of Delon and Desolneux (2020) shows that the MW> distance between two mixtures can
be computed by solving a discrete transport problem.

Definition 5 Let ) = Zlel Tk g1k and by mp = 25221 Mok Gor be two Gaussian mixtures. Then,
the mixture Wasserstein distance MWs is defined as,

MW3(n1,72) = weﬁr(ljrrll ) Zwke W5(9g1k, 92¢) “)
"2

where T and o are the discrete distributions on the simplex defined by the respective weights of
the mixtures and I1(my, m2) is the set of discrete joint distributions w = (wge € [0,1], k € [K4],¢ €
[K2]), whose marginals are w1 and .

Finding the minimizer w* of (4) boils down to solving a simple discrete optimal transport problem,
where the entries of the K| X K9 dimensional cost matrix are the W% (91k, g2¢) quantities. As implic-
itly suggested above, MW is indeed a distance on the space of Gaussian mixtures; see Delon and
Desolneux (2020). In particular, for two Gaussian mixtures 7; and 73, MW3 satisfies the equality
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property according to which MWs (71, 72) = 0 implies that 777 = 72. Expression (4) is interesting as
when using (3), it can be favorably compared to the Euclidean distance used in Zhang et al. (2024).
The latter compares parameters of two Gaussian mixtures, which need to have the same number of
components in a prescribed order for the comparison to make sense. The MW3 distance instead is
a generalization, that can be computed between any mixtures without requiring manual alignment,
thanks to the transport map. In addition, when considering mixtures 77; and 72 of components ¢;;, in
a distributions family £, we can define the following generalization,

MW?, (71,72) = min )Zwkl DP (b1, L)
ol

'LUGH(’TI’l,ﬂ'Q

When D is the Euclidean distance and p = 2, such a generalization is discussed in Section 4.6 of
Delon and Desolneux (2020). For instance, mixtures of elliptical distributions satisfy the required
properties, in particular when considering the easier case of univariate mixtures. In what follows, we
will thus assume that M%’ ¢ 1s ametric although some results are still valid if M% £ 1s a quasi-metric.
In addition, we can show the following Lemma.

Lemma 6 Assume that D is ideal and L is stable by scaling and summing, then M% r is ideal.

It follows from Lemma 6 and Theorem 4.25 in Bellemare et al. (2023) that MW% ¢ can make T a
contraction while maintaining tractability. More specifically, we prove the following result.

Theorem 7 Assume that D is ideal, L is stable by scaling and summing and p(x,a) € L for every
state-action pair (x,a) (where p(z,a) is the law of the reward R(x,a)), then T™ is a contraction
mapping with respect to M WIZ) r

MW%’ ¢ Vvariants and in particular MW?3 provide then new interesting alternative metrics for neural
mixtures. Unfortunately, the MW3 distance is not satisfying in general the (USG) property and does
not have unbiased sample gradients. Indeed, note that MW5 and W5 coincide on Dirac mixtures and
W5 does not have unbiased sample gradients (see Bellemare et al. (2017b)) so that it is impossible
for MW, to satisfy (USG). The following theorem gives the exact formulation of the bias.

Theorem 8 Let ijy; =  >om_y 0, be the empirical distribution of M i.i.d. {Xm},,eqar from

KX K .
nx =y e xN (e x, UZX). Define ng=">"1_1 Tk oN (110, 02,9) parameterized by 0 then,

Ex,oonx [VoMW5 (s, m9)] — VoMW3 (nx,me) =

2V | Y wie(iexine + oexors) | —2Ve (Z 0B wi, (X )Xm]>
k m

k.
where W}, € I1(mg, mx) is the optimal coupling defining MW3(nx, ng) and w}, = that of MW3(fiar, ng).

The right-hand side above is in general non zero. If all variances in 7y are constant, i.e. o3¢ = 0,
then Vg (Zk o W 60'16790'4’)() = oV (D> ,me,x0ex) = 0. This condition would be acceptable in

practice as the resulting GM remain flexible models but it is not enough to cancel the right-hand
side. However, (USQG) is trivially satisfied if 79 has only one component (K = 1).
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Nevertheless, MW3 remains an interesting metric. Theorem 9 below shows the existence of a
non-expansive projection. Combined with Theorem 7, it guarantees that the corresponding projected
Bellman operator is a contraction mapping with respect to MW5 as announced in Theorem 1. As
discussed in Section 2.3, this is an important feature to analyse the behavior of a TD algorithm.

Theorem 9 Let K € N. There exists a set W} of functions w* : M — [0, 1N verifying
forall L € N, ¢ € [L], Zszl wy(n) = g, where ) = Zle 7eN (pe, 02), such that the MWy
projections are caracterized by w* € Wy and for all 1 € M, the projection is defined by

K

M, =Y 7N (jir(n), 51(n)?),
k=1

with () = 0, wi (), fin(n) = Xy YL and Gy () = 3, 2 g
Moreover, HMW2 is a non-expansion with respect to MWy, for all w* E Wl’k(

6. Maximum Mean Discrepancy

The most significant reference using MMD with Q-learning in DRL uses particles and has demon-
strated competitive performance (Nguyen-Tang et al., 2020). Different MMD exist depending on a
choice of kernel.

Definition 10 Let k : (RY)? — R a kernel. Let P, Q be two distributions and X, X (resp. Y,Y)
two independent variables following P (resp. @Q), with X also independent of Y. The squared
MMD (Maximum Mean Discrepancy) between P and () is defined as

MMD(P, Q) =E[k(X, X)]+ E[k(Y,Y)] - 2E[k(X,Y)].

If k is a reproducing kernel, the metric MMDy, is equal to ||up — pg|x where K is the RKHS
associated to k and pp (resp. ji) is the mean on this RKHS of P (resp. Q). In this work, we only
consider translation-invariant kernels and more particularly,

The Laplacian kernel: k. 1ap (2, y) = e ollz=yll2.

e
. 2
The Gaussian kernel: k., pe(z,y) =e 71

The energy kernel: ke, (z,y) = —||z — y||2.

The reason why Gaussian kernels perform better than energy kernels, called unrectified kernels by
Nguyen-Tang et al. (2020), is still unclear in the literature. Indeed, it is shown by Killingberg and
Langseth (2023) that the so-called multiquadric kernel seems better than the Gaussian kernel on a
theoretical point of view and less sensitive to hyperparameters. In this work, we propose to shed
another light on these kernels comparison by using them with our GM representations. We show in
Theorem 14 in Appendix D.11 that the above kernels all lead to tractable formulas for GM.
Regarding the use of MMD with Gaussian mixtures, Nam et al. (2021) have obtained outstand-
ing results with the Cramer distance, which is equivalent to the energy distance, as recalled in
Theorem 16 in Appendix D.12. However, they use a policy-gradient algorithm and no real assess-
ment has been made for TD algorithms, although they have been considered in Zhang (2023). The

10
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MMD metric always satisfies (USG) (Bellemare et al., 2017b) so all the good properties of JT,, 2
are recovered but it also makes 7™ a contraction mapping for the energy kernel. In Nguyen-Tang
et al. (2020), the authors report that the energy kernel (called unrectified kernel in their paper) does
not seem to give promising results. In contrast, they show that a mixture of Gaussian kernels give
better results in practice although the MMD with Gaussian kernel suffers from the same problem
as JT 2. They explain this with a moment-matching-like property of MMDy, ., that should also
be valid in our case with Gaussian mixtures. However, we show in our experiments that the energy
kernel leads to better results, suggesting that the results obtained in Nguyen-Tang et al. (2020) might
be due to their choice of representations using particles.

(a) Asterix (b) Bowling (¢) Qbert (d) Qbert stochastic

Figure 1: Comparison of MWy(green), JT1 2(yellow), MMDy,_ (blue) and MMDy, . ; (red) met-
rics for Atari games in deterministic (a,b,c) and stochastic (d) environments. Moving average return,
over 500k frames, with respect to the number of training frames. Curves are averaged over 5 runs
with shaded areas representing standard deviations.

7. Generalization to multidimensional rewards

Generalizing DRL algorithms to the multi-objective case requires to consider multidimensional
rewards; see Appendix C.3 for details. This has been considered before but only for independent
dimensions (Zhou et al., 2021) or with particles (Wiltzer et al., 2024). However, accounting for
dependence between objectives allows to keep track of more information and the use of multivariate
particles (or quantiles) seems unsatisfying as quantiles do not generalize satisfyingly in dimension
greater than one. In contrast, multivariate Gaussian mixtures provide a natural way to define a
TD algorithm for multidimensional rewards. We can easily generalize our previous results in the
multidimensional case except for the projection associated to MWs. Indeed, the MW, as defined by
Delon and Desolneux (2020), corresponds to our MW% ¢ introduced in Section 5, with D = >
the 2-Wasserstein distance. This distance between two multivariate Gaussians in dimension d, g; =

Na(p1, 1), g2 = Na(p2, X2) is,
W3l91.92) = Il — pial]* + Tr(S1 + 22 — 2517 5,51%)1),
and there is no obvious way to show that the associated projection is a non-expansion. As an

alternative, we propose to make use of our MW, . generalization to define a new multivariate
metric MW%; e Where M is the set of d-variate Gaussian mixtures and F%(g1, g2) = |1 —

p2]|? + Tr((21 — %2)?). For two multivariate GM in dimension d, 11 = Y0, m1xNa(pag, S1k)

11
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and 1 = Y02, morNa(piak, Yok, we define,

MW7 a(m1,m2) = min )ZW (lak = paell® + Tr((S1k — $20)%)) -
k.t

well(my,m2

Then it is easy to check that MW% ma 18 ideal using Lemma 6 and to derive the same kind of non-
expansive projection as for MWs (details are in Appendix D.10). Thus, we obtain the following
result generalizing Theorem 1 to the multivariate case.

Theorem 11 Assume that p(x,a) € M? for every state-action pair (z,a) (where p(x,a) is the

law of the reward R(x,a)), then H}\U/;V? T™ is a contraction mapping with respect to MW% -
F,Md )

8. Experiments

Considering a standard TD learning framework, we first compare our proposed algorithm with
Gaussian mixtures and different metrics, by running our agent on a selected subset of 3 Atari games,
by default deterministic, from gymnasium. We use the same standard architecture as in DQN (Mnih
et al., 2015). We then illustrate the different metrics behavior on one of the previous Atari game,
with a modified MDP by adding sticky actions with probability 0.25, bringing stochasticity. Details
on the hyperparameters used in these experiments are provided in Supplementary Materials for
the sake of reproducibility. In terms of metrics compared, we show the MW, the JT; 2 and two
MMDs. As in Nguyen-Tang et al. (2020), we consider the kernel built as the following sum of
Gaussian kernel kmix of(7,y) = S0, k Virbi(Z:y) and the energy kernel. The results for the
Gaussian kernel are not shown as it can be seen as a simpler version of kpix bt and we observed
that the Laplacian kernel behaved similarly to the Gaussian one. In the deterministic case, Figures
1(a,b,c) show that the three metrics, MMDy_ , MMDy_. .., MWy, perform better than the JT; 2
metric. It is also interesting to note that no environment shows a real advantage of MMDy . ..
over MMDy__, which contrasts with the results of Nguyen-Tang et al. (2020). This also gives a
numerical illustration of the superiority of our proposed metrics compared to the JT; o whenever the
environment is not stochastic enough, as suggested by Theorem 4. In the stochastic environment,
Figure 1(d) shows that the performance is still improved by two of our three proposed metrics but
the gap is reduced, comforting our theoretical result that the noisier the environment is, the more
contractive 77 becomes with respect to JT; 2. Although preliminary, this numerical comparison
corroborates the main theoretical findings. More experiments would be needed to fully illustrate all
the points raised in the paper but this is left to future work.

9. Conclusion

We showed that mixtures were interesting models to represent distributions in DRL. Their tractabil-
ity and expressiveness allow to consider various metrics and result in implementations requiring
less parameters than other algorithms. In a standard TD learning setting, we illustrated that the
simple JT; » metric may not be suitable and proposed in replacement other Wasserstein-like and
MMD metrics, with better theoretical and empirical properties. In particular, the proposed Mixture-
Wasserstein metric showed both tractability and promising performance. To fully justify its use in
stochastic gradient-based methods, it would be useful to study whether it is possible to handle its

12
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biased sample gradients. We also proposed an extended formulation JT,, ;, of the Jensen-Tsallis dis-
tance with an additional weight term w, that provides more flexibility and could be further exploited.
Additionally, as briefly discussed in Section 7, the MW setting provides a promising approach to
multi-objective DRL but a more complete study was out of the scope of this paper. In Supplementary
Section E, we also presented another advantage of mixtures, which is their particular adaptability to
an alternative way to solve the distributional Bellman fixed point using a stochastic approximation
principle. This alternative opens the way to the design of new efficient DRL procedures whose
investigation is left for future work.
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An analysis of DRL with Gaussian mixtures: Supplementary Materials

Appendix A. Representations of the random return

Random returns can be characterized in several ways. The most common representations are using
the probability density function (PDF), the cumulative distribution function (CDF), the quantile
function or the inverse CDF (QF) or the characteristic function (®). Specifically, denoting by F a
latent functional space giving the neural networks architectures, the most used representations are
the following.

CDF representation: £ = {7 |3f € F,Fz = f}. In that case, we have F, 7 ,(2) =

Fy ("7;") and

0 +o0o
E[Z(x,0))= / Fyo(2)dz + /0 (1~ Fypay(2))dz.

QF representation: E = {Z|3f € F,F,;' = f}. In that case, we have F_;  (2) =
YF,;' (2) +rand

1
E[Z(z,a)] = /O Fz_é:,a) (t)dt.

PDF representation: £ = {Z | 3f € F,nz = f}. Inthatcase, we have nyz,,(2) = %772 (ZW;T)

and

E[Z(z, )] = /R o) (2)dz.

Characteristic function representation:
E={Z|3f € F,®; = f}. We have ®,7,(t) = "' ®4(~t) and denoting by I the imagi-
nary part,
E[Z(.’L‘, a)] = ch)/Z(av,a) (0)

Appendix B. Details on related work

Most methods (QR-DQN, IQN, FQF) use a quantile-based representation. The advantage of such
an approach is that it is straightforward to derive the Monte-Carlo calculation of risk-aware policies
with a distortion risk measure 3 using the functions largely studied in economics as follows :

1
Qaa) = [ Fy (Br)ar

B.1. Discrete representations

The principle of discrete algorithms is to take a mixture of atoms 1z = Zle wy0p,. Then there
are two common points of view. Either we set the quantiles ), and we classify the weights using
the KL divergence as this is done in C51, or we set the weights wy, (taking usually wy, = %) and we
regress the quantiles (quantile regression) as this is done in QR-DQN using the loss :

K

Lor(Zo, Z) =Y Elprn,(Z - 61)),
k=1
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where p;(u) = (7 — 1y<o)uand 7, = Zle w;.

Later, Rowland et al. (2019) apply the expectile regression in the same manner, by taking
pr(u) = (T — lu<o)u? instead, leading to better practical results for their ER-DQN algorithm.
This is not surprising, as the goal is to estimate the mean return and expectiles are generalizations
of the mean, while quantiles are generalizations of the median.

Alternatively, Nguyen-Tang et al. (2020) use the MMD metric, instead of the previous losses,
with the biased estimator

1 1 2
Lyivp (X, Y) = 2 Zk(XivXj) Tz Zk(Yian) ~ NI Zk(Xian),

Y] ,J Y]

where X' = {Xi},c(yj and Y = {Yi},c [y are sample sets generated from the distributions of

Zp and Z. They use this estimator because it leads to less variance in practice, compensating the
bias. However, they do not consider the possibility of exact computation in the case of parametric
representations.

B.2. Continuous representations

Dabney et al. (2018a) use a fully-continuous representation of the distribution using neural networks
which leads to a better approximation but they use quantile samples (Monte-Carlo) to estimate the
Huber loss. Thus, this method adds unnecessary noise in the loss estimation depending on the
choice of quantile fractions. This is why the state-of-the-art is now the FQF method that builds a
neural network supervising the choice of the sampled quantile fractions.

Appendix C. Advantages of parametric representations

We further specify, in the next sub-sections, some advantages of using parametric representations
instead of the more common approaches.

C.1. Computational tractability

Gaussian mixtures (GM) provide a good trade-off between expressiveness and computational cost.
Setting hyperparameters to the values in the original papers, we can assess, for various methods,
the number of parameters as a function of the number of states |.A|. For our approach, denoted
below GM-DQN, the number of mixture components is set to &' = 5. Conformity is satisfied when
the representation leads to a valid distribution. The comparison is reported in the following Table,
which shows that GM provide the smallest number of parameters and preserve conformity.

Method comparison
Method Number of parameters Conformity
GM-DQN 15 x | A| v
C51 51 x | A] v
QR-DQN 200 x |A| v
IQON 576 x |A| X
FQF 608 x |A| X
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C.2. Tractability of risk measures

In DRL, we generally use risk-aware policies and its variants to recover the agent policy from the
Q-network using something like :

loek(z
)= T, () = memaR(2(e. ),

m(a | x
where R is a risk measure.

Let @ € (0,1) and X arandom variable, the expectile e, (X) is uniquely defined as the solution
of (see Bellini and Bernardino (2017))

AE[(X — ea(X))4] = (1 — Q)E[(X — ea(X))-].

It is well-known that e1 (X) = E[X] and o — e,(X) is increasing. It leads to an interesting
2

greedy policy with R = e,. This policy is risk-averse if a@ < % and risk-seeking otherwise.

Similarly, we can take the quantile version R = qq.
In our case with Gaussian mixtures, we can easily compute the expectiles and the quantiles
using the Newton-Raphson method.

Theorem 12 Let X ~ Y, mpN (ug, 03), we have Eq(eq(X)) = 0 and Qu(ga (X)) = 0 where

Eu(z) = (1 -2a) Z?Tk <Uz/\/ (25 ks o) + (2 — Nk)FN(uk,ag) (x)) + aZﬂk(x — 1K),
k

k
Qu(z) := ZWkFN(#kJ;%) () — a.
k

Moreover, we have
ElL(z) = (1 -2a)Qq(z) + 2a(1 — ).

Another possible risk measure is R(X) = >, mx(ur + nog) for X ~ >, mpN (g, 02). All these
proposed risk measures are popular in statistics and fully tractable using Gaussian mixtures.

As an illustration, Figure 2, shows the effect of a more (or less) risk-seeking policy on perfor-
mance, still measured and shown as the average return. When considering the Assault ALE game,
compared to the standard risk-neutral policy based on maximizing expectation, better returns are
obtained with a more risk-averse policy (0.05 expectile), while worse returns are obtained with a
more risk-seeking setting (0.95 expectile). This suggests that for this game, controlling actions in a
more pessimistic manner is a better strategy. This should also be typically the case in life-dependent
games. The choice of the expectile level impacts performance by influencing the exploration strat-
egy but the effect of exploration also depends on the task, which may tolerate or not very risking
options.
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Figure 2: Gaussian mixture representations with the MMD energy distance. Effect of the risk-aware
expectile policy on the ALE Assault game: Test return averaged over 500k testing frames for 47M
training frames.

C.3. Multi-Objective Applications

Designing a reward function in RL can be challenging, as it must encapsulate and balance potentially
conflicting objectives. In the classical RL setting, the agent observes a single scalar reward after
interacting with the environment. This scalar reward implicitly reflects the weighted importance
of different goals, guiding the agent to learn a policy 7 that maximizes it. However, once the
policy is learned, it becomes difficult to disentangle and prioritize the individual contributions of
each objective. This limitation occurs because the reward function does not explicitly represent the
separate impact of each objective on the outcome.

Multi-objective RL (Roijers et al., 2013; Hayes et al., 2021) addresses this limitation by ex-
plicitly representing and ordering each objective 7 in a vector of cumulative returns, allowing the
agent to learn a single policy that optimizes all objectives. Thus, action selection, guided by Pareto
dominance, can be formalized as follows:

a* = arg max P (Vi,Va' # a (Z] (z,a) > Z] (z,d))).
acA(x)

This approach enables the agent to select actions based on prioritized sub-goals without the
need for retraining the policy each time one objective must be emphasized over the others. Re-
cently, some works have explored parametric representations of returns (see e.g. Cai et al. (2023);
Wiltzer et al. (2024)), opening up the possibility of representing multidimensional distributions suit-
able for multi-objective settings. GM are good candidates. Indeed, multivariate risk measures are
well-known (Charpentier, 2018) and we have seen two types of probability metrics (Jensen-Tsallis
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and Mixture-Wasserstein) that are tractable with multivariate GM. This metrics could leverage the
powerful ability of DRL to represent aleatoric uncertainty, allowing different strategies to handle it
in the multi-objective RL setting.

Appendix D. Proofs of main results
D.1. Sufficient conditions on D
Bellemare et al. (2017b) and Bellemare et al. (2023) introduced the following useful properties of
D. D is said to be ideal if D satisfies the following to conditions,
(SI) if Aisindependenton X andY = D(A+ X, A+Y) < D(X,Y)
(S) considering A € (0,1),3¢ > 0,VX,Y, DAX,\Y)<X°D(X,Y).

If in addition D is p-convex, meaning (see Definition 4.24 in Bellemare et al. (2023)),

Definition 13 Given p > 1, the probability metric D is p-convex if for any o € (0, 1) and distribu-
tions n1, M2, M1, nh € P(R), we have

DP(amy + (1 — a)nz, oy 4+ (1 — a)ny) < aDP(n1,n)) + (1 — ) DP(n2,15)

then Theorem 4.25 of Bellemare et al. (2023) states that (SI) and (S) imply that, for any two return
functions 7; and 72,

D(T™ i, T™i2) < ~°D(ip, 2)-
Note that the assumptions in Theorem 4.25 of Bellemare et al. (2023) use the fact that D is regular,
which is equivalent to satisfying (SI) (see Definition 4.23 therein), and that D is c-homogeneous
which is (S) but where the inequality is replaced by an equality. However, it is easy to see from the
proof of Theorem 4.25, that the inequality given by the (S) condition is enough.

D.2. Proof of Theorem 1

Proof The proof is straightforward combining Theorems 7 and 9 that show respectively that 7™ is
a contraction and that the projection is non-expansive. So that for two return function 7; and 732,

MW (IS o T 00, s T 2) < MW 2(T ™01, T ij2) < yMWa(i1, 72).

D.3. Proof and specifications on Theorem 3

Proof We assume E[w(A)] < oo, although inequality (1) can still makes sense if the right-hand
site of (1) is infinite. With 14 the PDF of A and A independent on X and Y, the PDF of X + A
(resp. Y + A) is the convolution 14 *1x (resp. 14 * 17y’). This latter condition is also important as it
prevents to use inequality (1) with X setto X + A, Y setto Y 4+ A and A to — A, which would lead
to the opposite inequality and then to an equality in (1). We thus obtain, JT3,2(A + X, A+Y) =
l(nx —ny)*na ||%2(w). Hence using the Young inequality (Bogachev, 2007), we get (1) as follows,

JTwa(A+ X, A+Y) <|lnx = 0y 2o 114l 21wy < JTw2(X, Y )Efw(A)].
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Then, using Ny x (z) = A~ 1nx (A ~1z), we obtain
JTy2(AX,AY) = Al/w()\:c) Inx () — ny (z)|*dz 5)
R

from which (2) follows. It is straightforward to see that JT; o does not satisfy (.5) according to (5).
Indeed, applying (5) with w = 1, leads to JT7 2(AX,\Y) = )\_IJTLQ(X, Y'). So that if (S) was
satisfied for JT; o, this would mean At > 1 for some ¢ > 0 and A > 1, which conflicts with the
assumption A € (0, 1). [ |

Furthermore, when considering w(z) = x2, inequality (2) in the paper leads to
JTop2 o(AX,AY) S AJTp2 5(X,Y) .
For A € (0, 1), it follows that condition (S) is satisfied with ¢ = 1. In contrast, (1) implies that
JTp20(A+X,A+Y) < JT,2 (X, Y)E[A%].

If E[A2] > 1, this may prevent (SI) to be satisfied since the Young inequality is optimal.

For instance, if A is constant, A = a, with ¢ > max (0, —%), it comes

JTp2 9(A+ X, A+Y) = /

2 (1x(x — a) —ny (¢ — a))2da = / (1 + )2 (nx () — my- (2))?d,
R

R

which leads to

JTp 5(A+ X, A+Y) = a(aJT19(X,Y) + 2JT09(X,Y)) + J T2 5(X,Y) > JT,2 5(X,Y).

D.4. Proof of Theorem 4

Let us first note that the result is easy to check if V[A] = 0. In that case A is a constant random

variable and for any scalar a, we can show that since 74~ x () =7 X(IV;“), then for v € (0,1),

JTia(a+vX,a+7Y) = JT12(vX,7Y) = v UT12(X,Y) > JT19(X,Y).

More generally using the mean/variance decomposition A = E[A] + V[A}l/ 2U, where U is a
standardized random variable with E[U] = 0 and V[U] = 1, it follows that

JTi2(A+ X, A+~Y) = JT1 o(V[A]Y2U + v X, VIA]Y2U +7Y),

where the right-hand side is independent on the mean of A.

Then, if V[A] — 0, the distribution pyay1/2;; — do, where do indicates the Dirac mass in 0.
Using that the convolution operator is a bilinear continuous operator (owing to the weak Young
inequality) and that dp * p = p * §p = p, we can deduce that when V[A] — 0 then

JT12(V[AY2U +~X, V[A)V2U +~Y) =412 * (1hx — )13
= ||(nyx = )3 = JT12(vX,7Y) .
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More formally, let us decompose the difference

JTio(A+yX, A+7Y) = JT12(X,Y) =JT12(A+ X, A+~Y) — JT12(7X,~Y)
+ JT12(vX,7Y) = JT12(X,Y) .

The second difference is J17 2(vX,7Y) — J112(X,Y) = (% —1)JT1 2(X,Y), which is strictly
positive if 7 € (0,1) and JT12(X,Y) # 0 or equivalently nx # ny. For the first term, using
continuity,

Ve > 0,3 >0, sothat V[A] < € = [JT12(A+vX,A+7Y) — JT12(vX,7Y)| <e.

Choosing € < (% —1)JT12(X,Y) and 0,0, = € ends the proof.

D.5. Proof of Lemma 6

Let A be independent of X and Y and all these random variables distributed according to a mixture
of distributions in £, denoted respectively by nz = ZkK:ZI 7TkZ ff , where Z represents in turn X, Y
or A and ﬁf € L. For Z = X and Z =Y, by distributivity of convolution and summing stability
of L, Z + A also follows a mixture of elements in £ given by,

KZ KA KZ KA
Z_A (92 A AyZ+A
UZ+AZUZ*77A:ZZ7%7T¢ (L = 47) ZZ k+ C + .
k=1 i=1 k=1 i=1

Let w = (wy, k € [KX],1 € [KY]) be a discrete distribution. For w € (7%, 7Y), the marginals
of w are 7% and 7¥. For such a w, define the discrete distribution @ = (wrij k€ [K X1 €
[KY],i,7 € [K4]) where,

wklij = Wy ’/T;A if ¢ :j

=0 otherwise

The set of such distributions is denoted by

= {w, stweIl(n X, Y)}

Y+A

For an element in IT, the marginals are respectively 7% t4 and 7 since,

KY KA

_ _ X X+A
ZZU}MW Ofi=jy =T, Zwkl 77 T = Th,

=1 j5=1

and similarly,
KX K4

Y+A
ZZwklﬂ' 5{1_3}—77 Zwkl—ﬂ 7Tl —7le+ .

k=1 i=1

It follows that IT' C TT(7X+4, 7Y +4),
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Let us first prove the (SI) property. By definition of MW’I’I I

MW, (X +AY + A) = MW, (X 44,0y +4)

= min E Whiij
~ X4A Y+A
WEHE AT

. A X+A pY+A
< gg}},;wkl (Z T DP(6S, 0, )>
s 7

Dp(gé—&-A? €E+A)

Using the (SI) property of D, we have D(Zi‘;*“‘, E};JFA) < D(6X,¢Y) from which we deduce the
(SD) property for MW%, ., that is,

MW, (X +A,Y + A) < min 3w DP(G;,4))) = MW, £(X,Y) .
1 w ! )
k,l

For the (S) property, for all A > 0, we have nz(z) = ZkK:Zl w07 with £ = 37, since L is
stable by scaling. Thus, using the (S) property of D, we obtain

MW (AX,\Y)=  min wyy DP(XX, 0
D, ) wen(ﬂxmy); ke DR, 67)

<  min wig AP DP(607) = XP MWE, (XY .
o wEH(WXﬂTY); . (.4 DL( )

This achieves the proof that MW?, . is ideal.

D.6. Proof of Theorem 7

As mentioned in Section D.1, Theorem 4.25 of Bellemare et al. (2023) can be used to get the
desired contraction result. Note that although Theorem 4.25 of Bellemare et al. (2023) is stated
for probability metrics, it is easy to check that the proof does not use any particular property of
probability metrics so it is still valid for quasi-metrics or discrepancies.

Thus, as Lemma 6 above implies the (S) and (SI) conditions, it remains to show that MW%} r
is 1-convex. This follows from the convexity of the discrete Wasserstein distance, which we prove
below for completeness.

Let a € (0,1). Letfori = 1,2, 1, = ZZK:H miglix, and 0 = Zgl ;. L5, be four mixtures
distributions with elements in £. By construction, distributions of the form « n; + (1 — «) 7, are
also mixtures of elements in £. More specifically,

an+(—a)= Y amydpcrglin+ (1 —a) wy dpsylin =D Tk lin -
k=1 k=1

Moreover, defining
f[ = {(a 5{k§K1,l§K2}wkl —+ (]. — Oé) 5{k>K1,l>K2}w;cl)kl with w € H(ﬂ'l,ﬂ'g) and w/ S H(ﬂ'i, Fé)} s
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we have IT C II(7y, #t2). It follows,

K1+K| K2+K),
MWY, (am+ (1 —a)ngi,an+(l-a)n)= mn Y Z wit D (L1, Lor)P
k=1 I=1

U)GH 7|'1 ,71'2

K1+K{ K2+K)

< min Z Z wig D (L1, lor)P

well b1 =1
K1 K»
< min > awg D(Cig, )"
wEH(Wl,Wg)kzl =
/ /
+ mln ZZ 1 — wk lD 1k‘7 )
w'€ll(n],7h) P

< aMW?, (m1,1m2) + (1 — a)MW, (1, 715).

D.7. Proof of Theorem 8

The goal is to investigate the reliability of performing a stochastic gradient descent with respect to
6 over a MW loss. In practice, we rather equivalently consider the square of the metric, MW3
to avoid fractional exponents. We thus consider the estimate VoM W2 (A, 1) of the gradient
VoMW2(nx,mne) and show that is in general biased. Write X = {Xm} e Recall that II(m, ')
denotes the set of discrete joint distributions w = (wye, k € [K],¢ € [K']), whose marginals are
m=(m,...,7x)and " = (7], ..., ),

T(r, 7') = S w = (wke)ke, st Y wee = 1,76 = Y wpe, W) = Zwkz

k. l

Using Definition 4 of the squared MW3 metric, we denote by w*(X) = (wj, .k € [K],m € [M])
the optimal coupling defining M W3 (f)ar, 1g) and similarly by w* = (@}, k € [K],¢ € [Kx]) the
optimal coupling defining MW (nx,7s) -

We can then write,

MWS3 (i, m) Z Wy (X — 1110)° + 03 p) (6)

= Z Tro(iig + 0t g) + Y X /M =23 wi(X) Xmpg  (7)
m

k
3
Then,

E [VoMW;5 (fiar,n9)] = Vo (Z ot g + 013,9)) =2V | Y Elwi(X)Xm] pro | (9)

k k,m

=Vy (Z 771@,9(#%,6 + U%,o)) —2Vy <Z Nk,GE[Z me(X)Xm]>
k m

k
(10)
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While the target distance is

MW3(nx,mp) = Zﬁ)?:z ((pe,x — prep)? + (00.x — 010)?) (11)
W)

from which we can derive that

VoMW3(nx,10) = Ve (Z 61tk + 013,9)) =2V | Y @kl xpirp + 00, x0k0)
k k.0

12)
It follows that the difference E [Vg MWZ (fiar, m9)| — VoMW3 (nx, 1) is equal to

2V | > oo xtno + ooxone) | —2Ve <Z 1B wzm(X)Xm]> (13)
k m

k0

which is in general non zero. Standard stochastic gradient optimization does not come with standard
guarantees when applied to a MW3 loss. However, several solutions using biased gradients have
been investigated and may be possible without too restrictive assumptions; see the recent review of
Demidovich et al. (2023).

D.8. Proof of Theorem 9

Let us consider the projection on M g the space of GM with a fixed number K of components. The
proof consists mainly is exhibiting the subset Wy-. Recall that M denotes the set of all GM. The
goal is to show that when considering the MW3 metric, the projection on M is non expansive.
This projection is defined for any GM distribution 1 € M as arg min,ye g, M WZ2(n,n'). As the
univariate MW3 metric is defined with the Euclidean distance as cost function, we can first make
use of standard results to explicit this projection.

Consider for some arbitrary L € N, 7 = S, meN (g, 07) and ' = S pe, N (1, 0,2) two
univariate mixtures in My, and Mg respectively. Denote m = (my,...,7r), #' = (7},...,7%)
and the set of couplings between 7 and 7’ by

H(’]T”]T/) =L w= (wﬂk)ﬂ,ka S.t.Z'Lng = 1,7T£ = wak’aﬂ-;c = Zwﬁk
0k k ¢

Recall that, for any random variables X and Y, the caracterization of E[X | Y] as the unique
L? projection of X leads to

E[(X -Y)%] 2 E[(X ~E[X | Y])?]. (14)

For w = (wy)er € II(m, 7'), we then consider two variables X and Y so that (X,Y) ~ fjrx
where 7. = Z&k WekO(zy,yp)- FOr all {ze}, , {yn}y , w € (m, '), inequality (14) writes,

2
Wy

> we(we —yk)® =) we <$e -> - W') ; 5)

L,k Lk k

Z/
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with equality if and only if y, = >, “4=xp for all k.
k
Then using that M W3 (n, ') is defined as the minimum over w € II(7, 7’) of

O(w,n,n') Zwék (e — p13,)* + (00 — 03,)?)

we can replace x and y in (15) with successively the means and then the standard deviations of the
two mixtures components to get,

2 2
W'k W'k
E ! > — ’ — ’
(w,m,m') > E Wk (M E " Me) =+ <Uz § " Uz)

0k o k o k

It follows that,

2 2
W, W,
MW3(n,1') > min Zka (ue—z o W) + (Ue—z = Oe/) ;
k

well(m,n!)

and then that,

2 2
Wyt W'k
min MW5(n,n min min g w —E ]+ O'—E op ,
o eM 2(77 ) Ok < 7TkM> (z gy e)

' well(m,n!) o o k

Then denoting by w*(n) the coupling where the minimum above is reached, we define fix(n) =

Yow "’k(n)ug/ k() =D ‘Z;f O‘g/ Tr(n) = >p wjy,(n) and consider the mixture 7, €

MK, Ty = 2 RN (uk(n), 7(n)). Thus we obtain the projection operator I}y, n =
Tho* () that satlsﬁes

MW3Z(n, 1% y,n) = ,min MW3(n,n).

In addition, 7j,,+(,;) is a mixture whose expectation is the same as that of 7, i.e. _, Ty so that
E[IIY" Z(z,a)] = E[Z(x,a)] if the PDF of Z(x,a) (resp. 11V Z(x,a)) is n (resp. T1*"7) so the
projection is mean-preserving.

Similarly, it is easy to show the non-expansion. For two mixtures 7 and ' and w € II(7, '),
we consider a random vector (X, X1, Yy, Y1) ~ Ziu}k,f wmvkvgé(wgvyw) such that

Vi, j, Zwijké = wy;(n),
Z Wijhe = Wee(1'),
szjké = Wik,

with X (resp. Yp) independent of Y7 (resp. X7). Using Cauchy-Schwarz inequality, we obtain

E[Xo — Yo | (X1,Y1) = (=, y0)]* < E[(Xo — Y0)* | (X1, Y1) = (2}, %))
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Moreover, since we have independence, we get
E[Xo Yy | (X1,Y1) = (¢}, 9)))° = E[Xo | X1 = 2] — E[Yo | Y1 = yyl,

so the following inequality holds,

x Wt (! 2
vj. ¢, (Z tf”(n)xi -> fd@z )Z/k> <Y P(X0,Y0) = (i ye) | (X1, Y1) = (2, 4p)) (wi—ui) .

7;(n) —~ 7o) T

Hence we obtain

ZP (X1, Y1) = (2, v) (Zlf"?’(")xi—zw’y ) k> <szk —y)?  (16)

75 (n) A

forall z,y, w € I (m,7'). Since (P((X1,Y1) = (27, yp)))j.e € L(7(n),7(n')), we can replace the
x;’s’ and y;’s’ in (16) by the means and standard deviations of the two mixtures components to get

MW3 (I, Ww,n') < MW3(n,1),

thus H}’(;WQ is a non-expansion with respect to M Wj.

D.9. Unbiasedness property

If the sample estimates of the projected distributional Bellman operator are unbiased, then it is easy
to conclude to the convergence of the associated TD algorithm. This is how the convergence of
the categorical TD algorithm is typically shown (see Bellemare et al. (2023)). However, this is not
possible in our case.

Indeed, define for all return function % and for all z € X,

0 (2) = 3 A, a)la | @),

acA
(@)=Y pla,ayn(a | 2).
acA
Z P(- | z,a)m(a| z).
acA

The standard property of unbiasedness defined in p. 166 of Bellemare et al. (2023), which would
amount to check the following equality, with our projection H{“\”,[W , defined previously,

e X, [ [ MG e )0 P i’ = T, T ),
is not satisfied, as it is also not the case for quantile temporal difference (see example 6.3 of Belle-

mare et al. (2023)).
In fact, we can show instead that
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/X /R My, ((r -+ 7 Id) g (2))o™ (@) (r) P (2! | 2)drde’ = T, ™ (x).  (17)

Thus we indeed have a bias since the result TTII% ™ differs from IT¥ 77",
Proof of (17). To compute II* ((r 4+ vId)4n™ (z')), we use that w*((r + vId)yn) is defined as

2
. Wyr Werk
w*((r+~Id €ar min Wy, ¢+ — o+ ) op — o)l |-
((rtrld)yn)€arg min ;k 71 ;Z L 2l Z S

It follows that w* ((r+vId)4n) can be chosen the same as w* (1) and thus that TT%" ((r+vyId) zn™ (') =
(r +~Id)xI1*" (n™ (2')), which leads to (17) as desired.

D.10. Generalization to the multidimensional case
D.10.1. GENERAL METRIC PROPERTIES

We define the F2 probability metric between two multivariate Gaussians in dimension d, g; =
Na(p1,21), g2 = Na(pz, ¥2) as

F2(g1,92) = |l — po|* + Tr((S1 — 2)?).
This semi-metric is clearly ideal since for all i € {1,2} and ¢’ = Ny(i/,¥’), we have ¢’ x g; =
Na(p; + 1/, 3; + X'). Hence we can apply Theorem 7 to get that 7™ is a contraction mapping with

respect to MW?2,, . if the reward is a multivariate Gaussian mixture for each state-action pair.

F2 .M
D.10.2. PROJECTION

Similarly to the d = 1 case, using that MW?2
of

T (n,n’) is defined as the minimum over w € II(7, 7’)

l(w,n,n Zwek Z Hes — MZi)Q + Z(Zﬁij - ;cij)z ’
1 27]

we can replace x and y in (15) with successively the means coefficients and then the covariance
matrices coefficients of the two mixtures components to get,

2 2
L(w,n, 77 wak Z (ﬂéi - Z ff,/k Mm) + Z (Em - Z SOk 2€’2j>
k ij

i o o k

Following the same methodology as in Theorem 9, we deﬁne w*(n) as a minimiser of the previous

expression, fix(n) = >, ‘Z;f ug/ Sr(n) = S, ‘f;f Eg: T(n) = Yo p wiy(n), and we get
the following projection

FMdT/ Zﬂ'k (n), Ek( )) € Mkg.

As previously, we can replace the x;’s’ and y;’s’ in (16) by the means coefficients and covariance
matrix coefficients of the two mixtures components to get

MW e (M, o Wiw, 1) < MWE (0,1,

thus Ty i is a non-expansion with respect to MWz , 1a.
F, :
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D.11. Expressions of MMD distances for GM

In the MMD case, Theorem 14 provides closed-form expressions for a number of kernel choices,
when the compared distributions are mixtures or Gaussians.

Theorem 14 Let X ~ Z,If:ll TN (pk, O'%k) andY ~ Zszzl ok N (pork, U%k), two independent
random variables distributed as GM. We have the following closed-form expressions:

E[Kqg 1ap(X, V)] = Z T1eT20G (Yo ik, YOOk 2) 5

o,
_%
E[k'ﬂ,rbf X Y Zﬂ'lkﬂ'% (7%‘”’%,2) ,
Ve
Elken(X,Y)] = =Y mipmadneV < ) :
v, Ok,

2

where G (a,1) = Fla.y) + F(=9) with Fla.3) =% Fyon (£ ).
Y
V(z) = 2(2F o1 (7) — 1) + 2N (2;0,1) and &,ig = O’%k + agf, P = H1k — [2c-
Proof For any kernel &,

K1 Ko

ER(X,Y)] =) ) mupmoe E[k(X, V)],

k=1 (=1

where Xp, ~N (p1x ,a%k), Yi~N( ,UQ@,O'%E). We only need to compute expectations for two Gaussian
variables.

Laplacian kernel.  Since Xy, — Y, ~ N (pu1x, — piar, 02, + 03,), for all 7o > 0, we need to compute
E[e~7014]] where Z is univariate Gaussian distributed. For Z ~ N (1, o2),

+o00 (vg)? +o00
/ e "y (x)dr =e 2 TH0 / (x + yo0°)d
0 0
(v9o)? +oo
—e ‘WO/ Nz—u(x)dx
Yoo—L @

From which, we deduce that
R
“+o0
- / e 1 (nz(z) +nz(—x))dz
0
+o00
:/ e 1% (nz(z) + n-z(x))dx.
0
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Hence,

(v0Fk,0)2

E[e—"fo\Xk—Yzl] :ef_’yoﬁkZFN(o’l) <Mkz£ B 05k£>
kL

(05 xe)?

+e 2 +’YO'&MF./\/’(O,1) <&Mk£ _ 70&]%) '
ke

Gaussian kernel. We also have

_IXp—Yel?

Ele >7 ] 2@71//\/(% | 0,9)N (@ | fine, Gig)dax
R

V2N (ige | 0,72 + 62)

ARy
:7’71 e 2<’Y%+6§€) .
\/ Vi 457,
Energy kernel. Using that
[e’s) 0
B2 = | (1~ F@) do = [ (Fa(o) + Fs(a) do (18)
0 —00

and considering the standardization with U = (Z — ) /o ~ N(0, 1), it comes

—p/o /o
EUZH:a(/“ Fu() d:c+/“ Fu() dx) .

Integration by parts leads to

/u Fy(z) da;—u/u N (t;0,1) dt + N (u3;0,1)

—00

= uFy(u) + N(u;0,1)

/u Fy(x) dz = —uFy(—u) + N (u;0,1)

—00

= —u(l = Fy(u)) + N(u;0,1)

and to E[|Z|] = o (u(2Fy(u) — 1) + 2N (u;0,1)) = oV (u), where V (u) is as stated in the theo-
rem. |

D.12. Equivalence between the Cramer and energy distance

Zhang (2023) implicitly provides a proof that the Cramer distance is proportional to MMDy,_ that
is different from the already well-known geometric proof cited by Nam et al. (2021). To highlight
this, let us consider the following lemma.

Lemma 15 Let X, Y be two independent random variables. We have the following formula,

T

Vr e R,/RFX(JU)(l — Fryy(x))dz = / Fx_y(z)dx, (19)

—0o0

where Fx is the CDF of X.
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Proof We adapt here the proof used in the particular case of Gaussian mixtures in Zhang (2023).
Indeed, we have

2
;ﬂ/RFX(x)(l — Fyir(z))dx

_ ;Ag(l—Fy (x — 1)) Fx(z)dzx
_ gr /R ny (x)Fx (z + r)da
= / ny (z)nx (@ +r)dx

R

= /RWYM(@’?X(ZE)‘ZLE = (n-y *nx)(1).

Hence there exist constants C', C'5 independent of  such that

/RFX(x)(l Py yp(2))de = Oy + Cor + /_TOO /;(n_y ) () dtda.

By taking the limit r — —o0, it comes C; = C; = 0 and thus

r

Aaum—wﬂmm:[;[;mwmmwm:/ Fy_y(z)dz.

—0o0

Using this lemma, we can prove that the Cramer distance C'is proportional to MMDy,_ ifd = 1.
The result is well-known but we provide a proof different from the classical proof of Szekely (2002).

Theorem 16 Let P, Q two distributions, we have C*(P, Q) = %MMD%en (P, Q).
Proof The Cramer distance is defined by C*(P, Q) = [, |Fp(z) — Fg(z)|*dx. Then,

[ 1Fr(@) = Fola)Pds = | Fo(a)(1 ~ Fo(o))ds + [ Fo(e)(1 - Fr(o))ds
R R R
- [ Fe@)1 = Fola)de - [ Foa)1 - Fola))da.
R

R
For some independent variables (X, XY, f/) with X, X ~ Pand Y,Y ~ Q, Lemma 15 leads to

0 0
/I‘{ ’Fp(t) - FQ(t)|2dt :/ FX_y(a?)dx +/ Fy_X(x)dx

—0o0

—/0 FxX(x)dx—/_(; Fy, (x)dx.

—00
Using formula (18) and that F'y, ¢ = F'y_y and Fy._y = Fy_ by symmetry, it follows,
2 [ F(t) = Fo(t)dt = 2B[X = Y]]~ BX - X|) ~E[Y - ¥

= MMD;_(P,Q).
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AN ANALYSIS OF DRL WITH GAUSSIAN MIXTURES

Appendix E. Stochastic Approximation solution

Although most DRL solutions are based on a TD learning principle, the approximation of returns by
Gaussian mixtures opens the way to other approaches to access the targeted fixed point. Stochastic
approximation (SA) is a popular approach for solving fixed-point equations where the information
is corrupted by noise. Such is the case in RL and this technique has theoretical advantages over TD-
learning (Chen et al., 2020). More recently, it has shown tremendous results in DRL using Gaussian
mixtures (Zhang et al., 2024). The principle is simpler than TD-learning. The online network is
updated using a point-wise stochastic approximation,

Mer1(z,a) = (1= B)e(x,a) + B(r + Ty)pm(a’, o),

with a transition sample (x, a,r, 2’, a’). As the right-hand term is a mixture of two distributions, it
is natural to use mixtures as representations, as a mixture of mixtures is a mixture. However, it is
impractical to use directly the resulting mixture since the number of components increases expo-
nentially. The solution of Zhang et al. (2024) uses an EM estimation to approximate the resulting
mixture by a fixed number of components. This is crucial in their approach which then optimizes
a loss that can only be computed between mixtures with the same component numbers. One ad-
vantage of the metrics we propose is that this approximation is not necessary as they can handle
mixtures of arbitrary sizes. It follows the possibility to design new simpler algorithms whose global
principle is illustrated in Algorithm 2 (sg is the stopgrad operation). In practice, this would require
refinements out of the scope of this paper.

Algorithm 2 SA training for 1 episode

while environment is not terminated do

Sample a; ~ 7"'e—greedy(' ‘ xt)

Get x4y ~ P(- | z,a;) and ry ~ R(xy, ar)

Mnew < (1 — B)sg(ne(w¢, ar))

Thew <= Thew + BSg((R + T7) M (T141, ar41))
Minimize D(n;(x¢, i), Nnew) Over network parameters
t+—t+1

end

Appendix F. Experimental setup and hyperparameters

All experiments were run on our local cluster, on NVIDIA V100 GPUs. We mostly used the
Dopamine (Castro et al., 2018) hyperparameters recommandations (Table 2) but we had to use
gradient clipping to stabilize the training. To guarantee fair comparison, we used the same hyper-
parameters for all methods for each environment and we selected the gradient clipping by selecting
for each environment the highest possible giving a stable training for all methods. This leads in
our case to gradclip = 100 for Asterix and Bowling, and gradclip = 1 for Qbert. As regards, the
GM representations, the number of components was set to ' = 5. To compute metrics, the MW
was implemented using the POT package (Flamary et al., 2021) and for MMD computations, we
used the same setting as Nguyen-Tang et al. (2020). Our code is implemented in Python and can be
provided as a supplementary zip file.
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ANTONETTI DONANCIO FORBES

Hyperparameter

Setting

Sticky actions probability
Discount factor ()

Frames stacked

Mini-batch size (B)

Replay memory size

Online network update rate (\)
Target network update rate (7)
Initial exploration (¢)
Exploration decay rate
Exploration decay period

Test exploration

Environment steps per iteration
Starting step

0.25 (stochastic case)

0.99

4

32

10°

4 steps

10* steps

1

102

2.5 x 10° steps
1073

2.5 x 10° steps
5 x 10* steps

Adam hyperparameters

(51 decay

(2 decay
Eps
Learning rate

0.9
0.999
10—2

B
5% 107°

Table 2: Hyperparameters used in experiments
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