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HANKEL CONTINUED FRACTIONS
AND HANKEL DETERMINANTS

FOR q-DEFORMED METALLIC NUMBERS

GUO-NIU HAN AND EMMANUEL PEDON

Abstract. Fix n a positive integer. Take the n-th metallic number

ϕn =
n+

√
n2 + 4

2

(e.g. ϕ1 is the golden number) and let Φn(q) be its q-deformation in the sense of S. Morier-
Genoud & V. Ovsienko. This is an algebraic continued fraction which admits an expansion
into a Taylor series Φn(q) =

∑+∞
i=0 fiq

i around q = 0, with integral coefficients. Consider the
sequences of shifted Hankel determinants of Φn:

∆
(ℓ)
j := det(fa+b+ℓ)

j−1
a,b=0, ℓ, j ⩾ 0.

By using the notion of Hankel continued fraction introduced by the first author in [Han16] we
determine explicitly the first n+ 2 sequences ∆

(0)
j ,∆

(1)
j , . . . ,∆

(n+1)
j and show that they satisfy

the following properties:
1) They are periodic and consist of −1, 0, 1 only.
2) They satisfy a three-term Gale-Robinson recurrence, i.e. they form discrete integrable

dynamical systems.
3) They are all completely determined by the first sequence ∆

(0)
j .

This article thus validates a conjecture formulated by V. Ovsienko and the second author in
[OP25] and establishes new connections between q-deformations of real numbers and sequences
of Catalan or Motzkin numbers.
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1. Introduction

Given a power series F (q) =
∑+∞

i=0 fiq
i or simply a sequence of numbers F = (fi)i∈Z⩾0

, by the
Hankel determinants of F we mean the doubly indexed family

∆
(ℓ)
j (F ) :=

∣∣∣∣∣∣∣∣∣∣
fℓ fℓ+1 · · · fℓ+j−1

fℓ+1 fℓ+2 · · · fℓ+j

...
...

...
fℓ+j−1 fℓ+j · · · fℓ+2j−2

∣∣∣∣∣∣∣∣∣∣
(1.1)

where ℓ, j ∈ Z⩾0, with the convention ∆
(ℓ)
0 (F ) := 1. The determinant ∆

(ℓ)
j (F ) is thus of size

j × j, and we call the number ℓ the shift of the determinant, since it is clear that

∆
(ℓ)
j

(
(fi)i⩾0)

)
= ∆

(0)
j

(
(fi+ℓ)i⩾0)

)
.

Similarly, if F (q) =
∑∞

i=0 fiq
i is a power series, we have

∆
(ℓ)
j (F ) = ∆

(0)
j (F (ℓ)) (1.2)

where

F (ℓ)(q) :=
1

qℓ

(
f(q)−

ℓ−1∑
i=0

fiq
i

)
=

1

qℓ

(
+∞∑
i=ℓ

fiq
i

)
.

When ℓ = 0, we will often use the shorter notation ∆j(F ) instead of ∆(0)
j (F ) and we speak of

ordinary Hankel determinants of F . On the other hand we will write simply ∆(ℓ)(F ) to denote
the entire sequence (∆

(ℓ)
j (F ))j⩾0.

First appeared in 1861 [H61], Hankel matrices and determinants (and later on, Hankel and
Toeplitz operators) are this kind of objects that arise naturally in various fields of mathematics
and often interconnect them: combinatorics [Rad79, Aig99, Tam01, CK11], orthogonal poly-
nomials [Vie83, Jun03, DIK11, BP17], number theory [Wal48, APWW98, Bug11], probability
theory [Sch17, BDJ06], complex analysis [Hen74, Pom66, KLS18], functional and applied analysis
[Pel03, Sau21]. . . (among many other valuable references).

In this article we would like to present the remarkable properties of Hankel determinants
of a family of power series Φn (n ∈ Z⩾1) that are defined as “q-deformations”, in the sense of
S. Morier-Genoud and V. Ovsienko (to be specified a bit later), of the so-called metallic numbers,
or metallic ratios, or metallic means. Recall that these numbers are the quadratic irrationals
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ϕn :=
n+

√
n2 + 4

2
= n+

1

n+
1

n+
1

. . .

, n ⩾ 1,

with most famous representatives:

ϕ1 =
1 +

√
5

2
(golden ratio),

ϕ2 = 1 +
√
2 (silver ratio),

ϕ3 =
3 +

√
13

2
(bronze ratio).

Surprisingly, the properties of their Hankel determinants, together with some particular continued
fraction expansions, will make our functions Φn resemble to the generating series of Catalan or
Motzkin numbers, which are ubiquitous in mathematics. This connection was first observed in
cases n = 1 and n = 2 by V. Ovsienko and the second author [OP25]. The present work is thus
a continuation and generalization of the results therein.

Let us elaborate. First, we recall that the Catalan numbers are defined by the formula1

γn :=
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
, n ⩾ 0, (1.3)

and that first terms are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, . . .

see sequence A000108 in the On-line Encyclopedia of Integer Sequences (OEIS) [OEI25]. All
shifted Hankel determinants of the generating series Γ(q) :=

∑+∞
n=0 γnq

n are known, and expressed
by the following simple formulas (see e.g. [Aig99, DCV86, Kra05]):

∆j(Γ) = 1, 1, 1, 1, . . . , ∆
(1)
j (Γ) = 1, 1, 1, 1, . . . , (1.4)

∆
(2)
j (Γ) = 1, 2, 3, 4, . . . , ∆

(ℓ)
j (Γ) =

∏
1⩽a⩽b⩽ℓ−1

2j + a+ b

a+ b
, ℓ ⩾ 2. (1.5)

Another classical example is that of the Motzkin numbers

Mn :=

⌊n/2⌋∑
k=0

(
n

2k

)
γk, n ⩾ 0,

that form sequence A001006 in OEIS:

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, . . .

1We avoid the traditional notation Cn because of possible confusion with some other object introduced later.
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In this case, the first four sequences of Hankel determinants of the generating series M(q) :=∑+∞
n=0Mnq

n are given by

∆j(M) = 1, 1, 1, 1, . . . , (1.6)

∆
(1)
j (M) = 1, 1, 0,−1,−1, 0, 1, 1, 0,−1,−1, 0, . . . , (1.7)

∆
(2)
j (M) = 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, . . . , (1.8)

∆
(3)
j (M) = 1, 4, 3,−6,−16,−10, 15, 36, 21,−28,−64,−36, 45, . . . ,

see e.g. [Aig98, BP17]. It is particularly interesting to note that the sequence (1.6) of ordinary
Hankel determinants is identically 1 as for Catalan numbers, while the first shifted sequence
(1.7) is 3-antiperiodic (thus 6-periodic) and consists of −1, 0, and 1 only (see entry A010892 in
OEIS). The sequences ∆(ℓ)(Φn) we are going to consider in the present article share this special
property, as will be explained below. For later comparison, let us mention also that the shifted
Hankel sequence ∆

(1)
n (M) satisfies the recurrence relation

∆n+2∆n = ∆2
n+1 − 1. (1.9)

Let us come to the presentation of our results. Throughout the paper we will use the following
classical notation for continued fractions:

α0

β0 +

α1

β1 +

α2

β2 + · · · +

αp−1

βp−1 +

αp

βp
:=

α0

β0 +
α1

β1 +
α2

. . . +
αp−1

βp−1 +
αp

βp

and, to shorten, Gauss’ notation
p

K
j=0

αj

βj
:=

α0

β0 +

α1

β1 + · · · +

αp

βp
.

Both notation are extended to infinite continued fractions, and periodic data inside a continued
fraction will be indicated between parentheses and with a star superscript ∗. For instance, we
remind the noticeable expression of the metallic number ϕn as a 1-periodic regular continued
fraction:

ϕn = n+

(
1

n +

)∗
= n+

1

n +

1

n +

1

n + · · ·
From now on, for any positive integer n we denote by Φn the q-deformation of ϕn in the sense
of S. Morier-Genoud and V. Ovsienko [MGO22]. By definition, it is the 2-periodic continued
fraction

Φn(q) = [n]q +

(
qn

[n]q−1 +

q−n

[n]q +

)∗
(1.10)
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where [n]q is the polynomial which stands for the classical Euler-Gauss q-deformation of the
integer n:

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

The functions Φn (n ⩾ 1) will be refered to as the q-deformed metallic numbers, or simply the
q-metallic numbers. A motivation for definition (1.10), and more generally for the q-deformation
of real numbers that was discovered by S. Morier-Genoud and V. Ovsienko a few years ago, will
be given in Section 2.1, together with some of the key results of the theory.

As an example, let us look at the q-golden number Φ1(q), i.e. the q-deformation of the golden
ratio ϕ1 =

1+
√
5

2 , whose definition (1.10) can easily be rewritten as

Φ1(q) = 1 +

(
q2

q +

1

1 +

)∗
.

In the articles [MGO22] and [OP25] were discovered several striking properties of Φ1 which led
to a comparison with the generating series Γ and M of the Catalan and Motzkin numbers. Let
us indicate three such connections:
1) Φ1(q) has various nice continued fraction expansions, such as

Φ1(q) =
1

1 +

(−q2

1 +

q

1 +

)∗
= 1 +

q2

1 +

(
q

1 +

q

1 +

q3

1 +

)∗
(1.11)

which belong to the particular class of C-fractions (see [OP25], where more expansions of
Φ1(q), e.g. as J-fractions, can also be found). Compare with the following well-known
Catalan and Motzkin C-fraction expansions:

Γ(q) =
1

1 +

(−q

1 +

)∗
, M(q) =

1

1 +

(−q

1 +

−q

1 +

−q2

1 +

)∗
.

2) The q-golden number admits the following Taylor series expansion about q = 0:

Φ1(q) = 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9

+ 185q10 − 423q11 + 978q12 − 2283q13 + 5373q14 − 12735q15 + · · ·
(1.12)

see [MGO22]. The coefficients here are quite close to sequence A004148 of OEIS, whose
terms are called “generalized Catalan numbers”2; the differences are the lack of linear term
in the above formula and the alternating signs. Sequence A004148 has many interesting
combinatorial interpretations, such as enumeration of peakless Motzkin paths, secondary
structures of RNA molecules and diagonal sums of the Narayana triangle, see entry A004148
of [OEI25].

3) Hankel determinants of Φ1 satisfy the following properties (see [OP25]): the first four
sequences of Hankel determinants ∆

(ℓ)
n (Φ1), for ℓ = 0, 1, 2, 3, are 4-antiperiodic (thus 8-

periodic):

∆
(ℓ)
n+4(Φ1) = −∆(ℓ)

n (Φ1), ℓ = 0, 1, 2, 3, (1.13)

2Note however that there are many other sequences known under this name.
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and they consist of 0, 1, and −1 only. First terms are:

∆j(Φ1) = 1, 1, 1, 0, −1, −1, −1, 0, . . . ,

∆
(1)
j (Φ1) = 1, 0, −1, 1, −1, 0, 1, −1, . . . ,

∆
(2)
j (Φ1) = 1, 1, 1, 0, −1, −1, −1, 0, . . . ,

∆
(3)
j (Φ1) = 1, −1, 0, 0, −1, 1, 0, 0, . . . .

(1.14)

These sequences compare with the Motzkin first shifted Hankel sequence (1.7). To some
extent, a sequence identically equal to 1 such as (1.4) or (1.6) can be thought of as a
particular case of a periodic sequence with values in the set {−1, 0, 1}, thus we may interpret
(1.14) as another connection between the q-golden number Φ1 and the Catalan and Motzkin
series Γ and M . Also, one has

∆(4)
n (Φ1) = 1, 2, 0,−2,−3,−4, 0, 4, 5, 6, 0,−6,−7,−8, 0, 8, . . . ,

which reminds (1.5) and (1.8). Lastly, the first three Hankel determinants sequences ∆n(Φ1),
∆

(1)
n (Φ1) and ∆

(2)
n (Φ1) all satisfy the Somos-4 relation

∆n+4∆n = ∆n+3∆n+1 −∆2
n+2, (1.15)

which is close to (1.9). Recall that, for k ⩾ 4, a Somos-k sequence is a solution (Sj) of a
quadratic recurrence of the form

SjSj+k =

⌊k/2⌋∑
i=1

αiSj+iSj+k−i (1.16)

for arbitrary integers αi and initial data S0, . . . , Sk−1; see more on that subject after the
statement of Theorem C below.

Let us say a word about the proofs of (1.13), (1.14) and (1.15). Usual techniques to compute
Hankel determinants of classical sequences (such as Catalan or Motzkin) rely mostly on continued
fraction expansions, orthogonal polynomials theory and/or combinatorial models; see e.g. [Hei46,
Kra99, Kra05, Aig01, Bar10, Elo15, BP17]. . . In particular, one may think that continued
fraction expansions like (1.11) can help to compute the Hankel sequences, since there exists a
well-known Hankel determinant formula for regular C-fractions (also known as Stieltjes continued
fractions) and for regular J-fractions (also known as Jacobi continued fractions); see [Kra05] §5.4.
Unfortunately, it is not possible to expand Φ1 (nor any Φn, actually) as such special continued
fractions. But, in [OP25] as well as in the present work, Hankel determinant formulas are obtained
by using the notion of Hankel continued fractions introduced by the first author in [Han16].
These form a family of continued fractions which includes both classical regular J-fractions and
regular C-fractions as subcases, and still conveniently comes with an explicit Hankel determinant
formula; see Section 2.2 for details.

For instance, it was proved in [OP25] (Lemmas 3.6 and 3.9) that the H-fraction of the q-golden
number Φ1 is the 3-periodic continued fraction

Φ1(q) =
1

1 +

( −q2

1 + q +

q3

1 + q − q2 +

q3

1 + q +

)∗
(1.17)
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while the H-fraction expansion of the q-silver number Φ2 is 8-periodic and reads:

Φ2(q) =
1

1− q +

(
q2

1 + q +

q2

1 +

q2

1 +

−q3

1 + 2q2 +

q5

1 + 2q2 − q3 +

q5

1 + 2q2 +

−q3

1 +

q2

1 +

)∗
.

(1.18)

It turns out that these two formulas (and their analogues for the shifts Φ
(ℓ)
1 and Φ

(ℓ)
2 ), together

with the Hankel determinant formula for H-fractions, yielded all the nice properties of the
determinants ∆

(ℓ)
j (Φ1) and ∆

(ℓ)
j (Φ2) that were highlighted in [OP25].

In the present paper we will follow the same path and begin our work by proving the gener-
alization of (1.18) to any integer n ⩾ 2, namely:

Theorem A (H-fraction expansion for Φn). Suppose n ⩾ 2 and define the polynomial

⟨n⟩q := q[n]q + (1 + qn)(1− q) (1.19)

=

{
1 + q2 + q3 + · · ·+ qn−1 + 2qn − qn+1, if n ⩾ 3,

1 + 2q2 − q3, if n = 2.

The H-fraction expansion of the q-deformed metallic number Φn(q) defined in eq. (1.10) is (6n−
4)-periodic with offset 1 and has the following form:

Φn(q) =
1

1− q +

(
Un(q) +

Vn(q) +
Wn(q) +

)∗
, (1.20)

where

Un(q) =
n−3

K
i=0

(
qn−i

[n− i]q +

qn

[i+ 2]q − q +

qi+2

1− q

)
+

q2

[2]q +

qn

[n]q − q +

qn

1
,

Vn(q) =
−qn+1

⟨n⟩q + qn+1 +

q2n+1

⟨n⟩q +

q2n+1

⟨n⟩q + qn+1 +

−qn+1

1
,

Wn(q) =

n−3

K
i=0

(
qn−i

[n− i]q − q +

qn

[i+ 2]q +

qi+2

1− q

)
+

q2

1
.

When n = 2, we see that (1.20) coincides as expected with (1.18), provided we replace all K
operators by 0. On the contrary, when n = 1 the H-fraction expansion (1.17) of the q-golden
number Φ1 is 3-periodic and does not fit into the above general formula.

Note also that an analogue of Theorem A exists for all shifts Φ
(ℓ)
n with ℓ = 1, . . . , n + 1 (see

definition (1.2)), but will not be stated here for simplicity; see Theorem 7.3.
We continue the exposition of our main results and deal now with the Hankel determinants of

Φn. First of all, as for the q-golden number (1.12), all q-metallic numbers Φn expand as Taylor
series about zero: actually this is a general property of q-deformations of positive real numbers,
see [MGO22]. In particular, all their (ordinary or shifted) Hankel determinant sequences are
well-defined. Thus, from now on we can fix a positive integer n and set

∆
(ℓ)
j := ∆

(ℓ)
j (Φn)

for short.
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We begin with the generalization of (1.13).

Theorem B (Values and Periodicity). Sequences ∆(ℓ) with ℓ ∈ {0, 1, . . . , n+1} consist of −1, 0, 1
only. Moreover they are 2n(n + 1)-periodic when n is even and 2n(n + 1)-antiperiodic (hence
4n(n+ 1)-periodic) when n is odd:

∆
(ℓ)
j+2n(n+1) = (−1)n∆

(ℓ)
j for all j ⩾ 0.

This result reflects the periodicity of the H-fraction expansion (1.20) but also reveals some
symmetric patterns inside it; see Section 3.3. Explicit formulas for the Hankel determinants ∆(ℓ)

j

will be given in Theorem 5.1 for the case ℓ = 0, together with a few examples for small values of
n; cases ℓ = 1, . . . , n+ 1 will then follow from Theorem D below.

Now we describe the dynamics of the Hankel sequences:

Theorem C (Gale-Robinson recurrence). Sequences ∆(ℓ) with ℓ ∈ {0, 1, . . . , n + 1} all satisfy
the same following three-term Gale-Robinson recurrence:

∆
(ℓ)
j+2n+2∆

(ℓ)
j = ∆

(ℓ)
j+2n+1∆

(ℓ)
j+1 −

(
∆

(ℓ)
j+n+1

)2 for all j ⩾ 0.

Recall that a three-term Gale-Robinson sequence is a sequence (Sj) defined by a recurrence of
the form

SjSj+k = αSj+aSj+k−a + βSj+bSj+k−b, (1.21)
where k ⩾ 4, 1 ⩽ a < b ⩽ k/2 and α, β are some integer constants. Similarly, a four-term
Gale-Robinson sequence is defined by allowing a third term γSj+cSj+k−c in the right-hand side
of (1.21); see [Gal91]. One can see at once that Somos-4 sequences and Somos-6 sequences
(definition (1.16)) are special instances of three-term Gale-Robinson sequences and four-term
Gale-Robinson sequences, respectively. Two such examples are thus provided by the Hankel
determinants ∆(ℓ)(Φn) (ℓ = 0, 1, . . . , n + 1), for n = 1 (remind (1.15)) and n = 2 (see [OP25]
§1.4).

While Somos sequences arose from elliptic function theory and can be studied from this point
of view (see e.g. [Hon07, HS08]), some of their properties are best understood with S. Fomin
& A. Zelevinsky’s theory of cluster algebras, and in particular the Laurent phenomenon [FZ02]
which implies that all (three or four-term) Gale-Robinson sequences with positive integer coeffi-
cients α, β, γ and initial data S0 = S1 = · · · = Sk−1 = 1 have the property of integrality, i.e. all
terms of such a sequence are integers. This approach gave a unifying proof of the integrality of
Somos-k sequences for k = 4, 5, 6, 7, which was already known to several authors.

Another main property of Somos-Gale-Robinson sequences is that they exhibit solutions to
discrete dynamical systems which are integrable in the sense of Liouville-Arnold [FH14, HLK20].
In this way, Hankel determinants of q-deformed metallic numbers provide examples of periodic
{−1, 0, 1}-solutions of the corresponding discrete integrable systems; see the detailed example of
Φ1(q) in [OP25], §1.4. Lastly, let us add that many examples of Somos sequences are produced
by Hankel determinants, see [CHX15, Hon21] and the references therein.

Let us come back to the presentation of our results. As we have seen, Theorem C points
out special relations existing between consecutive Hankel determinants inside the same ℓ-shifted
sequence. Incidentally, we have also discovered an explicit formula connecting the members
of two consecutive shifted sequences, which implies in particular that all shifted sequences are
completely determined by the ordinary Hankel determinant sequence ∆(0) = ∆(Φn):
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Theorem D (Contiguity relations). Pairs of consecutive shifted sequences (∆(ℓ+1),∆(ℓ)) with
ℓ ∈ {0, 1, . . . , n} are interconnected by the following formula:

∆
(ℓ+1)
j = (−1)j+

n(n+2ℓ−1)
2 ∆

(ℓ)
j+n+1 for all j ⩾ 0. (1.22)

Note that Theorems B, C and D were proved by V. Ovsienko and the second author in [OP25]
for n = 1 and n = 2 (see Theorem 1.6 and Theorem 1.8 therein), but only conjectured in the
general case, excepting relation (1.22) which was proved when ℓ = n for any n (see Proposition 4.1
therein).

The reader has certainly noticed that all our statements deal with shifted sequences ∆(ℓ) for
a parameter ℓ such that 0 ⩽ ℓ ⩽ n + 1. As far as concerns the case ℓ ⩾ n + 2, computer
experimentation incite us to formulate the following conjecture, that we are not able to prove so
far, except for part (1) when n = 1, see Theorem 1.6 in [OP25].

Conjecture E. The case ℓ ⩾ n+ 2.

1) The sequence ∆
(n+2)
j is 2n(n+1)-periodic when n is even and 2n(n+1)-antiperiodic (hence

4n(n + 1)-periodic) when n is odd, and consists of −2,−1, 0, 1, 2 only (except if n = 1: it
can only take the values −1, 0, 1).

2) All sequences ∆
(n+2)
j with ℓ ⩾ n+ 3 are unbounded.

Organization of the paper. Section 2 contains a brief presentation of S. Morier-Genoud and
V. Ovsienko’s theory of q-deformation of real numbers, applied in particular to metallic ratios.
We recall also from [Han16] some fundamental results on Hankel continued fractions (alias H-
fractions), since it is the main tool we will use to compute Hankel determinants. We also explain
how close Hankel continued fractions are to Artin’s regular continued fractions in the context of
Laurent series.

In Section 3 we prove Theorem A i.e. the H-fraction expansion of Φn. It will be obtained
by using an algorithm well suited to power series that are solution of a quadratic equation with
polynomial coefficients. This algorithm appeared first in the paper [Han16] and its application
to our q-metallic numbers Φn represents a quite technical work.

Theorems B and C will be obtained with the following strategy: instead of proving them
directly for all values of the parameter ℓ, we note that cases 1 ⩽ ℓ ⩽ n + 1 follow at once from
the case ℓ = 0 and Theorem D. This is why Section 4 is devoted to the proof of Theorem B
in the case ℓ = 0 only. The main tool here is the Hankel determinant formula for H-fractions
recalled in Section 2. It is worth noting that Theorem B will be established without calculating
explicitly the Hankel determinants, since for showing periodicity and specifying the image set
we need to understand more the pattern they form than their exact values.

Yet, computing the Hankel determinants ∆j = ∆
(0)
j (Φn) is inevitable for our other results and

it is done in Section 5. We exploit the (anti-)periodicity shown by Theorem B together with some
extra symmetry property to restrict ourselves to calculate the values of ∆j only for a half-period
(more or less), and we obtain explicit formulas similar to the ones in (1.14). They are presented
in Theorem 5.1.

From these exact values of the Hankel determinants we then derive their Gale-Robinson dy-
namics and prove Theorem C in Section 6, still in the case ℓ = 0. This is an elementary but
quite tedious task.
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Finally, Section 7 is devoted to shifted Hankel determinants ∆(ℓ)
j with 1 ⩽ ℓ ⩽ n+1. We start

by proving Theorem 7.3 which expresses the H-fraction expansion of the shifted functions Φ
(ℓ)
n

(1 ⩽ ℓ ⩽ n+1) in terms of the one given in (1.20) for the initial function Φn = Φ
(0)
n . This result

interconnects the H-fractions expressions of all functions Φ
(ℓ)
n , 0 ⩽ ℓ ⩽ n+ 1 (see Corollary 7.5)

and leads to the proof of Theorem D which, as noticed before, implies eventually the statements
of Theorems B and C in the remaining cases 1 ⩽ ℓ ⩽ n+ 1.

Let us add a comment to our presentation. Although the cases of Φ1 and Φ2 were treated
in [OP25] with much detail and very explicit formulas, they do not really represent the general
case Φn which is more complex in nature. Moreover, our proofs are quite technical and lengthy.
We thus think it is worthwhile to illustrate our present results on another concrete case, more
representative of the general case but not too complicated either. We thus have chosen to focus
on the case n = 5 throughout the paper to examplify the main results and the more technical
proofs.

Note. Since all results stated in this article were proved in the cases n = 1 and n = 2 in
[OP25], from now on it will be convenient to always assume that n ⩾ 3, in order to avoid special
discussions for the limit case n = 2 in some results.

Acknowledgements. We are grateful to Valentin Ovsienko for his stimulating interest and his
useful comments on this work.

2. Background material

2.1. S. Morier-Genoud and V. Ovsienko’s q-numbers. Our article is devoted to the con-
tinuous fraction expansion and Hankel determinant properties of the q-deformation of particular
real numbers. Let us define precisely what kind of quantization is meant here and give a brief
introduction to the subject.

Quantization of integers is a very classical topic which goes back to Euler and Gauss: any
integer n ⩾ 0 can be deformed as a polynomial

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1. (2.1)

Equivalently, one can define [n]q as the unique solution of the recurrence

[n+ 1]q = q[n]q + 1, [0]q = 0. (2.2)

First form of definition (2.1) can also be used to define q-deformation of negative integers n < 0:

[n]q :=
1− qn

1− q
= −q−1 − q−2 − · · · − qn

and this gives a polynomial in q−1. A considerable amount of related objects have been based on
definition (2.1), e.g. q-factorials, q-binomials, q-hypergeometric functions, q-calculus, etc. used
in combinatorics, number theory, fractals, operator theory, mathematical physics. . . But until
recently we missed a really satisfactory extension to more general numbers (reals, or even just
rationals). For instance, for a rational m/n, the naïve ideas[m

n

]
q
:=

[m]q
[n]q

or
[m
n

]
q
:=

1− qm/n

1− q
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both lead to the same notion (up to a rescaling) which lacks crucial properties, such as verifying
(2.2) or being a rational function of q; it is then difficult to have nice enumerative or geometric
interpretations.

In 2018, S. Morier-Genoud and V. Ovsienko began a beautiful construction of q-analogues
for rational, real and even complex numbers (see the seminal papers [MGO20, MGO22, Ovs21])
which in a very few years has shown to be successful in the mathematical community, thanks
to connections with many topics: enumerative combinatorics, cluster algebras, Markov-Hurwitz
approximation theory, braid groups, combinatorics of posets, Calabi-Yau triangulated categories,
Lie algebras of differential operators, supersymmetry and supergeometry. . . see e.g. [MSS21,
BBL23, CO23, KOR23, MO24, MGOV24, Tho24, KMR+24, Jou24].

Several equivalent models are available for Morier-Genoud & Ovsienko’s q-real numbers. One
of them involves continued fractions and is the best suited for our purposes.

Let x ∈ R and consider its regular continued fraction expansion (finite if and only if x ∈ Q)

x = a0 +
1

a1 +

1

a2 +

1

a3 + · · ·
with ai integers, positive for i ⩾ 1. The q-deformation or q-analogue of x is the following
algebraic continued fraction:

[x]q := [a0]q +
qa0

[a1]q−1 +

q−a1

[a2]q +

qa2

[a3]q−1 +

q−a3

[a4]q + · · · (2.3)

where [n]q stands for the q-integer as in (2.1), and [n]q−1 = q1−n[n]q is the same expression with
reciprocal parameter. Note that, when infinite, the right-hand side in (2.3) always converges in
the sense of formal Laurent series.

Let us indicate some important characteristics of these q-numbers; we cite the original refer-
ences but most of the properties are explained also in the short survey [Ovs23].
1) [MGO20] For x ∈ Z, [x]q coincides with the classical definition (2.1) of Euler and Gauss.
2) [MGO22] For any x ∈ R, the Laurent series [x]q has integer coefficients. More precisely the

quantification map [ · ]q has the following images

[ · ]q : Q⩾0 → Z⩾0(q), Q → Z(q), R⩾0 → Z[[q]], R → Z((q)).

3) [MGO22, LMG21] We have, for any x ∈ R,

[x+ 1]q = q[x]q + 1,

[
−1

x

]
q

= − 1

q[x]q
.

These two crucial properties can be interpreted as commutation of the quantification map
[ · ]q with the action on Z((q)) ∪ {∞} of a group of linear-fractional transformations which
is isomorphic to the modular group PSL(2,Z). Moreover, [ · ]q is the unique PSL(2,Z)-
invariant quantification which fixes 0; see [OP25], §2.2. Such an invariance is at the heart
of the construction and plays a crucial role in the proof of numerous properties of these q-
numbers. Also, it can be understood as invariance with respect to the Burau representation
of the braid group B3 [BBL23, MGOV24];

4) The radius of convergence of the Taylor series at 0 of the q-golden number
[
1+

√
5

2

]
q
= Φ1(q)

equals 3−
√
5

2 , and it is conjectured that the radius of convergence of the Taylor series at
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0 of the q-deformation of any positive real number is always ⩾ 3−
√
5

2 [LMGOV24]. This
statement has already been verified for all q-metallic numbers Φn(q) (see [Ren22, Ren23])
and for a large class of q-deformed positive quadratic irrationals (see [Lec24], §4.4).

5) [LMG21] When x =
r±√

p
s is a quadratic irrational number (p, r, s integers, p > 0), [x]q is

itself of the form

[x]q =
R(q)±

√
P (q)

S(q)
(2.4)

with P,R,Q ∈ Z[q] and P a palindrome.
Examples illustrating formula (2.4) are yielded by the q-deformation Φn(q) of the metallic

numbers ϕn = n+
√
n2+4
2 , n ⩾ 1. Indeed, using definition (1.10) one can see that Φn is character-

ized by the functional equation

qΦn(q)
2 +

(
(1 + qn)(1− q)− q [n]q

)
Φn(q) = 1, (2.5)

from which follows at once a formula of type (2.4):

Φn(q) =
1

2q

(
q[n]q + (qn + 1)(q − 1) +

√(
q[n]q + (qn + 1)(q − 1)

)2
+ 4q

)
.

See [LMG21] or Proposition 2.5 in [OP25] for details. Another important property we will use
is that Φn admits the following Taylor series expansion about zero:

Φn(q) = 1 + q + · · ·+ qn−1 + q2n +
+∞∑

i=2n+1

κiq
i, (2.6)

where coefficients κi are integers; see Corollary 2.6 in [OP25]. Let us also men

Example 2.1. The power series expansion of Φ1(q) was given in (1.12). Let us write also the
expansions of Φ2(q), Φ5(q) and Φ10(q), respectively:

Φ2(q) = 1 + q + q4 − 2q6 + q7 + 4q8 − 5q9 − 7q10 + 18q11 + 7q12 − 55q13 + 18q14

+ 146q15 − 155q16 − 322q17 + 692q18 + 476q19 − 2446q20 + 307q21 + 7322q22 + · · ·
Φ5(q) = 1 + q + q2 + q3 + q4 + q10 − q12 − q13 + 3q16 + 3q17 − 2q18 − 7q19

− 4q20 − q21 + 10q22 + 21q23 + 9q24 − 30q25 − 44q26 − 28q27 + 27q28 + 115q29 + · · ·
Φ10(q) = 1 + q + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q20 − q22 − q23 + q25

+ q26 − q28 − q29 − q30 + 3q31 + 4q32 − q33 − 7q34 − 6q35 + 3q36 + 11q37 + 8q38 + · · ·
2.2. H-fractions and their Hankel determinants. In this subsection we recall some material
from [Han16]. Fix a field F, an indeterminate q, and let δ be a positive integer. A super δ-fraction
is a continued fraction of the form

F (q) =
v0 q

k0

1 + qu1(q) +

−v1 q
k0+k1+δ

1 + qu2(q) +

−v2 q
k1+k2+δ

1 + qu3(q) +

−v3 q
k2+k3+δ

1 + qu4(q) + · · · (2.7)

where vi ∈ F∗, ki ∈ Z⩾0, and ui ∈ F[q] are polynomials such that deg(ui) ⩽ ki−1 + δ − 2.
One of the main interests of this notion is that, not only (2.7) gives always a power series, but

also, conversely, for a given positive integer δ, any power series admits one and only one super
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δ-fraction expansion (finite if and only if F is rational). We will need to recall the proof of this
result at the beginning of Section 3.1.

Example 2.2. According to Theorem 3.2 in [OP25], for any n ⩾ 1 the q-deformed metallic
number Φn admits the following 1-periodic expression as a super 3-fraction:

Φn(q) = [n]q +
q2n

⟨n⟩q +

(
q2n+1

⟨n⟩q +

)∗

where ⟨n⟩q was defined in (1.19). To be accurate, it is the shifted function

Φ(n+1)
n (q) =

Φn(q)− [n]q
qn+1

(see definition (1.2)) which matches exactly definition (2.7) of a super 3-fraction, with kj ≡ n−1
for j ⩾ 0, v0 = 1 and vj ≡ −1 for j ⩾ 1.

Super δ-fractions with δ = 2 are of special importance, they are called Hankel continued
fractions, or more simply H-fractions. Firstly, they generalize the classical notion of regular
C-fraction and regular J-fraction (when all ki are zero and δ = 1, δ = 2, respectively) and offer
the possibility to compute the Hankel determinants of F with the following striking formula (see
Theorem 2.1 of [Han16]): if we define

sp := p+

p−1∑
i=0

ki if p ⩾ 1, s0 := 0, S := {sp, p ⩾ 0} (2.8)

and

εp :=

p−1∑
i=0

ki (ki + 1)

2
if p ⩾ 1 and ε0 := 0, (2.9)

then {
∆sp(F ) = (−1)εpv

sp
0 v

sp−s1
1 v

sp−s2
2 · · · vsp−sp−1

p−1 if p ⩾ 1,
∆j (F ) = 0 if j /∈ S.

(2.10)

(Recall that, by convention above, ∆s0(F ) = ∆0(F ) = 1.) In this way, classical formulas known
for C-fractions and J-fractions (see e.g. Theorems 29 and 30 in [Kra05]) are generalized. Let
us mention that similar formulas to (2.10) had been studied earlier in several references (mostly
independently); see [Han20], the historical remark after Theorem 2.2.

Besides formula (2.10), a second reason for which we think that Hankel continued fractions
have a particular interest is their strong connection with a classical continued fraction expansion
in the field F((q)) of Laurent series. Let us elaborate, since this relation was not yet discovered
in the paper [Han16].

E. Artin has shown [Art24] that any Laurent series in q

f(q) = f−nq
−n + · · ·+ f−1q

−1 + f0 + f1q + f2q
2 + · · ·

can be expanded, in a unique manner, as a continued fraction of the form

f(q) = a0(1/q) +
1

a1(1/q) +

1

a2(1/q) +

1

a3(1/q) + · · · (2.11)
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where a0 is a polynomial and, for any j ⩾ 1, aj is a non constant polynomial. Artin’s expansion
is traditionnaly called the regular continued fraction expansion of f , because of the familiarity
with the classical notion of regular continued fraction expansion for real numbers3.

It turns out that regular continued fractions and Hankel continued fractions are closely and
simply related when we restrict to power series. Take such a function

f(q) = f1q + f2q
2 + f3q

3 + · · ·
with no constant term and write its regular expansion (2.11):

f(q) =
1

a1(1/q) +

1

a2(1/q) +

1

a3(1/q) + · · · (2.12)

Fix j ⩾ 1. Since aj is a non constant polynomial, there exist two natural numbers mj and nj ,
with 1 ⩽ nj ⩽ mj , and a family of scalars (cj,r)

mj
r=nj , with cj,nj ̸= 0 and cj,mj ̸= 0, such that

aj(1/q) =
cj,nj

qnj
+

cj,nj+1

qnj+1 + · · ·+ cj,mj

qmj
.

We then write
aj(1/q) =

(
1 + uj(q)q

)cj,mj

qmj

where
uj(q) =

cj,nj

cj,mj

qmj−nj−1 +
cj,nj+1

cj,mj

qmj−nj−2 + · · ·+ cj,mj−1

cj,mj

is a polynomial in q satisfying

deg(uj) = mj − nj − 1 ⩽ mj − 1. (2.13)

But then (2.12) reads

f(q) =
1

(1 + u1(q)q)
c1,m1
qm1

+

1

(1 + u2(q)q)
c2,m2
qm2

+

1

(1 + u3(q)q)
c3,m3
qm3

+ · · ·

=
c−1
1,m1

qm1

1 + u1(q)q +

c−1
1,m1

c−1
2,m2

qm1+m2

1 + u2(q)q +

c−1
2,m2

c−1
3,m3

qm2+m3

1 + u3(q)q + · · ·
This expression is exactly of the form

f(q) = q F (q)

where

F (q) =
v0 q

k0

1 + qu1(q) +

−v1 q
k0+k1+2

1 + qu2(q) +

−v2 q
k1+k2+2

1 + qu3(q) + · · ·
and 

v0 = c−1
1,m1

vj = −
(
cj,mjcj+1,mj+1

)−1 for j ⩾ 1

kj = mj+1 − 1 for j ⩾ 0.

(2.14)

Since deg(uj) ⩽ kj−1 by (2.13), the expression of F (q) above is a H-fraction expansion (take
(2.7) with δ = 2) for the parameters (2.14).

3Usually, Artin’s theorem is stated in the field F(((1/q)) of Laurent series in the variable 1/q but we adapt it
to our context.
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In conclusion, Artin’s regular continued fraction expansion for the power series without con-
stant term f(q) yields a Hankel continued fraction expansion for the power series F (q) = f(q)/q.
And conversely, the Hankel continued fraction expansion for any power series g(q) yields the reg-
ular continued fraction expansion for (g(q) − g(0))/q. We thus have a correspondance between
the two kinds of expansion and it is easy to switch from one model to the other, thanks to the
conversion formulas (2.14).

As an example, consider a regular J-fraction expansion

F (q) =
v0

1 + u1q +

−v1 q
2

1 + u2q +

−v2 q
2

1 + u3q + · · ·
where ui, vi are scalars and vi are nonzero. It is nothing but a H-fraction with all kj = 0, and if

f(q) = f0 + qF (q),

then f(q) admits a regular continued fraction (2.12) with all aj polynomials of degree 1 and
determined by the parameters of the J-fraction as follows:

f(q) = f0 +
1

c1 +
d1
q

+

1

c2 +
d2
q

+

1

c3 +
d3
q

+ · · ·

with 
dj ̸= 0 for j ⩾ 0

v0 = d−1
1

vj = −(djdj+1)
−1 for j ⩾ 1

uj = cj/dj for j ⩾ 0.

Such a transformation for regular J-fractions may be considered as folklore and not necessarily
connected to Artin’s expansion; it appears e.g. in [Wal48], §42.

3. The Hankel continued fraction expansion for Φn

We already recalled the examples of H-fractions (1.17) and (1.18) that were obtained for Φ1(q)
and Φ2(q) in [OP25]. In this section we prove that the H-fraction presentation for Φn stated in
Theorem A is actually valid for all n ⩾ 3. It is a quite difficult problem, and we will solve it by
applying a variant of an algorithm which was introduced in [Han16]. It was originally designed
to treat quadratic power series in coefficients in a finite field, but actually works perfectly for
any field F and in particular in our situation F = Q.

3.1. An algorithm for H-fractions. Let F be a field, q an indeterminate. Here we present
an algorithm which is tailored to produce explicit H-fractions for a certain class of power series
F ∈ F[[q]], including our particular function Φn ∈ Q[[q]].

To begin with, let us explain how any power series F ∈ F[[q]] can we written, in a unique way,
as a H-fraction, i.e. a super δ-fraction (2.7) with δ = 2 (actually the same argument works for
any δ, see the proof of Theorem 2.1 in [Han16]).

First, one roughly expands the power series F (q) as

F (q) = v0q
k0 +O(qk0+1)
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where v0 ̸= 0 and k0 ∈ Z⩾0, so that F (q)/(v0q
k0) = 1 +O(q). Hence one can write

v0q
k0

F (q)
= D0(q)− qk0+2F1(q) (3.1)

with D0 a polynomial such that D0(0) = 1 and deg(D0) ⩽ k0 + 1, and F1(q) a power series.
Notice that the condition on the degree makes D0 and F1 uniquely defined. Equivalently we
have

F (q) =
v0q

k0

D0(q)− qk0+2F1(q)
(3.2)

and repeating the process with F1 will give similar objects v1, k1, D1, F2 such that

F1(q) =
v1q

k1

D1(q)− qk1+2F2(q)

hence

F (q) =
v0q

k0

D0(q) +

−v1q
k0+k1+2

D1(q)− qk1+2F2(q)
.

Going on with this process inductively will lead to the Hankel continued fraction

F (q) =
v0q

k0

D0(q) +

−v1q
k0+k1+2

D1(q) +

−v2q
k1+k2+2

D2(q) + · · · (3.3)

Thus we have proved that any power series F (q) can be developed (uniquely) as a H-fraction,
and next problem is to compute explicitly data sequences (vi), (ki) and (Di) from F . We do not
know the answer in general, but when the power series is quadratic in the sense that there exists
three polynomials A,B,C ∈ F[q] such that

A+BF + CF 2 = 0 (3.4)

(together with some conditions on A,B,C that will be described soon) an algorithm will help
us to do that. Of course, it will only be usable in case of a finite number of steps. This situation
can happen when sequences of data are finite by nature (e.g. when the field is finite; see the
original applications in [Han16]) or when the super fraction is going to be periodic (or ultimately
periodic), which will be our case when considering F = Φn, although the field F = Q is infinite.

Let us elaborate. Suppose from now on that F satisfies the quadratic equation (3.4) together
with the following conditions

A ̸= 0, B(0) = 1, C ̸= 0, C(0) = 0. (3.5)

(Recall from (2.5) that this is the case for F = Φn.) Then the quadratic equation (3.4) with
conditions (3.5) has a unique solution

F =
−B +

√
B2 − 4AC

2C
.

According to (3.1) we need to know the first term of the expansion of F (q) about q = 0. Because

F (q) =
−A(q)

B(q) + C(q)F (q)

with conditions (3.5), we see that this amounts to know the lower degree term of A(q). Writing
the nonzero polynomial A as

A(q) = akq
k +O(qk+1) (3.6)
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with k ∈ Z⩾0 and ak ̸= 0, the left-hand side of (3.1) reads

−akq
k

F (q)
=

−2akq
kC

−B +
√
B2 − 4AC

=
−2akq

kC(
√
B2 − 4AC +B)

−4AC

=
−akq

kC

A
× −B −

√
B2 − 4AC

2C
. (3.7)

(From now on, for polynomials we will often write P instead of P (q), for easier reading.) Let

Γ(q) =
+∞∑
j=0

γjq
j =

1−√
1− 4q

2q

be the generating function of the Catalan numbers (1.3). We calculate

Γ

(
AC

B2

)
=

B

A
× B −

√
B2 − 4AC

2C

which implies

−B −
√
B2 − 4AC

2C
= −B

C
− −B +

√
B2 − 4AC

2C

= −B

C
+

A

B
Γ

(
AC

B2

)
= −B

C
+

A

B

+∞∑
j=0

γj

(
AC

B2

)j

.

Inserting this equality in (3.7) we deduce that

−akq
k

F (q)
=

−akq
kC

A

(
−B

C
+

A

B

+∞∑
j=0

γj

(
AC

B2

)j)

=
−akq

kB

A

(
−1 +

+∞∑
j=0

γj

(
AC

B2

)j+1)
.

Now, as explained in (3.1) there exists a unique polynomial D with D(0) = 1 and deg(D) ⩽ k+1,
and a unique power series R1 such that

−akq
k

F (q)
= D − qk+2R1(q)

hence
−akq

kB

A

(
−1 +

+∞∑
j=0

γj

(
AC

B2

)j+1)
= D(q)− qk+2R1(q). (3.8)

Recall that we want to compute explicitly the polynomial D since it will produce the denominator
in the first step (3.2) of the H-fraction expansion of F . To do so, remind from (3.5) that we have
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B = 1 +O(q) and C = O(q). Together with (3.6) this implies

AC

B2
=

[akq
k +O(qk+1)] ·O(q)

[1 +O(q)]2
= akO(qk+1) +O(qk+2)

so that
(
AC
B2

)j+1
= O(qk+2) for all j ⩾ 1. In other words the series in the left-hand side of (3.8)

can contribute to D only with its first term, and there exists a power series R2 such that

−akq
kB

A

(
−1 +

AC

B2

)
= D − qk+2R2(q).

Writing C(q) = c1q + c2q
2 + · · · + cdq

d and remembering B = 1 + O(q), we conclude that D is
uniquely determined by the following conditions:

deg(D) ⩽ k + 1 and akq
kB

A
− akc1q

k+1 = D − qk+2R3(q) (3.9)

for some power series R3. Property that D(0) = 1 will be automatic, by (3.1).
All of this leads us to formulate the following definition, already introduced in [Han16], but

refined here in the special case δ = 2, i.e. when super fractions are H-fractions.

Algorithm 3.1. [Algorithm NextABC for H-fractions]
Prototype: (A∗, B∗, C∗, k, ak, D) = NextABC(A,B,C).
Input: three polynomials A,B,C ∈ F[q] satisfying (3.5).
Output: a positive integer k,

a nonzero scalar ak ∈ F,
a polynomial D ∈ F[q] of degree ⩽ k + 1 such that D(0) = 1,
three polynomials A∗, B∗, C∗ ∈ F[q] satisfying (3.5).

Step 1: Define k, ak by (3.6).
Step 2: Define D by (3.9).
Step 3: Set

A∗ :=
1

q2k+2

(−D2A

ak
+BDqk − Cakq

2k

)
B∗ :=

2AD

akqk
−B

C∗ := −Aq2

ak
.

In this algorithm, all objects are well (and uniquely) defined by the previous discussion. It
remains only to justify that A∗, B∗, C∗ are indeed polynomials and that they also satisfy (3.5);
but this comes from Lemma 3.2 in [Han16].

Now, let us check that our algorithm NextABC works as expected:
• Start with a quadratic power series F as in (3.4), with the associated triple of polynomials
(A,B,C) satisfying (3.5).

• Set (A1, B1, C1, k0, a0, D0) := NextABC(A,B,C). Then we have

F (q) =
−a0q

k0

D0(q)− qk0+2F1(q)
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as in (3.2). The main point now is that the power series F1 is itself quadratic, more precisely
it satisfies the equation

A1 +B1F1 + C1F
2
1 = 0.

This fact is also a statement taken from Lemma 3.2 in [Han16].
• Thus the algorithm can be applied a second time and we set (A2, B2, C2, k1, a1, D1) :=
NextABC(A1, B1, C1). As in the beginning of this subsection we have

F1(q) =
−a1q

k1

D1(q)− qk1+2F2(q)
hence F (q) =

−a0q
k0

D0(q) +

a1q
k0+k1+2

D1(q)− qk1+2F2(q)

with F2 still quadratic: A2 + B2F2 + C2F
2
2 = 0. Going on through this process will define

(kj , aj , Dj) for any j ⩾ 0 and will lead to the aimed H-fraction (3.3).
• Suppose that there exists integers 0 < p < p′ such that (Ap′ , Bp′ , Cp′) = (Ap, Bp, Cp). Then

the algorithm will repeat the same sequences indefinitely and the H-fraction is ultimately
periodic:

F (q) =
−a0q

k0

D0(q) +

p−1

K
j=1

ajq
kj−1+kj+2

Dj(q) +

p′−1

K
j=p

ajq
kj−1+kj+2

Dj(q)

∗

. (3.10)

This is precisely what is going to happen when F = Φn.
Of course, in theory it is not necessary to define D by (3.9) rather than by (3.1) to get the

H-fraction; the original algorithm in [Han16], constructed to produce super δ-fractions for any
δ, does not do that. But in our case δ = 2, it will be much more easier to find the polynomials
Dj by looking at simple expressions involving only polynomials Aj , Bj , Cj .

Remark 3.2. Actually, Algorithm 3.1 can be simplified. Indeed, because of definition of C∗

in Step 3 we see that we will always have C = O(q2), except maybe at first implementation of
the algorithm. In other words c1 = 0 and definition (3.9) of the polynomial D in Step 2 of
Algorithm 3.1 becomes simpler.
Actually, we will encounter further simplifications when applying Algorithm 3.1 to F = Φn: the
coefficients ak will always be ±1, as we shall see soon.

3.2. Proof of Theorem A. Fix an integer n ⩾ 3. In this subsection we will apply Algorithm 3.1
to F = Φn and prove Theorem A. As explained after the statement of Algorithm 3.1, our task
is to exhibit a family of sextuplets associated with F = Φn:

Qj := (Aj , Bj , Cj , kj , aj , Dj), j ⩾ 0, (3.11)

by applying repeatedly the algorithm, until periodicity is observed and stops the process. Then
the H-fraction will have the form (3.10).

In fact, it turns out that we will need to define two different families of objects to achieve our
goal. We start with the first one.

Definition 3.3. Let
(
Q(m)

1

)
m⩾1

denote the sequence of sextuplets

Q(m)
1 =

(
A

(m)
1 , B

(m)
1 , C

(m)
1 , k

(m)
1 , a

(m)
k1

, D
(m)
1

)
constituted of polynomials A

(m)
1 , B

(m)
1 , C

(m)
1 , D

(m)
1 , integers k

(m)
1 and numbers a

(m)
k1

∈ {±1} de-
fined as follows:
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1) If m = 1:

A
(m)
1 = −1, B

(m)
1 = −

(
q2 − q + 1

)
(qn + 1)− 2 q

q − 1
, C

(m)
1 = q,

k
(m)
1 = 0, a

(m)
k1

= −1, D
(m)
1 = 1− q.

2) If m = 3j + 1 with 1 ⩽ j ⩽ n− 2:

A
(m)
1 = −

(
q2 − q + 1

)(
qn−j − qn − 1

)
+ qj+1

(q − 1)2
, B

(m)
1 = −

(
q2 − q + 1

)
(qn + 1)− 2 qj+1

q − 1
,

C
(m)
1 = −qj+1, k

(m)
1 = 0,

a
(m)
k1

= 1, D
(m)
1 = 1− q.

3) If m = 3j + 2 with 0 ⩽ j ⩽ n− 2:

A
(m)
1 =

(
q2 − q + 1

)
qn−j−2, B

(m)
1 =

(
q2 − q + 1

)(
2 qn−j − qn − 1

)
q − 1

,

C
(m)
1 =

(
q4 − q3 + q2

)(
qn−j − qn − 1

)
+ qj+3

(q − 1)2
, k

(m)
1 = n− 2− j,

a
(m)
k1

= 1, D
(m)
1 =

qn−j − 1

q − 1
= [n− j]q.

4) If m = 3j + 3 with 0 ⩽ j ⩽ n− 2:

A
(m)
1 = qj , B

(m)
1 =

(
q2 − q + 1

)
[n]q, C

(m)
1 = −

(
q2 − q + 1

)
qn−j ,

k
(m)
1 = j, a

(m)
k1

= 1, D
(m)
1 = [j + 2]q − q.

Using (2.5) we see that definition of
(
A

(1)
1 , B

(1)
1 , C

(1)
1

)
is such that

A
(1)
1 +B

(1)
1 Φn + C

(1)
1 Φ2

n = 0,

i.e. this first triple corresponds to the initialization of the process described in Section 3.1. Now
we prove that our algorithm NextABC produces successively all the sequences defined above.

Lemma 3.4. Suppose that 1 ⩽ m ⩽ 3n− 3. Then

NextABC
(
A

(m)
1 , B

(m)
1 , C

(m)
1

)
=
(
A

(m+1)
1 , B

(m+1)
1 , C

(m+1)
1 , k

(m)
1 , a

(m)
k1

, D
(m)
1

)
.

Proof. Let m be an integer such that 1 ⩽ m ⩽ 3n− 3. To make our calculations easier to read,
we just write A, B, C, k, ak, D instead of A(m)

1 , B(m)
1 , C(m)

1 , k(m)
1 , a(m)

k1
, D(m)

1 respectively. Let
us apply the algorithm NextABC for each case introduced in Definition 3.3.

1) Case m = 1.
Step 1: Since A = −1, (3.6) gives k = 0 and ak = −1.
Step 2: Since C = q, we have c1 = 1 and (3.9) says that the polynomial D is defined by

q −
(
q2 − q + 1

)
(qn + 1)− 2 q

q − 1
= 1− qn+1 − qn − q

q − 1
= D +O(q2)

and that deg(D) ⩽ 1. We see immediately that D = 1− q.



q-DEFORMED METALLIC NUMBERS 21

Step 3: Applying the definitions, we easily check that A∗ = A(2), B∗ = B(2), C∗ = C(2).
2) Case m = 3j + 1 with 1 ⩽ j ⩽ n− 2.

Step 1: Here,

A = −
(
q2 − q + 1

)(
qn−j − qn − 1

)
+ qj+1

(q − 1)2
= 1 +O(q)

so that k = 0 and ak = 1.
Step 2: Since C = −qj+1, we have c1 = 0 and by (3.9), D is the unique polynomial of degree
⩽ 1 such that

B

A
= D +O(q2).

But
B

A
=

(
(
q2 − q + 1)(qn + 1)− 2 qj+1

)
(q − 1)

(q2 − q + 1)(qn−j − qn − 1) + qj+1
=

−1 + 2q +O(q2)

−1 + q +O(q2)

because 1 ⩽ j ⩽ n− 2, hence D = 1− q.
Step 3: We obtain easily A∗ = A(m+1), B∗ = B(m+1), C∗ = C(m+1).

3) Case m = 3j + 2 with 0 ⩽ j ⩽ n− 2.
Step 1: Since A =

(
q2 − q + 1

)
qn−j−2 = qn−j−2+O(qn−j−1) we have k = n− j−2 and ak = 1.

Step 2: Since

C =

(
q4 − q3 + q2

)(
qn−j − qn − 1

)
+ qj+3

(q − 1)2
,

we have c1 = 0. By (3.9), D must satisfy deg(D) ⩽ n− j − 1 and

2 qn−j − qn − 1

q − 1
= D +O(qn−j).

Splitting the left-hand side as qn−j−qn

q−1 + qn−j−1
q−1 , we deduce that

D =
qn−j − 1

q − 1
= [n− j]q.

Step 3: With the definitions, we check that A∗ = A(m+1), B∗ = B(m+1), C∗ = C(m+1).
4) Case m = 3j + 3 with 0 ⩽ j ⩽ n− 2.

Step 1: In this case A = qj , so that k = j and ak = 1.
Step 2: Since C = −

(
q2 − q + 1

)
qn−j , we have c1 = 0. By (3.9), D is a polynomial of degree

⩽ j + 1 which satisfies (
q2 − q + 1

)
[n]q = D +O(qj+2),

that is to say
1 + q2 + q3 + · · ·+ qn−1 + qn+1 = D +O(qj+2).

Condition j + 1 ⩽ n− 1 implies that

D = 1 + q2 + q3 + · · ·+ qj+1 = −q + [j + 2]q.

Step 3: As in the previous cases, we easily find that A∗ = A(m+1), B∗ = B(m+1), C∗ = C(m+1),
where m+ 1 = 3j + 1 with 1 ⩽ j ⩽ n− 1.
Thus the lemma is proved. □
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Lemma 3.4 gives us the list of the first 3n− 2 sextuplets Qj in (3.11) that are needed to write
the H-fraction of Φn. However, a simple calculation shows that the result of

NextABC
(
A

(3n−2)
1 , B

(3n−2)
1 , C

(3n−2)
1

)
is not expressible in terms of the data that were defined Definition 3.3, and we have to define
another family of data to proceed calculations.

Definition 3.5. Let
(
Q(m)

2

)
m⩾1

denote the sequence of sextuplets

Q(m)
2 =

(
A

(m)
2 , B

(m)
2 , C

(m)
2 , k

(m)
2 , a

(m)
k2

, D
(m)
2

)
constituted of polynomials A

(m)
2 , B

(m)
2 , C

(m)
2 , D

(m)
2 , integers k

(m)
2 and numbers a

(m)
k2

∈ {±1} de-
fined as follows:
1) If m = 1:

A
(m)
2 = 1 + q2[n− 1]q, B

(m)
2 = ⟨n⟩q − 2qn, C

(m)
2 = −qn,

k
(m)
2 = 0, a

(m)
k2

= 1, D
(m)
2 = 1.

2) If m = 4:

A
(m)
2 = qn−1, B

(m)
2 = ⟨n⟩q, C

(m)
2 = −qn+2,

k
(m)
2 = n− 1, a

(m)
k2

= 1, D
(m)
2 = ⟨n⟩q + qn+1.

3) If m = 3j + 1 with 2 ⩽ j ⩽ n:

A
(m)
2 =

(
q2 − q + 1

)
qj−2, B

(m)
2 = (q2 − q + 1)[n]q, C

(m)
2 = −qn−j+2,

k
(m)
2 = j − 2, a

(m)
k2

= 1, D
(m)
2 = [j]q.

4) If m = 2:

A
(m)
2 = −qn−1, B

(m)
2 = ⟨n⟩q + 2qn+1, C

(m)
2 = −q2 − q4[n− 1]q,

k
(m)
2 = n− 1, a

(m)
k2

= −1, D
(m)
2 = ⟨n⟩q + qn+1.

5) If m = 5:

A
(m)
2 = −1− q2[n− 1]q, B

(m)
2 = ⟨n⟩q + 2qn+1, C

(m)
2 = −qn+1,

k
(m)
2 = 0, a

(m)
k2

= −1, D
(m)
2 = 1.

6) If m = 3j + 2 with 2 ⩽ j ⩽ n− 1:

A
(m)
2 = −

(
q2 − q + 1

)(
qj − qn − 1

)
+ qn−j+1

(q − 1)2
, B

(m)
2 =

(
q2 − q + 1

)(
2 qj − qn − 1

)
q − 1

,

C
(m)
2 = −

(
q2 − q + 1

)
qj , k

(m)
2 = 0,

a
(m)
k2

= 1, D
(m)
2 = −q + 1.
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7) If m = 3:

A
(m)
2 = qn, B

(m)
2 = ⟨n⟩q, C

(m)
2 = −qn+1,

k
(m)
2 = n, a

(m)
k2

= 1, D
(m)
2 = ⟨n⟩q.

8) If m = 3j + 3 with 1 ⩽ j ⩽ n− 1:

A
(m)
2 = qn−j−1, B

(m)
2 = −

(
q2 − q + 1

)
(qn + 1)− 2 qn−j+1

q − 1
,

C
(m)
2 =

((
q2 − q + 1

)(
qj − qn − 1

)
+ qn−j+1

)
q2

(q − 1)2
, k

(m)
2 = n− 1− j,

a
(m)
k2

= 1, D
(m)
2 = [n− j + 1]q − q.

Notice that (
A

(1)
2 , B

(1)
2 , C

(1)
2

)
=
(
A

(3n−2)
1 , B

(3n−2)
1 , C

(3n−2)
1

)
. (3.12)

Thereby the second family
(
Q(m)

2

)
m⩾1

is the natural continuation of the first one
(
Q(m)

1

)3n−2

m=1
.

Lemma 3.6. Suppose that 1 ⩽ m ⩽ 3n+ 1. Then

NextABC
(
A

(m)
2 , B

(m)
2 , C

(m)
2

)
=
(
A

(m+1)
2 , B

(m+1)
2 , C

(m+1)
2 , k

(m)
2 , a

(m)
k2

, D
(m)
2

)
.

Proof. As for Lemma 3.4, the proof consists in applying the algorithm NextABC for each case
introduced in Definition 3.5. Calculations as exactly of the same kind, lengthy but not difficult,
and we omit details here. □

Notice that Lemma 3.6 is not valid any more for next index m = 3n+ 2, i.e.

NextABC
(
A

(3n+2)
2 , B

(3n+2)
2 , C

(3n+2)
2

)
will not give a sextuplet consisting of elements defined in Definition 3.5. Nevertheless, we make
the following crucial observation:

A
(3n+1)
2 = (q2 − q + 1)qn−2 = A

(2)
1 ,

B
(3n+1)
2 = (q2 − q + 1)[n]q = B

(2)
1 ,

C
(3n+1)
2 = −q2 = C

(2)
1 ,

k
(3n+1)
2 = n− 2 = k

(2)
1 ,

a
(3n+1)
k2

= 1 = a
(2)
k1

,

D
(3n+1)
2 = [n]q = D

(2)
1 ,

and therefore

NextABC
(
A

(3n+1)
2 , B

(3n+1)
2 , C

(3n+1)
2

)
=
(
A

(3)
1 , B

(3)
1 , C

(3)
1 , k

(2)
1 , a

(2)
k1

, D
(2)
1

)
.

In other words we came back to the first family
(
Q(m)

1

)
of sextuplets and this proves the periodicity

of the H-fraction expansion of Φn. Indeed, we just proved that the family (3.11) (Qj)j⩾0 of
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sextuplets associated with Φn is completely determined by the following equalities:

first terms: Qj =

Q(j+1)
1 if 0 ⩽ j ⩽ 3n− 4,

Q(j−3n+4)
2 if 3n− 3 ⩽ j ⩽ 6n− 4,

(3.13)

periodicity: Qj+6n−4 = Qj for j ⩾ 1.

We summarize the results of this section in Table 3.1 below. Extracting the data sequence
(kj , aj , Dj) from that table and applying (3.10) (with p = 1 and p′ = 6n − 3) gives exactly
(1.20), hence Theorem A is proved. In the table, the first line j = 0 corresponds to the head
of the H-fraction (first term) and the periodic part consists of the block of lines from j = 1 to
j = 6n− 4.

3.3. A remark on symmetries. Formula (1.20) reveals three types of symmetries inside the
period of the continued fraction. Let (αi) and (βi) denote the sequences of numerators and
denominators of the continued fraction (1.20), respectively, i.e. write

Φn(q) =

+∞

K
i=0

αi

βi
=

α0

β0 +

(
6n−4

K
i=1

αi

βi +

)∗

.

1) Symmetries inside the whole period (and, actually, a bit larger block):

αi = α6n−1−i, i = 1, 2, . . . , 6n− 2.

βi = β6n−2−i, i = 1, 2, . . . , 6n− 3.

2) Symmetries inside the first block Un(q):

αi = α3n−2−i, i = 1, 2, . . . , 3n− 3.

β0 = β3n−3 − q and βi = β3n−3−i + χiq, i = 1, 2, . . . , 3n− 4,

where χi =


0 if i ≡ 0 (mod 3)

1 if i ≡ 1 (mod 3)

−1 if i ≡ −1 (mod 3).

Symmetries of type (1) and (2) imply also similar symmetries inside the block Wn(q).
3) ‘Pseudo half-period’ for numerators inside the whole period:

αi = αi+3n+1, i = 1, . . . , 3n− 3.

These identities reflect that the sequence of numerators in block Wn(q) is essentially the
same as in block Un(q).

Example 3.7. Let us write the H-fraction and illustrate its symmetries in the case n = 5. We
have

Φ5(q) =
1

−q + 1 +

(
U5(q) +

V5(q) +
W5(q) +

)∗
(3.14)
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Table 3.1. Results of the algorithm NextABC applied to Φn.

j Qj kj aj Dj Contribution

0 Q(1)
1 0 −1 1− q Head

1 Q(2)
1 n− 2 1 [n]q Un(q)

2 Q(3)
1 0 1 1

3 Q(4)
1 0 1 1− q

...
...

...
...

...

3n− 5 Q(3n−4)
1 0 1 1 + q

3n− 4 Q(3n−3)
1 n− 2 1 [n]q − q

3n− 3 Q(3n−2)
1 = Q(1)

2 0 1 1

3n− 2 Q(2)
2 n− 1 −1 ⟨n⟩q + qn+1 Vn(q)

3n− 1 Q(3)
2 n 1 ⟨n⟩q

3n Q(4)
2 n− 1 1 ⟨n⟩q + qn+1

3n+ 1 Q(5)
2 0 −1 1

3n+ 2 Q(6)
2 n− 2 1 [n]q − q Wn(q)

3n+ 3 Q(7)
2 0 1 1 + q

3n+ 4 Q(8)
2 0 1 1− q

...
...

...
...

...

6n− 7 Q(3n−3)
2 1 1 1 + q2

6n− 6 Q(3n−2)
2 n− 3 1 [n− 1]q

6n− 5 Q(3n−1)
2 0 1 1− q

6n− 4 Q(3n)
2 0 1 1

6n− 3 Q(3n+1)
2 = Q(2)

1 n− 2 1 [n]q 2nd period
...

...
...

...
...

with

U5(q) =
12

K
i=1

αi

βi
=

q5

[5]q +

q5

1 +

q2

1− q +

q4

[4]q +

q5

q2 + 1 +

q3

1− q +

q3

[3]q +

q5

[4]q − q +

q4

1− q +

q2

[2]q +

q5

[5]q − q +

q5

1
,
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V5(q) =
16

K
i=13

αi

βi
=

−q6

⟨5⟩q + q6 +

q11

⟨5⟩q +

q11

⟨5⟩q + q6 +

−q6

1
,

and

W5(q) =
26

K
i=17

αi

βi
=

q5

[5]q − q +

q5

[2]q +

q2

1− q +

q4

[4]q − q +

q5

[3]q +

q3

1− q +

q3

q2 + 1 +

q5

[4]q +

q4

1− q +

q2

1
.

We can check symmetries of type (1):

αi = α29−i, i = 1, 2, . . . , 28.

βi = β28−i, i = 1, 2, . . . , 27.

as well as symmetries of type (2):

αi = α13−i, i = 1, . . . , 12.

β0 = β12 − q and βi = β12−i + χiq, i = 1, . . . , 11,

and of type (3):
αi = αi+16, i = 1, . . . , 12.

4. Special values and (anti-)periodicity property

As mentioned in the introduction, the statement of Theorem B for 1 ⩽ ℓ ⩽ n + 1 obviously
follows from Theorem D and the case ℓ = 0. This section is devoted to the proof of the latter
and we still assume that n ⩾ 3.

4.1. Collecting some data. In this subsection we give the explicit values of the family of
parameters (sj) and (εj) introduced in (2.8) and (2.9), because they are needed to compute
the Hankel determinants ∆j(Φn) with formula (2.10). In particular, we will emphasize on some
symmetric patterns they form, because these will simplify further calculations.

First, we know from the results in Section 3.2 that the sequence (ki) is (6n− 4)-periodic and
determined by the following first values:

k0 = 0,
k3i+1 = n− 2− i, k3i+2 = i, k3i+3 = 0, for i = 0, . . . , n− 2
k3n−2 = n− 1, k3n−1 = n, k3n = n− 1,
k3i+1 = 0, k3i+2 = 2n− 2− i, k3i+3 = i− n, for i = n, . . . , 2n− 3
k6n−5 = 0.

(4.1)

Hence we have:

Lemma 4.1. The first period of the sequence (ki) admits the following symmetries:
1) Symmetry inside the whole period {k0, . . . , k6n−3}:

ki = k6n−2−i for i = 0, . . . , 6n− 2. (4.2)
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2) One-to-one correspondence between subsets {k0, . . . , k3n−3} and {k3n+1, . . . , k6n−2} of ‘non-
central’ values:

ki+3n+1 = ki for i = 0, . . . , 3n− 3. (4.3)
3) Symmetries inside the subsets {k0, . . . , k3n−3} and {k3n+1, . . . , k6n−2}:

ki = k3n−3−i for i = 0, . . . , 3n− 3 (4.4)
k3n+1+i = k6n−2−i for i = 0, . . . , 3n− 3.

Example 4.2. For a better understanding, let us illustrate the symmetries when n = 5. Here
3n− 3 = 12, 3n+ 1 = 16, 6n− 2 = 28 and the ki’s are given by the array:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
ki 0 3 0 0 2 1 0 1 2 0 0 3 0

i 13 14 15
ki 4 5 4

i 16 17 18 19 20 21 22 23 24 25 26 27 28
ki 0 3 0 0 2 1 0 1 2 0 0 3 0

Thus we have

ki = k28−i, i = 0, . . . , 14; ki+16 = ki, i = 0, . . . , 12,

ki = k12−i, i = 0, . . . , 6; k16+i = k28−i, i = 0, . . . , 6.

Recall from (2.10) that the numbers sj ∈ S enumerate the nonzero Hankel determinants of
Φn. We determine now their values:
Lemma 4.3. 1) The values of the parameter sj, for 0 ⩽ j ⩽ 6n− 4, are given by

s3p =


p(n+ 1), if 0 ⩽ p ⩽ n− 1,

(n+ 1)2, if p = n,
1 + (p+ 3)n, if n+ 1 ⩽ p ⩽ 2n− 2;

s3p+1 =

{
1 + p(n+ 1), if 0 ⩽ p ⩽ n− 1,
n+ (p+ 1)(n+ 1), if n ⩽ p ⩽ 2n− 2;

s3p+2 =


(p+ 1)n, if 0 ⩽ p ⩽ n− 2,
n(n+ 1), if p = n− 1,
(p+ 2)(n+ 1), if n ⩽ p ⩽ 2n− 2.

2) We have the following relations:

sj+3n+1 = sj + s3n+1 = sj + n+ (n+ 1)2 for 0 ⩽ j ⩽ 3n− 2, (4.5)
sj + s6n−1−j = s6n−1 = (2n+ 1)(n+ 1) for 0 ⩽ j ⩽ 6n− 1. (4.6)

Proof. Recall that, by definition, s0 = 0 and sj = j +
∑j−1

i=0 ki. Thus, from the values (4.1) of
the ki’s it is easy to compute first all values of sj for 0 ⩽ j ⩽ 3n + 1. Then we prove (4.5) by
using (4.3):

sj+3n+1 = s3n+1 + j +

3n+j∑
i=3n+1

ki = s3n+1 + j +

j−1∑
i=0

ki = s3n+1 + sj
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and in particular these symmetries give the remaining values of sj for 3n + 2 ⩽ j ⩽ 6n − 4.
Similarly, the second symmetry sj + s6n−1−j = s6n−1 follows from (4.2) and it remains only to
compute, with the help of (4.5)

s6n−1 = s3n−2 + s3n+1 = n+ (n+ 1)2 + n2 = (2n+ 1)(n+ 1). □

Lemma 4.4. 1) The values of the parameter εj, for 0 ⩽ j ⩽ 6n− 4, are given by

ε3p =


p(n−p−1)(n−1)

2 + p(p−1)(p+1)
3 , if 0 ⩽ p ⩽ n− 1,

n(n2+2)
3 , if p = n,

n(n+1)(2n+1)
6 + (p−n)(2n−p)(n−2)

2 + (p−n)(p−n−1)(p−n−2)
3 , if n+ 1 ⩽ p ⩽ 2n− 2;

ε3p+1 =

{
ε3p, if 0 ⩽ p ⩽ n− 1,
n(n+1)(2n+1)

6 + (p−n)(2n−p−1)(n−1)
2 + (p−n)(p−n−1)(p−n+1)

3 , if n ⩽ p ⩽ 2n− 2;

ε3p+2 =


(p+1)(n−p−1)(n−2)

2 + p(p−1)(p+1)
3 , if 0 ⩽ p ⩽ n− 2,

n(n−1)(2n−1)
6 , if p = n− 1,

ε3p+1, if n ⩽ p ⩽ 2n− 2.

2) We have the following relations:

εj+3n+1 = εj + ε3n+1 = εj +
n(n+1)(2n+1)

6 for 0 ⩽ j ⩽ 3n− 2, (4.7)

εj + ε6n−1−j = ε6n−1 =
n(n+1)(2n+1)

6 + n(n−1)(n−2)
3 for 0 ⩽ j ⩽ 6n− 1. (4.8)

Proof. Recall that εj :=
∑j−1

i=0
ki(ki+1)

2 with convention ε0 := 0. As one can guess, computations
rely essentially on the values (4.1) of the kj ’s and on the classical formula

a+b−1∑
i=a

i(i+ 1) = ab(a+ b) +
b(b− 1)(b+ 1)

3

for nonnegative integers a and b, at least for εj with j ⩽ 3n+ 1. The remaining cases, as in the
previous lemma, will follow from the symmetry relations (4.7) and (4.8). To prove the first one,
we simply use (4.3), while to prove the second one we use (4.5): we write for 1 ⩽ j ⩽ 6n− 1 (the
remaining case j = 0 is trivial)

εj =

j−1∑
i=0

ki(ki + 1)

2
=

j−1∑
i=0

k6n−2−i(k6n−2−i + 1)

2
=

6n−2∑
i=6n−1−j

ki(ki + 1)

2

so that

εj + ε6n−1−j =

6n−2∑
i=6n−1−j

ki(ki + 1)

2
+

6n−2−j∑
i=0

ki(ki + 1)

2
= ε6n−1.

We then employ (4.7) to get that

ε6n−1 = ε3n+1 + ε3n−2 =
n(n+ 1)(2n+ 1)

6
+

n(n− 1)(n− 2)

2
. □
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4.2. Proof of Theorem B in the case ℓ = 0. First we note that, when ℓ = 0, first assertion in
Theorem B follows immediately from Theorem A. Indeed, we see that the sequence (vi) defined
in (2.7) can only have values ±1. More precisely, using the fact that the sequence is (6n − 4)-
periodic with offset 1, i.e. vi+6n−4 = vi for all i ⩾ 1 and by looking at the list {v0, v1, . . . , v6n−4}
in (1.20) we get that

vj =

{
1 if j = 0, or j ≡ 3n− 2 (mod 6n− 4), or j ≡ 3n+ 1 (mod 6n− 4),
−1 else.

(4.9)

Applying formula (2.10) we deduce that Hankel determinants ∆j can only take the values −1, 0, 1.
Thus, it remains to prove the second assertion in Theorem B, i.e. formula

∆j+2n(n+1) = (−1)n∆j for all j ⩾ 0. (4.10)

In fact, to do this, it is not even necessary to know the explicit expression of the Hankel deter-
minants, which will be given in Section 5.

Lemma 4.5. We have sp+6n−4 = sp + 2n(n+ 1) for all p ⩾ 0.

Proof. By definition,

sp+6n−4 = p+ 6n− 4 +

p−1∑
i=0

ki = s6n−4 + p+

6n−4+p∑
i=6n−4

ki.

Using the (6n− 4)-periodicity of the sequence (ki) we obtain that sp+6n−4 = s6n−4 + sp, and we
read the value

s6n−4 = 2n(n+ 1) (4.11)
from Lemma 4.3. □

From this lemma we deduce that j ∈ S if and only if j + 2n(n+ 1) ∈ S and that it suffices to
prove (4.10) for j ∈ S (see (2.8) for the definition of the set S). In other words, we are left to
prove that

∆sp+2n(n+1) = (−1)n∆sp for all p ⩾ 0.

This will be an immediate consequence of Lemma 4.5 and of the following result.

Proposition 4.6. We have ∆sp+6n−4 = (−1)n∆sp for all p ⩾ 0.

Proof. First of all, note that, since parameters vi can only be ±1 we can rewrite the expression
of nonzero Hankel determinants (2.10) as follows:

∆sp = (−1)εp(v0v1 · · · vp−1)
sp vs11 vs22 · · · vsp−1

p−1 . (4.12)

However, in this formula we must exclude the case p = 0, i.e. sp = 0, where ∆0 = 1 by
convention, and this leads us to divide our proof into two parts.

• Let us first suppose that p ⩾ 1. In this case, formula (4.12) also gives

∆sp+6n−4 = (−1)εp+6n−4
(
v0v1 · · · vp+6n−5)

sp+6n−4 vs11 vs22 · · · vsp+6n−5

p+6n−5

= (−1)εp+6n−4
(
v0v1 · · · v6n−4

)sp+6n−4
(
v6n−3v6n−2 · · · vp+6n−5

)sp+6n−4

×
(
vs11 vs22 · · · vs6n−4

6n−4

)(
v
s6n−3

6n−3 v
s6n−2

6n−2 · · · vsp+6n−5

p+6n−5

)
.
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Let us simplify last expression. Firstly, because of (4.9) we have

v0v1 · · · v6n−4 = (−1)6n−3−3 = 1.

Secondly, by using the (6n−4)-periodicity of the sequence (ki) we see that εp+6n−4 = ε6n−4+εp,
with

ε6n−4 =
(2n− 1)(n2 − n+ 3)

3
(4.13)

by Lemma 4.4 and we note that this is always an odd number. Thirdly, since the sequence (vi)
is (6n− 4)-periodic with values in {±1}, since sp+6n−4 has same parity as sp by Lemma 4.5 and
since v0 = 1, we get(

v6n−3v6n−2 · · · vp+6n−5

)sp+6n−4 =
(
v1v2 · · · vp−1

)sp =
(
v0v1 · · · vp−1

)sp
and, similarly,

v
s6n−3

6n−3 v
s6n−2

6n−2 · · · vsp+6n−5

p+6n−5 = vs11 vs22 · · · vsp−1

p−1 .

To sum up, so far we have proved that

∆sp+6n−4 = (−1)εp+1
(
v0v1 · · · vp−1

)sp(vs11 vs22 · · · vsp−1

p−1

)(
vs11 vs22 · · · vs6n−4

6n−4

)
= −∆sp

(
vs11 vs22 · · · vs6n−4

6n−4

)
.

It remains to calculate the product in the right-hand side of this equality, which by (4.9) equals

(−1)s1+s2+···+s6n−4−s3n−2−s3n+1 .

But

s1+s2+ · · ·+s6n−4−s3n−2−s3n+1 = s1+s2+ · · ·+s6n−2−(s6n−3+s6n−2)−(s3n−2+s3n+1)

with

s6n−3 = s3n−4 + s3n+1 = 2n2 + 2n+ 1, (4.14)

s6n−2 = s3n−3 + s3n+1 = 2n2 + 3n (4.15)

by Lemma 4.3, and

s1 + s2 + · · ·+ s6n−2 − (s3n−2 + s3n+1) = (3n− 2)(2n+ 1)(n+ 1)

by (4.6), so that

s1 + s2 + · · ·+ s6n−4 − s3n−2 − s3n+1 = (3n− 2)(2n+ 1)(n+ 1)− (4n+ 1)(n+ 1)

= (n+ 1)(6n2 − 5n− 3).

Finally we find that

vs11 vs22 · · · vs6n−4

6n−4 = (−1)s1+s2+···+s6n−4−s3n−2−s3n+1 = (−1)n+1 (4.16)

and
∆sp+6n−4 = (−1)n∆sp for all p ⩾ 1

as required.
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• To finish our proof, it remains to treat the case p = 0. Namely, we have to check that
∆s6n−4 = (−1)n, where

∆s6n−4 = (−1)ε6n−4(v0v1 · · · v6n−5)
s6n−4 vs11 vs22 · · · vs6n−5

6n−5

by (4.12). But the integer ε6n−4 is odd by (4.13) and the integer s6n−4 is even by (4.11). Together
with the result of (4.16) this yields

∆s6n−4 = (−1) · 1 · (−1)n+1 = (−1)n. □

This completes the proof of Theorem B in the case ℓ = 0.

5. The Hankel determinants ∆j(Φn)

Recall from (2.10) that the nonzero Hankel determinants ∆j are exactly the ones for which
j ∈ S, i.e. j = sq for some integer q ⩾ 0. We give now their explicit values, taking into account
that it suffices to restrict ourselves to a finite subsequence of length 2n(n+1) which is the period
when n is even (resp. the anti-period when n is odd), by the results proved in the previous
section.

Theorem 5.1. 1) The only nonzero Hankel determinants in the list ∆0,∆1, . . . ,∆2n(n+1)−1

formed by the first (anti-)period are the ∆sq with 0 ⩽ q ⩽ 6n− 5. Their explicit values are
as follows:

∆s3p =


(−1)p

n(n−1)
2 (−1)

p(p−1)
2 , if 0 ⩽ p ⩽ n− 1,

(−1)
n(n+1)(n+2)

2 , if p = n,

(−1)(p+1)
n(n−1)

2 (−1)n, if n+ 1 ⩽ p ⩽ 2n− 2;

(5.1)

∆s3p+1 = (−1)p
n(n−1)

2 (−1)
p(p+1)

2 , if 0 ⩽ p ⩽ 2n− 2; (5.2)

∆s3p+2 =


(−1)(p+1)

n(n−1)
2 , if 0 ⩽ p ⩽ n− 2,

(−1)
n(n−1)2

2 , if p = n− 1,

(−1)p
n(n−1)

2 (−1)
(p+1)(p+2)

2 , if n ⩽ p ⩽ 2n− 3.

(5.3)

2) Besides the (anti-)periodicity (4.10) already proved, the Hankel determinants satisfy the
following symmetry property:

∆j = (−1)
n(n+1)

2 ∆(2n+1)(n+1)−j for 0 ⩽ j ⩽ (2n+ 1)(n+ 1). (5.4)

It is important to note that, since (2n + 1)(n + 1) is strictly greater than the length of the
(anti-)period 2n(n+ 1), symmetry (5.4) holds inside the whole first (anti-)period.

Example 5.2. Let us give the explicit values of Hankel determinants ∆j = ∆j(Φn) when
1 ⩽ n ⩽ 5.
1) Recall from (1.14) that sequence ∆(Φ1) is 4-antiperiodic and starts with

1, 1, 1, 0.
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5 10 15 20 25 30 35 40 45 50 55 60 65 70

−1

1

Figure 5.1. First 70 Hankel determinants of Φ5.

2) Sequence ∆(Φ2) is 12-periodic and the period is

1, 1,−1,−1, 1, 0, −1, 0, 0, 1, 0,−1.

(See also Theorem 1.8 in [OP25].)
3) Sequence ∆(Φ3) is 24-antiperiodic and starts with

1, 1, 0,−1,−1, 1, 1, 0,−1,−1, 0, 0, 1, 0, 0, 0, 1, 0, 0,−1,−1, 0, 1, 1.

4) Sequence ∆(Φ4) is 40-periodic and the period is

1, 1, 0, 0, 1, 1,−1, 0, 1, 0,−1,−1, 1, 0, 0,−1, 1, 0, 0, 0,

1, 0, 0, 0, 0, 1, 0, 0, 0, 1,−1, 0, 0, 1,−1,−1, 0, 1, 0,−1.

5) Sequence ∆(Φ5) has an antiperiodicity of length 60 and starts with

1, 1, 0, 0, 0, 1, 1,−1, 0, 0, 1, 0,−1,−1, 0, 1, 0, 0,−1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0,−1,−1, 0, 0, 0,−1,−1, 1, 0, 0,−1, 0, 1, 1, 0,−1, 0, 0, 1

These 60 numbers and their symmetric patterns are best understood with fig. 5.1 which
shows the first 70 Hankel determinants. Values are plotted with bullet points for the first
antiperiod and with crosses afterwards. In particular one can visualize property (5.4):

∆j = ∆66−j for 0 ⩽ j ⩽ 66,

which indicates a symmetry with respect to the point (33, 0) (labeled with a blank circle on
the figure) inside the subset {(j,∆j), 0 ⩽ j ⩽ 66} of the graph.

Remark 5.3. Figure 5.1 helps us to visualize the repartition of zero Hankel determinants, in
particular we can observe the existence of subsets formed with k consecutive zeros for k =
1, 2, 3, 4, 5. Using the results of Lemma 4.3, it is not difficult to see that this is a general
phenomenon: for any k ∈ {1, . . . , n} there exists a set of k successive zero Hankel determinants,
and the case k = n occurs exactly once, between the nonzero determinants ∆s3n−1 and ∆s3n .
Actually this maximal set of n successive zero determinants is also the only one which is invariant
under the symmetry (5.4) (see fig. 5.1 for case n = 5; the 5 consecutive zero determinants are
∆31, ∆32, ∆33, ∆34 and ∆35).
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Proof. First assertion in Part (1) simply results from formula (2.10) and from the fact that
s6n−5 = 2n(n + 1) − 1 by Lemma 4.3. To establish all other statements we split the quite long
proof into three main steps: (A) first we establish Part (1) for 0 ⩽ q ⩽ 3n − 1, then (B) we
justify the symmetry relation (5.4) of Part (2), and finally (C) we will use this symmetry to
prove Part (1) in the remaining cases 3n ⩽ q ⩽ 6n− 5.
(A) Proof of Part (1) for 0 ⩽ q ⩽ 3n − 1. We argue on the congruences of q modulo 3 and
take care separately of some special cases.

• Suppose first that q = 3p+2 with 0 ⩽ p ⩽ n− 2 (hence 2 ⩽ q ⩽ 3n− 4). By (4.12) we must
calculate

∆s3p+2 = (−1)ε3p+2(v0v1 · · · v3p+1)
s3p+2 vs11 vs22 · · · vs3p+1

3p+1

where, by (4.9), all vj = −1 except v0 = 1, so that ∆s3p+2 = (−1)µ3p+2 with

µ3p+2 := ε3p+2 + (3p+ 1)s3p+2 +

3p+1∑
i=1

si.

Using Lemmas 4.3 and 4.4 we compute

µ3p+2 =
(p+1)(n−p−1)(n−2)

2 + p(p−1)(p+1)
3 + (3p+ 1)(p+ 1)n+ (p+ 1)

(
1 + p(3n+2)

2

)
and easily check its parity to establish the first case in (5.3).

• Suppose that q = 3p+1 with 0 ⩽ p ⩽ n− 2 (hence 1 ⩽ q ⩽ 3n− 5). Let us remark that, by
(4.12), the following relation between two consecutive nonzero determinants ∆sq always holds:

∀q ⩾ 0, ∆sq+1 = ∆sq(−1)
kq(kq+1)

2
(
v0v1 · · · vq

)kq+1
. (5.5)

In particular,

∆s3p+2 = ∆s3p+1(−1)
k3p+1(k3p+1+1)

2
(
v0v1 · · · v3p+1

)k3p+1+1

= (−1)(p+1)
n(n−1)

2 (−1)
(n−2−p)(n−1−p)

2 (−1)(3p+1)(n−1−p).

by using (5.3), (4.1) and (4.9). An easy calculation gives (5.2) for 0 ⩽ p ⩽ n− 2.
• Suppose that q = 3p with 1 ⩽ p ⩽ n − 1 (hence 3 ⩽ q ⩽ 3n − 3). Using (5.5), (4.1) and

(4.9), we have
∆s3p = ∆s3(p−1)+2

(−1)
p(p−1)

2 (−1)p(3p−1).

Applying the first item above (since 0 ⩽ p− 1 ⩽ n− 2) we obtain the first line in (5.1).
• We are left with three special cases: q = 0, q = 3n − 2 and q = 3n − 1. For the first one,

we see that the convention ∆s0 = ∆0 = 1 is coherent with formula (5.1) when p = 0. To obtain
∆s3n−2 we apply (5.5) because the case q = 3n − 3 is already known, and then, the value of
∆s3n−1 is obtained in the same way from the one of ∆s3n−2 .
(B) Proof of the symmetry formula (5.4). The starting point is to note that this formula
is equivalent to the following one

∆sq = (−1)
n(n+1)

2 ∆s6n−1−q for 3n ⩽ q ⩽ 6n− 1. (5.6)

Indeed, ∆j is nonzero if and only if j = sq for some q ⩾ 0, and

(2n+ 1)(n+ 1)− sq = s6n−1 − sq = s6n−1−q
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by (4.6). Therefore (5.4) is equivalent to (5.6) for 0 ⩽ q ⩽ 6n − 1, and obviously it suffices to
check the equality when 3n ⩽ q ⩽ 6n− 1.

To do so, let us compare ∆sq and ∆s6n−1−q by using (4.12). Actually we must treat the case
q = 6n − 1 apart, since (4.12) does not make sense for ∆s0 . But we can check directly relation
(5.6) by using Proposition 4.6 and formula (5.1):

∆s6n−1 = (−1)n∆s3 = (−1)n(−1)
n(n−1)

2 = (−1)
n(n+1)

2 = (−1)
n(n+1)

2 ∆s0 .

Now, let us continue our calculations in the generic case 3n ⩽ q ⩽ 6n− 2 and use (4.12) for the
Hankel determinants:

∆sq

∆s6n−1−q

=
(−1)εq

(
v0v1 · · · vq−1

)sq (vs11 vs22 · · · vsq−1

q−1

)
(−1)ε6n−1−q

(
v0v1 · · · v6n−2−q

)s6n−1−q
(
vs11 vs22 · · · vs6n−2−q

6n−2−q

) .
Under our assumption we have 6n− 1− q ⩽ 3n− 1 ⩽ q − 1. Thus some products are canceling
and we further simplify this expression by using successively (4.8), the fact that vj ∈ {±1} and
(4.6):

∆sq

∆s6n−1−q

= (−1)ε6n−1
(
v0v1 · · · v6n−2−q

)sq−s6n−1−q
(
v6n−1−q · · · vq−1

)sq(vs6n−1−q

6n−1−q · · · v
sq−1

q−1

)
= (−1)ε6n−1

(
v0v1 · · · v6n−2−q

)sq+s6n−1−q
(
v6n−1−q · · · vq−1

)sq(vs6n−1−q

6n−1−q · · · v
sq−1

q−1

)
= (−1)ε6n−1

(
v0v1 · · · v6n−2−q

)s6n−1
(
v6n−1−q · · · vq−1

)sq(vs6n−1−q

6n−1−q · · · v
sq−1

q−1

)
.

Recall from (4.9) that all vj ’s involved in this formula are equal to −1 except v0 = v3n−2 =
v3n+1 = 1. Hence (

v0v1 · · · v6n−2−q

)s6n−1 = (−1)(6n−2−q)s6n−1 = (−1)qs6n−1

because 6n− 2− q < 3n− 2. Moreover, by (4.8) we have

(−1)ε6n−1 = (−1)
n(n+1)(2n+1)

6 = (−1)
∑n

k=1 k
2
= (−1)

∑n
k=1 k = (−1)

n(n+1)
2 .

Thus we have proved so far that

∆sq

∆s6n−1−q

= (−1)
n(n+1)

2 (−1)qs6n−1
(
v6n−1−q · · · vq−1

)sq(vs6n−1−q

6n−1−q · · · v
sq−1

q−1

)
. (5.7)

To proceed we must distinguish between several cases.
• Suppose first that q ⩾ 3n+ 2. On the one hand,(

v6n−1−q · · · vq−1

)sq = (−1)(2q−6n−1)sq = (−1)sq

because in this product all terms but two equal −1. On the other hand,

v
s6n−1−q

6n−1−q · · · v
sq−1

q−1 = (−1)αq

with

αq := s6n−1−q + · · ·+ sq−1 − s3n−2 − s3n+1

=
(
s6n−1−q + · · ·+ s3n−3 + s3n−1 + s3n + s3n+2 + · · ·+ sq−1 + sq

)
− sq.
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The reason to write last expression is that, inside the parenthesis, all terms are pairing to form
sums of the type sk + s6n−1−k which all equal s6n−1 by (4.6). There are q− 3n such pairings, so
that

v
s6n−1−q

6n−1−q · · · v
sq−1

q−1 = (−1)(q−3n)s6n−1(−1)sq .

Finally we obtain that
∆sq

∆s6n−1−q

= (−1)
n(n+1)

2 (−1)qs6n−1(−1)sq(−1)(q−3n)s6n−1(−1)sq = (−1)
n(n+1)

2 (−1)ns6n−1

with s6n−1 = (n+ 1)(2n+ 1), hence (5.6).
• Suppose that q = 3n+ 1. Then(

v6n−1−q · · · vq−1

)sq =
(
v3n−2v3n−1v3n

)s3n+1 = 1

and
v
s6n−1−q

6n−1−q · · · v
sq−1

q−1 = v
s3n−2

3n−2 v
s3n−1

3n−1 v
s3n
3n = (−1)s3n−1+s3n = (−1)s6n−1 .

Thus (5.7) yields
∆s3n+1

∆s3n−2

= (−1)
n(n+1)

2 (−1)(3n+1)s6n−1(−1)s6n−1 = (−1)
n(n+1)

2 (−1)ns6n−1

with s6n−1 = (n+ 1)(2n+ 1), hence (5.6) when q = 3n+ 1.
• When q = 3n, the proof is similar to the preceding case.

(C) Proof of Part (1) for 3n ⩽ q ⩽ 6n− 5. We now apply symmetry (5.4) to the formulas of
Part (1) already proved for 0 ⩽ q ⩽ 3n − 1 to deduce the remaining formulas, when 3n ⩽ q ⩽
6n− 5.

• Suppose that q = 3p with n+ 1 ⩽ p ⩽ 2n− 2 (hence 3n+ 3 ⩽ q ⩽ 6n− 6). By (5.4),

∆s3p = (−1)
n(n+1)

2 ∆s3(2n−p−1)+2

with 0 ⩽ 2n− p− 1 ⩽ n− 2. Hence, by (5.3) for Case (A) we have

∆s3p = (−1)
n(n+1)

2 (−1)(2n−p)
n(n−1)

2 = (−1)
n(n+1)

2 (−1)p
n(n−1)

2 = (−1)(p+1)
n(n−1)

2 (−1)n,

as required.
• Suppose that q = 3p+ 1 with n ⩽ p ⩽ 2n− 2 (hence 3n+ 1 ⩽ q ⩽ 6n− 5). By (5.4),

∆s3p+1 = (−1)
n(n+1)

2 ∆s3(2n−p−1)+1

with 1 ⩽ 2n− p− 1 ⩽ n− 2. Hence, by (5.2) for Case (A),

∆s3p+1 = (−1)
n(n+1)

2 (−1)(2n−p−1)
n(n−1)

2 (−1)
(2n−p−1)(2n−p)

2

= (−1)
n(n+1)

2 (−1)(p+1)
n(n−1)

2 (−1)−n+
p(p+1)

2

= (−1)p
n(n−1)

2 (−1)
p(p+1)

2

which is again (5.2).
• Suppose that q = 3p + 2 with n ⩽ p ⩽ 2n − 3 (hence 3n + 2 ⩽ q ⩽ 6n − 7). This case is

similar to the previous one and we skip details.
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• The only remaining case is q = 3n, which follows immediately from (5.4) and from the value
of ∆s3n−1 given by the second row in (5.3). □

6. The Gale-Robinson relations

Assume as usual that n ⩾ 3. For any integer j ⩾ 0 and any ℓ ∈ {0, 1, . . . , n+ 1}, set

Γ
(ℓ)
j := ∆

(ℓ)
j ∆

(ℓ)
j+2n+2 −∆

(ℓ)
j+1∆

(ℓ)
j+2n+1 +

(
∆

(ℓ)
j+n+1

)2
.

We want to prove the Gale-Robinson recurrence stated in Theorem C, which reads

Γ
(ℓ)
j = 0 for all j ⩾ 0 and all ℓ ∈ {0, 1, . . . , n+ 1}. (6.1)

Assuming the validity of Theorem D (to be proved in Section 7) it is easily checked that

Γ
(ℓ+1)
j = Γ

(ℓ)
j ,

so that it suffices to prove (6.1) in the case ℓ = 0, and this will be our purpose in this section.
For simplicity we put Γj := Γ

(0)
j . Because of the (anti-)periodicity property shown in Theo-

rem B, it remains to show that

Γj = 0 for 0 ⩽ j ⩽ 2n(n+ 1)− 1, (6.2)

where
Γj := ∆j ∆j+2n+2 −∆j+1∆j+2n+1 +

(
∆j+n+1

)2
.

By Lemma 4.3 we know which Hankel determinants are nonzero and, by the previous theorem, we
know the explicit values of these nonzero determinants, so we just have to check that Γj vanishes
in any case. Adding and multiplying five Hankel determinants ∆i which can be either −1, 0
or 1 is certainly a triviality but the difficulty comes from the fact that we have to handle them
simultaneously, and there is no clue of how their values are connected in general. In fact, we will
distinguish four cases, looking at pairs of successive determinants (∆j ,∆j+1) and discussing on
the nullity of one of them, in order to simplify the expression of Γj when possible. And, because
(6.2) must be checked for j ⩽ 2n(n+ 1)− 1 we will have to discuss on Hankel determinants ∆i

with index
i = j + 2n+ 2 ⩽ 2n(n+ 1)− 1 + 2n+ 2 = 2n(n+ 2) + 1,

i.e. we need the description of the intersection S ∩ {0, 1, . . . , 2n(n+ 2) + 1}. One the one hand,
Lemma 4.3 implies the characterization:

j ∈ S and 0 ⩽ j ⩽ 2n(n+ 1) ⇐⇒ j satisfies one of the conditions (i)-(v) (6.3)

where
(i) j ≡ 0 (mod n+ 1) and 0 ⩽ j ⩽ 2n(n+ 1)

(ii) j ≡ 1 (mod n+ 1) and 1 ⩽ j ⩽ n2

(iii) j ≡ n (mod n+ 1) and n+ (n+ 1)2 ⩽ j ⩽ n+ (2n− 1)(n+ 1)

(iv) j ≡ 0 (mod n) and n ⩽ j ⩽ (n− 1)n

(v) j ≡ 1 (mod n) and 1 + (n+ 4)n ⩽ j ⩽ 1 + (2n+ 1)n.
On the other hand, the j ∈ S such that 2n(n+1) ⩽ j ⩽ 2n(n+2)+1 can be found by Lemma 4.5:
they are such that j−2n(n+1) ∈ S and characterization (6.3) can be applied to these translated
numbers.
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Figure 6.1. The set S ∩ {0, 1, . . . , 2n(n+ 1)} = S0 ∪ S1 ∪ S2 when n = 5.

Example 6.1. When n = 5, according to (6.3) we must determine the j ∈ S such that 0 ⩽ j ⩽
60. By the results of Lemma 4.3 there are 27 of them, equally divided into three subsets:

S0 := {s3p, 0 ⩽ p ⩽ 8} = {0, 6, 12, 18, 24, 36, 46, 51, 56},
S1 := {s3p+1, 0 ⩽ p ⩽ 8} = {1, 7, 13, 19, 25, 41, 47, 53, 59},
S2 := {s3p+2, 0 ⩽ p ⩽ 8} = {5, 10, 15, 20, 30, 42, 48, 54, 60},

and symmetries read as follows:

sj+16 = sj + 41 for 0 ⩽ j ⩽ 13, sj + s29−j = 66 for 0 ⩽ j ⩽ 29.

One can visualize the set S ∩ {0, 1, . . . , 60} = S0 ∪ S1 ∪ S2 and all the symmetries on fig. 6.1.

Now, let us begin the proof of the Gale-Robinson recurrences (6.2). Computations are tedious,
but easy and similar in the first three cases we will look at. Therefore, full details will be provided
in the first and fourth cases only.
Case 1: ∆j ̸= 0 and ∆j+1 ̸= 0. According to the previous discussion this situation corresponds
to the following five possibilities:
(a) j = n = s2,
(b) j = p(n+ 1) = s3p for 0 ⩽ p ⩽ n− 1,
(c) j = n2 − n− 1 = s3n−5,
(d) j = n2 + 4n+ 1 = s3n+3,
(e) j = n+ (p+ 1)(n+ 1) = s3p+1 for n ⩽ p ⩽ 2n− 2,
and we go for a case-by-case examination.

(a) If j = n = s2 then j+1 = n+1 = s3, j+n+1 = 2(n+1) = s6, j+2n+2 = 3(n+1) = s9
and j + 2n+ 1 = 3n+ 2 /∈ S, so that,

Γj = ∆s2∆s9 +∆2
s6 = (−1)

n(n−1)
2 (−1)

3n(n−1)
2 (−1)3 + 1 = 0.

(b) Suppose that j = p(n+ 1) = s3p for 0 ⩽ p ⩽ n− 1.
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• We look first at the generic situation 0 ⩽ p ⩽ n − 3. Then j + 1 = p(n + 1) + 1 = s3p+1,
j + n + 1 = (p + 1)(n + 1) = s3(p+1), j + 2n + 2 = (p + 2)(n + 1) = s3(p+2) and j + 2n + 1 =
n+ (p+ 1)(n+ 1) /∈ S. Thus

Γj = ∆s3p∆s3(p+2)
+∆2

s3(p+1)
= (−1)(p+2)

n(n−1)
2 (−1)

(p+2)(p+1)
2 (−1)p

n(n−1)
2 (−1)

p(p−1)
2 + 1 = 0.

• If j = (n − 2)(n + 1) = s3(n−2), then we have j + 1 = s3(n−2)+1, j + n + 1 = s3(n−1),
j + 2n+ 2 = s3(n−1)+2 and j + 2n+ 1 = n+ (p+ 1)(n+ 1) /∈ S. Thus

Γj = ∆s3(n−2)
∆s3(n−1)+2)

+∆2
s3(n−1)

= (−1)(n−2)
n(n−1)

2 (−1)
(n−2)(n−3)

2 (−1)
n(n−1)2

2 + 1 = 0.

• If j = (n− 1)(n+ 1) = s3n−3, then j + 1 = s3n−2, j + n+ 1 = s3n−1, j + 2n+ 2 = s3n and
j + 2n+ 1 = n2 + 2n /∈ S. Hence

Γj = ∆s3n−3∆s3n +∆2
s3n−1

= (−1)
n(n−1)2

2 (−1)
(n−1)(n−2)

2 (−1)
n(n+1)(n+2)

2 + 1 = 0.

(c) When j = n2−n−1 = s3n−5 we have j+1 = s3n−4, j+n+1 = s3n−2, j+2n+1 = s3n−1

and j + 2n+ 2 = n2 + n+ 1 /∈ S, so that

Γj = −∆s3n−4∆s3n−1 −∆2
s3n−1

= (−1)
n(n−1)2

2 (−1)
n(n−1)2

2 − 1 = 0.

(d) If j = n2 + 4n+ 1 = s3n+3, then j + 1 = s3n+4 but j + n+ 1, j + 2n+ 1 and j + 2n+ 2
are not in S and give zero determinants. Trivially, Γj = 0 as well.

(e) Assume that j = n+ (p+ 1)(n+ 1) = s3p+1 for n ⩽ p ⩽ 2n− 2.
• We suppose first that n ⩽ p ⩽ 2n−4. In this case, j+2n+2 ⩽ n+(2n−1)(n+1) < 2n(n+1)

so that all indices remain inside the first (anti-)period: we compute as before j + 1 = s3p+2,
j+n+1 = s3(p+1)+1, j+2n+2 = s3(p+2)+1 and observe that j+2n+1 = 2n+(p+2)(n+1) /∈ S
(look at congruences modulo n and n+ 1). Thus

Γj = ∆s3p+1∆s3(p+2)+2)
+∆2

s3(p+1)+1

= (−1)p
n(n−1)

2 (−1)
p(p+1)

2 (−1)(p+2)
n(n−1)

2 (−1)
(p+2)(p+3)

2 + 1

= 0.

• Suppose that p = 2n − 3. Then j + 1 = s3(2n−3)+2, j + n + 1 = s3(2n−2)+1, j + 2n + 1 =
n+2n(n+1) and j+2n+2 = n+2n(n+1). This time, the last two indices exceed the (anti-)period
length 2n(n+1), so we use Lemma 4.5 to see that j+2n+1 /∈ S and j+2n+2 = s2+2n(n+1).
For the latter, the corresponding determinant is calculated with property (4.10):

∆n+2n(n+1) = (−1)n∆n = (−1)n∆s2 .

This yields

Γj = ∆s3(2n−3)+2
(−1)n∆s2 + 1 = (−1)(2n−3)

n(n−1)
2 (−1)

(2n−3)(2n−2)
2 (−1)n(−1)

n(n−1)
2 + 1 = 0.

• Suppose now that p = 2n − 2. Then j + 1 = s3(2n−2)+2 and all other indices exceed the
(anti-)period length: j + n+ 1 = n+ 2n(n+ 1), j + 2n+ 1 = 2n+ 2n(n+ 1) and j + 2n+ 2 =
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2n+ 1 + 2n(n+ 1). Using Lemma 4.5 and (4.10) we get:

∆n+2n(n+1) = (−1)n∆n = (−1)n∆s2 ,

∆2n+2n(n+1) = (−1)n∆2n = (−1)n∆s5 ,

∆2n+1+2n(n+1) = (−1)n∆2n+1 = 0.

Finally, we find again that

Γj = −∆s3(2n−2)+2
(−1)n∆s5 + 1 = −(−1)n(−1)n(−1)n(n−1) + 1 = 0.

and this completes the proof in Case 1.
Case 2: ∆j ̸= 0 and ∆j+1 = 0. Since verifications are similar to Case 1 we will only provide
the possible values of the indices j, j+1, j+n+1, j+2n+1, j+2n+2; then, using Theorem 5.1
it is easy to check that one always has Γj = 0.

Let us describe the situation. According to (6.3) one has seven possibilities for j which are
listed below. In each case we indicate the corresponding values only for indices j + n + 1 and
j + 2n+ 2: the ones for j + 1 and j + 2n+ 1 are useless since by hypothesis ∆j+1∆j+2n+1 = 0.
(a) j = 1 + p(n + 1) = s3p+1 for 0 ⩽ p ⩽ n − 3. Then j + n + 1 = s3(p+1)+1 and j + 2n + 2 =

s3(p+2)+1.
(b) j = (p + 1)n = s3p+2 for 1 ⩽ p ⩽ n − 2. Then j + n + 1 = (p + 2)n + 1 /∈ S and

j + 2n+ 2 = (p+ 3)n+ 2 /∈ S.
(c) j = n2 = s3(n−1)+1. Then j + n+ 1 = n2 + n+ 1 /∈ S and j + 2n+ 2 = n2 + 2n+ 2 /∈ S.
(d) j = n(n+ 1) = s3(n−1)+2. Then j + n+ 1 = s3n and j + 2n+ 2s3n+2.
(e) j = (n+ 1)2 = s3n. Then j + n+ 1 = s3n+2 and j + 2n+ 2 = s3(n+1)+2.
(f) j = (p+2)(n+1) = s3p+2 for n ⩽ p ⩽ 2n− 3. Then j +n+1 = s3(p+1)+2 and j +2n+2 =

s3(p+2)+2.
(g) j = 1 + (p + 3)n = s3p for n + 2 ⩽ p ⩽ 2n − 2. Then j + n + 1 = 2 + (p + 4)n /∈ S and

j + 2n+ 2 = 3 + (p+ 5)n /∈ S.
N.B. For subcases (f) and (g), one must use Lemma 4.5 and property (4.10) when indices are
⩾ 2n(n+ 1). Subcase (g) can only occur when n ⩾ 4.
Case 3: ∆j = 0 and ∆j+1 ̸= 0. Again, the situation is very similar to the first ones. With
(6.3) we see that this case corresponds to seven possibilities for j + 1. Since ∆j∆j+2n+2 always
vanishes by hypothesis, we give only the corresponding values of j + n+ 1 and j + 2n+ 1.
(a) j + 1 = (p+ 1)n = s3p+2 for 0 ⩽ p ⩽ n− 3. Then j + n+ 1 = s3(p+1)+2, and j + 2n+ 1 =

s3(p+2)+2 except if p = n− 3 in which case j + 2n+ 1 = n2 = s3(n−1)+1.
(b) j + 1 = p(n + 1) = s3p for 2 ⩽ p ⩽ n − 1. Then j + n + 1 = (p + 1)n + p /∈ S and

j + 2n+ 1 = (p+ 2)n+ p /∈ S.
(c) j+1 = n(n+1) = s3(n−1)+2. Then j+n+1 = n(n+2) /∈ S and j+2n+1 = n(n+3) /∈ S.
(d) j+1 = (n+1)2 = s3n. Then j+n+1 = (n+1)2+n = s3n+1 and j+2n+1 = 1+n(n+4) =

s3(n+1).
(e) j + 1 = (n + 1)2 + n = s3n+1. Then j + n + 1 = 1 + n(n + 4) = s3(n+1) and j + 2n + 1 =

1 + n(n+ 5) = s3(n+2).
(f) j + 1 = 1 + (p+ 3)n = s3p for n+ 1 ⩽ p ⩽ 2n− 2. Then j + n+ 1 = 1 + (p+ 4)n = s3(p+1)

and j + 2n+ 1 = 1 + (p+ 5)n = s3(p+2).
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(g) j+1 = n+(p+1)(n+1) = s3p+1 for n+2 ⩽ p ⩽ 2n−2. Then j+n+1 = 2n+(p+1)(n+1) /∈ S
and j + 2n+ 1 = 3n+ (p+ 1)(n+ 1) /∈ S.

N.B. For subcases (f) and (g), one must use Lemma 4.5 and property (4.10) when indices are
⩾ 2n(n+ 1). Subcase (g) can only occur when n ⩾ 4.
Case 4: ∆j = 0 = ∆j+1. In this case, the Gale-Robinson recurrence (6.2) will be true if and
only if ∆j+n+1 always vanishes. Assume on the contrary that ∆j+n+1 ̸= 0, i.e. j + n + 1 ∈ S.
We shall use again (6.3) and distinguish four subcases.

(a) Suppose that j + n + 1 ⩽ s3n = (n + 1)2, i.e. j ⩽ n(n + 1) = s3n−1. According to (6.3),
we must have

j + n+ 1 ≡ 0 (mod n+ 1) or j + n+ 1 ≡ 1 (mod n+ 1) or j + n+ 1 ≡ 0 (mod n)

which amounts to say that j fullfills (i) or (ii) in (6.3) (first two cases) or that j+1 satisfies (iv)
in (6.3) (last case). This implies in return that j ∈ S or j + 1 ∈ S, i.e. ∆j ̸= 0 or ∆j+1 ̸= 0,
which is a contradiction.

(b) Suppose that j + n+ 1 is one of the following three numbers:

s3n+1 = n+ (n+ 1)2, s3n+2 = (n+ 2)(n+ 1), s3n+3 = 1 + (n+ 4)n.

In the first case, we have j + 1 = (n + 1)2 ∈ S by (6.3), hence ∆j+1 ̸= 0, contradiction. In the
second case, we have j = (n + 1)2 ∈ S and ∆j ̸= 0, also a contradiction. In the third case we
have j + 1 = n+ (n+ 1)2 ∈ S and ∆j+1 ̸= 0, still a contradiction.

(c) Suppose now that n + (n + 1)(n + 2) = s3n+4 ⩽ j + n + 1 ⩽ s6n−4 = 2n(n + 1). Then
j + n + 1 satisfies conditions (i) or (iii) or (v) of (6.3), which implies that either j satisfies (i)
or j + 1 satisfies (i) or j + 1 satisfies (v). This leads in all cases to ∆j = 0 or ∆j+1 = 0, a
contradiction.

(d) To finish the proof, suppose that j + n + 1 ⩾ s6n−3 = 2n2 + 2n + 1 (see (4.14)). Since
j ⩽ 2n(n + 1) − 1 one also has j + n + 1 ⩽ (2n + 1)(n + 1) − 1 = 2n2 + 3n = s6n−2 by
(4.15). In other words, j + n+ 1 ∈ {s6n−2, s6n−3} = {2n2 + 2n+ 1, 2n2 + 3n}. Therefore, either
j = 2n2 + n+ 1 = s6n−6 or j = 2n2 + 2n− 1 = s6n−5. In both cases ∆j ̸= 0, contradiction.

We thus have completely established Theorem C in case ℓ = 0.

7. The shifted case

In this section we give a proof of Theorem D. Let us recall that the contiguity relations (1.22)
contained in this statement allow us to reduce the proofs of Theorems B and C to the case ℓ = 0
that has been treated in the previous sections.

7.1. The H-fraction expansion for Φ
(ℓ)
n . The contiguity relations (1.22) stress the links which

exist between Hankel determinants

∆
(ℓ−1)
j = ∆

(ℓ−1)
j (Φn) = ∆j

(
Φ(ℓ−1)
n

)
and ∆

(ℓ)
j = ∆

(ℓ)
j (Φn) = ∆j

(
Φ(ℓ)
n

)
of two consecutive shifts Φ

(ℓ−1)
n and Φ

(ℓ)
n of Φn. To establish these relations we will first state

the analogue of Theorem A for the shifted function Φ
(ℓ)
n .

Lemma 7.1. Suppose that
F (q) = f0 + f1q + f2q

2 + · · ·
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is a quadratic power series satisfying the equation

A+BF + CF 2 = 0

where A,B,C are polynomials (with C ̸= 0). Then the series

F (1)(q) = f1 + f2q + · · · = F (q)− f0
q

is also quadratic, satisfying the equation

A′ +B′F (1) + C ′(F (1)
)2

= 0

with

A′ = A+ f0B + f2
0C,

B′ = q(B + 2f0C),

C ′ = q2C.

Proof. Straightforward. □

We use this lemma to derive the following generalization of (2.5) which gives the quadratic
equations satisfied by the shifts of Φn.

Proposition 7.2. Let ℓ ∈ {0, 1, . . . , n+1}. The ℓ-shift Φ(ℓ)
n of the q-metallic number Φn is also

a quadratic power series with integer coefficients, satisfying the equation

A(ℓ) +B(ℓ)Φ(ℓ)
n + C(ℓ)

(
Φ(ℓ)
n

)2
= 0, (7.1)

where A(ℓ), B(ℓ), C(ℓ) are polynomials with integer coefficients given as follows: for 0 ≤ ℓ ≤ n,

A(ℓ) =
qℓ+1 − (q2 − q + 1)(qn − qn−ℓ + 1)

(q − 1)2
,

B(ℓ) =
2qℓ+1 − (q2 − q + 1)(qn + 1)

q − 1
,

C(ℓ) = qℓ+1,

and for ℓ = n+ 1,

A(n+1) = −qn−1,

B(n+1) = −(q2 − q + 1) + (q2 − 3q + 1)qn

q − 1
,

C(n+1) = qn+2.

Proof. We proceed by induction on ℓ ∈ {0, . . . , n+ 1}.
• We already know that (7.1) is true for ℓ = 0, by (2.5).
• Assume that (7.1) is valid for some ℓ ∈ {0, . . . , n − 1}. By (2.6), the constant term of Φ(ℓ)

n

equals 1. According to Lemma 7.1 we have

A′ +B′Φ(ℓ)
n + C ′(Φ(ℓ)

n

)2
= 0

with
A′ = A(ℓ) +B(ℓ) + C(ℓ), B′ = q(B(ℓ) + 2C(ℓ)), C ′ = q2C(ℓ).
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A simple calculation shows that (A′, B′, C ′) = (qA(ℓ+1), qB(ℓ+1), qC(ℓ+1)), hence (7.1) is true at
rank ℓ+ 1.

• Finally, when ℓ = n we have

A(n) = −qn, B(n) = −(q2 − q + 1) + (q2 − 3q + 1)qn

q − 1
, C(n) = qn+1.

We apply again Lemma 7.1, but this time with f0 = 0 since the constant term of Φ(n)
n equals 0.

We then obtain that (A′, B′, C ′) = (qA(n+1), qB(n+1), qC(n+1)), and this concludes our proof. □

The key point is that we have already encountered the family of polynomials A(ℓ), B(ℓ), C(ℓ).
Indeed, with notations of Definitions 3.3 and 3.5 and (3.13):

A(0) = A
(1)
1 = A0, B(0) = B

(1)
1 = B0, C(0) = C

(1)
1 = C0,

A(ℓ) = −A
(3ℓ+1)
1 = −A3ℓ, B(ℓ) = B

(3ℓ+1)
1 = B3ℓ, C(ℓ) = −C

(3ℓ+1)
1 = −C3ℓ,

for ℓ = 1, 2, . . . , n− 2,

A(n−1) = −A
(1)
2 = −A3n−3, B(n−1) = B

(1)
2 = B3n−3, C(n−1) = −C

(1)
2 = −C3n−3,

A(n) = −A
(3)
2 = −A3n−1, B(n) = B

(3)
2 = B3n−1, C(n) = −C

(3)
2 = −C3n−1,

A(n+1) = −A
(4)
2 = −A3n, B(n+1) = B

(4)
2 = B3n, C(n+1) = −C

(4)
2 = −C3n.

(Notice that the minus signs appearing here are due to the minus sign in the first numerator
of a H-fraction constructed with the algorithm NextABC, see (3.10).) From these identities we
deduce that the H-fraction expansions of the shifts Φ

(ℓ)
n , 1 ⩽ ℓ ⩽ n + 1, can be borrowed from

Lemmas 3.4 and 3.6 as for the case ℓ = 0. The difference lies in the initialization of algorithm
NextABC. Namely, denoting by

mℓ :=


3ℓ if 0 ⩽ ℓ ⩽ n− 1,
3n− 1 if ℓ = n,
3n if ℓ = n+ 1,

one must initialize NextABC with the triple (Aml
, Bml

, Cml
) to get the H-fraction of Φ

(ℓ)
n . In

other words, the H-fraction of Φ(ℓ)
n when 1 ⩽ ℓ ⩽ n+1 is obtained from the one of Φ(0)

n = Φn by
truncating the first mℓ terms, and by adjusting the power of the monomial in the first numerator:
because of (3.10), it must be set to kmℓ

instead of kmℓ−1
+ kmℓ

+ 2.
To sum up the discussion, we have proved the following analogue of Theorem A.

Theorem 7.3. Write the H-fraction expansion (1.20) of Φn as

Φn(q) =
1

β0 +

+∞

K
i=1

αi

βi
.
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Then, for any ℓ ∈ {1, . . . , n + 1}, the H-fraction expansion of Φ
(ℓ)
n is given by the following

formulas:

Φ(ℓ)
n (q) =

1

β3ℓ +

+∞

K
i=3ℓ+1

αi

βi
for 1 ⩽ ℓ ⩽ n− 1,

Φ(n)
n (q) =

qn

β3n−1 +

+∞

K
i=3n

αi

βi
,

Φ(n+1)
n (q) =

qn−1

β3n +

+∞

K
i=3n+1

αi

βi
.

Example 7.4. Recall that the explicit H-fraction of Φ5 was given in Example 3.7 and that its
power series expansion reads, by (2.6):

Φ5(q) = 1 + q + q2 + q3 + q4 + q10 +

+∞∑
i=11

κiq
i.

By the previous result, we derive the H-fraction of Φ(1) from (3.14) by deleting the first three
terms and setting the first numerator to 1, hence:

Φ
(1)
5 (q) =1 + q + q2 + q3 + q9 +

+∞∑
i=10

κi+1q
i

=
1

1− q +

q4

[q]4 +

q5

q2 + 1 +

q3

1− q +

q3

[q]3 +

q5

[q]4 − q +

q4

1− q +

q2

[q]2

+

q5

[q]5 − q +

q5

1 +

−q6

⟨5⟩q + q6 +

q11

⟨5⟩q +

q11

⟨5⟩q + q6 +

−q6

1 +

q5

[q]5 − q + · · ·

If instead, we delete the first six terms and set the first numerator to 1 we get:

Φ
(2)
5 (q) =1 + q + q2 + q8 +

+∞∑
i=9

κi+2q
i

=
1

1− q +

q3

[q]3 +

q5

[q]4 − q +

q4

1− q +

q2

[q]2 +

q5

[q]5 − q +

q5

1

+

−q6

⟨5⟩q + q6 +

q11

⟨5⟩q +

q11

⟨5⟩q + q6 +

−q6

1 +

q5

[q]5 − q + · · ·

A last example: deleting the first 14 terms in (3.14) and setting first numerator to q5 we obtain

Φ
(5)
5 (q) = q5 +

+∞∑
i=6

κi+5q
i =

q5

⟨5⟩q +

q11

⟨5⟩q + q6 +

−q6

1 +

q5

[q]5 − q + · · ·
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7.2. The contiguity relations. Let us proceed with a reformulation of Theorem 7.3. Recall
that the H-fraction components Un, Vn,Wn of Φn were defined in Theorem A and set

U (ℓ)
n (q) =



1

1− q +

n−3

K
i=ℓ

(
qn−i

[n− i]q +

qn

[i+ 2]q − q +

qi+2

1− q

)

+

q2

[2]q +

qn

[n]q − q +

qn

1
, if 0 ⩽ ℓ ⩽ n− 3;

1

1− q +

q2

[2]q +

qn

[n]q − q +

qn

1
, if ℓ = n− 2;

1

q
, if ℓ = n− 1;

0, if ℓ = n or ℓ = n+ 1,

and

V (ℓ)
n (q) =



Vn(q), if 0 ⩽ ℓ ⩽ n− 1;

qn

⟨n⟩q +

q2n+1

⟨n⟩q + qn+1 +

−qn+1

1
, if ℓ = n;

qn−1

⟨n⟩q + qn+1 +

−qn+1

1
, if ℓ = n+ 1.

Then Theorem 7.3 says exactly that, for any ℓ ∈ {0, 1, . . . , n+ 1}, we have:

Φ(ℓ)
n (q) = U (ℓ)

n (q)
+

V (ℓ)
n (q)

+

(
Wn(q) +

Un(q) +
Wn(q) +

)∗
.

From this expression we derive immediately the following consequence.

Corollary 7.5. Contiguity relations for Φ
(ℓ)
n .

If ℓ ∈ {0, 1, . . . , n− 2} then

Φ(ℓ)
n (q) =

1

1− q +

qn−ℓ

[n− ℓ]q +

qn

[ℓ+ 2]q − q +
qℓ+2Φ(ℓ+1)

n (q).

For the two remaining cases we have

Φ(n−1)
n (q) =

1

1 +

−qn+1

⟨n⟩q + qn+1 +
qn+1Φ(n)

n (q).

and

Φ(n)
n (q) =

qn

⟨n⟩q + qn+2Φ
(n+1)
n (q)

.

We now read the effect of these relations on Hankel determinants.

Proof of Theorem D. We treat separately three cases.
• Assume first that ℓ ∈ {0, 1, . . . , n− 2}, so that we have, by the previous corollary:

Φ(ℓ)
n (q) =

1

1− q − q2G1(q)
(7.2)
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where

G1(q) =
−qn−ℓ−2

1 + q + · · ·+ qn−ℓ−1 − qn−ℓG2(q)
(7.3)

and

G2(q) =
−qℓ

1 + q2 + q3 + · · ·+ qℓ+1 − qℓ+2
(
−Φ

(ℓ+1)
n (q)

) . (7.4)

Now we point out the following result.

Lemma 7.6 (Lemma 2.2 of [Han16]). Let k be a nonnegative integer and let F (q), G(q) be two
power series such that

F (q) =
qk

1 + q u(q)− qk+2G(q)

where u(q) is a polynomial such that deg(u) ⩽ k. Then, ∆j(G) = (−1)
k(k+1)

2 ∆j+k+1(F ).

Applying this lemma successively to (7.4), (7.3) and (7.2) we get

∆j(Φ
(ℓ+1)
n ) = (−1)j∆j(−Φ(ℓ+1)

n )

= (−1)j(−1)
ℓ(ℓ+1)

2 ∆j+ℓ+1(−G2)

= (−1)j(−1)
ℓ(ℓ+1)

2 (−1)j+ℓ+1∆j+ℓ+1(G2),

as well as

∆j+ℓ+1(G2) = (−1)
(n−ℓ−2)(n−ℓ−1)

2 ∆j+n(−G1)

= (−1)
(n−ℓ−2)(n−ℓ−1)

2 (−1)j+n∆j+n(G1)

and

∆j+n(G1) = ∆j+n+1(Φ
(ℓ)
n ).

Gathering these formulas we obtain

∆j(Φ
(ℓ+1)
n ) = (−1)f(n,ℓ,j)∆j+n+1(Φ

(ℓ)
n )

where

f(n, ℓ, j) = j +
ℓ(ℓ+ 1)

2
+ j + ℓ+ 1 +

(n− ℓ− 2)(n− ℓ− 1)

2
+ j + n

=
ℓ(ℓ+ 3)

2
+ 1 +

(n− ℓ− 2)(n− ℓ− 1)

2
+ 3j + n.

But

(n− ℓ− 2)(n− ℓ− 1) = n(n− ℓ− 2)− ℓ(n− ℓ− 2)− (n− ℓ− 2)

= n(n− 2ℓ− 3) + ℓ(ℓ+ 3) + 2,
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hence

f(n, ℓ, j) =
ℓ(ℓ+ 3)

2
+ 1 +

n(n− 2ℓ− 3)

2
+

ℓ(ℓ+ 3)

2
+ 1 + 3j + n

≡ n(n− 2ℓ− 3)

2
+ j + n (mod 2)

≡ n(n+ 2ℓ− 1)

2
+ j (mod 2),

and this last formula implies the contiguity relation (1.22) when ℓ = 0, 1, . . . , n− 2.
• Assume now that ℓ = n− 1. By Corollary 7.5 and (1.19) we have

Φ(n−1)
n (q) =

1

1− q2G3(q)

with

G3(q) =
qn−1

1 + q2 + q3 + · · ·+ qn−1 + 2qn − qn+1Φ
(n)
n (q)

.

Applying Lemma 7.6 we get

∆j(Φ
(ℓ)
n ) = (−1)j∆j(−Φ(ℓ)

n )

= (−1)j(−1)
n(n−1)

2 ∆j+n(G1)

= (−1)j(−1)
n(n−1)

2 ∆j+n+1(Φ
(n−1)
n ).

It is easily seen that this is exactly (1.22) for ℓ = n− 1.
• Lastly, assume that ℓ = n. By Corollary 7.5 and (1.19) we have

Φ(n)
n (q) =

qn

1 + q2 + q3 + · · ·+ qn−1 + 2qn − qn+1 − qn+2
(
−Φ

(n+1)
n (q)

) .
Again, applying Lemma 7.6 yields

∆j(Φ
(n+1)
n ) = (−1)j∆j(−Φ(n+1)

n ) = (−1)j(−1)
n(n+1)

2 ∆j+n+1(Φ
(n)
n )

which is the same as (1.22) when ℓ = n.
This finishes our proof of Theorem D in all cases. □

Example 7.7. To illustrate the result of Theorem D, let us consider as usual the case n = 5.
We have, for all j ⩾ 0:

∆
(1)
j = (−1)j∆j+6, ∆

(2)
j = (−1)j+1∆

(1)
j+6 = −∆j+12,

∆
(3)
j = (−1)j∆

(2)
j+6 = (−1)j+1∆j+18, ∆

(4)
j = (−1)j+1∆

(3)
j+6 = ∆j+24,

∆
(5)
j = (−1)j∆

(4)
j+6 = (−1)j∆j+30, ∆

(6)
j = (−1)j+1∆

(5)
j+6 = −∆j+36.

We see that all sequences ∆(ℓ) are expressed in terms of the first (non shifted) one ∆ = ∆(0)

(remind fig. 5.1), using a translation of n + 1 = 6 units and a function which changes possibly
the signs. Figures 7.1 to 7.3 highlight in particular the translation of the center of the symmetry
(the blank circle) when ℓ = 1, 2, 3.
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Figure 7.1. First 70 determinants in Hankel sequence ∆(1)(Φ5).

5 10 15 20 25 30 35 40 45 50 55 60 65 70

−1

1

Figure 7.2. First 70 determinants in Hankel sequence ∆(2)(Φ5).
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Figure 7.3. First 70 determinants in Hankel sequence ∆(3)(Φ5).
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