
HAL Id: hal-04941123
https://hal.science/hal-04941123v1

Preprint submitted on 13 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Strategies for Partially-Replicable Task
Chains on Two Types of Resources

Diane Orhan, Yacine Idouar, Laércio Lima Pilla, Adrien Cassagne, Denis
Barthou, Christophe Jego

To cite this version:
Diane Orhan, Yacine Idouar, Laércio Lima Pilla, Adrien Cassagne, Denis Barthou, et al.. Scheduling
Strategies for Partially-Replicable Task Chains on Two Types of Resources. 2025. �hal-04941123�

https://hal.science/hal-04941123v1
https://hal.archives-ouvertes.fr

Scheduling Strategies for Partially-Replicable Task
Chains on Two Types of Resources

Working paper version with optimality proof

Diane Orhan1, Yacine Idouar2, Laércio L. Pilla1, Adrien Cassagne2, Denis Barthou3, Christophe Jégo4
1University of Bordeaux, CNRS, Bordeaux INP, Inria, LaBRI, UMR5800, Talence, France – email: diane.orhan@inria.fr

2LIP6, Sorbonne Université, CNRS, UMR7606, Paris, France
3Bordeaux INP, Talence, France

4Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR5218, Talence, France
emails: diane.orhan@inria.fr, yacine.idouar@lip6.fr, laercio.pilla@inria.fr,

adrien.cassagne@lip6.fr, denis.barthou@enseirb-matmeca.fr, christophe.jego@ims-bordeaux.fr

Abstract—The arrival of heterogeneous (or hybrid) multicore
architectures on parallel platforms has brought new performance
opportunities for applications and efficiency opportunities to
systems. They have also increased the challenges related to thread
scheduling, as tasks’ execution times will vary depending if
they are placed in big (performance) cores or little (efficient)
ones. In this paper, we focus on the challenges heterogeneous
multicore problems bring to partially-replicable task chains, such
as the ones that implement digital communication standards in
Software-Defined Radio (SDR). Our objective is to maximize the
throughput of these task chains while also minimizing their power
consumption. We model this problem as a pipelined workflow
scheduling problem using pipelined and replicated parallelism
on two types of resources whose objectives are to minimize
the period and to use as many little cores as necessary. We
propose two greedy heuristics (FERTAC and 2CATAC) and one
optimal dynamic programming (HeRAD) solution to the problem.
We evaluate our solutions and compare the quality of their
schedules (in period and resource utilization) and their execution
times using synthetic task chains and an implementation of the
DVB-S2 communication standard running on StreamPU. Our
results demonstrate the benefits and drawbacks of the different
proposed solutions. On average, FERTAC and 2CATAC achieve
near-optimal solutions, with periods that are less than 10%
worse than the optimal (HeRAD) using fewer than 2 extra cores.
These three scheduling strategies now enable programmers and
users of StreamPU to transparently make use of heterogeneous
multicore processors and achieve throughputs that differ from
their theoretical maximums by less than 8% on average.

Index Terms—Throughput optimization, period minimiza-
tion, heterogeneous architectures, big.LITTLE, energy efficiency,
pipelining, replication, streaming, software-defined radio, SDR.

I. INTRODUCTION

Multicore processor architectures composed of different
types of cores (also known as heterogeneous, hybrid, or
asymmetric) are increasingly common nowadays. What may
have started on low power processors with ARM’s big.LITTLE
architecture in 2011 [1], has now become present in processors
produced by Apple (since 2020), Intel (since 2021) [2], and
AMD (since 2023). A common feature in these processors is
an ISA shared between the high-performance (or big) and the

Work partially supported by the National Research Agency under the France
2030 program.

high-efficiency (or little) cores, which enables the execution
of application in both types of cores transparently.

Heterogeneous multicore architectures have multiple ad-
vantages, such as providing the opportunity to save energy
by turning off big cores when unnecessary (for battery or
environmental reasons). They have also been shown to out-
perform homogeneous architectures under a fixed budget (be
it area, power, or both) [3], [4]. We invite the reader to
check the survey by Mittal on these processors [5] for more
information. These advantages come with the drawback of
higher complexity when programming parallel applications
for these architectures, as one has to decide how to balance
the workload between different cores and core types. When
not taking care of their differences, a heterogeneity-oblivious
solution can result in lower performance and higher energy
consumption (while some cores could be better used).

In this context, we focus on the special characteristics of a
kind of parallel application composed of partially-replicable
task chains, such as the ones that implement digital com-
munication standards in Software-Defined Radio (SDR) [6].
We consider the problem of scheduling these streaming task
chains on two types of resources (heterogeneous multicores)
to optimize their throughput and power consumption in a
transparent manner, reducing complexity for programmers and
end users. Our main contributions in this paper are as follows:

• We provide a formulation of this throughput optimization
(period minimization) problem in Section III;

• We propose two greedy heuristics and one optimal dy-
namic programming solution in Section IV and V;

• We evaluate our new scheduling strategies using simu-
lation, and a real-world digital communication standard
(DVB-S2 [7]) by implementing our strategies [8] to
work with the StreamPU open source DSEL and runtime
system [6] in Section VI.

The remaining sections of this paper are organized as
follows: Section II discusses related works, and Section VII
provides concluding remarks.

II. RELATED WORK

Our main interest lies in the problem of throughput op-
timization for partially-replicable task chains. We focus on
solutions using pipeline and replicated parallelism, and interval
mapping [9]. As we are unaware of any solutions to our
specific research problem in the state of the art, we will focus
our discussion here on variations of this problem.

Throughput on homogeneous architectures: OTAC [10]
provides an optimal solution for partially-replicable task
chains using pipeline and replicated parallelism. We provide
more details about OTAC in Section IV, as our two greedy
heuristics are based on its main ideas. OTAC itself is inspired
by Nicol’s algorithm [11], [12], which is an optimal solution
for the Chain-to-chains partitioning (CCP) problem where only
pipelining is possible. Finally, when all tasks are replicable,
the optimal solution in homogeneous resources is to build
a pipeline with a single stage that is replicated across all
resources [13]. Nonetheless, this does not apply for hetero-
geneous architectures.

Throughput on heterogeneous architectures: Benoit and
Robert offered three heuristics for building interval mappings
on unrelated heterogeneous architectures [14]. Among them,
BSL and BSC use a combination of binary search and greedy
allocation, which is similar to the general scheme of OTAC
and our proposed heuristics. These heuristics, however, do not
consider replicated parallelism.

Makespan on heterogeneous architectures: Topcuoglu et
al. [15] introduced HEFT (one of the most used heuristics
for this kind of problem) and the CPOP to schedule di-
rected acyclic graphs (DAGs) over unrelated heterogeneous
resources. Eyraud-Dubois and Krumar [16] proposed Het-
eroPrioDep to schedule DAGs over two types of unrelated
resources. Sadly, none of these strategies applies for through-
put optimization, nor for pipeline and replicated parallelism.
Agullo et al. [17] studied the performance of dynamic sched-
ulers on two types of unrelated resources through simulation
and real-world experiments. We also employ both kinds of
experiments in our evaluation, but dynamic schedulers from
current runtime systems are usually inefficient at our task
granularity of interest (tens to thousands of µs) [18]. Benavides
et al. [19] proposed a heuristic for the flow shop scheduling
problem on unrelated resources, but their solution is not easily
transposable for pipeline and replicated parallelism.

SDR on heterogeneous architectures: Mack et al. [20]
proposed the use of the CEDR heterogeneous runtime system
to encapsulate and enable GNU Radio’s signal processing
blocks (tasks) in FPGA and GPU-based systems on chip. They
use dynamic scheduling heuristics and imitation learning to
co-schedule GNU Radio’s blocks with other applications. In
contrast, our approaches build static pipeline decompositions
and schedules for a lower runtime overhead. We believe our
algorithms can be integrated to GNU Radio in its future
version (4.0) [21] when it will abandon its thread-per-block
schedule, enabling better performance by avoiding its current
issues related to locality and OS scheduling policies [22].

III. PROBLEM DEFINITION

The problem of maximizing the throughput of a task chain
over two kinds of resources can be modeled as a pipelined
workflow scheduling problem [9]. The workflow can be de-
scribed as a linear chain of n tasks T = {τ1, . . . , τn}, meaning
τi can only execute after τi−1. Tasks are partitioned into two
subsets T rep and T seq for replicable (stateless) and sequential
(stateful) tasks. Sequential tasks cannot be replicated due to
their internal state (i.e., replication leads to false results).

The computing system is composed of two types of un-
related heterogeneous resources v ∈ {B,L} representing big
and little cores, respectively. Big cores are assumed to have the
highest power consumption. The system counts with b big and
l little fully-connected cores. Hereafter, the following notation
is used to characterize system resources: R = (b, l). A task τi
has a computation weight (i.e., its latency) wv

i that depends
on the core type v.

The mapping strategy on our system is known as interval
mapping [9], where T is partitioned into k contiguous inter-
vals. We call the ith interval in the format [τc, τe] (c ≤ e)
a stage noted as si. A stage is defined as replicable if it
contains only replicable tasks. We define ri and vi as the
number and the type of resources dedicated to si, respectively.
The weight of a stage s with r cores of type v is defined
in Eq. (1). Be careful, when r > 1, the weight of a stage
differs from its latency. Other characteristics, such as the
communication weights between tasks and network bandwidth
are considered out of the scope of our current work due to our
focus on heterogeneous multicore architectures (keeping data
exchanges local) and interval mapping (which minimizes data
transfers).

w(s, r, v) =


∑

τ∈s w
v
τ if s ∩ T seq ̸= ∅, r ≥ 1,

1
r

∑
τ∈s w

v
τ if s ∩ T seq = ∅, r ≥ 1,

∞ otherwise
(1)

Our main objective is to find a solution S = (s, r, v) with
s = (s1, . . . , sk) that maximizes throughput. As throughput
is inversely proportional to the period, we will refer to this
problem as a period minimization problem in the remaining
sections. The period of a solution P(S) is given by the greatest
weight among all stages (Eq. (2)). A solution is only valid if
the number of available resources is respected (Eq. (3)).

P(s, r, v) = max
i∈[1,k]

w(si, ri, vi) (2)∑
vi=B

ri ≤ b,
∑
vi=L

ri ≤ l (3)

Our secondary objective is to minimize the power con-
sumption of the solution (as minimizing energy makes no
sense when dealing with a continuous data stream). Solutions
to this problem depend on the information available. For
instance, if the power consumed by each task in each core type
were available (and independent from other tasks in the same
core), the objective of period minimization could be prioritized
over the power one. A second option would be to assume a

fixed power consumption per core used of each type. We chose
to work with a different proxy: the use of little cores instead
of big ones, as they have lower power consumption. In this
case, our secondary objective is to use as many little cores
as necessary (and not more) to achieve the minimum period.
We will see how this impacts our proposed algorithms in the
next sections.

IV. NEW GREEDY HEURISTICS: FERTAC AND 2CATAC

We propose two heuristics to schedule partially-replicable
task chains on two types of resources. They are both based
on OTAC [10] which is able to find optimal solutions for
homogeneous resources. In a nutshell, OTAC uses a binary
search to set up a target period (similar to Algo. 1) and
then tries to greedily build a schedule by packing as many
tasks as possible in each stage (as in Algo. 2). Our new
heuristics, named FERTAC and 2CATAC, use different means
to minimize the period while using as many little cores as
necessary. We discuss the main ideas behind them next.

A. FERTAC

First Efficient Resources for TAsk Chains, or FERTAC
for short, aims to use little cores to build each stage. Big
cores are only used when it is not possible to respect the
target period. We will explain how FERTAC operates by first
covering its methods common to 2CATAC (i.e., Schedule and
ComputeStage) and then discussing its specific implementa-
tion of the ComputeSolution method (Algo. 4).

Schedule (Algo. 1) follows a binary search procedure
similar to the one used for the CCP problem [12]. It sets the
lower period bound by the maximum between (I) replicating
all tasks over all resources and (II) the sequential task with
the largest weight (line 1)1. The upper period bound is based
on the minimum period plus the largest task weight (line 2).
The binary search (lines 5–14) tries to find a solution with a
target middle period. If the solution is valid, we store it and
update the upper bound (lines 9–10), or else we update the
lower bound (line 12). The search stops when the difference
between the bounds is smaller than an epsilon (line 3) that
takes into account the fractional nature of the final period due
to replicated stages using multiple cores (Eq. (1)). In total, this
requires O(log(wmax(b+ l))) calls to ComputeSolution, with
wmax = maxτ∈T wLτ .

ComputeStage (Algo. 2) tries to find where to finish a stage
and how many cores (of a given type) are required to respect
the target period. It first tries to pack as many tasks as possible
in the stage using a single core (line 1). We check how many
cores the stage requires for the case where the last task in the
chain is replicable and its weight surpasses the target period
(line 2). If the stage is replicable (line 3), it is extended to
include all following replicable tasks (line 4). If this long stage
requires more cores than available, it is reduced to respect the
target period (lines 5–7). If this stage is not the final one, it

1For the sake of simplicity, we assume here that tasks run fastest on big
cores. This only affects the computation of period bounds and can easily be
changed with some more comparisons between weights.

Algorithm 1 Schedule (common method)
Input: Set of tasks T , big cores b, little cores l.
Output: Pipelined and replicated solution Sbest.

1: Pmin ← max(
∑

τ∈T wB
τ

b+l ,maxτ∈T seq wB
τ) ▷Minimum expected period

2: Pmax ← Pmin + maxτ∈T wL
τ ▷Maximum expected period

3: ϵ← 1
b+l

4: Sbest ← ∅
5: while Pmax − Pmin ≥ ϵ do
6: Pmid =

Pmax+Pmin
2 ▷Target period for the binary search iteration

▷ ComputeSolution is different for FERTAC (Algo. 4) and 2CATAC (Algo. 5)
7: S ← ComputeSolution(T , 1, b, l, Pmid)
8: if IsValid(S, b, l, Pmid) then ▷Checks for validity (Algo. 3)
9: Sbest ← S ▷New best solution

10: Pmax ← P(S) ▷Can only decrease the target period from here
11: else
12: Pmin ← Pmid ▷Can only increase the target period
13: end if
14: end while
15: return Sbest

Algorithm 2 ComputeStage (common method)
Input: Set of tasks T , task index s, cores c, core type v, target period P .
Output: Task index e, used cores u.
1: e← MaxPacking(T , s, 1, v, P) ▷Packs tasks using one core (Algo. 3)
2: u← RequiredCores(T , s, e, v, P) ▷Cores needed for this stage (Algo. 3)
3: if e ̸= n and IsRep(T , s, e) then ▷If the stage is replicable (Algo. 3)
4: e← FinalRepTask(T , s, e) ▷Extends the stage (Algo. 3)
5: u← RequiredCores(T , s, e, v, P)
6: if u > c then ▷Not enough cores for all tasks, needs to reduce the stage
7: e← MaxPacking(T , s, c, v, P) ; u← c
8: else if e ̸= n then ▷Checks if it is better to leave one core for the next stage
9: f ← MaxPacking(T , s, u− 1, v, P)

10: if RequiredCores(T , f + 1, e + 1, v, P) = 1 then
11: e← f ; u← u− 1 ▷Best to reduce the stage
12: end if
13: end if
14: end if
15: return e, u

Algorithm 3 Common support methods
1: IsValid((s, r, v), b, l, P) :
2: return (|s| > 0 and P(s, r, v) ≤ P and

∑
i∈[1,|v|]∧vi=B ri ≤ b

and
∑

i∈[1,|v|]∧vi=L ri ≤ l)

3: MaxPacking(T , s, c, v, P) :
4: return max(s,maxi∈[s,|T |]{i | w([τs, τi], c, v) ≤ P})
5: RequiredCores(T , s, e, v, P) : ⌈w([τs,τe],1,v)

P ⌉
6: IsRep(T , s, e) : [τs, τe] ∩ T seq = ∅
7: FinalRepTask(T , s, e) : maxi∈[e,|T |]{i | IsRep(T , s, i)}

means there is a sequential task after it. We check if it is better
to move this stage’s final tasks to the next stage while saving
one core and, if that is the case, we update the end of the
stage (lines 9–12). All these tests guarantee that the stage is
packing as many tasks as possible with the given cores.

FERTAC’s ComputeSolution recursively computes a so-
lution for a given target period (Algo. 4) by first trying to
build a stage with little cores (line 1), and only moving to big
cores if no valid solution was found (lines 2–3). If the stage
is final, then it finishes the recursion (lines 8–9). If not, then
we are required to continue computing the next stage with the
remaining cores (lines 11–13). ComputeSolution returns the
list of stages2 if a valid solution is found (line 15).

Regarding the complexity of FERTAC, multiple implemen-
tation aspects have to be considered. Given n = |T |, we chose
to precompute the sum of weights for any given stage using
two prefix sums in O(n). We also chose to precompute if any

2The operation · is used for the concatenation of new items at the start of
the stages, resources, and core types lists.

Algorithm 4 ComputeSolution for FERTAC
Input: Set of tasks T , task index s, big cores b, little cores l, target period P .
Output: Pipelined and replicated [partial] solution.
1: e, u← ComputeStage(T , s, l,L, P) ; v ← L ▷Uses little cores (Algo. 2)
2: if not IsValid(([τs, τe], u, v), b, l, P) then ▷Checks for validity (Algo. 3)
3: e, u← ComputeStage(T , s, b,B, P) ; v ← B ▷Needed to use big cores
4: if not IsValid(([τs, τe], u, v), b, l, P) then ▷No valid solution for both cases
5: return (∅, ∅, ∅)
6: end if
7: end if
8: if e = |T | then
9: return ([τs, τe], u, v) ▷Returns the valid, final stage

10: else ▷Needs to continue building stages
11: b← b− u if v = B ▷Updates available cores for next stages
12: l← l− u if v = L
13: (s, r, v)← ComputeSolution(T , e + 1, b, l, P) ▷Computes the next stages
14: if IsValid((s, r, v), b, l, P) then
15: return ([τs, τe] · s, u · r, v · v) ▷Returns the list of stages
16: else
17: return (∅, ∅, ∅)
18: end if
19: end if

stage is replicable (Algo. 3, line 6) in O(n2) for simplicity,
but this cost could be amortized by sequentially checking
each task (as in OTAC [10]). The validity of a solution
(Algo. 3, lines 1–2) has its cost amortized by checking each
stage as it is built. Packing tasks in a stage and identifying
the final replicable task in a sequence can be done task by
task. Finally, it can be seen that each task is considered a
constant number of times in ComputeStage (Algo. 2), and a
task can only be considered for two stages in sequence (and
twice for both types of cores). With all these aspects taken
into consideration, our implementation of FERTAC requires
O(n log(wmax(b+ l)) + n2) operations.

B. 2CATAC

While FERTAC tries to use little cores as soon as possible,
Two-Choice Allocation for TAsk Chains (or 2CATAC for
short) tries both types of cores for building a stage at each
time. This enables the strategy to make better use of little cores
in later stages, and to potentially consider different secondary
objectives when comparing solutions. This comes at the cost
of an exponential increase in the number of solutions to check.

Algorithm 5 ComputeSolution for 2CATAC
Input: Set of tasks T , task index s, big cores b, little cores l, target period P .
Output: Pipelined and replicated [partial] solution Sbest.
1: for v ∈ {B,L} do ▷Builds solution for this stage with both types of cores
2: r ← b if v = B else l
3: ev, uv ← ComputeStage(T , s, r, v, P) ▷Greedily builds a stage (Algo. 2)
4: if not IsValid(([τs, τev], uv, v), b, l, P) then ▷Checks for validity (Algo. 3)
5: Sv ← (∅, ∅, ∅) ▷No valid stage with this type of cores
6: else if ev = |T | then
7: Sv ← ([τs, τev], uv, v) ▷Valid, final stage option
8: else
9: bv ← b− uv if v = B else b ▷Updates available cores for next stages

10: lv ← l− uv if v = L else l
11: (sv, rv, vv)← ComputeSolution(T , ev + 1, bv, lv, P) ▷Next stages
12: if IsValid((sv, rv, vv), bv, lv, P) then
13: Sv ← ([τs, τev] · sv, uv · rv, v · vv) ▷Valid combined solution
14: else
15: Sv ← (∅, ∅, ∅)
16: end if
17: end if
18: end for
19: return ChooseBestSolution(SB, SL, b, l, P) ▷Picks the best solution (Algo. 6)

2CATAC’s ComputeSolution (Algo. 5) computes the stage
for both big and little cores (lines 1–3). In each case, if the

Algorithm 6 ChooseBestSolution (part of 2CATAC)
Input: Solutions SB and SL, big cores b, little cores l, target period P .
Output: Pipelined and replicated [partial] solution Sbest.
1: if IsValid(SB, b, l, P) then ▷Checks for validity (Algo. 3)
2: if IsValid(SL, b, l, P) then
3: for v ∈ {B,L} do ▷Compares the core usage of the solutions
4: (s, r, v)← S
5: Σbv ←

∑
i∈[1,|v|]∧vi=B ri

6: Σlv ←
∑

i∈[1,|v|]∧vi=L ri
7: end for
8: if ΣlB > ΣlL and ΣbB < ΣbL then
9: Sbest ← SB ▷SB makes better usage of little cores

10: else if ΣlB < ΣlL and ΣbB > ΣbL then
11: Sbest ← SL ▷SL makes better usage of little cores
12: else if ΣlB + ΣbB < ΣlL + ΣbL then
13: Sbest ← SB ▷SB uses fewer cores
14: else
15: Sbest ← SL ▷SL uses fewer cores
16: end if
17: else
18: Sbest ← SB ▷Only valid solution
19: end if
20: else if IsValid(SL, b, l, P) then
21: Sbest ← SL ▷Only valid solution
22: else
23: Sbest ← (∅, ∅, ∅) ▷No valid solution
24: end if
25: return Sbest

final stage is identified, it is stored for comparison (line 7), or
else the recursion is launched for the next stage (line 11) and
combined with the current stage (line 13).

ComputeSolution employs ChooseBestSolution (Algo. 6)
to compare the solutions for both types of cores. A solution is
directly returned if it is the only valid one (lines 18 and 21). In
the other case, the solution that better exchanges big cores for
little ones is returned (lines 9 and 11) or, in the last scenario,
the one that uses fewer cores is chosen (lines 13 and 15). As
ComputeSolution’s objective is to find a schedule that respects
the target period, there is no need to compare the stages’
weights for the different solutions.

2CATAC’s complexity is defined by its recursion’s possible
solutions tree. Other aspects, such as the comparison between
two solutions, are amortized by capturing relevant informa-
tion while computing them. For instance, we provide the
accumulated core usages when combining solutions (Algo. 5,
line 13) instead of computing them each time (Algo. 6,
lines 5–6). Given the considerations previously discussed for
FERTAC, we can conclude that 2CATAC displays a worst-
case complexity in O(2n log(wmax(b+ l))) when each stage
contains only one task. This can be prohibitive for larger task
chains, but it is still faster than the optimal solution (to be
shown next) in some scenarios (see Section VI).

V. OPTIMAL DYNAMIC PROGRAMMING SOLUTION

Our optimal dynamic programming solution can be defined
based on this problem’s recurrence. Let P∗(j, b, l) be the best
period achieved when mapping tasks from τ1 to τj using up to
b big cores and l little cores. P∗(j, b, l) can be computed using
the recurrence in Eq. (4) with P∗(0, b, l) = 0 and P∗(j, 0, 0) =

∞ for j > 0.

P∗(j, b, l) =

min
i∈[1,j]


min

u∈[1,b]
maxP∗(i− 1, b− u, l), w([τi, τj], u,B)

min
u∈[1,l]

maxP∗(i− 1, b, l − u), w([τi, τj], u,L)

(4)

Eq. (4) shows that an optimal solution can be built from
partial optimal solutions. The best solution is found by trying
all possible starts for the stage finishing in τj and all possible
resource distributions between this stage and previous ones
for both core types. This recurrence can be computed in
O(j2bl(b+ l)) time and O(jbl) space.

Algorithm 7 HeRAD
Input: Set of tasks T , big cores b, little cores l.
Output: Pipelined and replicated solution Sbest.
1: for i ∈ [1, |T |] , j ∈ [0, b] , k ∈ [0, l] do ▷Initializes solution matrix
2: SPbest[i][j][k]←∞ ▷Minimal maximum period
3: Sprev[i][j][k]← (0, 0) ▷Big and little cores in the previous stages
4: Sacc[i][j][k]← (0, 0) ▷Accumulated big and little cores
5: Sv[i][j][k]← L ▷Type of core used in the stage
6: Sstart[i][j][k]← 0 ▷Index of the starting task of the stage
7: end for
8: SingleStageSolution(1, S, T , b, l) ▷Single task in a single stage (Algo. 8)
9: for e ∈ [2, |T |] do

10: SingleStageSolution(e, S, T , b, l) ▷All e tasks in a single stage (Algo. 8)
11: for ub ∈ [0, b] do ▷Solutions with more than one stage
12: for ul ∈ [0, l] do ▷and varying numbers of cores
13: if ub ̸= 0 or ul ̸= 0 then
14: RecomputeCell(e, S, T , ub, ul) ▷P∗(e, ub, ul) (Algo. 9)
15: end if
16: end for
17: end for
18: end for
19: return ExtractSolution(S, T , b, l) ▷Converts the matrix to a solution (Algo. 11)

Algorithm 8 SingleStageSolution (part of HeRAD)
Input: Task index t, solution matrix S, set of tasks T , big cores b, little cores l.
Output: Updated S[t][:][:].
1: for rl ∈ [1, l] do ▷Initializes row with a stage using little cores
2: SPbest[t][0][rl]← w([τ1, τt], rl,L)
3: Sacc[t][0][rl]← (0, rl) if IsRep(T , 1, t) else (0, 1)
4: end for
5: for rb ∈ [1, b] do
6: wb ← w([τ1, τt], rb,B) ▷Computes the stage with big cores
7: ub ← rb if IsRep(T , 1, t) else 1
8: for rl ∈ [0, l] do ▷Compares if it is better to use rb big
9: if wb < SPbest[t][0][rl] then ▷ or rl little cores for this single stage

10: SPbest[t][rb][rl]← wb

11: Sacc[t][rb][rl]← (ub, 0)
12: Sv [t][rb][rl]← B
13: else
14: SPbest[t][rb][rl]← SPbest[t][0][rl]
15: Sacc[t][rb][rl]← Sacc[t][0][rl]
16: end if
17: end for
18: end for

HeRAD, or short for Heterogeneous Resource Allocation
using Dynamic programming (Algo. 7), implements the opti-
mal strategy of Eq. (4) while also considering the secondary
objective of using as many little cores as necessary. It starts
by initializing a solution matrix S that will contain all optimal
partial solutions (lines 1–7). It then computes all optimal
solutions for the first task in the chain with all possible
numbers of cores (line 8) using SingleStageSolution. In the
next step and for increasing numbers of tasks, the algorithm

Algorithm 9 RecomputeCell (part of HeRAD)
Input: Task index j, solution matrix S, set of tasks T , big cores available b, little cores

available l.
Output: Updated S[j][b][l].
1: C ← S[j][b][l] ▷Uses the initial solution from SingleStageSolution (Algo. 8)
2: C ← CompareCells(C, S[j][b][l− 1]) if l > 0 ▷Compares to neighbor solutions
3: C ← CompareCells(C, S[j][b− 1][l]) if b > 0 ▷ using one less core
4: for i ∈ [1, j] in reverse order do ▷External mini∈[1,j] (Eq. 4)
5: for u ∈ [1, b] do ▷Internal minu∈[1,b] (Eq. 4)
6: BPbest ← max SPbest[i− 1][b− u][l], w([τi, τj], u,B)
7: (ab, al)← Sacc[i− 1][b− u][l]
8: Bacc ← (ab + u, al) if IsRep(T , i, j) else (ab + 1, al)
9: Bprev ← (b− u, al) ; Bv ← B ; Bstart ← i

10: C ← CompareCells(C,B) ▷Keeps the best solution (Algo. 10)
11: end for
12: for u ∈ [1, l] do ▷Internal minu∈[1,l] (Eq. 4)
13: LPbest ← max SPbest[i− 1][b][l− u], w([τi, τj], u,L)
14: (ab, al)← Sacc[i− 1][b][l− u]
15: Lacc ← (ab, al + u) if IsRep(T , i, j) else (ab, al + 1)
16: Lprev ← (ab, l− u) ; Lv ← L ; Lstart ← i
17: C ← CompareCells(C,L) ▷Keeps the best solution (Algo. 10)
18: end for
19: end for
20: S[j][b][l]← C ▷Stores the best solution

Algorithm 10 CompareCells (part of HeRAD)
Input: Matrix cells for partial solutions C (current) and N (new).
Output: Best partial solution.
1: (cb, cl)← Cacc ; (nb, nl)← Nacc

2: if (CPbest > NPbest) or (CPbest = NPbest and cl < nl and cb > nb)
or (CPbest = NPbest and cl ≥ nl and cb ≥ nb) then

3: return N
4: else
5: return C
6: end if

Algorithm 11 ExtractSolution (part of HeRAD)
Input: Solution matrix S, set of tasks T , big cores b, little cores l.
Output: Pipelined and replicated solution Sbest.
1: e← |T | ; s← |T | ; rb ← b ; rl ← l
2: (s, r, v)← (∅, ∅, ∅)
3: while e ≥ 1 do
4: s← Sstart[e][rb][rl] ▷Start of the stage
5: (ub, ul)← Sacc[e][rb][rl]
6: v ← Sv[e][rb][rl] ▷Type of core used
7: (pb, pl)← Sprev[e][rb][rl]
8: if s > 1 then ▷Gets the number of cores used in this stage only
9: (cb, cl)← Sacc[s− 1][pb][pl]

10: ub ← ub − cb ; ul ← ul − cl
11: end if
12: r ← ub if v = B else ul ▷Number of cores used
13: (s, r, v)← ([τs, τe] · s, r · r, v · v) ▷Adds the stage to the solution
14: e← s− 1 ; rb ← pb ; rl ← pl ▷Index for the predecessor stage
15: end while
16: return (s, r, v)

computes a first solution where all tasks belong to the same
stage (line 10). Then, it computes the optimal partial solution
for this number of tasks with varying numbers of cores avail-
able (line 14) using RecomputeCell. The algorithm finishes
by going backwards in the solution matrix and identifying
the stages that belong to the optimal solution (line 19) using
ExtractSolution (Algo. 11). We have also added an extra step
that merges consecutive stages if they are replicable and using
the same core type. This has no impact in the minimum period
achieved, but it leads to solutions with fewer stages.

SingleStageSolution (Algo. 8) finds the best solutions when
putting all considered tasks in the same stage. It computes and
stores the weight of the stage using increasing numbers of little
cores, taking care to register that sequential stages can only
benefit from a single core (lines 1–4). It then considers an

increasing number of big cores (lines 6–7) and compares their
solutions with the ones using little cores (lines 8–17). It stores
the solution with minimum period in the matrix, solving ties
in favor of the little cores (lines 9–16).

RecomputeCell (Algo. 9) tries all possible optimal solu-
tions for a scenario with a given number of tasks, big cores
and little cores. It uses the solution from SingleStageSolu-
tion as a starting point and compares it to other solutions
with one fewer big or little core (lines 1–3) that have been
previously computed. It then computes all possible solutions
for maxP∗(i − 1, b − u, l), w([τi, τj], u,B) (lines 4–11) and
maxP∗(i − 1, b, l − u), w([τi, τj], u,L) (lines 4 and 12–18),
comparing them sequentially to the best solution found so
far, and the best solution is stored in the matrix (line 20).
We implement an optimization that limits comparisons to a
single core (instead of a range of cores in lines 5 and 12)
if the stage is sequential. All solution comparisons make use
of CompareCells (Algo. 10). It returns the solution with the
minimum maximum period. In the case of ties, the solution
that better exchanges big cores for little cores is returned or,
in the last scenario, the one that uses fewer cores is chosen.

A. Optimality proof

The optimality of HeRAD can be demonstrated by in-
duction3. Its proof combines elements of Eq. (4) and its
implementations in Algos. 7, 8, and 9. At each step, we first
cover the period minimization aspect of the solution, followed
by the idea of using as many little cores as necessary.

Lemma 1. The solution for P∗(1, b, l) is optimal.

Proof. The only possible solutions for P∗(1, b, l) include a
single pipeline stage using big or little cores. Algo 8 is used
to compute the solution for j = 1 (Algo. 7, line 8). It stores
the minimum between the solutions using b big cores or l little
cores (Algo 8, lines 5–9), therefore it is optimal in period.

Regarding the use of little cores, the algorithm first com-
putes solutions using them (lines 1–4) and then solves ties
with big cores in favor of the little ones (line 9, use of <),
thus being optimal in this aspect too.

Lemma 2. The solution for P∗(j, b, l) is optimal if the
solutions for P∗(i, rb, rl) are also optimal for i < j, rb ≤ b,
and rl ≤ l.

Proof. The period of P∗(j, b, l) takes its value from the min-
imum period among all possible starts for the stage finishing
in τj using all possible resource distributions (Eq. (4), loops
in Algo. 8 using Algo. 10, and Algo. 9). To consider another
schedule with a smaller period is a contradiction, as it requires
having a suboptimal P∗(i, rb, rl), or a value that is smaller than
the minimum of all possible solutions, so P∗(j, b, l) is optimal
regarding its period.

3For the sake of brevity, we provide only a resumed proof of this solution’s
optimality. Suffice to say, similar proofs have been provided for other interval-
based mapping algorithms [23] and dynamic programming algorithms with
secondary objectives handled when comparing partial solutions [24].

Regarding the use of little cores, Algo. 10 always solves ties
in the benefit of the solution that better exchanges big cores
for little cores or the one that uses fewer cores. We also ensure
that solutions having one less big or little core available are
propagated from previous solutions (Algo. 9 lines 2–3), thus
the solution is also optimal in this aspect.

Theorem 1. HeRAD yields optimal solutions regarding the
period achieved and the use of little cores.

Proof. Lemmas 1 and 2 prove the optimality of the base case
and the inductive step, so HeRAD is optimal.

As given by Theorem 1, HeRAD provides schedules with
minimal periods while using as many little cores as necessary
with the potential issue of a high complexity. We next evaluate
how its benefits and drawbacks measure against our greedy
heuristics.

VI. EXPERIMENTAL EVALUATION

Our experimental evaluation is organized in two steps. In the
first step, we use synthetic task chains and processors to check
how well the strategies are able to optimize our two objectives,
and also to profile their execution time. In the second step,
we employ them to schedule an implementation of the DVB-
S2 digital communication standard [7] on StreamPU [6] and
on two heterogeneous multicore processors. Then, we evaluate
their throughput. Comparisons include our three strategies and
OTAC [10] (which handles homogeneous resources only). We
provide more details about our experimental environments and
results in the next sections. Source code, result files, and scripts
are freely available online [8].

A. Experimental Environments

1) Simulation: Experiments were executed on a Dell Lati-
tude 7420 notebook (Intel Core i7-1185G7 @ 3 GHz, 32 GB
LPDDR4 @ 3733 MT/s, 512 GB NVMe SSD) running Linux
(Ubuntu 24.04.1 LTS kernel 6.8.0-51, g++ 13.3.0). For period
and core usage measurements, 1000 task chains of 20 tasks
were generated. Task weights were randomly set in the integer
interval [1,100] uniformly for big cores with a slowdown in
the interval [1,5] for little cores (rounded using the ceiling
function). In order to evaluate how the replicable tasks affect
the strategies, the stateless ratio (SR) (i.e., fraction of tasks that
are replicable) of each chain was set equal to {0.2, 0.5, 0.8}
for different scenarios. We set the number of big (b) and little
(l) cores (e.g., the resources R = (b, l)) in the simulation
using three different pairs {(16B, 4L), (10B, 10L), (4B, 16L)}.
For the execution time profiling, we generate 50 task chains
for varying numbers of tasks (20i|i ∈ [1, 8]), pairs of numbers
of cores ((20i, 20i)|i ∈ [1, 8]), and SRs.

2) Real-world SDR Experiment: Experiments were exe-
cuted on two platforms:

(i) an Apple Mac Studio (Apple Silicon M1 Ultra with
20 ARMv8.5-A cores set as 16 (big) p-cores @ 3.2 GHz
and 4 (little) e-cores @ 2 GHz, 64 GB LPDDR5 @

6400 MT/s, 2 TB SSD) running Linux (Fedora 40 Asahi
Remix kernel 6.11.8-400, g++ 14.2.1);

(ii) a Minisforum AtomMan X7 Ti PC (Intel Ultra 9 185H,
16 x86-64 cores with 6 (big) p-cores @ 5.1 GHz, 8
(little) e-cores @ 3.8 GHz, and 2 LPe-cores left unused,
32 GB DDR5 @ 5600 MT/s, 1 TB NVMe SSD) running
Linux (Ubuntu 24.10 kernel 6.11.0-13, g++ 14.2.0).

Both run StreamPU v1.6.0 and the open source DVB-S2
transceiver4 (commit 5a952de). After profiling the DVB-S2
receiver on both platforms5 (Table III), schedules were com-
puted using all cores and half of them. A compact placement
was used for the threads. Each schedule was executed ten times
for 1 minute each and the achieved throughputs (in Mb/s and
frames per second) were obtained.

B. Simulation – Slowdown Compared to HeRAD

Given that HeRAD always provides minimal periods, we
use the slowdown ratio P(Sother)

P(SHeRAD)
to compare strategies. Fig. 1a

illustrates the cumulative distributions (1000 task chains) of
slowdown ratios for varying resources and slowdown ra-
tios. Each line represents a strategy, with OTAC (B) (resp.
OTAC (L)) using only big (resp. little) cores. We can notice in
the first column (SR = 0.2) that 2CATAC and FERTAC tend
to find minimal periods in most cases, but they become less
effective as the SR increases (other columns). The higher the
SR, the more likely for the period to be limited by replicable
tasks and the higher the number of replication options to
explore, making it harder to find the best solution.

OTAC (B) performs similarly to FERTAC only when many
big cores are available (first row). Meanwhile, OTAC (L) never
finds optimal solutions because it lacks the big cores to handle
the slowest tasks. The gap between these strategies can be
better seen in Fig. 1b with a full range of slowdown ratios.

We summarize our simulation statistics in Table I. When
few little cores are available (R = (16B, 4L)), 2CATAC and
FERTAC find the majority of minimal periods, leading to
1% or lower slowdowns on average. Even for scenarios with
different numbers of cores, 2CATAC and FERTAC achieve
average slowdown ratios limited to 1.03 and 1.08, respectively,
which represent 97.1% and 92.6% of the potential throughput.
Their worst results (R = (10B, 10L), SR = 0.5) were limited
to maximum slowdowns of 1.23 and 1.41, respectively (or
81.3% and 70.1% of the potential throughput). In comparison,
OTAC (B) shows average slowdown ratios comparable to
the maximum slowdowns of FERTAC for R = (10B, 10L),
and even worse when even fewer big cores are available. It
emphasizes the importance of using both core types together.

Although these results are related to our exact simulation
parameters, their general trends are the same for longer task
chains or different numbers of resources. Additional experi-
ments (not covered here for the sake of space) have revealed
that non-optimal strategies tend to perform worse when more

4DVB-S2 transceiver GitHub repository: https://github.com/aff3ct/dvbs2
5DVB-S2 receiver parameters: transmission phase, 1000 streams, inter-

frame level ∈ {4, 8}, K = 14232, R = 8/9, MODCOD 2, LDPC horizontal
layered NMS 10 ite with early stop criterion, error-free SNR zone.

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(16,4), SR=0.2

Algorithm
2CATAC
FERTAC
OTAC (B)
OTAC (L)

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(16,4), SR=0.5

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(16,4), SR=0.8

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(10,10), SR=0.2

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(10,10), SR=0.5

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(10,10), SR=0.8

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(4,16), SR=0.2

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(4,16), SR=0.5

1.0 1.2 1.4
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(4,16), SR=0.8

(a) Results zoomed in the slowdown interval [1, 1.5]. Rows represent
different pairs of resources.

2.5 5.0 7.5
Slowdown ratio

0.00

0.25

0.50

0.75

1.00
De

ns
ity

R=(10,10), SR=0.2

2.5 5.0 7.5
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(10,10), SR=0.5

2.5 5.0 7.5
Slowdown ratio

0.00

0.25

0.50

0.75

1.00

De
ns

ity

R=(10,10), SR=0.8

(b) Full slowdown interval for R = (10B, 10L).

Fig. 1: Cumulative solution (e.g., density) distributions of
slowdown ratios (cf. HeRAD) for different heuristics. Columns
represent different SRs.

tasks have to be scheduled (more decisions to make), but better
when more resources are available (easier to have enough
resources for the slowest stage).

C. Simulation – Core Usage

Table I also provides the average number of big and little
cores used by each scheduling strategy for different resources
available and SRs. As our secondary objective is to use as
many little cores as necessary to reduce power consumption
(Section III), using more little cores and less big ones is
desirable. In general, strategies use more cores when more
tasks are replicable (right col., SR = 0.8) to reduce the period.

We can see that 2CATAC tends to use almost the same
number of resources as HeRAD. It uses at most 0.3 more
cores than the minimal, sometimes using more big and less
little cores. FERTAC, in its part, tends to use more of both
resources in its solution. By greedily trying to use little cores
in earlier stages, it ends up missing opportunities to make
better use of these cores later in the pipeline. Nonetheless,
even in its worst average results, FERTAC requires 1.41 little
cores (R = (4B, 16L), SR = 0.2) or 1.36 cores in total (R =
(16B, 4L), SR = 0.5) more than HeRAD.

https://github.com/aff3ct/dvbs2

TABLE I: Simulation statistics for all scheduling strategies. Each 4-tuple counts the percentage of optimal periods, and the
average, median, and maximum slowdown ratios. Each pair indicates the average number of cores used according to their type.

SR = 0.2 SR = 0.5 SR = 0.8

Period Statistics Core Usage Period Statistics Core Usage Period Statistics Core Usage

R = (b, l) Strategy (% opt, avg, med, max) (bused, lused) (% opt, avg, med, max) (bused, lused) (% opt, avg, med, max) (bused, lused)

(16B, 4L)

HeRAD (100.0%, 1.00, 1.00, 1.00) (11.72, 3.33) (100.0%, 1.00, 1.00, 1.00) (11.97, 3.50) (100.0%, 1.00, 1.00, 1.00) (12.63, 3.49)
2CATAC (100.0%, 1.00, 1.00, 1.00) (11.74, 3.31) (99.6%, 1.00, 1.00, 1.13) (12.09, 3.47) (93.0%, 1.00, 1.00, 1.17) (12.91, 3.37)
FERTAC (99.2%, 1.00, 1.00, 1.14) (12.44, 3.91) (95.8%, 1.00, 1.00, 1.22) (12.87, 3.96) (84.3%, 1.01, 1.00, 1.34) (13.30, 3.86)
OTAC (B) (88.7%, 1.01, 1.00, 1.31) (14.15, 0.00) (82.7%, 1.02, 1.00, 1.35) (14.37, 0.00) (69.9%, 1.04, 1.00, 1.43) (14.41, 0.00)
OTAC (L) (0.0%, 9.01, 8.93, 13.88) (0.00, 4.00) (0.0%, 9.35, 9.27, 14.81) (0.00, 4.00) (0.0%, 10.57, 10.37, 17.92) (0.00, 4.00)

(10B, 10L)

HeRAD (100.0%, 1.00, 1.00, 1.00) (9.34, 7.87) (100.0%, 1.00, 1.00, 1.00) (9.02, 9.24) (100.0%, 1.00, 1.00, 1.00) (9.10, 9.44)
2CATAC (98.8%, 1.00, 1.00, 1.07) (9.34, 7.90) (89.1%, 1.00, 1.00, 1.23) (9.11, 9.28) (61.7%, 1.02, 1.00, 1.22) (9.33, 9.36)
FERTAC (80.3%, 1.01, 1.00, 1.26) (9.48, 8.87) (51.2%, 1.04, 1.00, 1.41) (9.49, 9.89) (42.2%, 1.06, 1.03, 1.37) (9.56, 9.87)
OTAC (B) (1.7%, 1.32, 1.32, 1.78) (9.97, 0.00) (1.4%, 1.38, 1.39, 1.87) (9.97, 0.00) (1.6%, 1.41, 1.43, 1.92) (9.99, 0.00)
OTAC (L) (0.0%, 4.17, 4.19, 5.62) (0.00, 9.57) (0.0%, 4.32, 4.37, 5.80) (0.00, 9.72) (0.0%, 4.34, 4.40, 5.80) (0.00, 9.81)

(4B, 16L)

HeRAD (100.0%, 1.00, 1.00, 1.00) (3.99, 7.86) (100.0%, 1.00, 1.00, 1.00) (3.99, 13.32) (100.0%, 1.00, 1.00, 1.00) (3.99, 15.80)
2CATAC (100.0%, 1.00, 1.00, 1.00) (3.99, 7.89) (91.7%, 1.00, 1.00, 1.14) (3.99, 13.42) (41.1%, 1.03, 1.01, 1.21) (3.99, 15.83)
FERTAC (99.0%, 1.00, 1.00, 1.09) (3.99, 9.27) (61.4%, 1.03, 1.00, 1.34) (3.99, 14.08) (13.0%, 1.08, 1.07, 1.36) (3.99, 15.91)
OTAC (B) (0.0%, 1.61, 1.59, 2.62) (4.00, 0.00) (0.0%, 2.03, 2.06, 2.88) (4.00, 0.00) (0.0%, 2.42, 2.40, 3.13) (4.00, 0.00)
OTAC (L) (0.0%, 2.22, 2.16, 4.72) (0.00, 10.98) (0.0%, 2.58, 2.49, 4.72) (0.00, 11.91) (0.0%, 2.57, 2.36, 4.97) (0.00, 13.20)

Fig. 2 explores in more detail the differences between FER-
TAC and HeRAD for one scenario where FERTAC achieved
the minimum period 51.2% of the times. Each cell in the
heatmaps represent the percentage of times that FERTAC uses
more, less, or the same number of big and little cores than
HeRAD. When considering all results (Fig. 2a), FERTAC
uses at most 1 or 2 extra cores 59% and 83.1% of the
times, respectively. When considering only the results where
FERTAC achieves minimal periods (Fig. 2b), the situations
where at most 1 or 2 extra cores were necessary change to
21.2% and 39.2% of the times. These differences may be
justified given the difference in computational complexity of
the strategies, as will be seen next.

-2 -1 0 1 2 3
Extra little res. (10 total)

4
3

2
1

0
-1

-2
-3

Ex
tra

 b
ig

 re
s.

(1
0

to
ta

l)

0 0 0.1 0 0 0

0 0.1 0.2 0.3 0 0

0 0.5 5 1.8 0.7 0.1

0.3 1.8 13 9.4 5.3 0.4

0.4 1.4 27 19 9.7 1.9

0 0 0.9 0.1 0.3 0

0 0 0 0 0 0

0 0 0.1 0 0 0

Res. diff. (FERTAC-HeRAD)

(a) All results.

-2 -1 0 1 2 3
Extra little res. (10 total)

4
3

2
1

0
Ex

tra
 b

ig
 re

s.
(1

0
to

ta
l)

0 0 0.1 0 0 0

0 0.1 0.2 0.2 0 0

0 0.5 4.4 1.6 0.6 0.1

0.2 1.7 8.4 7.9 4.7 0.2

0 0 3.9 8.9 5.7 1.8

Res. diff. (FERTAC-HeRAD) - only opt.

0

5

10

15

20

25

30

(b) Only optimal periods.

Fig. 2: Heatmaps with the differences in resources used
between FERTAC and HeRAD for R = (10B, 10L) and
SR = 0.5.

D. Simulation – Strategies Execution Times

Fig. 3 shows the execution times of the different strategies
in µs for R = (20B, 20L) (Fig. 3a) and R = (100B, 100L)
(Fig. 3b). Each point represents the average of 50 runs. Each
line represents a strategy computing schedules for task chains
with different stateless ratios. The lower the time, the better.

We can notice that FERTAC displays the same behavior as
OTAC. Having the lowest computational complexity among

proposed strategies, its execution times are in the order of 10
to 100 µs and they grow proportionally to the number of tasks.

2CATAC has an exponential complexity in the number of
tasks, so its results are limited to up to 60 tasks. Besides
its rapid growth in execution time, 2CATAC shows distinct
execution times depending on how many replicable tasks there
are. Its execution times increase when SR goes from 0.2
to 0.5, but then it decreases by almost two orders of magnitude
when SR = 0.8. 2CATAC is able to pack many tasks together
in longer pipeline stages when they are replicable, leading
to shorter recursions and fewer comparisons. Nonetheless, its
exponential behavior limits its usage to short task chains.

HeRAD’s execution times grow with the square of the
number of tasks, and they already start in the order of ms
in the tested scenarios. Its averages go from 2.476 ms to
14.381 ms from 20 to 60 tasks (R = (20B, 20L), SR = 0.8),
and from 78.466 ms to 3656 ms (46.6×) from 20 to 160
tasks (R = (100B, 100L), SR = 0.8). Its execution times are
smaller when fewer tasks are replicable due to an optimization
in RecomputeCell (see Section V).

Fig. 4 reflects the effects of increasing the number of
resources. It shows that the greedy strategies stray mostly un-
affected, while HeRAD’s execution times grow. For instance,
its execution times go from 1.72 s to 6.38 s when going
from R = (100B, 100L) to R = (160B, 160L) (SR = 0.8
in Fig. 4b) — a 3.7× increase in time for a 1.6× increase
in resources. Although these times are not prohibitive when
precomputing a schedule for contemporary task chains and
processors, HeRAD could be more difficult to use in bigger
scenarios or real-time. We see how its hypothetically optimal
schedules behave when applied in a real scenario next.

E. Real-world SDR Experiment – Achieved Throughput

Table II summarizes the solutions found on the different
platforms using all or half their cores. They were obtained
using the task profiling information listed in Table III. As ex-
pected, task latency is always higher on little cores. However,
the latency ratio between little and big cores varies according
to task and platform. It underlines the need to profile each
task independently. In Table II, for each configuration and

20 30 40 50 60
Number of tasks

100

102

104

106

Ex
ec

ut
io

n
tim

e
(u

s,
lo

g
sc

al
e)

HeRAD (SR=0.2)
HeRAD (SR=0.5)
HeRAD (SR=0.8)
2CATAC (SR=0.2)
2CATAC (SR=0.5)
2CATAC (SR=0.8)

FERTAC (SR=0.2)
FERTAC (SR=0.5)
FERTAC (SR=0.8)
OTAC (SR=0.2)
OTAC (SR=0.5)
OTAC (SR=0.8)

(a) R = (20B, 20L).

50 100 150
Number of tasks

100

102

104

106

Ex
ec

ut
io

n
tim

e
(u

s,
lo

g
sc

al
e)

HeRAD (SR=0.2)
HeRAD (SR=0.5)
HeRAD (SR=0.8)
2CATAC (SR=0.2)
2CATAC (SR=0.5)
2CATAC (SR=0.8)

FERTAC (SR=0.2)
FERTAC (SR=0.5)
FERTAC (SR=0.8)
OTAC (SR=0.2)
OTAC (SR=0.5)
OTAC (SR=0.8)

(b) R = (100B, 100L).

Fig. 3: Average strategy times (µs, log. scale) with fixed
numbers of resources.

20 40 60 80 100
Number of each kind of resource

100

102

104

106

Ex
ec

ut
io

n
tim

e
(u

s,
lo

g
sc

al
e)

HeRAD (SR=0.2)
HeRAD (SR=0.5)
HeRAD (SR=0.8)
2CATAC (SR=0.2)
2CATAC (SR=0.5)
2CATAC (SR=0.8)

FERTAC (SR=0.2)
FERTAC (SR=0.5)
FERTAC (SR=0.8)
OTAC (SR=0.2)
OTAC (SR=0.5)
OTAC (SR=0.8)

(a) |T | = 20.

100 120 140 160
Number of each kind of resource

100

102

104

106

Ex
ec

ut
io

n
tim

e
(u

s,
lo

g
sc

al
e)

HeRAD (SR=0.2)
HeRAD (SR=0.5)
HeRAD (SR=0.8)
2CATAC (SR=0.2)
2CATAC (SR=0.5)
2CATAC (SR=0.8)

FERTAC (SR=0.2)
FERTAC (SR=0.5)
FERTAC (SR=0.8)
OTAC (SR=0.2)
OTAC (SR=0.5)
OTAC (SR=0.8)

(b) |T | = 100.

Fig. 4: Average strategy times (µs, log. scale) with fixed
numbers of tasks.

strategy, the pipeline decomposition is detailed, including the
number of little and big cores used, the expected period, and
its conversion to throughput metrics. Besides the estimations,
the real average FPS and Mb/s values are presented with their
absolute and relative differences to the expected values. The
information throughput is also illustrated in Fig. 5.

HeRAD, 2CATAC, and FERTAC propose different pipeline
decompositions (Table II), which result in different through-
puts in practice. We can see in Fig. 5a that the strategies
achieved similar throughputs when all cores are available
(R = (16B, 4L)). With enough big cores, performance gets
limited by a sequential task, leaving many cores unused. On
the contrary, performance differs when only half the cores are
used (R = (8B, 2L)). 2CATAC achieves the highest throughput
by replicating 5× the stage including the two slowest tasks,
while HeRAD separates these tasks in different replicated
stages. This leads to a longer pipeline for a 1.02× expected
(but not realized) better throughput. FERTAC ends up using
both little cores for the first stages, while using a single big
core would have been better (see S1 and S2). As so, it lacks
the extra core by the end of the pipeline, leading to a lower
throughput.

Fig. 5b shows a large gap between schedules using half or
all cores. HeRAD and 2CATAC require all cores when R =
(6B, 8L) to get to the point of being limited by a sequential
task. Meanwhile, OTAC (B) only gets to 53% of HeRAD’s

throughput, which again emphasizes the importance of using
both types of cores.

When R = (6B, 8L), all solutions from our scheduling
strategies (S[16:18]) have two consecutive replicated stages
using different types of cores. These required an extension
to StreamPU to connect replicated stages. This feature was
unavailable before because, when using only homogeneous
resources, it is always better to merge consecutive replicated
stages [13]. This enhancement has been released in StreamPU
v1.6.0. Additionally, we see that this configuration shows the
highest differences between expected and obtained throughput
results. A common feature of all solutions with differences
over 10% is a replicated stage using little cores to handle
one of the slowest tasks. We plan to investigate this further
to identify if this is related to an architectural characteristic
of the processor, to our compact thread placement, to hidden
overheads in StreamPU, or some other reason.

HeRAD

2CATAC

FERTAC

OTAC
(B)

OTAC
(L)

0

20

40

60

80

47
.2 51
.1

41
.9

38
.1

5

56 55
.9

55
.8

55
.9

8
.7

In
fo

.
T

hr
ou

gh
pu

t
(M

b/
s)

R = (8B, 2L)

R = (16B, 4L)

(a) Mac Studio.

HeRAD

2CATAC

FERTAC

OTAC
(B)

OTAC
(L)

0

20

40

60

80

38
.8

38
.1 40
.6

19
.7

14
.6

72
.5

71
.4

65
.4

38
.6

26
.1

In
fo

.
T

hr
ou

gh
pu

t
(M

b/
s)

R = (3B, 4L)

R = (6B, 8L)

(b) X7 Ti.

Fig. 5: Achieved throughput on the DVB-S2 receiver depend-
ing on the platform and scheduling strategy.

A final point to notice in Fig. 5b and Table II is that
FERTAC obtains the best throughput for R = (3B, 4L).
Although its expected throughput is only 95% of the optimal,
it achieved a throughput 4.5% higher than HeRAD. The main
difference in its solution is the use of big cores to replicate
the stage with the two slowest tasks, which led to a result
better than expected. This insight points to possible practical
improvements to our scheduling solutions in the future.

VII. CONCLUDING REMARKS

In this paper, we considered the problem of scheduling
partially-replicable task chains on two types of resources to
optimize throughput (minimize period) and power consump-
tion (use as many little cores as necessary). We have proposed
two greedy strategies (FERTAC that tries to use little cores as
early as possible, and 2CATAC that tries to use both core types
at each stage) and one optimal dynamic programming strategy
(HeRAD). Fig. 6 summarizes their main characteristics based
on our experimental evaluation and analysis.

Using simulation, we have verified that FERTAC and
2CATAC are able to obtain near-optimal schedules on average,
with minor increases in period and resource utilization. We

TABLE II: Specification of the configurations R used with the real-world DVB-S2 receiver. Limiting pipeline stages (according
to the simulation) are highlighted in orange if replicable, red otherwise.

Solution FPS Info. Throughput (Mb/s)

R = (b, l) Id Strategy Pipeline decomposition where a stage is (ntasks, rv∈{L,B}) |s| bused lused Period (µs) Sim. Real Sim. Real Diff. Ratio

M
ac

St
ud

io

(8B, 2L)

S1 HeRAD (5, 1B), (1, 1B), (9, 1B),(1, 2B), (2, 1L), (1, 3B), (4, 1L) 7 8 2 1128.7 3544 3316 50.4 47.2 +3.2 +7%
S2 2CATAC (5, 1B), (3, 1B), (7, 1B),(4, 5B), (4, 1L) 5 8 1 1154.3 3465 3590 49.3 51.1 −1.8 −4%
S3 FERTAC (3, 1L), (1, 1L),(2, 1B), (9, 1B), (5, 5B), (3, 1B) 6 8 2 1265.6 3160 2944 45.0 41.9 +3.1 +7%
S4 OTAC (B) (5, 1B), (4, 1B), (6, 1B),(4, 4B), (4, 1B) 5 8 0 1442.9 2772 2677 39.5 38.1 +1.4 +4%
S5 OTAC (L) (16, 1L), (7, 1L) 2 0 2 11440.0 350 351 5.0 5.0 +0.0 +0%

(16B, 4L)

S6 HeRAD (3, 1L), (1, 1L), (1, 1L),(1, 1B), (6, 1B), (7, 7B), (4, 1L) 7 9 4 950.6 4208 3934 59.9 56.0 +3.9 +7%
S7 2CATAC (3, 1L), (1, 1L), (1, 1L),(1, 1B), (9, 1B), (5, 7B), (3, 1L) 7 9 4 950.6 4208 3927 59.9 55.9 +4.0 +7%
S8 FERTAC (3, 1L), (1, 1L), (1, 1L),(1, 1B), (2, 1L), (7, 1B), (5, 7B), (3, 1B) 8 10 4 950.6 4208 3920 59.9 55.8 +4.1 +7%
S9 OTAC (B) (5, 1B),(1, 1B), (9, 1B), (5, 7B), (3, 1B) 5 11 0 950.6 4208 3927 59.9 55.9 +4.0 +7%
S10 OTAC (L) (13, 1L), (6, 2L), (4, 1L) 3 0 4 6470.9 618 611 8.8 8.7 +1.0 +1%

X
7

Ti

(3B, 4L)

S11 HeRAD (5, 1B), (10, 1B), (3, 1B),(1, 3L), (4, 1L) 5 3 4 2722.1 2939 2726 41.8 38.8 +3.0 +8%
S12 2CATAC (5, 1L), (10, 1B), (3, 1B),(1, 3L), (4, 1B) 5 3 4 2722.1 2939 2677 41.8 38.1 +3.7 +10%
S13 FERTAC (5, 1L), (3, 1L), (7, 1L),(4, 3B), (4, 1L) 5 3 4 2867.0 2790 2852 39.7 40.6 −0.9 −2%
S14 OTAC (B) (18, 1B),(1, 1B), (4, 1B) 3 3 0 6209.0 1288 1384 18.3 19.7 −1.4 −6%
S15 OTAC (L) (15, 1L),(4, 2L), (4, 1L) 3 0 4 7490.3 1068 1025 15.2 14.6 +0.6 +4%

(6B, 8L)

S16 HeRAD (5, 1B),(1, 1B), (6, 1B), (4, 2B), (3, 7L), (4, 1L) 5 6 8 1341.9 5962 5108 84.8 72.5 +12.3 +17%
S17 2CATAC (5, 1B),(1, 1B), (9, 1B), (3, 2B), (2, 7L), (3, 1L) 5 6 8 1341.9 5962 5052 84.8 71.4 +13.4 +19%
S18 FERTAC (3, 1L), (2, 1L), (3, 1B), (4, 1L), (6, 5L),(1, 4B), (4, 1B) 7 6 8 1552.3 5154 4602 73.3 65.4 +7.9 +12%
S19 OTAC (B) (8, 1B), (7, 1B),(4, 3B), (4, 1B) 4 6 0 2867.0 2790 2712 39.7 38.6 +1.1 +3%
S20 OTAC (L) (5, 1L), (5, 1L), (5, 1L),(4, 4L), (4, 1L) 5 0 8 3745.1 2136 1833 30.4 26.1 +4.3 +16%

TABLE III: DVB-S2 receiver’s average task latency on the
evaluated platforms. The two slowest sequential and replicable
tasks are highlighted in red and orange , respectively.

Average Latency (µs)

Task Mac Studio (4 fra) X7 Ti (8 fra)

Id Name Rep. B L B L

τ1 Radio – receive ✗ 52.3 248.3 131.7 133.2
τ2 Multiplier AGC – imultiply ✗ 75.2 149.9 138.3 318.1
τ3 Sync. Freq. Coarse – synchronize ✗ 96.4 496.6 113.7 429.0
τ4 Filter Matched – filter (part 1) ✗ 318.9 902.9 334.8 711.9
τ5 Filter Matched – filter (part 2) ✗ 315.1 883.2 329.3 712.6
τ6 Sync. Timing – synchronize ✗ 950.6 1468.9 1341.9 2387.1
τ7 Sync. Timing – extract ✗ 55.5 106.0 58.7 135.1
τ8 Multiplier AGC – imultiply ✗ 37.1 75.4 63.5 157.4
τ9 Sync. Frame – synchronize (part 1) ✗ 361.0 1064.7 365.9 848.1
τ10 Sync. Frame – synchronize (part 2) ✗ 52.9 169.1 81.1 197.9
τ11 Scrambler Symbol – descramble ✓ 16.0 61.0 25.1 65.9
τ12 Sync. Freq. Fine L&R – synchronize ✗ 50.5 247.1 54.3 203.2
τ13 Sync. Freq. Fine P/F – synchronize ✓ 99.2 597.8 253.8 356.2
τ14 Framer PLH – remove ✓ 23.4 65.1 47.4 87.7
τ15 Noise Estimator – estimate ✓ 40.5 65.4 32.4 65.4
τ16 Modem QPSK – demodulate ✓ 2257.5 4838.6 2123.1 5742.4
τ17 Interleaver – deinterleave ✓ 21.1 58.4 29.3 47.6
τ18 Decoder LDPC – decode SIHO ✓ 153.2 506.7 239.7 1024.4
τ19 Decoder BCH – decode HIHO ✓ 3339.9 7303.5 6209.0 8166.2
τ20 Scrambler Binary – descramble ✓ 191.7 464.9 559.0 621.8
τ21 Sink Binary File – send ✗ 9.5 33.3 34.6 75.6
τ22 Source – generate ✗ 4.0 13.6 16.9 23.4
τ23 Monitor – check errors ✓ 9.5 21.0 9.2 20.5

Total 8530.8 19841.3 12592.5 22530.7

have shown that the general quality of their schedules is
affected by characteristics of the platform (number of cores)
and the task chain (e.g., the number of replicable tasks).

Our real-world experiments with the DVB-S2 receiver task
chain in two heterogeneous multicore platforms have enabled
us to validate our scheduling strategies, with each algorithm
achieving the highest throughput in at least one configuration.
Fig. 6 shows that, on average, the real throughput difference
compared to the best theoretical throughput (from HeRAD’s
expected period) ranges between 9% for 2CATAC and 15%
for FERTAC, considering that HeRAD itself achieves 10%
differences of its target. We think this as a positive result
when moving from theory to practice. Our results have also
emphasized the importance of using both types of cores, as the
optimal solution for homogeneous resources (OTAC) usually

Real Throughput on DVB-S2
% of diff. with optimal

(lower is better)

Resource Usage
% of diff. with optimal

(lower is better)

Algorithm Time
in seconds

(lower is better)

Adaptable for
Target Period

Adaptable for Diff.
Second Objective

Expected Period
% of diff. with optimal

(lower is better)

15%

10%

5%

0%
0%

5%

10%

15%

0.0001 0.01 1 100

Easy

Intermediate

Complicated

Hard

Easy

Intermediate

Complicated

Hard

0%5%10%15%

HeRAD
2CATAC
FERTAC

Fig. 6: Advantages and limitations of the proposed strategies.

lagged behind our scheduling strategies.
As future work, we intend to take lessons from our ex-

perimental evaluation to improve future solutions. We will
profile the communication and synchronization overheads on
StreamPU to understand how they affect the schedules and
include them in our model, if necessary. We will study how to
incorporate some of the features of our best schedules (such
as shorter pipelines) into our strategies, and also how to use
direct power measurements instead of assumptions about the
architectures to optimize energy consumption. Additionally,
we plan to evaluate the impact on placing multiple stages
on the same core to benefit from simultaneous multithreading
and very low communication overhead. Finally, we would like
to evaluate the impact of thread placement on the achieved
throughput and on the energy consumption.

ACKNOWLEDGMENT

This work has received support from France 2030 through the project
named Académie Spatiale d’Île-de-France (https://academiespatiale.

https://academiespatiale.fr/

fr/) managed by the National Research Agency under bearing the
reference ANR-23-CMAS-0041.

REFERENCES

[1] R. Randhawa, “Software techniques for ARM big.LITTLE systems,”
2013.

[2] E. Rotem et al., “Intel Alder Lake CPU architectures,” IEEE Micro,
vol. 42, no. 3, pp. 13–19, 2022.

[3] R. Kumar et al., “Single-ISA heterogeneous multi-core architectures:
The potential for processor power reduction,” in International Sympo-
sium on Microarchitecture. IEEE, 2003.

[4] R. Rodrigues et al., “Performance per Watt benefits of dynamic core
morphing in asymmetric multicores,” in International Conference on
Parallel Architectures and Compilation Techniques. IEEE, 2011.

[5] S. Mittal, “A survey of techniques for architecting and managing
asymmetric multicore processors,” ACM Computing Surveys, vol. 48,
no. 3, pp. 1–38, 2016.

[6] A. Cassagne et al., “StreamPU: A DSEL for high throughput and low
latency software-defined radio on multicore CPUs,” Wiley Conc. and
Comput.: Practice and Experience, vol. 35, no. 23, p. e7820, 2023.

[7] ETSI EN 302 307 V1.2.1, “Digital Video Broadcasting (DVB); Second
generation framing structure, channel coding and modulation systems for
Broadcasting, Interactive Services, News Gathering and other broadband
satellite applications (DVB-S2),” 2009.

[8] L. Lima Pilla, “AMP scheduling source code repository,” tag
v1.0, Commit 9ee0279 – 2025-02-06. [Online]. Available: https:
//github.com/aff3ct/amp-scheduling/

[9] A. Benoit, U. V. Çatalyürek, Y. Robert, and E. Saule, “A survey of
pipelined workflow scheduling: Models and algorithms,” ACM Comput-
ing Surveys, vol. 45, no. 4, 2013.

[10] D. Orhan et al., “OTAC: Optimal scheduling for pipelined and
replicated task chains for software-defined radio,” Oct. 2023, working
paper or preprint. [Online]. Available: https://hal.science/hal-04228117

[11] D. Nicol, “Rectilinear partitioning of irregular data parallel computa-
tions,” Elsevier Journal of Parallel and Distributed Computing, vol. 23,
no. 2, pp. 119–134, 1994.

[12] A. Pınar and C. Aykanat, “Fast optimal load balancing algorithms for 1D
partitioning,” Elsevier Journal of Parallel and Distributed Computing,
vol. 64, no. 8, pp. 974–996, 2004.

[13] A. Benoit and Y. Robert, “Complexity results for throughput and
latency optimization of replicated and data-parallel workflows,” Springer
Algorithmica, vol. 57, no. 4, pp. 689–724, 2010.

[14] ——, “Mapping pipeline skeletons onto heterogeneous platforms,” El-
sevier Journal of Parallel and Distributed Computing, vol. 68, no. 6,
pp. 790–808, 2008.

[15] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms
for heterogeneous processors,” in Heterogeneous Computing Workshop.
IEEE, 1999.

[16] L. Eyraud-Dubois and S. Kumar, “Analysis of a list scheduling algorithm
for task graphs on two types of resources,” in International Parallel and
Distributed Processing Symposium. IEEE, 2020.

[17] E. Agullo et al., “Bridging the gap between performance and bounds
of Cholesky factorization on heterogeneous platforms,” in International
Parallel and Distributed Processing Symposium Workshop. IEEE, 2015.

[18] E. Slaughter et al., “Task bench: A parameterized benchmark for
evaluating parallel runtime performance,” in Super Computing. ACM,
2020.

[19] A. J. Benavides, M. Ritt, and C. Miralles, “Flow shop scheduling
with heterogeneous workers,” Elsevier European Journal of Operational
Research, vol. 237, no. 2, pp. 713–720, 2014.

[20] J. Mack, S. Gener, A. Akoglu, J. Holtom, A. Chiriyath, C. Chakrabarti,
D. Bliss, A. Krishnakumar, A. Goksoy, and U. Ogras, “GNU Radio and
CEDR: Runtime scheduling to heterogeneous accelerators,” in GRCon.
GNU Radio Foundation, 2022.

[21] J. Morman, M. Lichtman, and M. Müller, “The future of GNU Radio:
Heterogeneous computing, distributed processing, and scheduler-as-a-
plugin,” in Military Communications Conference. IEEE, 2022.

[22] B. Bloessl, M. Müller, and M. Hollick, “Benchmarking and profiling the
GNU Radio schedulers,” in GRCon. GNU Radio Foundation, 2019.

[23] K. Agrawal, A. Benoit, and Y. Robert, “Mapping linear workflows with
computation/communication overlap,” in International Conference on
Parallel and Distributed Systems. IEEE, 2008.

[24] A. L. Nunes et al., “Optimal time and energy-aware client selection
algorithms for federated learning on heterogeneous resources,” in Inter-
national Symposium on Computer Architecture and High Performance
Computing. IEEE, 2024.

https://academiespatiale.fr/
https://github.com/aff3ct/amp-scheduling/
https://github.com/aff3ct/amp-scheduling/
https://hal.science/hal-04228117

	Introduction
	Related Work
	Problem Definition
	New Greedy Heuristics: FERTAC and 2CATAC
	FERTAC
	2CATAC

	Optimal Dynamic Programming Solution
	Optimality proof

	Experimental Evaluation
	Experimental Environments
	Simulation
	Real-world SDR Experiment

	Simulation – Slowdown Compared to HeRAD
	Simulation – Core Usage
	Simulation – Strategies Execution Times
	Real-world SDR Experiment – Achieved Throughput

	Concluding Remarks
	References

