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ABSTRACT
Over the last decade, the annual Immunorad Conference, held under the joint auspicies of Gustave Roussy 
(Villejuif, France) and the Weill Cornell Medical College (New-York, USA) has aimed at exploring the latest 
advancements in the fields of tumor immunology and radiotherapy-immunotherapy combinations for the 
treatment of cancer. Gathering medical oncologists, radiation oncologists, physicians and researchers 
with esteemed expertise in these fields, the Immunorad Conference bridges the gap between preclinical 
outcomes and clinical opportunities. Thus, it paves a promising way toward optimizing radiotherapy- 
immunotherapy combinations and, from a broader perspective, improving therapeutic strategies for 
patients with cancer. Herein, we report on the topics developed by key-opinion leaders during the 7th 

Immunorad Conference held in Paris-Les Cordeliers (France) from September 27th to 29th 2023, and set 
the stage for the 8th edition of Immunorad which will be held at Weill Cornell Medical College (New-York, 
USA) in October 2024.
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Introduction

Exploring the immunological properties of radiotherapy (RT) 
within tumors, as well as the synergy of radiotherapy- 
immunotherapy combinations for the treatment of cancer has 
become increasingly important over the last decade. Since its 
inaugural edition in 2016, the Immunorad Conference, which 
is held annually under the joint auspicies of Gustave Roussy 
(Villejuif, France) and the Weill Cornell Medical College 
(New-York, USA), aims at describing the latest advances in 
this field, with a particular focus on bridging the gap between 
preclinical findings and clinical opportunities.

The 7th Immunorad Conference took place from 
September 27th to 29th 2023 at the Research Center of Paris-Les 
Cordeliers, France. Similar to previous editions, hundreds of par-
ticipants attending the conference were able to receive insightful 
and thought-provoking presentations delivered by talented junior 
researchers as well as key-opinion leaders in the field of radiation 
oncology and tumor immunology. The active and engaging parti-
cipation of attendees to discussions during and after presentations 
was remarkable, and it contributed to fueling the debate about the 
most promising therapeutic combinations for cancer treatment.

In this synopsis article, we outline the significant findings 
discussed at Immunorad 2023. The exploration of established 
biological paradigms, alongside emerging opportunities, paves 
the way for a promising future in radiotherapy- 
immunotherapy combinations.

I/When established players in the preclinical setting share 
the spotlight with potential new partners: insights from 
the bench

The Immunorad conference uniquely emphasizes the coexis-
tence of preclinical and clinical topics in presentations deliv-
ered by a diverse array of speakers, ranging from clinicians to 
fundamental researchers. This year again, the highly-valued 
“bench-to-bedside” approach facilitated the attendees in 
expanding their individual horizons, providing each partici-
pant with insightful perspectives to translate into their respec-
tive fields of interest. Notably, in the preclinical context, the 
presentations of the 7th edition significantly enhanced the 
existing knowledge of established biological patterns in radia-
tion-induced anti-tumor immunity. Moreover, they shed light 

on potential newcomers in this field. Therefore, considering 
both the established biological patterns and the potential new-
comers is likely to optimize radiotherapy-immunotherpy com-
binations (Figure 1).

1/The enduring significance of established biological 
paradigms: shaping past, present and future advances in 
radiation and anti-tumor immunity research
As in the previous editions since 2017, the 2023 Immunorad 
Conference included an educational session. This special seg-
ment aimed to bridge the gap for non-specialists by inviting 
key opinion leaders in the field of radiation-induced anti- 
tumor immunity to share their groundbreaking contributions 
in an accessible manner.

Prof. Alberto Mantovani (Istituto Clinico Humanitas, 
Milan, Italy) provided a comprehensive overview of the pivotal 
role of myeloid cells within the tumor microenvironment. He 
further discussed how understanding these specific features 
opens avenues for anti-cancer immunotherapy by exploiting 
myeloid cells.1

Prof. Mikael Pittet (University of Geneva, Switzerland) 
widened the perspective by giving an overview of the prognos-
tic information provided by tumor-associated macrophages 
(TAMs). Notably, the polarity of these cells, which can be 
captured by measuring the expression of CXCL9 and SPP1, is 
strongly associated with the clinical outcome of patients; it is 
also tightly linked to a network of pro- or antitumor activities 
involving each tumor-associated cell type, revealing the exis-
tence of coordinated responses that control human cancers.2

Prof. Guido Kroemer (Cordeliers Research Center, Paris, 
France), who is a pioneer in elucidating the revolutionary 
concept of immunological cell death (ICD) in cancer,3,4 pro-
vided an update on the field. This presentation was the occa-
sion to expose the recent breakthrough advances for the 
induction of ICD in tumors, including anthracycline-based 
chemotherapy5,6 as well as some cytotoxic molecules 
(lurbinectedin,7 ruxotemitide8 or antibody-drug conjugates 
(ADC) (belantamab mafodotin).9 Concurrently, efforts are 
directed toward overcoming the challenges posed by the het-
erogeneity and plasticity of tumor cells in inducing ICD. 
A specific focus is on enhancing ICD through the activation 
of conventional dendritic cells type 1 (cDC1). One promising 

2 P.-A. LAURENT ET AL.



avenue involves the inhibition of the anti-apoptotic protein 
BCL2 (B-cell lymphoma 2). The BCL2 inhibitor Venetoclax 
has demonstrated its ability to sensitize tumors to anti-PD-1/ 
PD-L1 based immunotherapies in diverse preclinical models 
and patients with acute myeloid leukemia (AML). Its effective-
ness stems from the activation of dendritic cells type 1 (cDC1) 
resulting from the release of mitochondrial DNA (mtDNA) 
into the cytosol, the activation of the cGAS/STING/IRF3 path-
way, and the engagement of the interferon type I (IFN-I) 
pathway.10 These results constitute an interesting crossover 
opportunity given the impact of RT within the tumor immune 
microenvironment. From that point of view, ICD induced by 
RT was the focus of a presentation by Dr. Lorenzo Galluzzi 
(Weill Cornell Medical College, USA). Notably, the discovery 
and subsequent implementation of ICD inducers, enhancers or 
correctors in this field appear as critical for the optimization of 
new strategies of association using RT.11

Concluding this educational session, Dr. Silvia C. Formenti, 
Chair of Radiation Oncology at Weill Cornell Medicine (New- 
York, USA), presented the rationale behind combining RT and 
immunotherapy for the treatment of solid tumors, which 
inspired the name “Immunorad” for this conference. 
Dr. Formenti articulated her vision for the fields of RT and 
immune oncology. Over the past decades, she explored the 
capacity of focal RT to transform tumors into in-situ 
vaccines,12 thereby eliciting a systemic anti-tumor immune 
response known as the abscopal effect. She introduced new 
considerations regarding the conditions necessary to induce 
such effect, notably highlighting findings from animal experi-
ments that indicate higher doses of focal radiation may not 

always yield the most favorable outcomes when combined with 
immunotherapy.13,14 Moreover, based on preclinical and clin-
ical data, she fueled the debate on personalizing RT in the 
context of combinatorial treatments. Notably, she highlighted 
sparing draining lymph nodes (LN) to increase the efficacy of 
immunotherapy mediated by CD8+ T cells,15 and simulta-
neously targeting different compartments within the tumor 
immune microenvironment to decrease tumor resistance to 
immune-checkpoint blockades.16 Finally, she discussed the 
potential benefits of delivering low-dose incidental irradiation 
to a significant volume of healthy lung tissue surrounding the 
tumor, that can mitigate the immune-suppressive effects of 
focal RT to lung cancer. This information can be harnessed 
to augment the pathological response in patients with non- 
small cell lung cancer (NSCLC) receiving SBRT and 
Durvalumab in the neoadjuvant setting.

2/Harmonizing established paradigms and disruptive 
innovations: redefining radiotherapy-immunotherapy 
combinations in oncology
In 2023 as in previous years, the Immunorad conference served 
as a platform to build bridges between the past, the present, 
and the future of tumor immunology and radiation. With 
combinations of RT and immunotherapy emerging as pivotal 
in the future of curative-intent oncology treatments, numerous 
thought-provoking presentations centered on innovations, 
both technological and biological in nature.

In the inaugural educational session, Prof. Antoine Italiano 
(Gustave Roussy, France) emphasized tertiary lymphoid struc-
tures (TLS) as crucial promoters of cellular and hormonal 

Figure 1. Overview of thematic discussions on optimizing radiotherapy-immunotherapy combination strategies at the immunorad Conference.
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responses in cancer. He showcased the added value of lever-
aging these structures in the current landscape of personalized 
immunotherapy. Notably, in soft-tissue sarcoma, where immu-
notherapy opportunities are limited and where B cell signa-
tures outperform CD8+ T cells or cytotoxic signatures as 
predictors for overall survival (OS),17,18 the TLS 
PEMBROSARC cohort underscored the relevance of TLS as 
a predictive marker for the response of locally advanced/meta-
static soft-tissue sarcomas to anti-PD-1/PD-L1 immunother-
apy. The objective response rate to Pembrolizumab among 
these patients reached 30%, compared to a mere 2.3% in pre-
vious PEMBROSARC cohorts, resulting in significant 
improvements in median progression-free survival (PFS), 
overall survival (OS), and a 6-month non-progression rate 
soaring from 4.9% (TLS-negative patients) to 40% (TLS- 
positive patients).19 These promising findings pave the way 
for widespread TLS utilization in guiding therapeutic decisions 
regarding immune-checkpoint blockade in soft-tissue sarco-
mas. However, it is important to note that not all TLS-positive 
tumors respond to immune checkpoint inhibition. 
Understanding the determinants of response to immunother-
apy in these tumors is crucial. Other populations within the 
tumor microenvironment, such as regulatory T cells (Tregs) 
and fibroblasts, may play key roles in modulating the anti- 
tumor activity of TLS, influencing the overall effectiveness of 
immunotherapy.

Dr. Etienne Meylan (Université libre de Bruxelles, Belgium) 
provided insights into targeting a long-surviving subset of 
tumor-associated neutrophils (TANs). TANs have been given 
special focus due to their emerging role as a key player in the 
tumor immune microenvironment.20 After discussing both the 
pro- and anti-tumor properties of TANs, Dr. Meylan presented 
a strategy to target the long-lived, tumor supportive TAN 
subset found within the immune microenvironment of 
human and murine lung tumors.21 His laboratory identified 
the Bcl-xL anti-apoptotic protein as highly expressed in aging 
TANs, inhibition of which can be achieved using Navitoclax 
(AbbVie™) or the novel agent A-1331852, which selectively 
induces apoptosis in Bcl-xL dependent cells.22 Oral adminis-
tration of A-1331852 considerably reduces the number of old 
but not young TANs in the KrasFrt-STOP-Frt-G12D/WT; p53Frt/Frt 

(KP) mouse model of lung adenocarcinoma, thereby inhibiting 
tumor growth. Intermittent administrations were particularly 
effective in maintaining selective depletion of tumor- 
supporting TANs.23

The Immunorad conference was the place to rediscover new 
actors in anti-tumor immunity and, in the light of the 2020s, 
evaluate the relevance of harnessing them for the treatment of 
refractory cancers and deleterious conditions. From this per-
spective, Dr. Vanpouille-Box (Weill Cornell Medicine, New- 
York, USA), presented her recent data dealing with the impact 
of fatty acid metabolism on the phenotype of irradiated 
tumors. Notably, this impact was explored in the particularly 
difficult indication of glioblastoma (GBM). In GBM, RT leads 
to an augmentation of the synthesis of fatty acids, which results 
in the downregulation of type I interferon pathway, a critical 
pathway for the induction of immune anti-tumor response.24 

Therefore, adding an inhibitor of FASN to the combination of 
RT and anti-PD-1 significantly improved the survival of mice 

bearing GL261 tumors.25 This represents an interesting oppor-
tunity to improve the currently poor prognosis of patients with 
GBM. Another interesting perspective is represented by the use 
of human endogenous retroviruses (HERVs) for the develop-
ment of T cell-based immunotherapies. Their ability to repre-
sent a reservoir of tumor epitopes shared across patients and 
tumors in the setting of cancer immunotherapy has been 
comprehensively explained by Prof. Stéphane Depil (Léon 
Bérard Cancer Center, Lyon). HERV-derived epitopes are pre-
sented on HLA molecules on the surface of tumor cells and 
induce high-avidity T cell clones that specifically recognize and 
kill tumor cells, with evidence of their expression in tumors 
with low mutational burden, such as triple negative breast 
cancer, ovarian cancer and acute-myeloid leukemia 
(AML).26,27

Prof. Sana Karam (University of Colorado, USA) elucidated 
new concepts of immune modulation within tumors, particu-
larly revisiting the traditional use of IL-2 to counteract the 
immunosuppressive effects of SBRT in pancreatic cancer. 
This exploration yielded promising results, demonstrating 
synergy with a triple combination of RT, anti-PD-1/PD-L1, 
and IL-2 in murine models of pancreatic tumors.28 

Interestingly, the addition of anti-CD25 to this triple combina-
tion failed to provide additional benefits and had a detrimental 
effect on the activation of CD8+ T cells and the production of 
pro-inflammatory cytokines. Notably, the triple combination 
of RT, anti-PD-1, and IL-2 elicited durable responses in mice 
with KPC tumors who underwent adoptive T cell transfer 
before therapy. Furthermore, this combination induced robust 
immune memory capable of rejecting secondary tumors upon 
rechallenge in mice with complete responses.

During a special keynote presentation, attendees gained 
insights into the future evolution of radiotherapy- 
immunotherapy combinations from Prof. Ralph 
Weichselbaum (University of Chicago Medical Center, USA), 
a pioneering figure in the field. He emphasized the potential of 
targeting YTHDF2, a protein involved in the degradation of 
modified RNA coding for M6 methyladenosine (M6A) within 
myeloid cells. This targeting approach decreased the expres-
sion of NF-ƘB, hampering the migration and immunosuppres-
sive function of myeloid-derived suppressor cells within 
tumors following irradiation. Consequently, YTHDF2 inhibi-
tion increased the efficacy of RT and checkpoint inhibitors in 
various murine models: MC38 (colorectal cancer), B16 (mela-
noma), and LLC (Lewis lung carcinoma).29 First performed in 
genetically-engineered Ythdf2-cKO mice, these observations 
were reproduced by using the pharmacological inhibitor DC- 
Y13-27, and showed consistent results regarding the efficacy of 
the combination of RT and anti-PD-1 antibody, with an effect 
on both local tumor growth and distant metastasis occurrence. 
Therefore, YTHDF2 inhibition represents a potential paradigm 
shift in radiosensitization.

Dr. Sandra Demaria (Weill Cornell Medical College, USA) 
described new data showing that radiation induces the accu-
mulation of cytosolic RNA-DNA hybrids in mouse and 
human breast cancer cells, which contribute to the cancer 
cell-intrinsic activation of interferon type I (IFN-I) pathway. 
Her lab is currently investigating if such RNA-DNA hybrids, 
which they also found within the cargo of small extracellular 
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vesicles (sEVs) produced by irradiated cancer cells, also con-
tribute to the activation of dendritic cells that uptake sEVs.30 

Recent evidence that altered R-loop processing results in 
increased generation and export of RNA-DNA hybrids 
from the nucleus to the cytosol where they activate IFN-I 
via cGAS/STING and TLR3,31 suggests that deregulation of 
R-loop dynamics occurs in irradiated cancer cells. These 
findings should be considered alongside the known ability 
of RT to activate cGAS-STING and type I interferon path-
ways in tumor cells through multiple processes including 
micronuclei generation.32 Therefore, targeting the R-loop 
process could potentially enhance the radiation-induced acti-
vation of innate immune responses against cancer cells and 
amplify the efficacy of radiotherapy-immunotherapy combi-
nations. From a larger perspective, DNA damage modulation 
may be harnessed to enhance radiotherapy-immunotherapy 
combinations, as explained by Prof. Kevin Harrington (The 
Institute of Cancer Research, London, UK), with a special 
focus on agents able to inhibit Ataxia Telangiectasia and 
RAD3 related (ATR) kinase that are capable of generating 
vulnerabilities to rationally selected immune checkpoint 
blockade (using anti-PD-L1 and anti-NKG2A antibodies).33 

Moreover, Prof. Claus Sørensen (University of Copenhagen, 
Denmark) explained how cancer cells use self-inflicted DNA 
breaks to promote their evasion,34 and Prof. Floris Foijer 
(University of Groningen, the Netherlands) gave interesting 
insights in harnessing the inflammation caused by 
chromosomal instability to activate the tumor immune 
microenvironment.35–37 

II/Stepwise implementation of advanced biological and 
technological tools toward personalized cancer medicine

Known as a ‘bench-to-bedside’ focused conference, Immunorad 
provided attendees with the opportunity to explore new visions 
and tools shaping personalized oncology of tomorrow. 
This year, advanced technological tools synergized notably 
with biological discoveries to offer a comprehensive view of 
what personalized treatments could represent in the near future 
(Figure 2).

1/Precision medicine, intestinal microbiota and 
immunoscore biopsy: fostering the future of precision 
oncology
Prof. Fabrice André (Gustave Roussy, France) shared his vision 
for the future of precision medicine in metastatic breast cancer. 
He emphasized the importance of leveraging tools and markers 
based on the individual biology of both the host and the cancer 
to stratify patients according to prognosis and thus personalize 
therapeutic approaches. This strategy aims for a significant 
shift in cancer classification, moving away from categorizing 
tumors based solely on their primary organ to a new classifica-
tion grounded in molecular and biological characteristics at the 
individual level. This updated classification could incorporate 
traditional histologic markers, reinforced by the progressive 
integration of artificial intelligence, as demonstrated in pre-
vious experiences.38 Furthermore, given the significance of 
molecular mechanisms in personalized medicine, this reclassi-
fication should utilize high-throughput sequencing in tissue 

Figure 2. Overview of the technological innovations in the field of precision oncology and personalized medicine presented and discussed at immunorad Conference.
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biopsy or circulating tumor DNA to identify targetable altera-
tions in oncogenic drivers, illustrated by the example of 
Alpelisib in metastatic breast cancer with PI3K mutations.39 

Additionally, monitoring strategies could include iterative 
biopsies to determine on tumor specimens the mechanisms 
of each cancer’s progression and propose the most suitable 
targeted therapy for each patient on an individual basis.40 

Personalized oncology could involve exploring circulating 
tumor cells (CTCs) for the early detection of tumor escape. 
Finally, Prof. André introduced the revolutionary 
ORGANOTREAT concept, in which tumor specimens from 
each patient are transformed into organoids. These organoids 
can then be cultured in vitro and serve as a tool for wide drug 
screening, thereby guiding the final therapeutic decision. This 
currently represents the largest clinical trial in functional pre-
cision medicine, including more than 1000 patients with a large 
variety of solid tumors41 (Clinicaltrials.gov identifier: 
NCT05267912).

Prof. Laurence Zitvogel (Gustave Roussy, France) shared 
novel insights into personalized treatments based on individual 
scoring of dysbiosis of intestinal microbiota, in order to com-
pensate resistance to immunotherapy by microbiota-centered 
interventions. She highlighted the promising opportunity of 
fecal microbial transplantation to enhance the efficacy of front- 
line anti-PD-1 therapy in metastatic melanoma patients, as 
demonstrated in recent publications.42–44 Aligning perfectly 
with the theme of the Immunorad conference, she discussed 
recent research indicating that incidental exposure of the 
abdominal cavity to low-dose radiation, such as during stereo-
tactic-body RT for liver lesions, leads to an abundance of 
beneficial commensals in patients’ feces. This phenomenon 
resulted in long-term clinical benefits from anti-PD-1 based 
immunotherapy. These findings underscore the significance of 
the intestinal microbiota in assisting clinicians in distinguish-
ing between patients likely to respond to front-line immu-
notherapy and those unlikely to do so, as well as the 
immunomodulatory properties of low-dose irradiation. 
Hence, it is crucial to optimize clinically relevant scoring sys-
tems that synthesize the prevalence of beneficial and harmful 
commensals in patients’ stools. For instance, the 
TOPOSCORE, based on the prevalence of harmful and bene-
ficial commensals including the specific relative abundance of 
Akkermansia muciniphila in stools at baseline, can be evaluated 
through metagenomics or polymerase-chain reaction (PCR), 
and may help to identify patients who are more likely to benefit 
from immunotherapy.45–47

Prof. Jérôme Galon (Cordeliers Research Center, Paris, 
France) described how the precise characterization of the 
tumor immune microenvironment could be used to stratify 
patients and personalize treatments. In colorectal cancer 
patients, this characterization may involve gene expression 
profiling and pre-defined immune signatures 
(IMMUNOSIGN), or immunohistochemistry combined with 
quantitative digital pathology (IMMUNOSCORE).48 

Interestingly, with the recent emergence of surgical de- 
escalation strategies in the treatment of rectal cancer, the use 
of Immunoscore biopsy is of interest for deciphering the 

patients able to benefit from a “watch-and-wait” strategy with-
out excessive risk of relapse.49 This finding constitutes 
a promising opportunity to tailor the indications of organ 
preservation in patients undergoing neoadjuvant chemo- 
radiation for rectal carcinoma.

2/Technological advances: guiding decisions and enhancing 
radiotherapy delivery
As the leading conference on radiotherapy-immunotherapy 
combinations, Immunorad has also the mission to provide 
new technological insights and visions that aid the personaliza-
tion of cancer treatments while reshaping the current para-
digms of RT (Figure 3).

Prof. Désirée Deandreis (Gustave Roussy) discussed the 
future perspectives of using positron-emission tomography 
(PET) as a predictive and prognostic tool in cancer treatment. 
Advanced image analysis techniques, such as whole-body 
tumor volume quantification and radiomics, enable the extra-
polation of biomarkers that are potentially representative of the 
tumor immune microenvironment. Additionally, she high-
lighted the potential of zirconium-89 (89Zr) immuno-PET 
radiotracers in identifying patients likely to respond to 
immune-checkpoint inhibitors, a promising strategy currently 
being tested in various clinical settings.50

Prof. Christos Sotiriou (Université Libre de Bruxelles, 
Belgium) elaborated on how spatial transcriptomics can be 
leveraged to address tumor heterogeneity and predict tumor 
responses to various treatments, with a particular focus on its 
impact on triple-negative breast cancer.51 Moreover, the pre-
valence of tertiary lymphoid structures (TLS) previously 
described as a predictive factor of response to immunotherapy, 
can also be assessed by means of spatial transcriptomics, or by 
searching for TLS gene signatures within sequencing data.52

Dr. Cristian Fernandez-Palomo (Universität Bern, 
Switzerland) introduced the concept of spatially-fractionated 
RT (SFRT), an innovative approach involving the delivery of 
heterogeneous doses in RT. This method is characterized by 
alternating high (peaks) and low (valleys) radiation doses 
within the target volume. Microbeam Radiation Therapy 
(Microbeam RT), the most advanced type of preclinical 
SFRT, represents the cutting edge in this field by delivering 
high-dose (>100 Gy) ultra-narrow beams of 50 μm in width. 
Microbeam RT shows promise in improving the response to 
RT in tumors known for their intrinsic resistance, such as 
mouse B16-F10 melanoma53,54 or rat F98 glioma tumors,55 

with overall good overall tolerability on the skin56 and brain 
tissue,57 also preventing late radiation effects such as lung 
fibrosis.58,59 Furthermore, Microbeam RT has the potential to 
enhance key pathways involved in the anti-tumor immune 
response, including type I interferon, inflammatory cytokines, 
and immune-cell cytotoxicity (under review). Microbeam RT 
administered in a fractionated regimen triggered a regression 
of out-of-field locoregional metastasis.60 Additionally, recent 
findings from their lab demonstrate that a single fraction of 
Microbeam RT enhances the infiltration of cytotoxic T cells 
into the tumor microenvironment. Importantly, depleting 
these T cells compromises tumor control, underscoring the 
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critical role of the immune system in the efficacy of Microbeam 
RT.61 This study, currently under review, further demonstrated 
a synergistic effect when a single fraction of Microbeam RT was 
combined with anti-CTLA-4 and anti-PD-1. Survival analysis 
revealed that 40% of mice treated with the combined 
Microbeam RT and anti-CTLA-4/anti-PD-1 therapy achieved 
long-term survival, compared to 0% for those that received 
Microbeam RT alone.

Dr. Michele Mondini (Gustave Roussy, France) highlighted 
recent advances pertaining to the use of low-dose RT, either 
alone in a whole-tumor irradiation or in combination with 
high-dose ablative RT delivered to a partial tumor volume. 
This innovative approach of heterogeneous delivery of RT 
holds great promise to modulate the tumor immune micro-
environment and to restore the sensitivity of an irradiated 
tumor to immunotherapy. Notably, the non-homogenous irra-
diation of a tumor, with half of the tumor receiving low-dose 
RT and the other half receiving high-dose RT, enhances the 
efficacy of anti-PD-1 in different preclinical models, with an 
interesting synergy with CXCR2 antagonist SB225002.62 These 
encouraging preclinical findings call for additional studies and 
translation to the clinic.

III/Building the clinical future of 
radiotherapy-immunotherapy combinations

The 7th Immunorad conference provided an opportunity to 
update existing data on the clinical implementation of signifi-
cant preclinical advances in the field of radioimmunotherapy 
combinations. To illustrate this perspective, Dr. Jordi Remon 

(Gustave Roussy, France) presented recent improvements in 
the use of immunotherapy for patients with NSCLC.63 The 
numerous evolutions in the standards of care for this type of 
cancer over the past years make NSCLC a model to create 
therapeutic combinations using chemo-radiation and immu-
notherapy. Regarding the treatment of small cell lung cancer 
(SCLC), a promising path was highlighted by Prof. Julien Sage 
(Stanford University, USA), with the use of CD47 inhibitors to 
increase the efficacy of RT in both irradiated and distant sites 
with a notable T-cell independent abscopal effect.64

In line with the previous talks, several impactful presenta-
tions highlighted the potential of new strategies discovered in 
experimental settings, paving the way for a promising future in 
clinical oncology.

1/RT in the particular setting of oligometastatic disease
Prof. Matthias Guckenberger (University of Zurich Hospital, 
Switzerland) provided a comprehensive view of the state-of-the 
-art in managing oligometastatic cancer. The prevailing 
approach emphasized multimodal treatment, incorporating 
both RT and systemic approaches. A key consideration is 
leveraging the substantial global investment in systemic cancer 
treatments to enhance the relevance and efficacy of therapeutic 
combinations with RT.65 While the strategy of adding novel 
systemic drugs to curative intent RT has resulted in only few 
registered combinations, e.g. cetuximab added to RT in head 
and neck carcinomas and durvalumab added to RT in NSCLC, 
a potential alternative strategy lies in an approach where RT is 
added to standard-of-care systemic therapy to overcome het-
erogeneity and resistance development.65 This approach could 

Figure 3. Summary of the advances presented at immunorad conference likely to change the paradigms of radiotherapy in the future.
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prolong disease-free survival and address initial or acquired 
drug resistance. Moreover, it could yield significant financial 
benefits by delaying the initiation of expensive drugs and 
allowing treatment breaks until disease progression. With this 
purpose, Prof. Guckenberger outlined the ESTRO and EORTC 
OligoCARE cohort study, aiming at collecting real-world data 
about patients with oligometastatic cancer treated with locally 
ablative RT. The preliminary data inform about the different 
SBRT doses delivered to oligometastases, as well as the acute 
toxicities encountered in treated patients, especially those 
receiving concurrent systemic treatments.66 To date, this 
cohort study has included more than 1600 patients, with an 
approximate recruitment rate of 80 patients/month. Moreover, 
Prof. Guckenberger discussed the ETOP CHESS trial, an inno-
vative approach of combinatorial treatment for de novo oligo-
metastatic NSCLC, using a combination of SBRT to all 
oligometastatic sites, concurrent and adjuvant Durvalumab, 
concurrent Tremelimumab and concurrent chemotherapy, all 
of these treatments administered in the induction phase. 
Beyond the setting of de novo oligometastatic cancer, using 
ablative SBRT is also of interest in oligoprogressive lesions 
while being under systemic therapy, as recently demonstrated 
in the CURB phase 2 trial.67 A similar approach has been 
proposed in the HALT phase 2 trial, that enrolled patients 
with advanced, oncogene-addicted NSCLC (with EGFR muta-
tion or ALK rearrangement) and oligoprogressive disease after 
one prior line of targeted therapy.68

2/Low-dose RT in the setting of combinatorial treatments in 
metastatic patients
Some interesting results emerged regarding the use of low-dose 
irradiation to reinvigorate anti-tumor immune responses in 
immune-deserted tumors or in patients with metastatic tumors 
progressing under immunotherapy.

Prof. Fernanda Herrera (Lausanne University Hospital, 
Switzerland) reported findings from the RACIN phase I clinical 
trial (ClinicalTrials.gov identifier: NCT03728179) investigating 
the efficacy of low-dose (≤1 Gy) bi-weekly RT to a large tumor 
volume to induce immune remodeling in patients with “cold” 
multimetastatic solid tumors. This treatment was combined with 
low-dose cyclophosphamide to deplete regulatory T cells (Tregs), 
anti-CTLA-4, and anti-PD-1 monoclonal antibodies to enhance 
the cytotoxicity of T cells, along with aspirin/COX-2 inhibitors to 
overcome vasculature barriers for T-cell homing within the 
tumor microenvironment. Mandatory paired biopsies from the 
same irradiated lesion before starting the combinatorial regimen 
demonstrated that low-dose RT increased the presence of Ki67+ 

T cells with cytotoxic features, evidenced by high expression of 
granzyme B and perforin. This regimen overcame immunother-
apy resistance in immune-deserted tumors, with one ovarian 
cancer patient notably achieving a long-term complete response. 
This innovative approach had previously shown promising 
results in a murine model of metastatic ovarian cancer where 
low-dose RT upregulated co-stimulatory (e.i. CD40, CD28) as 
well as co-inhibitory (e.i. CTLA-4, PD-1) molecules that could be 
targeted therapeutically, prompting the initiation of this confir-
matory early-phase clinical trial.69 Preliminary data shows that 

non-responder patients exhibited infiltration of myeloid sup-
pressive cells, such as macrophages, within the tumor microen-
vironment, with consistent findings in both human and murine 
studies. As we await the full results of the Phase I RACIN trial, 
these preliminary data could pave the way for personalizing the 
use of low-dose RT to enhance the efficacy of immunotherapy in 
the common scenario of immune-deserted tumors.

Prof. James Welsh (MD Anderson Center, USA) presented 
another impactful example of using RT to sensitize resistant 
tumors to immunotherapy within the RADSCOPAL™ scheme. 
This regimen combines high-dose ablative stereotactic body 
RT (SBRT) with low-dose RT to overcome secondary resis-
tance to immunotherapy.70 Focal SBRT not only reduced 
tumor burden but also activated effector T cells within tumors. 
Simultaneously delivering low-dose radiation may enhance the 
attraction of activated T cells to immunotherapy-resistant 
tumors. This strategy is particularly relevant for PD-1/PD-L1 
low-expressing tumors, where out-of-field lesions respond to 
pembrolizumab only in the presence of RT, compared to no 
response with pembrolizumab alone.71 Similarly to the low- 
dose RT approach in the RACIN trial, using low-dose RT 
increased immune infiltration in irradiated tumors, as demon-
strated for CD8+, CD4+ T cells, and NK cells. Concomitant use 
of low-dose RT with SBRT demonstrated clear benefits com-
pared to SBRT alone. Future optimization of this approach in 
clinical radiotherapy-immunotherapy combinations may 
involve using nanoparticles (e.g., NBTXR3, Nanobiotix™)72 or 
proton-beam irradiation to enhance the biological effectiveness 
of radiation and its immune benefits in tumors.73 There is also 
a particular interest in combining high-dose and low-dose RT, 
according to the RADSCOPAL™ regimen, with anti-PD-1 and 
anti-TIGIT antibodies to promote the synergy existing between 
both these antibodies in the generation of a systemic anti- 
tumor immune response in low-dose irradiated but also un- 
irradiated tumors.74

3/Improving radiotherapy-immunotherapy combinations 
through carbon-ion irradiation
Prof. Stefan Eichmüller (DFKZ, Heidelberg, Germany) pre-
sented recent research about the differential impact of carbon- 
ion irradiation versus photon irradiation regarding the mod-
ulation of the tumor immune microenvironment, and 
explained the potential implications of these results on future 
strategies of radiotherapy-immunotherapy using carbon-ion 
irradiation. Indeed, comparing the therapeutic effects of con-
ventional photon irradiation to recent carbon ion irradiation in 
a murine tumor model,75 Prof. Stefan Eichmüller found that 
both irradiation modalities mediated tumor rejection with 
equal efficiency. However, when combined with checkpoint 
inhibitors, radioimmunotherapy comprising CTLA-4 blockade 
was clearly superior to anti-PD-L1 antibody, irrespective of the 
chosen radiation modality. Notably, single cell RNA- 
sequencing of tumor derived CD45+ cells revealed that carbon 
ion-based radioimmunotherapy changed the composition and 
gene expression pattern of TAMs. Moreover, as determined in 
a bilateral tumor setting, radioimmunotherapy with carbon 
ions plus anti-CTLA-4 treatment enhanced the number of 
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activated CD8+ T cells in non-irradiated tumors. This led to 
the notion that irradiation causing tissue damage could lead to 
TAMs scavenging dying tumor cells and priming tumor- 
specific CD8+ T cells in draining LNs. This process is sup-
ported by anti-CTLA-4 treatment and leads to activated T cells 
which eventually reach out to kill non-irradiated tumors, 
thereby causing so called abscopal effect.

4/The double-edged sword of RT: dealing with tumor 
heterogeneity and radiation-induced lymphopenia
Prof. Eric Deutsch (Gustave Roussy, France) concluded the 
conference by highlighting the essential role of functional 
lymphocytes in all radiotherapy-immunotherapy combinative 
approaches. He discussed current methods and future perspec-
tives to efficiently spare lymphocytes from radiation, preser-
ving these crucial soldiers of anti-cancer immunotherapy. Prof. 
Deutsch first addressed the duality of activating and immuno-
suppressive effects of RT, followed by an overview of current 
options for lymphocyte preservation and treatment personali-
zation using imaging techniques. This includes the use of 
noninvasive radiomics approaches to characterize intra- 
tumor and inter-tumor heterogeneities, aiding in predicting 
overall survival in patients with metastatic disease treated 
with anti-PD-1/PD-L1 therapies.76,77 Similarly, the role of 
noninvasive approaches based on standard imaging for the 
preservation of lymphocytes and the optimization of immu-
notherapy in patients was highlighted in the presentation of 
Prof. Philippe Lambin (University of Maastricht, the 
Netherlands). Additionally, Prof. Deutsch discussed the opti-
mization of virtual biopsies, transforming computed tomogra-
phy (CT) or magnetic resonance (MR) images into fixed 
histology slices for noninvasive characterization of tumor infil-
tration at the micron level.78 Furthermore, he emphasized the 
importance of advanced software to accurately calculate inci-
dental low-dose radiation received by patients, considering the 
high radiosensitivity of lymphocytes. Indeed, the currently 
available treatment planning software applications inade-
quately estimate these incidental low doses, necessitating the 
development of new tools to optimize “immunologically- 
tailored” RT.79,80 Finally, Prof. Deutsch highlighted next- 
generation RT modalities likely to efficiently spare lympho-
cytes, such as ultra-high dose rate FLASH RT,81 proton-beam 
or carbon-ion RT,82,83 and spatial modulation of RT using 
boron-neutron capture therapy (BNCT).84,85 With regards to 
FLASH RT, the main question is whether delivering RT with 
ultra-high dose rate is able to minimize subsequent lymphode-
pletion by limiting the irradiation of circulating lymphocytes. 
Moreover, regarding the use of alpha-radiotherapy in radio-
therapy-immunotherapy combinations, this was the focus of 
the presentation from Prof. Peter Huber (DKFZ and University 
of Heidelberg, Germany), highlighting the interest of this 
modality in modulating the immune response within the 
tumor microenvironment.86 Prof. Huber reported that photon 
RT orchestrates NK cell-dependent anti-tumor immune 
responses through CXCL887 and also introduced the terminol-
ogy of an “immune response” relative biological efficiency 
(RBE) equivalent for particle RT involving proton, carbon, 
helium and oxygen ions. Moreover, the radiobiology of 
charged particle radiation was revisited and explained during 

the presentation of Dr. Jean-Pierre Pouget (Institute of Cancer 
Research of Montpellier, France) who highlighted the role of 
intercellular communications (bystander cytotoxicity and 
immunity) during this low dose rate and high linear energy 
transfer RT modality. Therefore, harnessing these innovations 
in the field of RT has the potential to personalize RT indica-
tions and delivery, refining treatment volumes beyond stan-
dard guidelines to better suit individual patients.

Conclusion: on the way to 8th immunorad conference

The journey through the 7th Immunorad Conference has 
illuminated transformative strides in the integration of RT 
and immunotherapy, heralding a new era in cancer treat-
ment. Pioneering research presented by a group of speakers 
with multidisciplinary expertise has unveiled innovative 
strategies to harness the synergistic potential of these mod-
alities, promising enhanced therapeutic outcomes and pro-
longed survival for patients affected by various malignancies. 
From novel approaches in managing oligometastatic cancer 
to the meticulous preservation of lymphocytes amid radia-
tion exposure, each revelation underscores the intricate 
interplay between technology, biology, and clinical practice. 
As we eagerly await the report of the 8th Immunorad 
Conference, held October 3–5th, 2024, in New-York, the 
momentum gained from these groundbreaking endeavors 
propels us toward further advances in radiotherapy- 
immunotherapy combinations, with hope to translate 
encouraging preclinical opportunities into clinical benefits 
for patients.
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