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Abstract—In this paper, we propose a power-efficient attention-
infused convolutional neural network (CNN) hardware accel-
erator for RF spectrum monitoring. The AI model achieves
73.3% average accuracy across all Signal-to-Noise Ratios (SNRs)
ranging from -20dB to +30dB, and a 99% accuracy for SNRs
higher than 4dB using the RadioML2018 dataset . The number of
parameters of the proposed attention-infused CNN is reduced by
93% compared to the baseline CNN model. An efficient hardware
implementation on FPGA achieves 61 GOPS and consumes only
1191 mW. Compared to the state of the art, it achieves the highest
efficiency of 51 GOPS/W.

Index Terms—AI Hardware Acceleration, RF Modulation
Recognition, Deep Learning, CNN.

I. INTRODUCTION

The rapid growth of 5G communication and the Internet of
Things (IoT) has intensified demands on the radio spectrum,
leading to uneven frequency band utilization [1]. Efficient
spectrum monitoring is critical for optimal spectrum usage [2].
Cloud-based RF classification is unsuitable for real-time ap-
plications due to its high latency [3]. As communication
systems grow more complex, traditional methods struggle with
accuracy and computational efficiency [4] [5]. Deep learning
offers a promising alternative, with RF signals, represented
as I/Q components, being effectively processed as ”image-
like” inputs, making them suitable for AI-based models, as
illustrated in Fig. 1.

While Long Short-Term Memory (LSTM) networks [6]
have demonstrated success with time-series data, their se-
quential nature limits parallelization. Transformer models [7],
though powerful, are memory-intensive, making them imprac-
tical for deployment on edge devices. Convolutional Neural
Networks (CNNs), by contrast, are well-suited for paralleliza-
tion, enabling faster inference with lower memory usage,
making them a better fit for IoT devices.

Many deep learning-based spectrum monitoring approaches
focus primarily on improving accuracy [8]–[14], yet they often
neglect hardware implementation challenges. These models,
with parameter counts ranging from 72k to over 1.26 million,
rely heavily on GPUs for inference, rendering them impractical
for low-power embedded devices. While the Denoising Auto-
Encoder (DAE) [15] model is the most lightweight choise,
its reliance on LSTMs poses parallelization difficulties and
introduces additional pre-processing steps with L2-normalized
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Fig. 1. End-to-end hardware implemented AI spectrum monitoring system.

Fig. 2. The baseline CNN model, used in [17] for modulation recognition, has
more than 295k parameters. The model contains two Convolutional Layers
and two Dense Layers.

amplitude and normalized phase. Existing hardware imple-
mentations either suffer from high power consumption or
limited accuracy [17]–[21], highlighting the need for more ef-
ficient, hardware-optimized solutions. To tackle the challenges,
in this work, we introduce the following contributions:

• A lightweight attention-infused CNN RF modulation
recognition model which achieves high accuracy with a
significantly lower number of parameters compared to the
baseline CNN [17].

• A power-efficient hardware accelerator of this attention-
infused CNN model. An FPGA implementation shows
that the model can achieve 61 GOPS with a power
consumption of 1191 mW.

II. THE PROPOSED AI MODEL

A. Datasets

The RadioML2018 [22] dataset was employed for modu-
lation recognition. As in [15], [21], we use the 11 normal
classes: FM, GMSK, OQPSK, BPSK, 8PSK, AM-SSB-SC,
4ASK, AM-DSB-SC, QPSK, OOK, and 16-QAM. Each frame
size is 2×1024, with a Signal-to-Noise Ratio (SNR) ranging
from -20 dB to +30 dB. Following the repartition as in [15],



Fig. 3. Architecture of the proposed attention-infused CNN model. The number of parameters is reduced to 19k. The kernel size, stride, and number of filters
are denoted by k, s, and f , respectively.

the RadioML2018 dataset, which contains 2,555,904 frames,
was split into 50%-25%-25% for training, validation, and
testing, respectively. Unlike the RadioML2016 [23] dataset,
the RadioML2018 dataset provides a more realistic over-the-
air data captures.

B. Proposed Model Architecture

Fig. 2 shows the baseline CNN model proposed for modu-
lation recognition [17]. The model features 2 Convolutional
Layers (CL) and 2 Dense Layers (DL), with 45 filters in
the first CL and 9 in the second. This model achieves good
accuracy for the modulation recognition RadioML2016 dataset
with a much lower number of parameters compared to other
models [14], [16].

The proposed lightweight model optimized for RF spectrum
monitoring is shown in Fig. 3. The I and Q signals, which
are the outputs of the Analog-to-Digital Converters (ADCs)
in Fig. 1, are first passed through an 1D CL for key features
extraction. Instead of treating the I and Q components as inde-
pendent channels, we introduce a Cross-Component Learning
(CCL) strategy, highlighted in red in Fig. 3. This approach
allows the model to learn shared features between the I and Q
components by using shared weights across both dimensions.
By encouraging the model to capture common characteristics,
we not only enhance feature learning but also reduce the kernel
parameter count by 50%.

Attention mechanisms [7] were initially developed for lan-
guage models to focus on specific input sequence parts, en-
hancing contextual relationship capture. This concept has been
adapted to CNNs for improved feature extraction. Squeeze
and Excitation [24] is a typical format that allows models
to re-calibrate feature maps by emphasizing relevant channels
and suppressing less important ones, enabling more efficient
learning from input data.

To optimize the performance further, we propose integrating
our customized attention variant between the two CLs. This
includes replacing average pooling with adaptive max-pooling,
changing the reduction size from 16 to 9 (resulting in 4
neurons in the hidden layer), and using the ReLU activation
function instead of sigmoid for faster, quantization-friendly
inference. This customization was selected due to its superior

TABLE I
CNN TRAINING ENVIRONMENT

Category Details
GPU NVIDIA A100 80GB PCIe
CPU Intel® Xeon® Gold 6300 @ 2 GHz
RAM 2 TB
Operating System Ubuntu 22.04
Python 3.9.19
PyTorch 2.0.1
CUDA 11.8

performance in the modulation recognition task after extensive
hyperparameter tuning. Similar to Fig. 2, Fig. 3 illustrates the
data flow in PyTorch format (batch, channel, height, width) to
ensure easy reproducibility. The refined architecture includes:

• Cross-component learning for improved feature extrac-
tion and parameter reduction.

• A customized attention mechanism to enhance feature
map calibration.

• Reduction of the first CL filters from 45 to 36, achieving
further parameter reduction, and an additional max pool-
ing layer after the second CL, halving the data length and
further reducing parameters with minimal accuracy loss.

C. Model Training and Implementation

Table I details the hardware and software configuration used
for AI training. The models were trained for 300 epochs using
the Adam optimizer with a learning rate of 0.001 and a batch
size of 512 to handle the large dataset.

III. THE AI HARDWARE ACCELERATOR

A key issue with existing modulation recognition ap-
proaches is their reliance on shifting kernels, which are com-
mon in image processing tasks. However, unlike static images,
I/Q data is sequentially generated by the ADCs, and buffering
entire frames before processing introduces delays, often lead-
ing to frame loss. To overcome this, we propose a parallelized
architecture utilizing stationary weights, as shown in Fig. 4. In
this design, a FIFO buffers one I/Q sample per clock cycle, and
once the kernel is full, computation begins immediately. Mul-
tiply and accumulate (MAC) operations are parallelized both
within each kernel and across all 36 kernels simultaneously,



Fig. 4. Stationary weights kernel: the weights are fixed while the I/Q data is
fed sequentially from the ADC in a FIFO mode, one sample per clock cycle.
MAC operations are executed in parallel component-wise and kernel-wise.

Fig. 5. Accelerator architecture (e.g. first CL): this architecture employs a 2x8
FIFO (same as baseline CNN) for the I/Q signals and 36 weights assigned
to each input component. The PEs execute parallel MAC operations along
each row, producing one output per kernel. Dense Layers are also parallelized
similarly, with neuron connections highlighted in red.

ensuring maximum throughput and minimal latency. Dense
layers follow a similar parallel execution strategy, with MACs
across neuron connections processed concurrently, as depicted
by the red neuron connections and red-shaded Processing
Elements (PEs) shown in Fig. 5. A kernel counter is utilized to
keep track of the components. The computations at CL1 begin
as soon as the cross-component learning layer has produced
8 values, eliminating the need to wait for the entire output,
resulting in a significantly faster pipeline. This design delivers
optimal computational efficiency and substantial speed gains,
making it ideally suited for real-time, edge-based modulation
recognition with low power consumption.

IV. RESULTS AND MODEL COMPARISON

A. Model Comparison and Ablation Study

We conducted a comparative analysis of our model against
other modulation recognition models. The DAE model [15]
is the most lightweight with ours having a similar parameter
scale (<20k), whereas other models have a significantly higher
number of parameters ranging from 71k in [9] to 3894k
in [13]. The proposed model achieved an average accuracy

TABLE II
MODEL COMPARISON AND ABLATION STUDY ON THE RADIOML2018

DATASET WITH 11 CLASSES.

Model Accuracy #Param. Memory Size
ResNet [25] 66.0% 257,009 1000 KB
PET-CGDNN [9] 74.1% 71,614 290 KB
CGDNet [13] 70.6% 3,894,133 15580 KB
SNN [21] 64.3% 83,000 166 KB
DAE [15] 67.3% 14,989 60 KB
Ablation Study
CNN [17] 70.1% 295,055 1155 KB
CCL+CNN 71.9% 37,016 150 KB
CNN* 69.9% 148,688 590 KB
CCL+CNN* 71.7% 19,673 80 KB
ATT+CNN* 71.5% 148,976 600 KB
CCL+ATT+CNN* (This Work) 73.3% 19,961 80 KB
Quantized Model (This Work) 71.5% 19,961 20 KB

CCL: Cross-Component Learning, ATT: Attention,
CNN*: refers to filter reduction and maxpooling.

Fig. 6. Accuracy vs. SNR curve on the RML2018 dataset for normal classes.
Quantization reduces accuracy, but when the SNR is relatively high, the
difference is minimal.

Fig. 7. The confusion matrix at SNR = 0 dB. (a) This work, (b) DAE [15].

across all SNR values of 73.3% on the RML2018 dataset,
surpassing the CNN baseline by 3.2% and outperforming the
DAE model by 6%, as shown in Table II. Moreover, the model
achieves a remarkable 93.2% reduction in parameters com-
pared to the CNN baseline [17]. Fig. 6 demonstrates its very
good performance for low SNRs, reaching 99% of accuracy
for an SNR of 4 dB. In contrast, the DAE model only achieves
similar performance above 8 dB, underscoring the robustness
of the proposed model in challenging noise conditions. Fig. 7
further illustrates the model’s superior accuracy at 0 dB.

An ablation study was conducted to evaluate the impact of



TABLE III
COMPARISON OF STATE-OF-THE-ART FPGA IMPLEMENTATIONS FOR RF MODULATION RECOGNITION.

FPGA Clock NN Weights LUT FF DSP Power Performance Efficiency
(MHz) # of Bits (mW) GOPS (GOPS/W)

This Work1 ZCU104 115 CNN 8 75365 88623 1728 1191 61 51
[17]2 ZCU104 70 CNN 16 74680 57726 1116 847 33 39
[21]1 PYNQ 137 SNN 16 31735 50,934 0 2167 79 35
[20]2 XCZU5EG 200 CNN 8 67779 - 131 858 23 27
[18]2 ZCU102 250 CNN 16 97900 139200 578 10500 179 17
[16]3 XCZU9EG - ANN 16 158435 16222 210 1152 15 13

1 RadioML2018 Dataset [22] with 11 classes, 2 RadioML2016 Dataset [23] with 11 classes, 3 Dedicated Dataset [16] with 6 classes.

TABLE IV
INFERENCE TIME PER INPUT FRAME ACROSS HARDWARE PLATFORMS FOR

THE PROPOSED AI MODEL, COMPARED TO THE STATE OF THE ART.

Device FPGA GPU ARM CPU
This Work 10.1 µs 13.4 µs (A100) 331.5 µs (A76)
[17] 26.8 µs 36.6 µs (P100) -
[20] 26.5 µs 7694 µs (Jetson) 14774 µs (A9)
[15] - 753.3 µs (1080Ti) 4149.4 µs (A72)

the CCL layer, the customized attention (ATT) mechanism,
along with filter reduction and the insertion of a max-pooling
layer (CNN*). The results highlight the clear advantages of
the proposed model. As shown in Table II, the introduction of
CCL significantly reduced the model’s parameter count while
improving accuracy from 70.1% to 71.9%. Further optimiza-
tion involved reducing the first CL’s filters from 45 to 36
and adding a max-pooling layer after the second convolutional
layer. This adjustment nearly halved the number of parameters,
with only a minimal accuracy decrease of 0.2%.

ATT was applied to dynamically focus on important features
learned in the earlier layers. When used independently, both
CCL and ATT improved accuracy, CCL raised it from 69.9%
to 71.7%, and ATT increased it to 71.5%. However, when
ATT was combined with CCL, accuracy rose significantly
to 73.3%, marking a 3.2% improvement over the baseline.
Remarkably, these enhancements also reduced the parameter
count by 93.2%, from 295,055 to just 19,961. These findings
underscore the lightweight nature and high accuracy of our
proposed design, highlighting its effectiveness in resource-
constrained environments.

B. Quantization

Post-training quantization was applied to quantize weights
in 8 bits and biases in 16 bits to exploit the faster integer
computations compared to floating-point. The test data were
quantized to 12 bits, simulating a 12-bit ADC. After the MAC
operations, data were re-quantized to 16 bits via right-shifting.
The quantized model achieved 71.5% accuracy, reducing the
memory footprint to just 20 KB, while surpassing the CNN
baseline accuracy by 1.4% and the DAE model accuracy by
4.2%, as shown in Table II.

V. HARDWARE RESULTS

The proposed architecture has been implemented in VHDL
and tested it on a Zynq ZCU104 board with Xilinx Vivado

2020.2 version. Table III compares this work with several
hardware implementations using similar datasets. The Spik-
ing Neural Network (SNN) implementation in [21] achieves
79 GOPS with 0 DSP block but since it utilizes high-level
synthesis, the power consumption is relatively high. The
implementation proposed in [18] has a significantly higher
throughput of 179 GOPS but at the cost of a much higher
power consumption. The implementation in [17] achieved the
lowest power consumption of 847 mW but with a limited
performance of 33 GOPS. The proposed design can realize
61 GOPS while consuming only 1191 mW, thus achieving the
highest efficiency of 51 GOPS/W.

In Table IV, we list the measured inference time per
input frame of the proposed model on different hardware
platforms: FPGA, GPU and CPU. The proposed FPGA im-
plementation achieved an inference speed of 10.1 µs per
frame, even outperforming the original PyTorch model tested
on a premium grade A100 GPU (13.4 µs). Leveraging SIMD
processing, we tested the model on an ARM Cortex-A76
processor, a high-performance embedded chip optimized for
AI applications. The FPGA implementation is 33x faster than
the ARM processor and 1.3x faster than the GPU. It is also
significantly more power-efficient consuming 1191 mW, while
the ARM processor consumes 750mW/Core and the GPU has
a consumption in the range of 250-400W.

CONCLUSION

In this paper, we presented a lightweight CNN model dedi-
cated to RF spectrum monitoring and modulation recognition
in edge devices. Compared to prior art, the model demonstrates
superior classification accuracy while significantly reducing
the number of parameters. This is achieved by integrating
into the CNN model a customized attention mechanism and a
cross-component learning strategy. The FPGA implementation
achieves real-time processing with low power consumption.
It is much faster than a CPU implementation and consumes
significantly less power than a GPU. Compared to other
FPGA implementations, the proposed model achieves the best
efficiency of 51 GOPS/W. In terms of future work, we plan
to train the same CNN model for other cognitive tasks in RF
communication, such as the detection of covert communication
channels [26].
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