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CONVOLUTION OF PERIODIC MULTIPLICATIVE FUNCTIONS
AND THE DIVISOR PROBLEM

MARCO AYMONE, GOPAL MAITI, OLIVIER RAMARÉ, AND PRIYAMVAD SRIVASTAV

Abstract. We study a certain class of arithmetic functions that appeared in

Klurman’s classification of ±1 multiplicative functions with bounded partial sums,

c.f., Comp. Math. 153 (8), 2017, pp. 1622-1657. These functions are periodic and

1-pretentious. We prove that if f1 and f2 belong to this class, then
∑

n≤x(f1 ∗
f2)(n) = Ω(x1/4). This confirms a conjecture by the first author made in Bull.

Braz. Math. Soc. 2022, 53 (4), 1317-1329, 2022. As a byproduct of our proof, we

studied the correlation

lim
X→∞

1

X3/2

∫ X

0

∆(x)∆(θx)dx,

where ∆(x) is the error term in the classical Dirichlet divisor problem. We prove

that this limit is positive and non-trivial when θ is rational, and 0 when θ is

irrational. Moreover, if θ has a finite degree of irrationality, then we can make it

quantitative the limit above in terms of this degree.

1. Introduction

1.1. Main result and background. A question posed by Erdős [6], known as

the Erdős discrepancy problem, states that whether for all arithmetic functions

f : N→ {−1, 1} we have that the discrepancy

(1) sup
x,d

∣∣∣∣∣∑
n≤x

f(nd)

∣∣∣∣∣ = ∞.

When in addition f is assumed to be completely multiplicative, then this reduces

to whether f has unbounded partial sums.

Date: May 8, 2023.
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In 2015, Tao [12] proved that (1) holds for all f : N→ {−1, 1}, and a key point

of its proof is that it is sufficient to establish (1) only in the class of completely

multiplicative functions f taking values in the unit (complex) circle.

When f : N→ {−1, 1} is assumed to be only multiplicative, then not necessarily

f has unbounded partial sums. For example, f(n) = (−1)n+1 is multiplicative and

clearly has bounded partial sums. In this case, f(2k) = −1 for all positive integers

k. It was observed by Coons [5] that this rigidity on powers of 2 is actually necessary

under suitable conditions on the values that f takes at the remaining primes. Later,

in the same paper [12], Tao gave a partial classification of multiplicative functions

taking values ±1 with bounded partial sums: They must satisfy the previous rigidity

condition on powers of 2 and they must be 1-pretentious (for more on pretentious

Number Theory we refer reader to [7]), that is,∑
p

1− f(p)

p
<∞.

Later, Klurman [9] proved that the only multiplicative functions f taking ±1

values and with bounded partial sums are the periodic multiplicative functions with

sum 0 inside each period, and thus, closing this problem for ±1 multiplicative func-

tions.

Building upon the referred work of Klurman, the first author proved [1] that if

we allow values outside the unit disk, a M -periodic multiplicative function f with

bounded partial sums such that f(M) ̸= 0 satisfies

i. For some prime q|M ,
∑∞

k=0
f(qk)
qk

= 0.

ii. For each pa∥M , f(pk) = f(pa) for all k ≥ a.

iii. For each gcd(p,M) = 1, f(pk) = 1, for all k ≥ 1.

Conversely, if f : N → C is multiplicative and the three conditions above are

satisfied, then f has period M and has bounded partial sums. Therefore, these

three conditions above give examples of multiplicative functions with values outside

the unit disk with bounded partial sums, despite of the fact that f(M) is zero or

not.
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Remark 1.1. It is interesting to observe that when it is assumed that |f | ≤ 1, the

only way to achieve condition i. is with q = 2 and f(2k) = −1 for all k ≥ 1.

Remark 1.2. What makes the difference between a multiplicative function f satis-

fying i-ii-iii from a non-principal Dirichlet character χ is that χ neither satisfies i.

nor iii.

Here we are interested in the convolution f1 ∗ f2 for f1 and f2 satisfying i-ii-iii

above. It was proved [1] that ∑
n≤x

(f1 ∗ f2)(n) ≪ xα+ϵ,

where α is the infimum over the exponents a > 0 such that ∆(x) ≪ xa, where ∆(x)

is the classical error term in the Dirichlet divisor problem:∑
n≤x

τ(n) = x log x+ (2γ − 1)x+∆(x).

It was conjectured in [1] that the partial sums of f1 ∗ f2 obey the same Ω bound

for ∆(x), that is,
∑

n≤x(f1 ∗ f2)(n) = Ω(x1/4). Here we establish this conjecture.

Theorem 1.1. Let f1 and f2 be periodic multiplicative functions satisfying i-ii-iii

above, Then
∑

n≤x(f1 ∗ f2)(n) = Ω(x1/4).

Example 1.1. The results from [1] give that for each prime q there exists a unique q-

periodic multiplicative function f with bounded partial sums and such that f(q) ̸= 0.

In the case q = 2, the corresponding function is f(n) = (−1)n+1. Therefore, in this

particular case we have that
∑

n≤x(f∗f)(n) = Ω(x1/4). In particular, this establishes

the conjecture in an uncovered case by Proposition 3.1 of [1].

1.2. Proof idea. To proof Theorem 1.1, our starting point is the following formula

from [1]:

(2)
∑
n≤x

(f1 ∗ f2)(n) =
∑

n|M1M2

(f1 ∗ f2 ∗ µ ∗ µ)(n)∆(x/n),

where µ is the Möbius function. Therefore, the partial sums of f1 ∗f2 can be written

as a finite linear combination of the quantities (∆(x/n))n. Apart from the fact that
3



∆(x) = Ω(x1/4), we cannot, at least by a direct argument, prevent a conspiracy

among the large values of (∆(x/n))n in such a way that always has a cancellation

among a linear combination of them.

To circumvent this, our approach is inspired by an elegant result of Tong [13]:∫ X

1

∆(x)2dx = (1 + o(1))

(
∞∑
n=1

τ(n)2

n3/2

)
X3/2.

By (2), the limit

lim
X→∞

1

X3/2

∫ X

1

∣∣∣∣∣∑
n≤x

(f1 ∗ f2)(n)

∣∣∣∣∣
2

dx

can be expressed as a quadratic form with matrix (ca,b)a,b|M1M2 where ca,b is the

correlation

ca,b := lim
X→∞

1

X3/2

∫ X

1

∆(x/a)∆(x/b)dx.

These correlations does not vanish. We generalized Tong’s result and proved

that, if λ = gcd(a, b), c = a/λ and d = b/λ, then

ca,b =
1

6π2
√
λcd

∞∑
n=1

τ(cn)τ(dn)

n3/2
.

The divisor sum above is a multiplicative function in the variable cd. With that on

hand, the matrix correlation-term ca,b can be expressed as

(3)
1√

gcd(a, b)
φ

(
lcm(a, b)

gcd(a, b)

)
,

for some multiplicative function φ.

This matrix entanglement is hard to analyze directly. In section 4 we explore

sufficient conditions for a matrix of the form (3) to be positive definite. When this

happens, this ensures the referred Ω-bound. Thanks to the Selberg diagonalization

procedure, we showed that when φ is completely multiplicative and satisfies other

conditions, then this matrix is positive definite. Then, the proof of the main re-

sult consists in to conjugate our original matrix and reaching to another related

to a completely multiplicative function. With standard linear algebra of Hermitian

matrices we conclude that our matrix (ca,b)a,b|M1M2 is positive definite.
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1.3. Byproduct study. Motivated by Nyman’s reformulation of the Riemann hy-

pothesis [11], in recent papers [2, 3, 4] it has been study the correlation

A(θ) :=

∫ ∞

0

{x}{θx}dx
x2
,

where θ > 0 is a real number and {x} stands for the fractional part of x. Several

analytic properties for the function A(θ) have been show.

In the course of the proof of Theorem 1.1 we study the “divisor” analogue

I(θ) = lim
X→∞

1

X3/2

∫ X

0

∆(x)∆(θx)dx.

As mentioned before, when θ = p/q is a rational number, the limit above is described

by a positive multiplicative function depending on p and q. Somewhat surprisingly,

when θ is irrational we have the following result.

Proposition 1.1. Let θ > 0 be an irrational number with degree of irrationality η,

that is, for each ϵ > 0 there is a constant C > 0 such that the inequality

|n−mθ| ≥ C

mη+ϵ

is violated only for a finite number of positive integers n and m. Then∫ X

0

∆(x)∆(θx)dx = O(X3/2−1/(18η)+ϵ).

In the other cases of irrationals θ, the integral above is o(X3/2).

This shows that we have decorrelation among the values ∆(x) and ∆(θx) when

θ is irrational, and moreover, this gives that the function I(θ) is discontinuous

everywhere.

It is important to mention that a similar decorrelation also has been obtained by

Ivić and Zhai in [8]. In this paper they show decorrelation between ∆(x) and ∆k(x),

where ∆k(x) is the error term related to the k-fold divisor function, and k = 3 or 4.
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2. Notation

2.1. Asymptotic notation. We employ both Vinogradov’s notation f ≪ g or

f = O(g) whenever there exists a constant C > 0 such that |f(x)| ≤ C|g(x)|, for all
x in a set of parameters. When not specified, this set of parameters is x ∈ (a,∞)

for sufficiently large a > 0. We employ f = o(g) when limx→a
f(x)
g(x)

= 0. In this case

a can be a complex number or ±∞. Finally, f = Ω(g) when lim supx→a
|f(x)|
g(x)

> 0,

where a is as in the previous notation.

2.2. Number-theoretic notation. Here p stands for a generic prime number. We

sometimes denote the least common multiple between a, b as lcm(a, b). The greatest

common divisor is denoted by gcd(a, b). ∗ stands for Dirichlet convolution between

two arithmetic functions: (f ∗ g)(n) = sumd|nf(d)g(n/d).

3. Multiplicative auxiliaries

We begin the proof with the following Lemma.

Lemma 3.1. Let a, b be positive integers, λ = gcd(a, b), c = a/λ and d = b/λ. Then

lim
X→∞

1

X3/2

∫ X

1

∆(x/a)∆(x/b)dx =
1

6π2
√
λcd

∞∑
n=1

τ(cn)τ(dn)

n3/2
.

Proof. Let N > 0 and ϵ > 0 be a small number that may change from line after line.

We proceed with Voronöı’s formula for ∆(x) in the following form (see [10])

∆(x) =
x1/4

π
√
2

∑
n≤N

τ(n)

n3/4
cos(

√
nx− π/4) +RN(x)

where, for every positive ϵ, we have

RN(x) ≪ xϵ +
x1/2+ϵ

N1/2
.

We select N at the end. With this formula we have that in the range 1 ≤ x ≤ X,

∆(x/a) =
(x/a)1/4

π
√
2

∑
n≤N

τ(n)

n3/4
cos(

√
nx/a− π/4) +RN(x/a) = UN(x/a) +RN(x/a)

say.
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Now,∫ X

1

∆(x/a)∆(x/b)dx =

∫ X

1

UN(x/a)UN(x/b)dx+

∫ X

1

UN(x/a)RN(x/b)dx

+

∫ X

1

UN(x/b)RN(x/a)dx+

∫ X

1

RN(x/a)RN(x/b)dx

=

∫ X

1

UN(x/a)UN(x/b)dx+O

(
X1+1/4+ϵ +

X1+3/4+ϵ

√
N

)
,

where we used the Cauchy-Schwarz inequality in the last equality. Let now λ =

gcd(a, b), c = a/λ and d = b/λ. By making the change of variable u = x/λ, we

reach∫ X

1

UN(x/a)UN(x/b)dx = λ

∫ X/λ

1

UN(x/c)UN(x/d)dx

=
λ

2π2(cd)1/4

∑
n,m≤N

τ(n)τ(m)

(nm)3/4

∫ X/λ

1

x1/2 cos(
√
nx/c− π/4) cos(

√
mx/d− π/4)

=
λ

π2(cd)1/4

∑
n,m≤N

τ(n)τ(m)

(nm)3/4

∫ (X/λ)1/2

1

u2 cos(u
√
n/c− π/4) cos(u

√
m/d− π/4)du,

where in the last equality above we made a change of variable u =
√
x. We claim

now that the main contribution comes when n/c = m/d. Since c and d are coprime,

this implies that m = dk and n = ck. Therefore the sum over these n and m can

be written as

(4)
λ

π2cd

∞∑
k=1

τ(ck)τ(dk)

k3/2

∫ (X/λ)1/2

1

u2 cos2(u
√
k − π/4)2du+O

(
X3/2+ϵ

√
N

)
.

We recall now that cos2(v) = 1+cos(2v)
2

, and hence the integral above is

(5)

∫ X1/2/λ1/2

1

x2 cos2(
√
nx− π/4)dx =

X3/2

6λ3/2
+O(X),

where the big-oh term is uniform in n. Now we will show that the sum over those n

and m such that n/c ̸= m/d will be o(X3/2). With this the proof will be complete

by combining (4) and (5).
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We recall the identity 2 cos(u) cos(v) = cos(u − v) + cos(u + v). Thus, for√
n/c ̸=

√
m/d, we find that

∫ X1/2/λ1/2

1

x2 cos(
√
n/cx− π/4) cos(

√
m/dx− π/4)dx

=

∫ X1/2/λ1/2

1

x2 cos((
√
n/c−

√
m/d)x)dx+

∫ X1/2/λ1/2

1

x2 sin((
√
n/c+

√
m/d)x)dx

≪ X√
n/c−

√
m/d

≪
√
n/c+

√
m/d

nd−mc
X.

Let 1P (n) be the indicator that n has property P . We find that

∑
n,m≤N

nd−mc̸=0

τ(n)τ(m)

(nm)3/4

∫ X/λ

1

x1/2 cos(
√
nx/c− π/4) cos(

√
mx/d− π/4)dx

≪ XN ϵ
∑

n,m≤N
nd−mc̸=0

√
n/c+

√
m/d

(nm)3/4|nd−mc|

= XN ϵ
∑

n,m≤N
nd−mc ̸=0

√
n/c+

√
m/d

(nm)3/4|nd−mc|

N max(c,d)∑
k=−N max(c,d)

k ̸=0

1nd−mc=k.

On calling this sum S, we readily continue with

S ≪ XN ϵ

N max(c,d)∑
k=1

1

k

∑
m≤N

√
m+

√
k

((k +mc)m)3/4

≪ XN ϵ

(
O(logN)2 +

∑
k≤N

1√
k

∑
m≤N

1

(m2 +mk)3/4

)

≪ XN ϵ

(
O(logN)2 +

∑
k≤N

1√
k

( ∑
k≤m≤N

1

m3/2
+

1

k3/4

∑
m≤k

1

m3/4

))
≪ XN ϵ(logN)2.
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Finally, by selecting N = X2, we arrive at∫ X

1

∆(x/a)∆(x/b)dx =
1

6π2
√
λcd

(
∞∑
n=1

τ(cn)τ(dn)

n3/2

)
X3/2 +O(X3/2−1/4+ϵ),

where the main contribution in the O-term above comes from the usage of Cauchy-

Schwarz in the beggining of the proof.

The proof is complete. □

Now we deviate from the main line and prove Proposition 1.1.

Proof of Proposition 1.1. By the proof of Lemma 3.1 we have that

Iθ(X) :=

∫ X

0

∆(x)∆(θx)dx

=
1

π2

∑
n,m≤N

τ(n)τ(m)

(nm)3/4

∫ X1/2

0

x2 cos(x
√
n− π/4) cos(x

√
mθ − π/4)dx

+O

(
X1+1/4+ϵ +

X1+3/4+ϵ

√
N

)
.

Now, by appealing to the identity 2 cos(u) cos(v) = cos(u−v)+cos(u+v), we reach

at

Iθ(X) =
1

2π2

∑
n,m≤N

τ(n)τ(m)

(nm)3/4

∫ X1/2

0

x2 cos(x(
√
n−

√
mθ))dx+O

(
X1+1/4 +

X1+3/4+ϵ

√
N

)
.

On calling the sum above Sθ(X), an,m :=
√
n−

√
mθ, we obtain that

Sθ(X) = X3/2
∑

n,m≤N

τ(n)τ(m)

(nm)3/4
Λ(an,m

√
X),

where Λ(0) := 1/3 and for u ̸= 0

Λ(u) :=
sin(u)

u
+ 2

cos(u)

u2
− 2

sin(u)

u3
.

A careful inspection shows that Λ is continuous and for large |u|, Λ(u) ≪ |u|−1.

Now, for a large parameter T to be chosen later, we split

Sθ(X) = X3/2
∑

n,m≤N

|an,m

√
X|≤T

τ(n)τ(m)

(nm)3/4
Λ(an,m

√
X)+X3/2

∑
n,m≤N

|an,m

√
X|>T

τ(n)τ(m)

(nm)3/4
Λ(an,m

√
X).
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We call the first sum in the right hand side above by diagonal contribution and the

second sum by non-diagonal contribution. We select T = X1/2−δ and N = X1/2+δ,

for some small δ > 0.

The diagonal contribution. We have that

D(X) = X3/2
∑

n,m≤N

|an,m

√
X|≤T

τ(n)τ(m)

(nm)3/4
Λ(an,m

√
X)(6)

≪ X3/2N ϵ
∑
m≤N

1

m3/4

mθ+ 2
√
mθ

Xδ + 1

X2δ∑
n=mθ− 2

√
mθ

Xδ + 1

X2δ

|Λ(an,m
√
X)|

n3/4
.(7)

The inner sum above we split accordingly 2
√
mθ

Xδ + 1
X2δ is below and above 1. In the

case that this quantity is great or equal to 1, we have that m ≥ ((2θ)−1 + o(1))X2δ,

and hence

X3/2N ϵ
∑

((2θ)−1+o(1))X2δ≤m≤N

1

m3/4

mθ+ 2
√
mθ

Xδ + 1

X2δ∑
n=mθ− 2

√
mθ

Xδ + 1

X2δ

|Λ(an,m
√
X)|

n3/4

≪ X3/2N ϵ
∑

((2θ)−1+o(1))X2δ≤m≤N

1

m3/4
· 1

m3/4

√
m

Xδ

≪ X3/2−δN ϵ.

In the case that 2
√
mθ

Xδ + 1
X2δ ≤ 1, we have that m ≤ ((2θ)−1 + o(1))X2δ, and now

the Diophantine properties of θ come in to play. If the degree of irrationality of θ is

η, we have that for each ϵ there is a constant C > 0 such that the inequality

|n−mθ| ≥ C

mη+ϵ

is violated only for a finite number of positive integers n and m. In our case, this

allows us to lower bound |an,m
√
X| for all but a finite number of n and m such that

10



1 ≤ m≪ X2δ and
√
n ≈

√
mθ:

|an,m
√
X| ·

√
n+

√
mθ

√
n+

√
mθ

=
√
X

|n−mθ|
√
n+

√
mθ

≥
√
X

mη+ϵ(
√
n+

√
mθ)

≫ X1/2−(2η+1)δ−ϵ.

Observe that the diagonal contribution from those exceptional n and m will be at

most O(X). With these estimates on hand and recalling that Λ(u) ≪ |u|−1, we

obtain

X3/2N ϵ
∑

m≤((2θ)−1+o(1))X2δ

1

m3/4

mθ+ 2
√
mθ

Xδ + 1

X2δ∑
n=mθ− 2

√
mθ

Xδ + 1

X2δ

|Λ(an,m
√
X)|

n3/4

≪ X3/2N ϵ
∑

m≤((2θ)−1+o(1))X2δ

1

m3/2
· 1

X1/2−(2η+1)δ−ϵ
+O(X)

≪ X1+(2η+1)δ+ϵ.

Therefore, the diagonal contribution is at most

D(X) ≪ X1+(2η+1)δ+ϵ +X3/2−δ+ϵ.

The non-diagonal contribution. Now, we reach

X3/2
∑

n,m≤N

|an,m

√
X|>T

τ(n)τ(m)

(nm)3/4
Λ(an,m

√
X) ≪ X3/2N1/2+ϵ

T

= X3/2+1/4+(δ+ϵ)/2+ϵδ−1/2+δ

= X1+1/4+3δ/2+ϵ/2+ϵδ.

We choose δ = 1
3(2η+1)

and obtain

Iθ(X) = X3/2−1/(18η).

The proof of the first part of Proposition 1.1 is complete.
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Now we assume that θ is a Liouville number, i.e., θ doesn’t have finite degree

of irrationality. We see that the non-diagonal argument does not depend on the

Diophantine properties of θ. Let η > 0 be a large fixed number, t > 0 a small

number that will tend to 0. For D(X) as in (6), by repeating verbatim the estimates

above we have that

D(X) ≪ X3/2
∑

m≤((2θ)−1+o(1))X2δ

τ(m)

m3/4

mθ+ 2
√
mθ

Xδ + 1

X2δ∑
n=mθ− 2

√
mθ

Xδ + 1

X2δ

τ(n)|Λ(an,m
√
X)|

n3/4
+O(X3/2−δN ϵ).

Let ∥x∥ be the distance from x to the nearest integer. We split the sum over m

above into two sums: One over those m such that ∥mθ∥ > tm−η and the other over

m such that ∥mθ∥ ≤ tm−η.

Repeating the argument above for non-Liouville numbers, we have that the

contribution over those m such that ∥mθ∥ > tm−η is O(t−1X1+δ(2η+1)). Therefore

D(X) ≪ X3/2

∞∑
m=1

∥mθ∥≤tm−η

1

m3/2−ϵ
+O(t−1X1+δ(2η+1) +X3/2−δ+ϵ).

Combining all these estimates, we see that

lim sup
X→∞

1

X3/2

∣∣∣∣∫ X

0

∆(x)∆(θx)dx

∣∣∣∣≪ ∞∑
m=1

∥mθ∥≤tm−η

1

m3/2−ϵ
.

Since the upper bound above holds for all t > 0, we have that as t → 0+, the

sum above converges to 0 and thus implying that the lim sup is 0. The proof is

complete. □

Our next task is to evaluate
∑

n≥1 τ(cn)τ(dn)/n
3/2 for coprime positive integers c

and d.

Lemma 3.2. Let c be fixed positive number and f(n) be a multiplicative function

with f(c) ̸= 0. Then n 7→ f(cn)
f(c)

is multiplicative.

Proof. For positive integers u, v, we have

f(u)f(v) = f(gcd(u, v))f(lcm(u, v)).
12



Let u = cn, v = cm with gcd(n,m) = 1. Then f(cn)f(cm) = f(c)f(cnm).

Therefore, we obtained

f(cm)

f(c)

f(cn)

f(c)
=
f(cnm)

f(c)
.

□

Lemma 3.3. Let c, d be two fixed positive integers with gcd(c, d) = 1. Then

∞∑
n=1

τ(cn)τ(dn)

ns
= τ(cd)

ζ(s)4

ζ(2s)

∏
pk∥cd

(
1 + p−s

)−1
(
1− (k−1)

(k+1)
p−s
)
.

Proof. Note that τ(cn)
τ(c)

is a multiplicative function in the variable n, and so is
τ(cn)τ(dn)
τ(c)τ(d)

. Therefore, for ℜ(s) > 1 we have the following Euler factorization

∞∑
n=1

τ(cn)τ(dn)

τ(c)τ(d)ns
=
∏
p∤cd

(
1 +

∞∑
ℓ=1

τ(pℓ)2

pℓs

)∏
p|cd

(
1 +

∞∑
ℓ=1

τ(cpℓ)τ(dpℓ)

τ(c)τ(d)pℓs

)
.

For |x| < 1, we know that

∞∑
ℓ=0

(ℓ+ 1)xℓ =
1

(1− x)2
,

∞∑
ℓ=0

(ℓ+ 1)2xℓ =
(1 + x)

(1− x)3
,

from which we also derive that

∞∑
ℓ=0

ℓ(ℓ+ 1)xℓ =
2x

(1− x)3
.

Now,

∏
p∤cd

(
1 +

∞∑
ℓ=1

τ(pℓ)2

pℓs

)
=
∏
p

(
1 +

∞∑
ℓ=1

(ℓ+ 1)2

pℓs

)∏
p|cd

(
1 +

∞∑
ℓ=1

(ℓ+ 1)2

pℓs

)−1

=
∏
p

(1 + p−s)

(1− p−s)3

∏
p|cd

(1− p−s)
3

(1 + p−s)

=
ζ(s)4

ζ(2s)

∏
p|cd

(1− p−s)
3

(1 + p−s)
.

13



If gcd(c, d) = 1

∏
p|cd

(
1 +

∞∑
ℓ=1

τ(cpℓ)2τ(dpℓ)2

τ(c)τ(d)pℓs

)
=
∏
pk∥cd

(
1 +

∞∑
ℓ=1

(k + 1 + ℓ)(ℓ+ 1)

(k + 1)pℓs

)

=
∏
pk∥cd

(
1 +

∞∑
ℓ=1

(ℓ+ 1)

pℓs
+

1

k + 1

∞∑
ℓ=1

ℓ(ℓ+ 1)

pℓs

)

=
∏
pk∥cd

(
1− p−s

)−3
(
1− (k−1)

(k+1)
p−s
)
.

□

4. Quadratic forms auxiliaries

The main proof will lead to considering the quadratic form attached to a matrix

of the form

(8) MS,φ =

(
1√

gcd(a, b)
φ

(
lcm(a, b)

gcd(a, b)

))
a,b∈S

where S is some finite set of integers while φ is a non-negative multiplicative function

such that φ(pk) ≤ 1. So we stray somewhat from the main line and investigate this

situation. Our initial aim is to find conditions under which the associated quadratic

form is positive definite, but we shall finally restrict our scope. GCD-matrices have

received quite some attention, but it seems the matrices occuring in (8) have not

been explored. We obtain results in two specific contexts.

Completely multiplicative case. Here is our first result.

Lemma 4.1. When φ is completely multiplicative, the matrix MS,φ is non-negative.

When p1/4φ(p) ∈ (0, 1) and S is divisor closed, this matrix is positive definite. The

determinant in that case is given by the formula

det

(
1√

gcd(a, b)
φ

(
lcm(a, b)

gcd(a, b)

))
a,b∈S

=
∏
d∈S

φ(d)2(µ ∗ ψ)(d),

where ψ is the completely multiplicative function given by ψ(p) = 1/(
√
pφ(p)2).

14



By divisor closed, we mean that every divisor of an element of S also belongs

to S.

Proof. We write

1√
gcd(a, b)

φ

(
lcm(a, b)

gcd(a, b)

)
=

1√
gcd(a, b)

φ

(
lcm(a, b)

gcd(a, b)

)
= φ(a)φ(b)ψ(gcd(a, b))

where ψ(n) = 1/(φ(n)2
√
n) is another non-negative multiplicative function. We

introduce the auxiliary function h = µ∗ψ. Notice that this function is multiplicative

and non-negative, as ψ(p) ≥ 1. We use Selberg’s diagonalization process to write∑
a,b∈S

1√
gcd(a, b)

φ

(
lcm(a, b)

gcd(a, b)

)
xaxb =

∑
a,b∈S

ψ(gcd(a, b))φ(a)xaφ(b)xb

=
∑
a,b∈S

∑
d|(a,b)

h(d)φ(a)xaφ(b)xb

=
∑
d

h(d)

(∑
a∈S
d|a

φ(a)xa

)2

from which the non-negativity follows readily. When φ verifies the more stringent

condition that p1/4φ(p) ∈ (0, 1), we know that both φ and h are strictly positive.

Let us define yd =
∑

a∈S
d|a

φ(a)xa. The variable d varies in the set D of divisors of

S. We assume that S is divisor closed, so that D = S. We can readily invert the

triangular system giving the yd’s as functions of the xa’s into

φ(a)xa =
∑
a|b

µ(b/a)yb

Indeed, the fact that the mentioned system is triangular ensures that a solution y is

unique if it exists. We next verify that the proposed expression is indeed a solution

by: ∑
a∈S
d|a

φ(a)xa =
∑
a∈S
d|a

∑
a|b

µ(b/a)yb =
∑
b∈S
d|b

yb
∑
d|a|b

µ(b/a) = yd

as the last inner sum vanishes when d ̸= b. We thus have a writing as a linear

combination of squares of independant linear forms. In a more pedestrian manner,

if our quadratic form vanishes, then all yd’s do vanish, hence so do the xa’s. □
15



Here is a corollary.

Lemma 4.2. When the set S contains solely squarefree integers, the matrix MS,φ

is non-negative.

Proof. Simply apply Lemma 4.1 to completely multiplicative function φ′ that have

the same values on primes as φ. □

An additive-like situation. Let us restrict our attention to the case

S = {1, p, p2, · · · , pK}.

In that case, the matrix has the form

Mφ,K =

(
1

pmin(i,j)/2
φ(pmax(i,j)−min(i,j))

)
i,j≤K

.

We have not been able to get general results like Lemma 4.2 in that case. We may

however work out some criterium that is simple to verify in our case. We first recall

the following theorem of Frobenius.

Lemma 4.3. A hermitian complex valued matrix M = (mi,j)i,j≤K defines a positive

definite form if and only if all its principal minors det(mi,j)i,j≤k for k ≤ K are

positive.

So in our case, here is the list of conditions to verify, where we have set q = 1/
√
p:

• q − φ(p)2 > 0.

• (q − φ(p2))(φ(p2)− 2φ(p)2 + q) > 0.

• q2φ(p)4 − 2qφ(p3)φ(p)3 + (4q2φ(p2)− 2qφ(p2)2 + φ(p3)2 − 3q3)φ(p)2 +

2(2q − φ(p2))φ(p3)φ(p2)φ(p) + φ(p2)4 − 2q2φ(p2)2 − qφ(p3)2 + q4 > 0.

The first condition is equivalent to the condition p1/4φ(p) < 1 that we have already

met in Lemma 4.1. We conclude to the next lemma.

Lemma 4.4. Recall that φ(1) = 1, that φ(p) ∈ (0, p−1/4). We have

(1) The matrix Mφ,1 is positive definite.

(2) The matrix Mφ,2 is positive definite if and only if φ(p2)−2φ(p)2+1/
√
p > 0.

16



(3) The matrix Mφ,3 is positive definite if and only if Mφ,2 is positive definite

and if

q2φ(p)4 − 2qφ(p3)φ(p)3 + (4q2φ(p2)− 2qφ(p2)2 + φ(p3)2 − 3q3)φ(p)2

+ 2(2q − φ(p2))φ(p3)φ(p2)φ(p) + φ(p2)4 − 2q2φ(p2)2 − qφ(p3)2 + q4 > 0

where q = 1/
√
p.

(4) The matrix Mφ,K is positive definite if and only if Mφ,K−1 is positive definite

and if detMφ,K > 0.

Here is another situation where we are able to conclude.

Lemma 4.5. If for every i ≤ K, we have∑
1≤ℓ≤i−1

φ(pℓ)pℓ/2 +
∑

1≤ℓ≤K−i

φ(pℓ) < 1,

then the matrix Mφ,K is definite positive.

Proof. By Gershgorin Disks’ Theorem (see the book [14] by Varga), we know that

each eigenvalue of Mφ,K lies inside one of the Gershgorin’s disks. As these eigenval-

ues are real numbers, the disk reduce to segments. They are theK intervals of center

1/pi/2 and radius
∑

j ̸=i
1

pmin(i,j)/2φ(p
max(i,j)−min(i,j)). When this radius is strictly less

than the center, we are sure that each eigenvalue is positive. We massage a bit this

condition to get the one stated in the lemma, hence completing the proof. □

A tensor product-like situation. Lemma 4.2 is enough to solve our main problem

when M1 and M2 are coprime squarefree integers. We need to go somewhat further.

Let S be a divisor closed set. We consider the quadratic form

(9)
∑
a,b∈S

φ

(
lcm(a, b)

gcd(a, b)

)
xaxb

where the variables xa’s are also multiplicatively split, i.e.

(10) xa =
∏
pk∥a

xpk .
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Let S(p) the subset of S made only of 1 and of prime powers. We extend S so that

it contains every products of integers from any collection of distinct S(p)∗. We then

find that

(11)∑
a,b∈S

1√
gcd(a, b)

φ

(
lcm(a, b)

gcd(a, b)

)
xaxb =

∏
p∈S

( ∑
pk,pℓ∈S(p)

φ
(
pmax(k,ℓ)−min(k,ℓ)

)
pmin(k,ℓ)/2

xpkxpℓ

)
.

We check this identity simply by opening the right-hand side and seeing that every

summand from the left-hand side appears one and only one time. Then Lemma 4.4

and 4.5 apply.

5. Proof of the main result

Proof. By [1, Theorem 1.4], we have

S(x) =
∑
n≤x

(f1 ∗ f2)(n) =
∑

a|M1M2

g(a)∆(x/a)

where g = f1 ∗ f2 ∗ µ ∗ µ. We infer from this formula that

∫ X

1

|S(x)|2dx =
∑

a,b|M1M2

g(a)g(b)

∫ X

1

∆(x/a)∆(x/b)dx

=
(1 + o(1))

6π2
X3/2

∑
a,b|M1M2

g(a)g(b)
gcd(a, b)3/2

ab

∞∑
n=1

τ(an/ gcd(a, b))τ(bn/ gcd(a, b))

n3/2

by Lemma 3.1. We next use Lemma 3.3 to infer that

lim
X→∞

1

X3/2

∫ X

1

|S(x)|2dx =
ζ(3/4)4

6π2ζ(3/2)

∑
a,b|M1M2

g(a)g(b)
1√

gcd(a, b)
φ

(
lcm(a, b)

gcd(a, b)

)

∗This is not automatically the case, as the example S = {1, 2, 3, 5, 6, 10} shows, since 30 does

not belong to S
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where φ is multiplicative and at prime powers:

φ(pk) =
(k + 1)

pk
1

1 + p−3/2

(
1− (k − 1)

(k + 1)p3/2

)
=

1

pk(1 + p−3/2)

(
(k + 1)− (k − 1)p−3/2

)
=

1

pk(1 + p−3/2)

(
k(1− p−3/2) + (1 + p−3/2)

)
=
kβ(p) + 1

pk
,

(12)

where

β = β(p) =
1− p−3/2

1 + p−3/2
.

As we are dealing with a given prime p, we call it β.

Now, we can write

1√
gcd(a, b)

φ

(
lcm(a, b)

gcd(a, b)

)
=

1

(ab)1/4

(
lcm(a, b)

gcd(a, b)

)1/4

φ

(
lcm(a, b)

gcd(a, b)

)
.

Since the terms a−1/4 and b−1/4 can be absorbed into the variables g(a) and g(b)

of the quadratic form, it is enough to consider the quantity

φ∗
(
lcm(a, b)

gcd(a, b)

)
, where φ∗(n) = n1/4φ(n).

We note that

(13) φ∗(pk) = pk/4φ(pk) =
kβ + 1

p3k/4
.

Due to (11) and the discussion before it, we now restrict to the prime power

case, that is, we look to matrices of the form

MK =
(
φ∗(p|i−j|)

)
i,j≤K

.

Since φ∗ is not completely multiplicative, it is not clear how to handle the matrix

MK directly. So, our aim will be to transform this into another matrix which, in

some way associates with a completely multiplicative function. So, let us consider
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AK = U⊤
KMK UK ,

where,

(14) UK(i, j) =


µ(p|i−j|)

p3(|i−j|)/4 , when i ≥ j or (i, j) = (K − 1, K),

0, otherwise.

Simply speaking, UK is 1 on the diagonal and −p−3/4 on all (i+ 1, i) as well as

(K − 1, K). Also

det(UK) = 1− p−3/2.

We now calculate the entries of the matrix AK . We have the following:

Proposition 5.1. The matrix AK above is given by:

AK(i, j) = β(1− p−3/2) ·

p
−3|i−j|/4, when 1 ≤ i, j ≤ K − 1 or i = j = K,

0, otherwise.

We begin with the following lemma:

Lemma 5.1. We have

φ∗(pm)− p−3/4φ∗(p|m−1|) = p−3m/4β, for all m ≥ 0.

Proof. First, assume m ≥ 1. We have

φ∗(pm)− p−3/4φ∗(pm−1) =
mβ + 1

p3m/4
− p−3/4 (m− 1)β + 1

p3(m−1)/4
= p−3m/4β.

When m = 0, we have

1− p−3/4φ∗(p) = 1− p−3/2(β + 1) = 1− 2p−3/2

1 + p−3/2
= β.

□

Now, we shall proceed with the proof of the Proposition 5.1.
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Proof of Proposition 5.1. Let us first assume that 1 ≤ i, j ≤ K − 1. We have

AK(i, j) =
∑
k1,k2

U⊤
K(i, k1)MK(k1, k2)UK(k2, j)

=
∑

k1−i∈{0,1}
k2−j∈{0,1}

µ(pk1−i)

p3(k1−i)/4

µ(pk2−j)

p3(k2−j)/4
φ∗(p|k1−k2|)

=

(
φ∗(p|i−j|)

(
1 + p−3/2

)
− φ∗(p|i−j+1|) + φ∗(p|i−j−1|)

p3/4

)
.

(15)

Here, we do not have the contribution coming from UK(K−1, K) or U⊤
K(K,K−1)

as we have assumed i, j ≤ K − 1. This assumption is necessary because we are

considering the values k1 = i+1 and k2 = j+1 (both of which should remain ≤ K).

First, let us consider the case i ≥ j. Letting i− j = m ≥ 0, (15) becomes

AK(i+m, i) = φ∗(pm)− p−3/4φ∗(p|m−1|)− p−3/4
(
φ∗(pm+1)− p−3/4φ∗(pm)

)
= p−3m/4β − p−3/4p−3(m+1)/4β

= β(1− p−3/2)p−3m/4.

Similarly, for j ≥ i, we will obtain the same expression in terms of m = j − i. This

proves Proposition 5.1 for 1 ≤ i, j ≤ K − 1.

Next, we consider the case when one of i or j equals K.

Claim: AK(i,K) = AK(K, j) = 0, for all 1 ≤ i, j ≤ K − 1.

We revert to the first line of the expression (15). Letting m = K − i ≥ 1, we

obtain

AK(i,K) =
∑

k1∈{i,i+1}
k2∈{K−1,K}

µ(pk1−i)

p3(k1−i)/4

µ(pK−k2)

p3(K−k2)/4
φ∗(p|k1−k2|)

= −p−3/4φ∗(pm−1) + p−3/2φ∗(p|m−2|) + φ∗(pm)− p−3/4g(pm−1)

= −p−3/4
(
φ∗(pm−1)− p−3/4φ∗(p|m−2|)

)
+ φ∗(pm)− p−3/4φ∗(pm−1)

= −p−3/4p−3(m−1)/4β + p−3m/4β = 0.

It similarly follows that AK(K, j) = 0 for 1 ≤ j ≤ K − 1, proving the claim.
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Next, we see that

AK(K,K) =
∑

k1,k2∈{K−1,K}

µ(pK−k1)

p3(K−k1)/4

µ(pK−k2)

p3(K−k2)/4
φ∗(p|k1−k2|)

= 1− p−3/4φ∗(p)− p−3/4
(
φ∗(p)− p−3/4

)
= β − p−3/4

(
p−3/4β

)
= β(1− p−3/2).

This completes the proof of Proposition 5.1. □

Now, since n 7→ n−3/4 is completely multiplicative, by repeating almost as ver-

batim the the proof of Lemma 4.1, we obtain that for some c > 0, the matrix

AK = c

((
lcm(a, b)

gcd(a, b)

)−3/4
)

a,b∈{1,...,pK}

is positive definite for all K. Moreover, since AK = U⊤
KMKUK , we have

det(AK) = det(UK)
2 det(MK) = (1− p−3/2)2 det(MK).

This proves that det(MK) > 0 and by induction over K in Lemma 4.4, MK is

positive definite for all K.

The factorization (11) completes the proof of Theorem 1.1. □
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l’autocorrélation multiplicative de la fonction ‘partie fractionnaire’. Ramanujan J., 9(1-2):215–

240, 2005.
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[6] Paul Erdős. Some unsolved problems. Michigan Math. J., 4:291–300, 1957.

[7] Andrew Granville and Kannan Soundararajan. Pretentious multiplicative functions and an

inequality for the zeta-function. In Anatomy of integers, volume 46 of CRM Proc. Lecture

Notes, pages 191–197. Amer. Math. Soc., Providence, RI, 2008.
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