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AN EXPLICIT CROOT- LABA-SISASK LEMMA FREE OF

PROBABILISTIC LANGUAGE

OLIVIER RAMARÉ

Abstract. We provide an explicit and probabilistic language-free proof of
the famous Croot- Laba-Sisask Lemma. In between, we do the same for the

Khintchine and Marcinkiewicz-Zygmund inequalities and explicitate the im-

plied constants for the upper bounds.

1. Introduction

After the fundatory papers of H. Rademacher [10] in 1922 and of A. Khint-
chine [8] in 1923, the usage of the so-called Rademacher system of functions, de-
scribed thereafter, has known deep developments in Lp-space theory, then in Banach
space theory, harmonic analysis and operator theory, for instance with the intro-
duction of the Rademacher type and cotype. The n-th Rademacher function rn is
simply the function on [0, 1] that takes the value 1 at t when the integer part of 2nt
is even and −1 otherwise. They were introduced by Rademacher in [10, Part VI]
in an L2-setting and by Khintchine in [8, Section 1] in an Lp-setting. It turns out
that this alternation of the ±1 values is deeply connected with sums of Bernoulli
variables and this introduces probability theory. We refer the reader to the book [1]
by S. Astashkin. As the material stated in such a fashion may be difficult to grasp
for a non probabilist, we propose here a fully elementary presentation of some part
of it, where elementary means that any generic mathematical background should
do.

Our main aim is to provide a proof of (a variant of) [3, Lemma 3.2] by E. Croot,
I.  Laba & O. Sisask. We state this result in their notation and in particular, when
z is a complex number, z◦ is defined to be z/|z| when z ̸= 0, and 0 when z = 0.

Theorem 1. Let (X,µ) be a probability space, let p ≥ 2 and a function f given in
the form

f =
∑
k≤K

λkgk

where (gk)k is a collection of measurable functions on X of Lp(µ)-norm at most 1.
Let finally ε > 0. There exists an L-tuple (k1, · · · , kL) ∈ {1, · · · ,K}L of length
L ≤ 20p/ε2 such that ∫

X

∣∣∣∣ f(x)

∥λ∥1
− 1

L

∑
ℓ≤L

λ◦
kℓ
gkℓ

(x)

∣∣∣∣pdµ ≤ εp,

where ∥λ∥1 =
∑

k≤K |λk|.

Thus L can be taken uniformly bounded, whatever rate of convergence (with
respect to K) of the initial representation of f . This theorem has its origin in
the paper [4] by E. Croot & O. Sisask. Since the Croot- Laba-Sisask Lemma has
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important consequences, we thought it was worth presenting an elementary and
self-contained proof of it.

We prove the upper Khintchine Inequality in Theorem 2 and the Marcinkiewicz-
Zygmund Inequality in Theorem 3. We refer to the paper [9] by L. Pierce for
more refined background on the Khintchine and Marcinkiewicz-Zygmund inequal-
ities. Our treatment is far from being comprehensive and we should mention to
the readers another important tool in this landscape: the Kahane-Salem-Zygmund
Inequality, see for instance [5] by A. Defant & M. Masty lo and [11, Section 4] by
A. Raposo, Jr. & D. Serrano-Rodŕıguez. The followings proofs borrow from several
authors.

Acknowledgement. The referee should be thanked for his/her precise reading and
helpful remarks that has resulted in a better version of this paper. This paper
was supported by the joint FWF-ANR project Arithrand: FWF: I 4945-N and
ANR-20-CE91-0006.

2. An upper explicit Khintchine Inequality

Here is the main result of this section.

Theorem 2. We have, when p ≥ 1,

(1/2N )
∑

(εn)∈{±1}N

∣∣∣∣∑
n≤N

cnεn

∣∣∣∣p ≤ pp/2

(∑
n≤N

|cn|2
)p/2

.

This is only half of the Khintchine Inequality and in a special context, but it is
explicit and will be enough for us. We followed [2, Chapter 10, Theorem 1, page
354] by Y.S. Show & H. Teicher. S. Astashkin in [1, Theorem 1.3] gives also a
complete proof which is furthermore valid as soon as p > 0, up to a modification of
the constant. To see the link between both results, let us mention that

(1/2N )
∑

(εn)∈{±1}N

∣∣∣∣∑
n≤N

cnεn

∣∣∣∣p =

∫ 1

0

∣∣∣∣∑
n≤N

cnrn−1(t)

∣∣∣∣pdt
where the (rn) are the Rademacher functions defined in the introduction. This
equality may be proved by considering the diadic expansion of 2N t, for each t ∈
[0, 1].

Proof. Let us start with p = 2k ≥ 2, so that we may open the inner sum and get

2NS(2k) =
∑

(εn)∈{±1}N

∣∣∣∣∑
n≤N

cnεn

∣∣∣∣p
=

∑
s1+s2+···+sN=2k,

sn≥0

(
2k

s1, s2, · · · , sN

) ∏
1≤n≤N

csnn
∑

(εn)∈{±1}N

∏
n≤N

εsnn

by the multinomial theorem. The inner summand vanishes as soon as some sn is
odd, whence, by letting 2tn = sn, we get

2NS(2k) =
∑

t1+t2+···+tN=k,
tn≥0

(
2k

2t1, 2t2, · · · , 2tN

) ∏
n≤N

(c2
n)tn

≤ C
∑

t1+t2+···+tN=k,
tn≥0

(
k

t1, t2, · · · , tN

) ∏
n≤N

(c2
n)tn = C

(∑
n≤N

c2
n

)k
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where

C = max

(
2k

2t1, 2t2, · · · , 2tN

)(
k

t1, t2, · · · , tN

)−1

≤ max
2k(2k − 1) · · · (k + 1)∏
j 2tj(2tj − 1) · · · (tj + 1)

≤ max
kk

2t1+···+tk
= (k/2)k.

As S(p) is increasing, we simply choose k = ⌈p/2⌉ (the upper integer part of p/2).
This gives us 2k ≥ p + 2 and thus

(k/2)k ≤ (p + 2)1+p/2 ≤ (30 p)p/2.

This concludes the main part of the proof, except for the constant 30. We will not
continue the proof but simply refer to the paper [7] by U. Haagerup who shows that
best constant is (be careful: the abstract of this paper misses a closing parenthesis
for the value of Bp, but the value of Bp displayed in the middle of page 232 misses
a squareroot-sign around the π, as an inspection of the proof at the end the paper
rapidly reveals) 

1 when 0 < p ≤ 2,

√
2

(
Γ((p+1)/2)√

π

)1/p

when 2 < p.

We readily check that this implies that the constant 1 rather than 30 is admissible.
□

3. An upper explicit Marcinkiewicz-Zygmund Inequality

Here is the main result of this section.

Theorem 3. Let (X,µ) be a probability space. When p ≥ 1, let (fn)n≤N be a
system of functions such that

∫
X
fn(x)dµ = 0. We have

∫
(xn)∈XN

∣∣∣∣ ∑
1≤n≤N

fn(xn)

∣∣∣∣pd(xn)

≤ (4p)p/2

∫
(xn)∈XN

( ∑
1≤n≤N

|fn(xn)|2
)p/2

d(xn).

The power of this inequality is that the implied constant does not depend on N ,
the effect of some orthogonality. Again, this is only half of the Marcinkiewicz-
Zygmund Inequality and in a special context, but the constants are explicit. This
will be enough for us. We followed [2, Chapter 10, Theorem 2, page 356] by
Y.S. Show & H. Teicher. The relevant constant is the subject of [12] by Y.-F. Ren
& H.-Y. Liang (their value is slightly worse than ours) and [6] by D. Ferger, where
the best constant is determined provided the fn’s are “symmetric”.

Proof. We first notice that, since
∫ 1

0
fn(x)dx = 0, we may introduce a symmetriza-

tion through∑
n≤N

fn(x2n−1) = −
∫

(x2n)∈XN

∑
n≤2N

(−1)nf⌈n/2⌉(xn)d(x2n).
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Jensen’s inequality gives us that∫
(x2n−1)∈XN

∣∣∣∣∫
(x2n)∈XN

∑
n≤2N

(−1)nf⌈n/2⌉(xn)d(x2n)

∣∣∣∣pd(x2n−1)

≤
∫

(x2n−1)∈XN

∫
(x2n)∈XN

∣∣∣∣ ∑
n≤2N

(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(x2n)d(x2n−1)

from which we deduce that the Lp-norm of the symmetrization controls the one of
the initial sum:∫

(x2n−1)∈XN

∣∣∣∣∑
n≤N

fn(x2n−1)

∣∣∣∣pd(x2n−1) ≤
∫

(xn)∈X2N

∣∣∣∣ ∑
n≤2N

(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(xn).

We next notice that, for any (εn) ∈ {±1}N , we have∫
(xn)∈X2N

∣∣∣∣ ∑
n≤2N

ε⌈n/2⌉(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(xn)

=

∫
(xn)∈X2N

∣∣∣∣ ∑
n≤2N

(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(xn).

Indeed, consider the indices n ∈ {2k− 1, 2k}. When εk = 1, we do not do anything
while, when εk = −1, we exchange n = 2k − 1 and n′ = 2k. This enables us to
introduce the Rademacher system:

(1/2N )
∑

(εn)∈{±1}N

∫
(xn)∈X2N

∣∣∣∣ ∑
n≤2N

ε⌈n/2⌉(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(xn)

=

∫
(xn)∈X2N

∣∣∣∣ ∑
n≤2N

(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(xn).

We may now remove the symmetrization since:∫
(xn)∈X2N

∣∣∣∣ ∑
n≤2N

ε⌈n/2⌉(−1)nf⌈n/2⌉(xn)

∣∣∣∣pd(xn)

≤
∫

(xn)∈X2N

2p−1

(∣∣∣∣∑
n≤N

εnfn(x2n)

∣∣∣∣p +

∣∣∣∣∑
n≤N

εnfn(x2n−1)

∣∣∣∣p)d(xn)

≤ 2p
∫

(x2n)∈XN

∣∣∣∣∑
n≤N

εnfn(x2n)

∣∣∣∣pd(x2n).

The Khintchine Inequality from Theorem 2 finally gives us that

(1/2N )
∑

(εn)∈{±1}N

∣∣∣∣∑
n≤N

εnfn(x2n)

∣∣∣∣p ≤ pp/2

(∑
n≤N

|fn(x2n)|2
)p/2

.

The proof is then complete. Concerning the constant 4 in the Theorem, the paper
[12] by Y.-F. Ren & H.-Y. Liang gives the upper bound 9/2, which is worse than
the above one. □

4. Proof of Theorem 1

Proof. We define Ω = {1, · · · ,K} which we equip with the probability measure
defined by ν({k}) = |λk|/∥λ∥1. It induces a product measure on ΩL, and, when
u = (uh)h≤L ∈ ΩL, we shall simply write du when integrating with respect to this
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measure. Given a positive integer L, we consider the family of functions φℓ, for
ℓ ≤ L given by

φℓ : ΩL ×X → C
(u, x) 7→ λ◦

uℓ
guℓ

(x)

so that ∫
ΩL

φℓ(u, x)du =
∑
k∈Ω

|λk|
∥λ∥1

λ◦
kgk(x) =

f(x)

∥λ∥1
= f0(x)

say. We aim at showing that (1/L)
∑

ℓ≤L φℓ(u, x) closely approximates f0 for most

values of u = (uh)h≤L. Selecting one such value gives qualitatively our result. To
do so, we write∫

ΩL

∫
X

∣∣∣∣ 1

L

∑
ℓ≤L

φℓ(u, x) − f0(x)

∣∣∣∣pdudx =
1

Lp

∫
ΩL

∫
X

∣∣∣∣∑
ℓ≤L

(
φℓ(u, x) − f0(x)

)∣∣∣∣pdudx.
We apply the Marcinkiewicz-Zygmung Inequality, i.e. Theorem 3, to this latter
expression, getting for fixed u,∫

X

∣∣∣∣ 1

L

∑
ℓ≤L

φℓ(u, x) − f0(x)

∣∣∣∣pdx ≤ (4p)p/2

Lp/2

∫
X

∣∣∣∣ 1

L

∑
ℓ≤L

∣∣φℓ(u, x) − f0(x)
∣∣2∣∣∣∣p/2

dx

≤ (4p)p/2

Lp/2

∫
X

1

L

∑
ℓ≤L

∣∣φℓ(u, x) − f0(x)
∣∣pdx,

the second step having been obtained through the Hölder inequality. We next
integrate over u and notice that

∫
ΩL |φℓ(u, x) − f0(x)|pdu is independent of ℓ to

infer that∫
ΩL

∫
X

∣∣∣∣ 1

L

∑
ℓ≤L

φℓ(u, x) − f0(x)

∣∣∣∣pdudx ≤ (4p)p/2

Lp/2

∫
X

∫
ΩL

∣∣φ1(u, x) − f0(x)
∣∣pdudx.

Concerning the relevant p-norms, we make the following observations:∫
X

∫
ΩL

∣∣φ1(u, x)
∣∣pdudx =

∫
ΩL

(∫
X

∣∣φ1(u, x)
∣∣pdx)du ≤ 1,

on the one side while on the other side, by the triangle inequality, we have

∥f0∥p ≤
∑
k≤K

|λk|
∥λ∥1

∥gk∥p ≤ 1.

Therefore(∫
ΩL

∫
X

∣∣∣∣ 1

L

∑
ℓ≤L

φℓ(u, x) − f0(x)

∣∣∣∣pdudx)1/p

≤ (4p)1/2

L1/2
(1 + 1) =

√
16p/L.

We deduce from this inequality that the set of u for which∫
X

∣∣∣∣ 1

L

∑
ℓ≤L

φℓ(u, x) − f0(x)

∣∣∣∣pdx > εp

has measure at most
√

16p/(ε2L) which is strictly less than 1 by our assumption
on L. The theorem follows readily. □
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References

[1] Sergey V. Astashkin. The Rademacher system in function spaces. Birkhäuser/Springer,
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