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Abstract

I compute a minimal rational separating set of invariants for a representation of a torus (G« )d. That
is, these rational invariants separate as many orbits as the invariant field. In particular, they separate
more orbits than the invariant algebra.

To that purpose, I predefine a set of optimal supports for the invariants. The size of these optimal
separating supports is bounded by d 4+ 1. I thus obtain a separating set of cardinality bounded by
(ahe) ~ n®*! where n is the dimension of the representation. This is highly competitive when compared
to other separating or generating sets, as exhibited in the final explicit examples.

The proofs rely on technical considerations of arithmetic and linear algebra, addressing the intersec-
tions of families of affine hyperplanes over Q that I call foliages.
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1 Introduction

It can be relevant to study algebraic objects up to a group action. Indeed, several properties are invariant under
this group action and concern more an orbit than a specific point. Thus arises the need for invariant functions that
determine, as much as possible, the orbit of the points of a representation. We can cite the study through invariants
of the isotropy classes [PS85] or the piezoelectricity and elasticity of given materials [Azz+22].

For a compact group, invariant polynomials separate all the orbits. This is no longer the case for non compact
groups, whose non closed orbits cannot be separated by smooth invariants. This led [Kem07] to generalise the notion
of separation in the following way: a set of invariant polynomials is said separating when it separates as many orbits as
the invariant algebra. Inspired by this, we formulate the same for rational invariants. We say that a set of invariants
is a rational separating set if it separates as many orbits as the invariant field.

In this article we compute a rational separating set for representations of the d-dimensional C-torus (Gx)d. This set
is minimal for the inclusion. As an abelian group, irreducible representations of (G x )d are of dimension 1. They are
determined by a column vector m € Z%. We notice that in an irreducible representation, the set of elements mapping
a point to another is homeomorphic to a sequence of periodically spaced affine hyperplanes, orthogonal to m. I call
these set of hyperplanes a foliage. For a summand of irreducible representations M = (my, ..., my), we thus address
the intersection of the corresponding family of foliages (Fi,...,Fn). Two points are in the same orbit when these
foliages globally intersect.

Through a blend of linear algebra and arithmetic, I isolate an optimal set v (M) of supports in [1,n] testing the
emptiness of that intersection:

(Fs #0 VS ey(M), () Fs #0.

s=1 seS
These supports are the minimal S C [1,n] such that the columns {ms,s € S} are linearly dependent. One notices
that the size of these supports is bounded by d + 1. We prove that our set of testing supports is of cardinality
#r (M) < (1)~

Next, for each S € v (M), we compute a unique rational monomial Ps separating orbits of support exactly S.

That is, testing whether the foliages {F,, s € S} intersect. This computation is allowed by a classical technique in
invariant theory, based on Smith Normal Forms [Biir+21]. In general, to calculate a Smith Normal form of a matrix
in Mg »(Z) has a polynomial cost in n,d. But since we reduced to families {ms, s € S} of corank 1, this complexity
is reduced to solve a linear system of size d+ 1. Finally, we get a rational separating set of cardinality v (M) ~ ndtl:

gsep:{PSWS’e’Y(M)}'



The most classical approach in invariant theory is to compute a set of invariant polynomials generating the
invariant algebra. General algorithms allow to compute them, for which the book [Kem07] is a good entry point. For
toric actions, such a set is provided by an algorithm based on Groebner bases [Stu08, p. 1.4.5]. Polynomial separating
sets have the advantage of being significantly smaller [Kem07, Section 2.4|, whereas they are sufficient for many
applications (see for instance [BV23|). This motivated various research for different specific circumstances [DG24;
Che+19; Duf09]. Nevertheless, it seems more challenging to find general results to compute them. As far as I know,
there is no polynomial separating sets for tori representations in the literature to compare with my rational one.

Because of the inclusion C[V]¢ C C(V)¢, rational invariants separate at least as many orbits than the polynomials
one. But in fact, they separate far more orbits, including non closed ones. For toric actions, the invariant field
separates any point v € V such that {ms,s € supp (v)} is linearly dependent. This is far more accurate than the
invariant algebra as illustrated in Remark 3.9. To summarize, one could dress the following empirical comparison,
confirmed by explicit computations on random cases exhibited in the final examples 5.4 and 5.5:

# ( rational separating set ) << # ( polynomial generating set )

separates far more orbits separates closed orbits

Another approach is to compute a set generating the invariant field (C(V)(Gx)d, as [HL13] does through Hermite
Normal Forms. Its cardinality, lower than n, is highly competitive. Although, from a separation point of view, these
are less accurate. Rosenlicht Theorem ensures only that they separate orbits almost everywhere. The set in [HL13|
only separates orbits of full support in 1, n].

[Biir+-21] develops a more complete separation algorithm based on this first step. After testing the equality of
the supports of two given points, they apply the process to the representation restricted to that support. This is
highly competitive in the sense that it separates these two specific points with at most n monomials. But the huge
number (2") of different supports in [1,n] discourages to announce a total separating set. Combining the separating
sets regarding all the supports, the final separating set would have a cardinality in n x 2™. It highlights the point of
this paper: to select optimal and small supports. Bigger supports indeed induce too many invariants.

2 Intersection of foliages

Let us start by defining foliages and studying their intersections, this part being (apparently) an independent problem.
A foliage is a subset of C? composed of regularly spaced, parallel hyperplanes. This section is entirely devoted to
establishing a minimal criterion ensuring that a family of foliages globally intersects (Theorem 2.8). This problem
carries the larger part of the difficulties of the article, the other sections resulting naturally from this point.

Definition 2.1. Let V be a C-affine space of finite dimension n.
Choose an initial point f € V and a non-zero direction m € Q™. The

associated foliage is the set Im
F(f,m)=f+m" +mi : "

I
N

;
|
®
|
|
where m* is the hyperplane orthogonal to m, and mZ is the one di- !
mensional Z-module generated by m. \

Figure 1: A foliage for d = 3

n
The intersection of a family of foliages {Fs = F (fs,ms), 1 < s < n} can vanish from the moment that () my
s=1
has dimension greater than d —n, that is the family of directions {ms, 1 < s < n} is linearly dependent. Choosing m
over QQ forces the eventual intersection to respect a periodicity property in any direction, and thus to be not included

in any hyperplane:

Lemma 2.2. Let {Fs, 1 < s < n} be a family of foliages in C* which globally intersects: (| Fs # 0. Then, () Fs
s=1 s=1

is not contained in an affine hyperplane.



Proof. Take f € (] Fs and #H an affine hyperplane containing f. Choose v € Q" a direction out of H. For any
s=1

n
1 < s < n, there exists rs € Q such that f+wv (rsZ) C Fs. Since for any 1 < s < n, rs € Q, we know that [ rZ = rZ
s=1

for some r € Q. That is (] Fs contains infinitely many points in the line f 4+ Qu, and [ Fs € H. O
1

s=1 s=

In that case, (| Fs = f + L+ () m+, where £ is a module satisfing dim(£) 4 dim ( N mj) = d. There are
s=1 s=1 s=1
immediate counter examples when the directions ms are not rational, like the following one in dimension 1:

Fir=%4, Fo=7Zm = flﬂfzz{ﬂ}.

2.1 Intersection of foliages for d =1

In this section, we recall a result in dimension d = 1 already provided by [Jal24]. Up to a similarity, we can embed
a foliage F C C into Z. This enables us to apply arithmetical techniques and get a criterion for the intersection of
several foliages in Lemma 2.4. Let us note A and V the classical gcd and lem over Z. We start by the intersection of
two foliages:

Lemma 2.3. Take two foliages F = f +mZ and F' = f' +m'Z included in Z. There is the equivalence:

FNF #£0< (mAm) divides (f — )

Proof. One has FNF' # 0 < 3 (:,) € 72, (m m’) (:,) = f — f’. However, one computes the Smith Normal
Form ,
(m m')= (1) (mAm' 0) <m%m’ mgw’) .

v —
w

where b, b’ are the Bezout integers such that bm + bm’ = m A m/. Since W is unimodular, the multiplication map
W : Z? — Z? is bijective. Hence the system

k
(mAm' O)W(k,):f_f’
has solutions iff m A m’ divides f — f'. O

[Jal24] uses this lemma to get a criterion of a larger family of foliages for d = 1, checking only pairwise intersections:

Lemma 2.4. [Jal24, Lemma8.4] Let Fs = fs+msZ, 1 < s < n a family of foliages in an affine line D. Suppose that
foranyl<s<j<n, FsNF; #0. Then, (| Fs #0.
1

Proof. Up to a similarity D — C, we can suppose that for all 1 < s < n, F; is contained in Z. We then proceed by
induction on the number n. The lemma holds for n < 2. Take n > 2 such that the lemma holds for n — 1. Then

n—1 n—1 n—1
N Fs # 0, and up to translation, we can suppose that fs =0 for s <n — 1. Then, [ Fs = {k‘ ( V ms> ke Z}
1 s=1

s= s=1

n—1
where (\/ ms> = lem(mu, ..., mp—1).

s=1

By Lemma 2.3 we have F; N F,, # 0 < (ms A my,) divides (fn — fs) = fn. For all prime number p and integer f
we note v,(f) = max{k € N|p”* divides f} the p-adic valuation of f. We have

volfa) > max vpme Ama)] = ma fmin(v,(m.), v ()]

s<n-—1
If there is some 1 < s < n — 1 such that v,(ms) > vp(m,), then

ma fmin(v, (m.), vy ()] = v () = min] max (v, (m.) vy (m)



Otherwise vp(mp) > vp(ms) for any 1 < s <n—1 and

Jnax, [min(vp(ms), vp(mn)] = Sglgfl[up(ms)] > min[srggzcl (Vp(ms)) s vp(mn)].

It provides

vp(f) > minl max (v,(m.)) ,vp(mn)] = v, ( ( V ms> A mn>

s=1
n—1 n—1
This is, < \ ms) A my, divides f,. Hence, apply Lemma 2.3 again to have F,, N () Fs # 0. O
s=1 s=1
Lemma 2.4 does not hold anymore when the directions ms are not rational. For instance, we can complete the
counter example evoked in Section 2:

Fi=17
Example 2.5. Let ¢ Fo2 =77 be three foliages in C with non necessarily rational directions.
F3 1+ (7T — 1) Z

FinF,={0}#0
Th’en} flm]:3:{1}7é® Whlleflﬁfgﬂfgzw
]:20]'-3:{#}7&@

2.2 A generalisation for d > 1

In this section, we give a first generalisation of Lemma 2.4 in larger dimension d > 1. It work by induction, using
Lemma 2.4 as a key to increase the dimension one by one.

Theorem 2.6. Let V be a affine space of dimension d endowed with a family {Fs, 1 < s < n} of foliages. Suppose
that for any support S C [1,n] of cardinality d+ 1, (| Fs # 0. Then, (| Fs # 0.

seS s=1
Proof. Lemma 2.4 ensures that Theorem 2.6 holds for (1,n),n € N. For any d € Nand 1 < n < d+ 1, it also
holds for (d,n). We thus proceed by induction, taking some (d,n) such that Theorem 2.6 holds for (d,n — 1) and
(d—1,n—1). Consider {F; = fs +s +msZ, 1 < s < n} a family of foliages in C¢ satisfying the theorem hypothesis::

VS C [1,n] of cardinality d + 1, ﬂ Fs # 0.

seS

We shall isolate F,, and consider the intersections of the n — 1 first
foliages. We define 7 : V — D the projection along m;- onto the affine D= fn +mn,C My
line D = m,C+ f,,. We take a support S C [1,n — 1] of cardinality d.
There is the two following possibilities:

1. The projection 7 ( N .7-"S> is equal to the whole D. e
seS ’ g
) * NF
2. The inclusion 7 ( N ]-'s> Z D is strict. Lemma 2.2 ensures T s€s
s€ES o—éf .
that () Fs is not contained in a single hyperplane. Hence T
seS I
T ( N ]:5> is not reduced to a point. It is a foliage in D. Figure 2: The projection on D
s€S

Whereas, 7(Fr) = fn + mnZ is also a foliage in D. We thus obtain a family

{W <m ]:S> , S C[1,n—1] of cardinality d} U{m(Fn)}

seS

of foliages in the line D which intersect pairwise:



e Take some S C [1,n — 1] of cardinality d and w(F,). Then S U {n} C [1,n] has cardinality d + 1 and by

assumption, F, N (] Fs # 0. Thus
seS

T <ﬂ .7:5> N7 (Fn) #£0.
ses

e Take S, T supports in [1,n — 1] of cardinality d. By assumption, Theorem 2.6 holds for (d,n —1). It gives that
n—1 n—1
Fs # 0. So does (ﬂ Fsn N }'t> D () Fs # 0. We deduce that
—1 =1

seS teT s

™ <OSJ-‘) nr (QTJ-}> # 0.

We apply Lemma 2.4 to this family of one dimensional foliages. It ensures the non-emptiness of the intersection

mF)n () <ﬂ J-'5> # 0.

Sc1,n—1] sES
#S=d

s

Select a point f in this intersection, and the affine hyperplane V' = f +m;. For any 1 < s < n — 1, the intersection
Fl = FsNV is non empty. It is either

e The whole V',
e or a foliage in V'.
Those in the second category form a family of foliages satisfying

VS[1,n — 1] of cardinality d, ﬂ Fi=V'n ﬂ Fs #0.

seS sesS

n—1
Whereas, we assumed that Theorem 2.6 is true in dimension d — 1 = dim (V’). It gives () F. # 0. However
s=1

n—1 n—1 n
N F.= V' N Fs. It proves that (| Fs # 0. L)
s=1 ~ s=1 s=1
CFn
This result is my favourite one, because of its elegant formulation. It can be shared around a table, as an amusing

enigma. Its hypotheses are nevertheless not optimal, and must be refined to be successfully applied to the separation
problem in Section 3.3.

2.3 The refined criterion

In this section we refine Theorem 2.6. We obtain optimal supports to check the non emptyness of the intersection of
foliages (Theorem 2.8). This refinement makes the criterion applicable to our separation purpose.

Definition 2.7. Let M be a matriz in Mgn(Z). We note v (M) the set of minimal supports S C [1,n] such that
the family of columns {ms, s € S} is linearly dependent.

The maximal cardinality of supports in v (M) is d + 1. Furthermore, each support in [1,7n] of cardinality d + 1
contains at least a support in v (M).

Theorem 2.8. Let (d,n) be positive integers. Let V be an affine space of dimension d endowed with a family
{F (fs,ms), 1 < s <n} of foliages. Consider the matriz M whose columns are the directions {mu, ..., mn}. Suppose

that for any S € v (M), () Fs #0. Then, ﬁ Fs #£ 0.
sesS s=1

Proof. For d = 1, v (M) is exactly the set of support of cardinality 2. Thus, Lemma 2.4 provides the theorem for
(1,n), n € N. We proceed again by induction, choosing d such that the theorem is true for (d’',n) for any lower



dimension d’ < d and n € N. Consider F = {F,,1 < s < n} a family of foliages in an affine space V of dimension d
satisfying
VS ey (M), [ Fs #0.
ses
Let S C [1,n] be a support of cardinality d + 1. There is two possibilities:
Vect(ms, s € S)

e The family {ms,s € S} is of rank r < d — 1. Up to a change of basis J1
we note
en

where Mg € My q+1(Z). We introduce 7ws the pojection onto

Vect(ms, s € S) along ()| mi. The images {7 (Fs), s € S}
seS

are foliages in Vect(ms, s € S) C” whose directions are the

columns of Mg. Note that v(Ms) C v(M). Then, by assumption,
for all T € v(Ms), () 7ms(F:) # 0. Since we assumed the the-

ter
orem true in dimension r < d — 1, it gives () 7m(Fs) # (. Since
seS
N 7(Fs) = Vect(ms, s € S)N () Fs, we proved that (| Fs # 0. /
se€S seS seS

e Otherwise, the family {ms, s € S} is of rank d. v (M) admits a support 7" which is included in S. By assumption

then, (| F: # (0. This intersection is of the form
teT

() Fe=fr+ () ms+Lr,

teT seT

where mz is of dimension d — #T + 1 and L7 a Z-module of dimension #7T — 1. Whereas, the complementary
seT
support K = S\ T brings a linearly independent family of directions {my, k € K} of cardinality d + 1 — #7". Then,
( Fi # 0 is of the form
keK
ﬂ Fr=fx + ﬂ ma + Lx,

keK seK

where () mf is of dimension d — #K = #T — 1. Since {ms, s € S} is of total rank d = dim ( N .7-}) +

seEK teT

dim( N ]-‘k) = dim(V), we have (m ft> n ( N fk> =N Fs #0.

keK teT keK seS
We proved that for any S C [1,n] of cardinality d + 1, (| Fs # 0. Theorem 2.6 gives then (| Fs # 0. O
seS s=1

3 Separation of representations of tori

In this section, we apply the results regarding foliages intersections to invariant theory. We first describe represen-
tations of tori and the classical way to compute their rational invariants. Next, we define clearly what we mean
by rational separating set. We finally get the announced result of the paper: a minimal rational separating set of
invariants for a representation of a torus (Theorem 3.13).

3.1 K-tori, their representations, their rational invariants

In this section, we recall the link between representations of C tori and matrices of integers. We quickly derive the
existing methods based on linear algebra, including Smith Normal forms, to compute rational invariants.

\

- !
N ms
seS



Definition 3.1. A d-dimensional C-torus is a group of the form G = (Gx)d where Gx = C* is the multiplicative
group in C.

Since tori are abelian and C is algebraically closed, the linear representations of (G x)d are of dimension one.
They are all of the form (p,,,C) determined by a column vector m in Z<:

d
Vg = (g1,..,9a) € (Cx)?, pm(g) =[] o™
=1

Thus, a representation (par, V) of dimension n is determined by a matrix M € Mg (Z):

d
Yo = (V1,0 0n) €V, g = (91,-,9a) € (Gx)", p(g)(v) = < g> .
s=1..n

i=1
We note {mu, ..., m,} the columns of M, corresponding to each irreducible representations. The matricial view
upon representations is helpful computing invariant monomials. There is a natural correspondence between monomials

n
on V and vectors in Z": to a vector e € Z" is associated the monomial [] v{* € C(V).
i=1

Lemma 3.2. [Stu08] Let (par, V) be the representation of (Gx)* associated to the matric M € Mg, (Z). Invariant
rational monomials correspond to the vectors of the module

M={eeZ", Me=0}

d
These monomials generate the invariant field (C(V)(GX) . Since M is of dimension dim (M) = n — rank(M), the
invariant field is generated by a basis of n — rank(M) monomials. This basis can be computed through Smith Normal
Form:

Proposition 3.3. [Smi61] Let M € My (Z) be a matriz of rank r. Then, there exists a sequence oy, ..ar € Z with
a; dividing ai+1, U € GL4(Z) and W € GL,(Z) such that

o 0 0 0
UMW =0 0 0feMynz)
0 0 a O
0 0 0 0

This form is computed in polynomial time up to d and n. It is classically used to get a basis of rational invariants
[Biir4-21]:

Theorem 3.4. [Biir+21] Let par be the representation of (Gx)® associated to a matric M € Mgn(Z). Compute
UMW the Smith normal form of M. Then, the n — rank(M) last columns of W generate the module M. The

d
corresponding monomials generate the invariant field (C(V)(GX) .

3.2 Orbit separation

Let us define precisely what we mean by a rational separating set. For a compact group, all the orbits are closed, and
the invariant algebra separates all of them. This is not the case for general algebraic groups. A generalisation of the
definition of separation is thus proposed in [Kem07]:

Definition 3.5. [Kem07, Definition 2.4.1] Let G be an algebraic group and V a G-variety. We say that £, C (C[V]G
is a polynomial separating set iff for any v,v' € V admitting some P € C[V|®, P(v) # P(v'), there exists some
S € Egep with S(v) # S(v').

Inspired by this definition, we imagine the same for rational functions:

Definition 3.6. Let G be an algebraic group and V a G-variety. We say that &), C C(V)€ is a rational separating

set iff for any v,v’ € V admitting some P € C(V)%separating v and v', there exists some S € Esep Separating v and
!

v’



Because of the inclusion (C[V]G C (C(V)G, rational invariants separate at least as many orbits than polynomial
invariants. But it can occur that rational invariants separate far more orbits. Since they are not continuous, they
might separate non closed orbits, even when their closures intersect. This happens broadly in our tori actions. We
shall describe where orbits of a torus are separated by rational invariants. We define the support of a point v € V
as the set of non vanishing indices supp (v) = {1 < s < n, vs # 0}. For a support S C [1,n], we note Vs the set of
points v € V such that supp (v) = S.

Definition 3.7. Let M be a matriz in Mg, (Z). We note I'(M) the set of supports S C [1,n] such that the family
of columns {ms, s € S} is linearly dependent.

One could also see I'(M) as the set above v (M), that is the set of supports containing an element in v (M).

Lemma 3.8. Let (par, V) be the representation of (Gx ) associated to the matric M € Mg, (Z). Then, the invariant

field separates any orbits in || Vs.
Ser(M)

Proof. Take vand v’ in || Vs.
Ser(M)

e Suppose that supp (v) # supp (v'). Then, up to permuting v and v’, there exists some S € I'(M) such that

S C supp (v) .
{ S ¢ supp (v').
or a root at v’. However, these monomials are defined at v and satisfy P(v) # 0. They separate v and v'.

e Assume that supp (v) = supp (v') = S. By localisations, we can realise Vs as an algebraic (G )®-variety whose

d
In that case, Smith Normal forms provides monomials P € (C(V)(GX) of support in S with a pole

d
orbits are all closed [Biir+21]. Since (Gx)? is reductive, the invariant algebra R[VS](GX) separates closed orbits.
d d d
The inclusion (C[Vs](GX) C (C(V)(GX) ensures that C(V) (6x) separates v and v'. O

Remark 3.9. The greater accuracy of rational invariants appears already in dimension d = 1. Consider the torus
C* and the representation (par, V) associated to a matriz n X 1 matrix M = (ma1,..,my). Since the torus is reductive,
the invariant algebra separates the closed orbits. That is, orbits whose support is not included in {1 < s < n, ms < 0}
or {1 < s <n, ms >0} [Jal24, Lemma 4.3]. Whereas, Lemma 3.8 claims that rational invariants separate any orbits
of supports of cardinality at least two.

3.3 The separating set

In this section we exhibit the link between foliages and representations of tori. It results in a natural criterion for two
points to belong to the same orbit. We next use Smith Normal Form to build a set of rational invariants checking
that criterion. It provides a minimal rational separating set in Theorem 3.13, main result of the paper.

Lemma 3.10. Let (pm,C) be the irreducible representation of (Gx)® associated to a vector m € Z*. Take v and v'
be two points in C*. Then, the set of elements {g € (Gx)®, pm(v) = v'} mapping v to v’ is homeomorphic to the
foliage F € C? of initial point f = —v'm __ ond direction —.

2imv||m||3 [Iml13

c
2im

defined as the inverse of exp : & — C*. We compute that

2im

Proof. We consider the complex logarithm log : C* —
d ’
pm(v) =0 & Jlg" =%
i=1

d ’
& > milog(gi) = % [2in]
i=1

& (log(g:), € ﬁ +mt 4 2w Z C Cf
Thus, the homeomorphism ¢ = 22 : C* — (Gx)® maps F (f, #) to {g € (Gx)?, pm(v) = v'}. O
milz
Let us now consider the representation (par, V) of (Gx)* associated to a matrix M € Mg, (Z). For two points
v,v" € V and s € supp (v) Nsupp (v'), we note F, the foliage associated to the elements of the torus mapping vs to
vs. As in Definition 2.7, we note v (M) the set of minimal supports S such that the columns {ms, s € S} are linearly
dependent. The work about intersection of foliages achieved in Section 2 provides the following criterion for orbit
equivalence:



Proposition 3.11. Let v and v’ be two points in V.

., , supp (v) = supp (v')
Jg € (Gx)", pu(g)(v) =0 & { VS €~y (M) with S Csupp (v), (| Fs #0

seS

Proof. Firstly, the existence of such a g € (G)? implies that supp (v) = supp (v). Suppose furthermore that for
any support S € v (M) such that S C supp (v), () Fs # 0. Since the columns {ms, s € S} wear the directions

ses
of the foliages {Fs, s € S}, Theorem 2.8 ensures that N Fs # 0. Take then some f in that intersection,
sesupp(v)
and the element g = ¢~1(f) € (Gx)?. Lemma 3.10 claims that Vs € supp (v), pm.(g9)(vs) = v.. We proved that
prm(g)(v) = v". 0

The thing is taht the intersection with respect to the optimal supports in v (M) are easily checked by rational
monomials. These monomials are provided by Smith Normal Forms:

Definition 3.12. Let S be a support in v (M). Note Mg the matriz consisting of columns ms, s € S, and Us, Wg
giving the Smith Normal Form (Theorem 8.3). Take ws the last column of Wgs. We note Ps the rational invariant
monomial corresponding to ws.

Since rank (Mg) = #S — 1, wg is uniquely determined up to +1, and so is Ps up to the inverse. We guess also
that its support supp (Ps) is exactly S. Indeed, for any T' Z S, the family {m., ¢t € T} is linearly independent. By

d
Lemma 3.2, the invariant field (C(VT)(GX) is reduced to constant functions. We get finally the main theorem:

Theorem 3.13. Let (par, V) the representation of (Gx)? associated to the matric M € Mg (Z). The following set
of invariant monomials is a rational separating set:

5sep - {PS7 SEV(M)}

Proof. Take v,v" € V two points in the area separated by the invariant field. That is, the families { M, s € supp (v)}
and {M,, s € supp (v')} are linearly dependent (Lemma 3.8).

e Suppose that supp (v) # supp (v'). Up by permuting v and v, one chooses an indice s € supp (v) \ supp (v').
There exists a support S € v (M) containing s and included in supp (v). Consider then the monomial Ps € &y of
supports S. It is defined at v and satisfies Ps(v) # 0. Whereas, it admits a pole or a singularity at v'.

e Otherwise, supp (v) = supp (v'). Suppose then that for all P € &, defined at v, P(v) = P(v'). Consider a
support S € « (M) included in supp (v). Orbits of support S are closed in Vs and are separated by the invariant

d
algebra C[VS](GX) . The latter, of dimension 1, is generated by Ps. That is, there exists g € (G )* such that for all

s €S, pm(g)(vs) = vi. We have ¢~ '(g) € () Fs. We obtain that for any S € « (M) included in supp (v), [\ Fs # 0.
seS seS

Proposition 3.11 claims then that v and v’ belong to the same orbit. O
Proposition 3.14. The separating set E,,, defined in Theorem 3.13 is minimal for the inclusion.

Proof. Suppose that we remove a monomial Ps from &g, for some S € v (M). Take then v and v’ in distinct orbits
of Vs (the variety of points of support exactly S). Then for any monomial P € &, supp (P) ¢ S. Thus P admits
a pole at v and v’, or a root at v and v’. The points v and v’ are not separated. O

Remark 3.15. In general, the computation of the Smith Normal Form has a polynomial cost in d,n [KB79]. But
another advantage of our method is that this difficulty is largely avoided. Indeed, we managed to reduce to matrices
of corank 1. In these conditions, the computation of the Smith Normal Form is the computation of a one dimensional
null space, that is solving a linear system of size #S < d + 1.

4 The cardinality of our separating set

In this section, we discuss the cardinality of + (M), which is the cardinality of the minimal rational separating set
given by Theorem 3.13. In particular, we give a polynomial upper bound when the matrix M is of full rank in
Theorem 4.1.

10



Suppose that for any supports S such that #S < d, the family of columns {ms, s € S} is linearly independent.
Then, v (M) is exactly the set of supports S C [1,n] of cardinality d + 1, and #(Esep) = (dil) ~ nitl From
a computational point of view, this case is pleasant, the set v (M) being easily visualisable and computable. But
concerning the cardinality, it is in fact proven to be the worst, as soon as M is of full rank:

Theorem 4.1. Suppose that M € Man(Z) is of full rank d. Then, #(Esep) < (dL) oo nATL

Proof. For d =1, #v (M) = (}) and Theorem 4.1 holds. Furthermore, for any d € N and M € Mg,q4(Z) of full rank
d, #v (M) = 0 and Theorem 4.1 holds. We then proceed by induction. Consider some integers d and n > d + 1 such
that the theorem holds at (d,n — 1) and (d — 1,n — 1).

Consider a matrix M € Mg (Z) of full rank d. Up to a permutation, we assume that the n — 1 last columns are
of full rank d. A basis change allows then to write

where M’ is a matrix in Mg—1 n,—1(Z) of full rank d — 1 and < ) is a matrix in Mg n,—1(Z) of full rank d. Take

L
M/
S a support in v (M). There is the following two possibilities:

e 1 € S. Then, the family of columns {M}, s € S\ {1}} is linearly dependent, and minimal for that property.
That is, S\ {1} € v (M").

e Otherwise, 1 ¢ S. Then, S € v ((%))

L

We thus have v (M) C v(M') U~ ((W)) We apply Theorem 4.1 (assumed true for (d — 1,n — 1) and

(d,n —1)) to M’ and (%) It gives

00 < 8 () + 40 () ) < (”;1> v (Z:)

Pascal’s rule completes in vy (M) < (

= dz1)' -

When the matrix M is not of full rank, the situation is less clear. For instance, if one considers the representation
associated to the matrix

1 ... 1
Man(Z)=10 0 0] € Magat1(Z),
0 0 0
one has (ZE) = 1 whereas #(y (M)) = (dgl). In fact, we could give the following formulation:

Theorem 4.2. Suppose that M € Man(Z) is of rank k < d. Then, #(v (M)) = #(Esep) < (kil) ~ Pt

But a basis change reduces in fact these representations to representations of the torus of dimension k. We thus
prefer to assume that any representations has full rank.

5 Comparison to generating sets

In this section we compare the obtained separating sets with sets generating the invariant algebra or the invariant field.
Beyond the considerations regarding the cardinality, we discuss the accuracy of their separation and the complexity
of their computation.
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Definition 5.1. Let G be a complex reductive algebraic group and V a G-variety.
o A subset £,.,, C C(V) is a rational generating set if it generates the invariant field: C(&,.,) = C(V)C.
o A subset £, C C[V]€ is a polynomial generating set if it generates the invariant algebra: Cl&gen] = CV]©.

Let (par, V) be the representation of (G )% associated to the matrix M € Mg, (Z). Recall that invariant rational
monomial correspond to the Z-module M = {e € Z", Me = 0}. Theorem 3.4 provides then a minimal generating
set of highly competitive cardinality n — rank(M). An analogous description is derived for the invariant algebra:

d
Proposition 5.2. Monomials in the invariant algebra C[V] (©x) correspond to the cone
Mt i={ee M, V1 <s<n,e; >0}
Algebra generators correspond then to the extremal vectors of this cone. [Stu08| provides an algorithm to compute
them, based on Groebner bases:

Algorithm 5.3. [Stu08, p. 1.45]
Input: A matric M € Man(Z).

d
Output: a set of generators for C[V}(GX) .
o Compute generators of the kernel Ins of the C-algebra homomorphism
Clot, ey Uny Y1y s Yn] = ClG1, ey §d, U1y ooy Uny Y1,y ooy Yn]
d
Vi<s<mn, vs > ySHgZM”
i=1
Vi<s<n, ys > Ys
e Choose the monomial order gi > ... > ga > v1 > ... > Up > Y1... > Yn.
e Compute a reduced Groebner Basis G for Iy with respect to >.
e Select the monomials v°, e € Z" such that v¢ — y° appears in G.

The cardinality of such algebra generators is hard to control. It can be reduced to 0, when the representation
admits no closed orbits. But in general, this cardinality is quite bigger, most of the 2" supports in [1,n] admitting
irreducible monomials. We thus dress the following empirical hierarchy:

g €0 ()" - » g V()"
# | generating C(V) <<  #/( rational separating set ) << # ( generating C[V]\** )

~mdt1

These differences are confirmed by Examples 5.4 and 5.5. I take random integer matrices with d = 2 or 3 and
n = 8. I compute the rational generating set provided by Theorem 3.4, the rational separating set of that paper and
the polynomial generating set provided by Algorithm 5.3. All the computations have been implemented in Maple.

Example 5.4. Consider the representation of (GX)2 associated to

2 -2 5 -2 -5 -3 2 6
MQ_(:& 5 6 4 -4 0 -6 73>

e Thanks to Smith Normal Forms, Theorem 3.4 provides a rational generating set of cardinality 6:

3,16 10 2,13 3 3,10 3.8
5(2) _ v5 V3 VU3~ vg V53" V5 V36 vyvz-vT vy v3Ug
gen w37 v33 38 B 23 30

e Any 2 X 2 submatriz in Mz is invertible. Theorem 3.18 provides thus a rational separating set consisting of

(8) = 56 monomials:

3
U%’UéG Ul’l}g U?3UE]—;6 ”U%'S’Uées 9 8 U%’Ug U§4’UZ Ug’l}g ’Ug'UG U%4’U7
w37 " > 0 V1V2V7 3 32 10 6 26
1'} 22 12214 2 12,7 L L B 3
vy vg vy Vg vy “vg 2.9 7 VT vg Vg 38,18, 7 39, 24 7 2 2 3,83
- vr I Viv4v7 T Tllzvg V1 U5 U7 V1 U5 Ug VivgU7  ViVgUs
’Ué U§U27 Ug3ﬂg7 U%5U87 42 2 37 ’Ug Ué U%S”U?) ’11%211% ’11%7.)7 Ui21}8
5(2> WSl Usgz 030 I8 V2 V3U7 o2l 33 vIP va e
sep T vg! v3%03° 138 11 v3tvz® 3,8 5 15 12 v3tvg® v3vg® 221,16 vi'vg”
IS ) V2 UsUg 2 U2UgVs V2 U7 U8 o5 29 U3Vy U7 I8
255 5 6 14 $ 194 14 93 6
vg 19, 21,5 39 51 10 3 7 3 3,17, 6 vg vg vi vz 39,18, 28 vav7
w87 U3 U5 V7 U3 Us Us  U3UsU7r  UslUs Us 210,17 wBuE 2 Vg U5 Vg p
5 : 20 4 X 5
3 6 4 15 .9 2 ’Uég’ljg ’Ués’l}é vgovgs ’Uéo’l)g
UglgVs Vg U7V 9 3 239 3
5 5 7 7

Whereas, Algorithm 5.8 provides a polynomial generating set of cardinality 329. They consists of
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e 18 monomials of support of cardinality 3:

vagw vivgvg vg’vgvg vagvg U%USUS vw%v? v%vf{v? vgvé7vg vi%?v%
v%sv%%s v%?’v?vél v%vZIU%G 1;31,91)?1;? v‘rfsvésv; v:fgv?,‘lvg vémvgv;’? ui%g%gs Ug’gvg’lvéo
e 112 monomials of support of cardinality 4:
V3V4V5V7 U%’Us’UG’Ug 1}31)31)51}'? 'UQ’UZ"U%’U% U%U3Ugv7 1)11}21}4%1)47l vgvg’vgvg 1}11}%’1)2’0?
vé‘v?vév? vﬁvév?vg v%vévw% w,vffvw? v%vaév? v?vgvgvg vngv?vg vwgviv?
vgvgvgvg v§v4vgv§ Ugvgvgvs vlvng; v%vgvélvg vgvivgvs vgvgvgvé v%lvngg
vgv?,vév; vgvi’vgvg vgvgvgvg v‘llvgvgvg v%viv?vg vilvgv‘%vg vagvgv; vlvgvé%g’
v%vév?vg’ vgvi’vgvg U1Ui2v§vg v?vgvgv; Ugvgv?ﬂ}? vi%gvgvg U%lviv%ovg U?vg’véz}?
vgvgvgvg v:fvff'ugvg U%Q'ugv?vg ’l)%21)31)61)7 v?vgvgvg v%ng%lvg v%%%vgv? v%z@%;%?
v?v%v?vg v%vgvégvg v%%?vevg’ v%ovaglv; vi’v%ovgvg va§v§v§ vlvélvé%g’ v%lvgvé%g’
vi%w?v? U%‘lvgvgv; U%Qvésvg’vg 1)%41)%51)611‘71 U%ngv(av? U%levéovg vf’vgvévéQ visvgvgvéo
visvivgv; v%%gvézvg v%svgv%‘r’vg vgvgviov%7 v%vgvigv%s v%zvivéov; v%vigvéové4 v%gviv})%g
vgvgvigv%g vgvgvago v%%ﬁvé%; levgvg’véﬁ v%ovgvi6v21 v%g’vﬁvé%g v%%%végvs v%%ﬁva?
v320i0208¢  witviuite  vfviuitel  viTuduitud  viSviuide?t wilwTugu§  v3ReETvied  vitv3uited®
1)%41)41)%61)7 vgovgvilvgﬁ U:flvivgovg v%zvgvglvg 1)271)%21)21)20 v%zvgviov$7 v%%?,vffv?g v2v§4vg’2v7
vlvzgvé4v§1 v§’5v4v§2v7 v%%%viv?g v%%?%?vé v%gvngv?O vi’2v§4v7v§2 vgovgvgvgl v32v§v2032
023v15060§4 v§41)92,vi‘v§3 U%Gvgv:z’v?“ ug%éuiv? vgovggvgvg U§1v§91}$v§ Uéovgvugﬁ vgsvg%wg
e 139 monomials of support of cardinality 5:
vngvgvevg vlfugvgvgvg v%vwsvgvg vlvgvgv%g 1)1’1)3’1)21)7'08 v‘i’viv?,wvg v:fvgvgvgvg
v%viv%vwg’ vlvg’vév?vg vlvgvgvg’v‘% vnggvgvg’ vi’vi’vg’vwg’ Ugvi’vgvgvg v%viv%v?vg
v?v%v%v?vg vzvﬁvévgvg’ vi‘vzvzvévg’ v?vzvgvgvg vszévwg v%vﬁfvsvgv? U%Ungvwg
v%vivgv‘%vg vlvgvgv?vg v%vgvivsvg v%v%vaév? v?vgvi’v?,v‘% vwévivévg v%v%vgvg’vé
v%vi’vév?vg’ v%v;wéu?vé’ v%v%vgv‘%vg v{v%vév?vg v%vgvng? Ulvi’vgvévg’ v%mv?v?vé
vag,UgU?vg v§v4v5v2v§ vwfv%v?vg’ v%viv%v?vg v%vgvngg U%Ugvﬁvgv; Uévngév?
vi’v%vaév? vgvzvév‘%vg v‘fvgvgv?vg v?vgvgvgvg vafvg’vwg v:{’vgvgvgvg v?vgvgvgvg
vangéovg v?vgmvgvg vgvi’vgv%g vgvg,vgv?vg vlvgvngg vgv3v2v6v§ vi’vnggv?
vfuivgvgv‘% vlvgvévgvg vw%vgvgvg’ vagvﬁvgvg v%mvév?vg’ Ugvgvgvgvg v%véviv?vg
v?vgvfz}gv? vffv?,vévwg v%vaév%vg v?v%mvgvg v?vgvngg vgvgvgv;vg vgvgvaﬁv?
v?vgvgvgvg vgvgvgvélvg v%v?gvivgvg vlvgvgvgvg v%vwé’v?vs v%vgvg,vgv? v?vg’vwgv?
vanggvg vi’vgvngg vilvwgvevg v%omvgvgvg vaéovgv;vg Ugvgvngg v%ovnggv%o
vw%vzvé%g v%vgvgvélvg v%%ﬁv?,v@v? v%vgvngg vagvsv?vg v‘llvngvgvg v?v%vivgvg
v?v%vi’v?vg vagmvéovg’ v?vgvgwgv; v%gvgmvgv? vSv%vw?vS vw%mvé%g v%vg,vivéf’vg
U}Qvgvgvevg Uwilvgvgvg Ui?’vgvgv?vg Uéovgvngg vfuizvngg Uiﬁvwgvﬁﬁ U?Ugvgvgvg
v?v%vﬁv%ovg’ vi(jvsvez)?vg v%ovgvzvélvé Uzv§2vé4v§v8 v%(jvgvgvgv? Ui‘lvgvngéo U%vf’vgvevéo
vlvf’vgv?vg v%lvg,vagvél vlvélvgvéovéo végv%%gv%vg v%%wivélvg v%?’vgvi'vé%g’ v%4v§’v4v§3v§
11111211%51)%711? vi%gvﬁvégvg vi%%vivé%g vlvagvgv? vigvgv6v$11§2 v2v§5v§0v6v§ wq@%?%?ug
vi%?vévwé‘l v%ovgvivé%g Uflvng;‘,%g v};?v?,lvngé Ugl,sv?,lvev;’v?; 1)11)421)%01)71)15 U%4v3vaé7v§
1}1’[}231)%1’[}6’05%7 v2v§0v§6v7v§ U%S’Ug’v4’l)%91)g 'U§2U§7'U6'U’?U§ ’1)261);1’1)6’1)7’Ué8 v§6U§3v6v7vS
e 56 monomials of support of cardinality 6:
U1U2U3U4U§U§ U2U§U§U§U7U8 ’U1’U2’U4’U§’U7’U§ ’1)11)2’!)3’04’[)2113 vazv3v52,v6v$ 1111131)31)?’1)71)3
vw%viv%v?vs Uf’vnggvg‘vg vwﬁvwg’vwg v1v3v4vsvgv§ U2U§v4v§vgvg’ v‘fvngévevg
’U11)§U4’l)§'l}$’l)g vagvg’vngg 1}11}21)31}51}(5;1)3 1)21)31)41)%1)71)% v%vzvgv?,vgvg’ U2v3’l)i'l}g’l)471’l)8
’U%’USU{,U(,‘U%’UE; vgvnggvgvg v%vgvivgvgvg va%viv?,v?vg vangévwg vgvgvi’vg’v?vg
vivdvivsvevs  vivivdvevrvs  vivsvavguivi  vivsvivivivd  vSvivdvevivs  vivaviudvgvd
vwi’vwévwé vlvngngg vgvgvivwgvg ’U1’U2’U§U§U§U§ U2U§’U5’U6’U471’Ug’ vgv;wng’v?vg
’U%’UZU5U6U'?'U8 vagvﬁvg,vev? vwwév?,vgv% vagvagv%g v;vnggv?vg vzvgvgvevgvg
v%ovgvgvsv%s U%US’U4’U5’U6’U’77 vwgvg’vgv?vg’ U%USU4U§U$U§ ’U%U%UZ’U?U@U? ’U%UiOU5UGU$U§
1)11)21)31)41)%31}3 1)?1)%1}41)%1)6’[)? vlviovévngg vlvf’vg,vgv;vg’ 1}%21)%’04’[)?1)61)'? 1)11)21)%01}%11)61)‘71
’(}21}%11]514’061}7112 vwi%gvngél
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o And 4 monomials of support of cardinality 7:
'U%'UTUEUSUM/%UZS ’U%USU4U5U6U§U8 U1U2UEU5U6U§U§ U?U2U4U§’06’U$’Ug
. . 3 .
Example 5.5. Consider the representation of (Gx ) associated to

4 -3 -1 4 4 5 2 =3
Ms=1-5 3 6 -5 -4 6 -4 -3
-3 -1 0 -2 -5 3 -2 6

e Thanks to Smith Normal Forms, Theorem 3.4 provides a rational generating set of cardinality 5:

5(3) _ v%gvg’vg‘L 141}%1}39111- v%ovz5v6 v%7v§’vigv7 véovgvzlvg
gen 49 39 1}%91}3 45 22

e According to Theorem 4.1, #~ (M3) is bounded by (Z) = 70. But since the columns 3,5 and 7 are linearly
dependent, Theorem 3.13 provides a rational separating set consisting of only 66 monomials. These are of support of
cardinality 4, except from P35 7y whose support is of size 3:

2.5 19,3, 64 64 9,165, 64 9 32
v3vs v3° v3Vy vy vivy° vg vy vy 1}1111)51’{}991]64
oz ‘47%9 e e 019, ; 1 V2 V37Ug
1P 3 49 139 3 209 125,19 V18,19
VoUy Vs Y2 Ve v1v7 vy v8 Cv V5 V7
19 106 22,6 29,33 139 238,14
99 19 10 18 139 274 1 2 38 10 120 %0
255, .366,,99, 139 V] VoUg V4 Y5 Y1 Ye
1}1141)39 80 Vi V2 Vg Ug oIl 55 4 49,165
6 142 37 19 33,7 39, 81 35 16,114 2165 of 15h 55
u3vi4v%9 vz2v.§ vg vg ’UGF v3”vg vg® vz vgTvg°° vy vz vg”
71@2 71,)1 V18,25 T 70 o7
3031yl v160,4 vjv3 02 039027 vl wGvd? 369,27, 49
s »125,49 il %?3 ”isvie 365
18 2 167,14 °125 866,,39,,125 36, 14 20,8 19
B V1 Vg V5 Vg V7 V5 Vs Vi~ vg V5
sep — Ué%g 06 321 vésvgsa v180188 B5,19,95
0329030 viZv?? 72 81 111, 49 034040025 15,114, 111, 95 v30038 02
—“—06 — —55 5% V2" V3 Vg 0, —— 2O Vo U, v, U, —“—0
7J;gos v3Z08 8 U§09 2 V3 Us Ug 80
169,200, 1 131 1yl
0853 6 90 111 38 ©169,,209,19 MEE o8 039 vgvgs
93,37 VU3 V7 Ug 106 27,38 63 114 840
U2 V6 18,30, 4 9638 200 U2 Y1 P 4 1o v2v4
369, 255 81 106 v3%03%03 09005802 321 255 114 209 v3vs v 48 18 51 16
V2 Uy Vg Ug 2T s V2" Vs Vg Ug -y V2 Vg VU7 Ug
129,35 Ugsﬂz 55 22 120 128,938,438 U§7U§6U11 107,93 80
%1699%24:?2 2;)15169 369é66326169 43422 54 380 16 80532
R 696 s 25 vselev8 v;)s v(?s s 2401; T 1i%7
v viVs Vi Vi Ve U7

Whereas, Algorithm 5.8 provides a polynomial generating set of cardinality 541, that I do not exhibit here. Let
me just detail the cardinality of their supports. They are

e 8 of support of cardinality 4,
e 118 of support of cardinality 5,

299 of support of cardinality 6,

109 of support of cardinality 7,
e and 7 of support of cardinality 8.

In this example, the advantage to restrict to low support appears particularly clearly. Indeed, the explosion of the
generating set cardinality is due to monomials of bigger supports of size 5, 6 and 7.

Beyond the cardinality, the complexity of the computation of these three sets is very different. To compute
the rational generating set, we need the Smith Normal form of M, whose computation has a polynomial cost in
d,n [KB79]. We have already noticed in Remark 3.15 that this cost is largely avoided in our method. The true
difficulty that we meet to compute our separating set is finally to compute the set of optimal supports v (M), also
in polyn(d,n) time. Algorithm 5.3 to compute polynomial generating set is clearly the heaviest. My computer being
apparently too weak for it as soon as d > 4.

Let us finish the comparisons from a separation point of view. Rosenlicht Theorem [PV94]| claims that a rational
generating set separates orbits almost everywhere. In particular, the set provided by the Smith Normal form separates

any orbits of full support supp (v) = [1,n] [Bir+21]. As (Gx)d is a reductive group, the invariant algebra separate
any closed orbits. We have the following equivalence:

Closed orbits exist < Orbits of full support are closed.
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Thus a polynomial generating set is interestingly more accurate as soon as closed orbits exists, which is quite frequent
when n grows. But the most accurate set is clearly our rational separating set, as previously highlighted in Remark 3.9.
In a synthetic way we have the following qualitative hierarchy:

( rational separating set ) >> ( generating C[V] (Gx)d> >> ( generating C(V) (Gx)d) .

Orbits of support in I'(M)

closed orbits orbits of full support

Acknowledgements

Martin Jalard receives funding from INRIA Sophia Antipolis.

References

[Azz+22] P. Azzi, R. Desmorat, B. Kolev, and F. Priziac. “Distance to a constitutive tensor isotropy stratum
by Lasserre polynomial optimization method”. In: arXiv preprint arXiw:2207.04729 (2022).

[BV23] B Blum-Smith and S. Villar. “Machine learning and invariant theory”. In: Notices of the American
Mathematical Society (2023).

[Biir+21] P. Biirgisser, M. Dogan, V. Makam, M. Walter, and A. Wigderson. “Polynomial time algorithms
in invariant theory for torus actions”. In: arXiv preprint arXiv:2102.07727 (2021).

[Che+19] Y. Chen, Z. Ming, L. Qi, and W. Zou. “A Polynomially Irreducible Functional Basis of Hemitropic
Invariants of Piezoelectric Tensors”. In: arXiv preprint arXiv:1901.01701 (2019).

[Duf09] Emilie Dufresne. “Separating invariants and finite reflection groups”. In: Advances in Mathematics
221.6 (2009), pp. 1979-1989.

[DG24] Nadav Dym and Steven J Gortler. “Low-Dimensional Invariant Embeddings for Universal Geo-
metric Learning”. In: Foundations of Computational Mathematics (2024), pp. 1-41.

[HL13] E. Hubert and G. Labahn. “Scaling invariants and symmetry reduction of dynamical systems”.
In: Found. Comput. Math. 13.4 (2013), pp. 479-516.
[Jal24] M Jalard. “Separation of the orbits in representations of SO2 and O2 over R and C”. working

paper or preprint. June 2024. URL: https://hal.science/hal-04656738.

[KB79] Ravindran Kannan and Achim Bachem. “Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix”. In: siam Journal on Computing 8.4 (1979), pp. 499—
507.

[Kem07] G Kemper. “The computation of invariant fields and a constructive version of a theorem by
Rosenlicht”. In: Transformation Groups 12 (2007), pp. 657—670.

[Kem24]  Gregor Kemper. “Invariant Theory: a Third Lease of Life”. In: arXiv preprint arXiv:2403.12709

(2024).

[PV94] V. Popov and E. Vinberg. “Invariant theory”. In: Algebraic geometry. I'V. Springer, 1994, pp. 122—
278.

[PS85] Claudio Procesi and Gerald Schwarz. “Inequalities defining orbit spaces”. In: Inventiones mathe-
maticae 81.3 (1985), pp. 539-554.

[Smi61] Henry John Stephen Smith. “Xv. on systems of linear indeterminate equations and congruences”.

In: Philosophical transactions of the royal society of london 151 (1861), pp. 293-326.
[Stu08] Bernd Sturmfels. Algorithms in invariant theory. Springer Science & Business Media, 2008.

15



