
HAL Id: hal-04937430
https://hal.science/hal-04937430v1

Preprint submitted on 10 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boundary value problems and Heisenberg uniqueness
pairs

S. Rigat, Franck Wielonsky

To cite this version:
S. Rigat, Franck Wielonsky. Boundary value problems and Heisenberg uniqueness pairs. 2025. �hal-
04937430�

https://hal.science/hal-04937430v1
https://hal.archives-ouvertes.fr


ar
X

iv
:2

30
4.

02
31

8v
1 

 [
m

at
h.

C
A

] 
 5

 A
pr

 2
02

3

Boundary value problems and

Heisenberg uniqueness pairs

S. Rigat and F. Wielonsky

April 6, 2023

Abstract

We describe a general method for constructing Heisenberg uniqueness pairs

pΓ,Λq in the euclidean space Rn based on the study of boundary value problems

for partial differential equations. As a result, we show, for instance, that any pair

made of the boundary Γ of a bounded convex set Ω and a sphere Λ is an Heisenberg

uniqueness pair if and only if the square of the radius of Λ is not an eigenvalue of the

Laplacian on Ω. The main ingredients for the proofs are the Paley-Wiener theorem,

the uniqueness of a solution to a homogeneous Dirichlet or initial boundary value

problem, the continuity of single layer potentials, and some complex analysis in Cn.

Denjoy’s theorem on topological conjugacy of circle diffeomorphisms with irrational

rotation numbers is also useful.

1 Introduction

The interpretation of the uncertainty principle in mathematics is a classical theme, es-
pecially in harmonic analysis, see e.g. [14] for a thorough presentation of the subject.
Heisenberg uniqueness pair is a related notion which was introduced in [15]. It consists
in the following.

A pair pΓ,Λq, where Γ is a hypersurface in Rn, n ě 2, and Λ is a set in Rn, is an Heisen-
berg uniqueness pair (sometimes abbreviated HUP) if for any complex-valued function g

integrable on Γ with respect to dσ, the surface measure on Γ, the following implication
holds true,

pgpλq “
ż

Γ

e´iλ¨xgpxqdσpxq “ 0 on Λ ùñ g “ 0 a.e. on Γ.

The function pgpλq is the Fourier transform, in the sense of distribution, of the measure
gdσ, also called the Fourier-Stieltjes transform of g. Note that, by the Hahn-Banach
theorem, the above condition is equivalent to the fact that the vector space spanned by
the family of exponentials eiλξ, λ P Λ, is weak-* dense in L8pΓq. Also, a similar notion
is that of a mutually annihilating pair pS,Σq of Borel subsets of R of positive measure,
satisfying

@ϕ P L2pSq, suppppϕq Ă Σ ùñ ϕ “ 0,

see [14].
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It is easy to check that the notion of an Heisenberg uniqueness pair satisfies two
elementary properties, namely,

1) it is invariant by translation: if pΓ,Λq is an HUP then pΓ`x0,Λ`λ0q with x0, λ0 P Rn,
is also an HUP,

2) if T is an invertible linear transformation with adjoint T ˚, then

pΓ,Λq is an HUP ùñ pT pΓq, pT´1q˚pΛqq is also an HUP. (1.1)

In [15], it was proven that the pair made of the hyperbola and a cross lattice,

Γ “
 

px1, x2q P R2 : x1x2 “ 1
(
, Λα,β :“ pαZ ˆ t0uq Y pt0u ˆ βZq, α, β ą 0,

is a HUP if and only if αβ ď 1. Since the publication of [15], many other examples have
appeared in the literature. For instance, in [2, 3, 11, 17, 19, 23, 24], one may find examples
of HUP’s in the plane R2 involving sets like circles, union of lines, ellipses, parabola,
polygons or very specific curves. In [12, 26], one may also find examples of HUP’s in Rn,
n ą 2, again involving spheres, paraboloids or certain cones.

The aim of the present paper is to obtain Heisenberg uniqueness pairs in Rn, n ě 2,
under rather general assumptions on the set Γ since, in some of our examples, it is only
assumed to be the boundary of a bounded convex set. Our method is inspired by the study
in [1], which was concerned with providing rigorous foundations of the Fokas method for
boundary value problems, showing, for linear elliptic pde’s on bounded convex domains,
that a solution to the global relation between the Dirichlet and Neumann boundary data
implies the existence of a solution to the Dirichlet problem, and that the solution to the
global relation is unique. The link between [1] and the problem of determining Heisenberg
uniqueness pairs does not seem to have been previously noticed.

When convenient, we will denote by X a n-tuple of variables X1, . . . , Xn and by D the
tuple of partial derivations BX1

, . . . , BXn
. For a polynomial P pXq “ ř

|α|ďm aαX
α P CrXs,

the differential operator P p´iDq is defined by

P p´iDq “
ÿ

|α|ďm

aαp´iq|α|Bα1

X1
. . . Bαn

Xn
.

We will also denote by ZpP q the subset of Cn of zeros of P , and by ZRpP q “ ZpP q X Rn

the subset of its real zeros.
Let EP pxq be a fundamental solution of the differential operator P p´iDq, that is

P p´iDqEP “ δ in the sense of distribution, where δ denotes the Dirac delta distribution.
We will make use of potentials of a single layer,

Φgpxq :“
ż

Γ

gpyqEP px ´ yqdσpyq, x P Rn, (1.2)

where g is some function defined on Γ, see Section 2 for more details.
Let us now state our main result.

Theorem 1.1. Let Ω be a bounded convex domain in Rn with a piecewise C1 boundary Γ,
and let dσ be the surface measure on Γ (the arc measure when n “ 2). Let P pX1, . . . , Xnq
be a polynomial with real coefficients such that
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(i) P is a square-free polynomial in CrXs, i.e. each irreducible factor of P is of multi-
plicity 1, and for at least one variable, e.g. X1, one has P pXq “ a1X

d
1 ` ¨ ¨ ¨ , where the

nonzero leading coefficient a1 is a constant (i.e. independent from the other variables).

(ii) each irreducible component Vi of the variety ZpP q is defined by a real polynomial, and
contains a point in Vi,R “ Vi XRn, which is smooth as a point of Vi (i.e. the Jacobian has
rank 1 at this point).

(iii) For some space DP pΩq of functions defined on Ω, the homogeneous Dirichlet problem

P p´iDqupxq “ 0, x P Ω,

upxq “ 0, x P Γ,

has the unique solution u “ 0 in DP pΩq.
(iv) For some space GpΓq Ă L1pΓq, of complex-valued functions g defined on Γ, the poten-
tial Φg, associated to g P GpΓq, defined in (1.2), is a continuous function in Rn, and

@g P GpΓq, Φg|
Ω

P DP pΩq.

Then pΓ, ZRpP qq is a Heisenberg uniqueness pair for GpΓq, that is,

@g P GpΓq, pg “ 0 on ZRpP q ùñ g “ 0 a.e. on Γ.

The spaces of functions DP pΩq and GpΓq in the above statement will be chosen in
accordance with the domain Ω and the polynomial P , see Section 4 for details.

Applying the Theorem 1.1 in specific cases, we derive general Heisenberg uniqueness
pairs as described next.

Theorem 1.2. The following holds true:

i) Let Γ be the boundary of any bounded convex domain in Rn of class C1. Let Sn´1pc1q
be the sphere of dimension n ´ 1 and radius c1. Then pΓ, Sn´1pc1qq is a HUP for LppΓq,
p ą n ´ 1, if and only if c2

1
is not an eigenvalue of ´∆ on Ω.

ii) Let Γ be the rectangle with vertices p0, 0q, pT, 0q, pT, Lq, p0, Lq, T, L ą 0, and let P be
the parabola X1 ` X2

2
“ 0 in R2. The pair pΓ,Pq is a HUP for C2pΓq.

iii) Let Γ be the rectangle as in ii), and assume that T {L R Q. Let ∆` and ∆´ be the two
lines tX1 “ X2u, tX1 “ ´X2u in R2. Then the pair pΓ,∆` Y ∆´q is a HUP for C1pΓq.
iv) Let T denote the unit circle, and let ∆1,∆2 be two lines through the origin. Then the
pair pT,∆1 Y∆2q is a HUP for L1pTq if and only if ∆1 and ∆2 make an angle of πρ, with
ρ an irrational number.

We note that the HUP in item iv) was obtained previously, in [23], by a different
method. Also, making use of the property (1.1), item iii) may be rephrased as the fact
that the pair pC,∆ρ Y ∆´ρq is a HUP, where C is the rectangle of sides π and 1, and
∆˘ρ “ tX2 “ ˘πρX1u, with ρ R Q. This shows some relation between iii) and iv).

Acually, item iv) can be extended in the following way.

Theorem 1.3. Let Γ be any strictly convex planar curve of class C2. There exists an
angle ρ between two lines ∆1,∆2 through the origin, such that the pair pΓ,∆1 Y ∆2q is a
HUP for L1pΓq.
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Unfortunately, we were unable to characterize the angles ρ, in terms of Γ, for which
the above pair is a HUP. It may possibly be an interesting problem.

In Section 2 we recall or state several preliminary results that will be useful for our
study. In Section 3, we give the proof of Theorem 1.1. In Section 4, we apply our result
in the cases of an elliptic equation (the Helmholtz equation), the Schrödinger equation,
a hyperbolic equation (the wave equation), and finally, transport equations. For each of
these equations, we derive the corresponding Heisenberg uniqueness pairs.

2 Preliminaries

We start with recalling a few details about the notion of a potential of a single layer, as
defined in (1.2). The following can be found in [7, Chap. 2, §3], in the case of the Newton
potential. In the sequel, ϕ denotes a test function. For g P L1pΓq, the Radon measure
gdσ is the distribution, supported on Γ, defined by

ă gdσ, ϕ ą“
ż

Γ

gpmqϕpmqdσpmq.

The potential of a single layer Φg, associated to g, is then defined as the convolution of
distributions,

Φg “ E ˚ gdσ,
where E denotes a fundamental solution of the differential operator P “ P p´iDq. Note
that the convolution is well defined as the measure gdσ has compact support.

By the classical result of Malgrange and Ehrenpreis, a fundamental solution E of the
linear differential operator P p´iDq with constant coefficients, always exists, satisfying

P p´iDqE “ δ. (2.1)

With qE denoting the distribution symmetric to E, defined by ă qE,ϕ ą“ă E, qϕ ą,
qϕpxq “ ϕp´xq, and from basic properties of the convolution, we get

ă Φg, ϕ ą“ă gdσ, qE ˚ ϕ ą“
ż

Γ

p qE ˚ ϕqgdσ “
ż

Γ

ă qEpyq, ϕpx ´ yq ą gpxqdσpxq. (2.2)

Now, with P˚, the adjoint of the differential operator P, we have

ă PpΦgq, ϕ ą “ă Φg,P˚ϕ ą“
ż

Γ

p qE ˚ P˚ϕqgdσ “
ż

Γ

pP˚ qE ˚ ϕqgdσ

“
ż

Γ

p}PE ˚ ϕqgdσ “
ż

Γ

pδ ˚ ϕqgdσ “
ż

Γ

ϕgdσ “ă gdσ, ϕ ą,

and thus PpΦgq “ gdσ, supported on Γ. Hence

PpΦgq|RnzΓ “ 0. (2.3)

In the case when the fundamental solution E is a locally integrable function, one gets,
from (2.2),

ă Φg, ϕ ą“
ż

xPΓ

ż

yPRn

qEpx ´ yqϕpyqdygpxqdσpxq “ă
ż

xPΓ

Epy ´ xqgpxqdσpxq, ϕpyq ą
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i.e. Φg is just the function

Φgpyq “
ż

Γ

Epy ´ xqgpxqdσpxq.

Next, we recall a version of the Paley-Wiener theorem that will be useful to us, see [16,
Theorem 7.3.1].

Theorem 2.1 (Paley-Wiener). Let K be a convex compact subset of Rn with supporting
function H. Every entire function u in Cn satisfying, for some positive integer N , an
estimate

|upζq| ő Cp1 ` |ζ |qNeHplm ζq, ζ P Cn,

is the Fourier transform of a distribution with support contained in K.

We will also make use of a result about analytic functions in Cn vanishing on the real
points of a variety, see e.g. [25, Theorem 5.1]. Recall that a point of an affine variety
V Ă Cn of dimension d, defined by a family of polynomials, is smooth if the Jacobian of
the defining family has rank n´d at this point. We first consider the case of an irreducible
variety V .

Proposition 2.2. Let V Ă Cn be an irreducible affine variety of dimension d, defined by
a family of n ´ d polynomials P1, . . . , Pn´d P RrXs. Assume V has a smooth real point
a P VR. Then VR is Zariski dense in V , that is any function f analytic in V , which
vanishes on VR, must vanish on V .

Proof. Consider the smooth point a P V , and assume, for simplicity, that the first minor
pBzjPipaqqi,j“1,...,n´d of the Jacobian is non singular. By the implicit function theorem,
there exists a small ball Ba in Cd, centered at pan´d`1, . . . , anq, a neighborhood W of
pa1, . . . , anq, and n ´ d analytic functions

hjpzn´d`1, . . . , znq, j “ 1, . . . , n ´ d,

defined in Ba such that,

pz1, . . . , znq P W and Pipz1, . . . , znq “ 0, i “ 1, . . . , n ´ d ðñ
pzn´d`1, . . . , znq P Ba and zj “ hjpzn´d`1, . . . , znq, j “ 1, . . . , n ´ d. (2.4)

Since the Pi’s have real coefficients, a is also a regular point of VR. Applying the implicit
function theorem, this time in Rn, we get,

px1, . . . , xnq P W X Rn and Pipx1, . . . , xnq “ 0, i “ 1, . . . , n ´ d ðñ

pxn´d`1, . . . , xnq P Ba X Rd and xj “ hjpxn´d`1, . . . , xnq, j “ 1, . . . , n ´ d. (2.5)

where the functions hj in (2.4) and in (2.5) are actually the same (and are real-valued
when restricted to Rd). Now, for f analytic on V and vanishing on VR, the function

gpzn´d`1, . . . , znq “ fph1pzn´d`1, . . . , znq, . . . , hn´dpzn´d`1, . . . , znq, zn´d`1, . . . , znq

is analytic in Ba and, because of (2.5), vanishes on Ba,R. Hence, g vanishes on the whole
of Ba. Equivalently, f vanishes in a neighborhood (in the topology of V ) of a. Finally,
applying the identity principle for holomorphic functions on the irreducible algebraic set
V , see [5, Chapter 1, §5.3], f must vanish on all of V .
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The above result extends easily to the case of a non irreducible variety.

Corollary 2.3. Let V Ă Cn be an affine variety of dimension d, and let V “ YVi its
decomposition into a finite number of irreducible components Vi. Assume each Vi is defined
by real polynomials, and contains a smooth real point ai P Vi,R. Then, as in Proposition
2.2, VR is Zariski dense in V .

Proof. It suffices to notice that VR “ YVi,R and to apply Proposition 2.2 to each of the
components Vi.

Another result about analytic functions in Cn, useful to us, is the following lemma.

Lemma 2.4. Let Ω be an open connected subset of Cn and let f be analytic in Ω. Assume
P P Crz1, . . . , zns is a square-free polynomial. If f vanishes on the zero set ZpP q of P ,
then f{P is analytic in Ω.

Proof. By the local analytic nullstellensatz, see [13, Chapter 3], for each z P Ω, there
exists a neighborhood Uz of z and a function gz analytic in Uz such that f “ gzP . By the
identity principle applied in Ω, we may glue together the functions gz to get a function g

analytic in Ω such that f “ gP there.

Finally, for one of our applications, we will need some results about diffeomorphisms
of the unit circle T “ R{2πZ. The rotation number of an orientation-preserving homeo-
morphism f : T Ñ T is defined as the limit

τpfq “ lim
nÑ8

rfnpxq ´ x

2πn
, mod 1,

independent of x, where rfn denotes the n-th iterate of a lift rf to R of f , satisfying
Π ˝ rf “ f ˝ Π, with Π the projection Π : R Ñ T. Intuitively, the rotation number
represents the average portion of the circle that a point is moved by f .

Lemma 2.5 ( [18, Proposition 11.1.6]). The map f ÞÑ τpfq is continuous in the uniform
topology of CpTq, the space of continuous maps from T to T.

A basic result concerning the diffeomorphisms of the circle is the theorem of Denjoy.

Theorem 2.6 (Denjoy, [18, Theorem 12.1.1]). A C1 diffeomorphism f : T Ñ T with
irrational rotation number τpfq and derivative of bounded variation (e.g. a C2 diffeomor-
phism) is topologically conjugate to the rotation Rτpfq of angle 2πτpfq. Namely, there
exists a homeomorphism h of the circle such that

f “ h´1 ˝ Rτpfq ˝ h.

3 Proof of Theorem 1.1

Proof of Theorem 1.1. Let g P GpΓq, the function space introduced in assumption (iv),
such that its Fourier-Stieltjes transform pg satisfies

pgpλq “
ż

Γ

e´iλ¨xgpxqdσpxq “ 0, λ P ZRpP q,
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with dσ the surface measure on Γ. Taking the Fourier transform F in Rn on both sides of
(2.1), we get P pλqFpEq “ 1. Moreover, The function pg is an entire function in Cn which,
by assumption, vanishes on ZRpP q. Hence, by Proposition 2.2 and its Corollary 2.3, it
vanishes on ZpP q, which implies, together with Lemma 2.4, that the quotient pg{P is also
an entire function (recall assumption (i) that P is a square-free polynomial in CrXs).
Hence, for the Fourier transform of Φg, we have

FpΦgq “ FpE ˚ gdσq “ FpEqFpgdσq “ pgFpEq “ ppg{P qPFpEq “ pg{P. (3.1)

Next, we use the elementary fact that, if hpzq is an analytic function in a neighborhood
of the closed unit disk D Ă C and ppzq is a polynomial with leading coefficient α, one has

|αhp0q| ď sup
|z|“1

|hpzqppzq|.

Thus, applying this inequality with the variable z1, z “ pz1, 0, . . . , 0q, ppz1q “ P pz ` λq,
hpz1q “ FpΦgqpz ` λq, and recalling the second part of assumption (i), we get

|FpΦgqpλq| ď a´1

1 sup
|z1|“1

|FpΦgqpz ` λqP pz ` λq| ď a´1

1 sup
|z1|“1

ˇ̌
ˇ̌
ż

Γ

e´ipz`λq¨ygpyqdσpyq
ˇ̌
ˇ̌

ď C sup
yPΓ

eIm pλq¨y “ CeHΩ
pIm pλqq,

where C is some constant independent of λ, and H
Ω
is the supporting function of Ω, the

closure of Ω. Now, applying the Paley-Wiener theorem, see Theorem 2.1, one derives
that Φg vanishes outside Ω. On the other hand, from the continuity of Φg in Rn, recall
assumption (iv), Φg also vanishes on Γ. From assumption (iii), the homogeneous Dirichlet
problem for the operator P p´iDq has the unique zero solution in DP pΩq. Hence Φg, which
lies in DP pΩq by assumption (iv), and satisfies, see (2.3),

P p´iDqpΦgqpxq “ 0, x P RnzΓ,

must vanish inside Ω and thus everywhere in Rn. Consequently, FpΦgq “ 0 i.e. pg “
Fpgdσq “ 0. The measure gdσ is a distribution with compact support, hence a tempered
distribution. From the fact that the Fourier transform is an isomorphism from the space
of tempered distributions to itself, we thus obtain that g “ 0. We have thus proved that
pΓ, ZRpP qq is a Heisenberg pair for the space GpΓq.

4 Applications

We shall restrict ourselves to quadratic polynomial P pX1, . . . , Xnq P RrXs of the form

P pX1, . . . , Xnq “ ´
nÿ

i,j“1

aijXiXj `
nÿ

i“1

biXi ` c, ai,j, bi, c P R, (4.1)

with paijqi,j, a symmetric matrix.
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4.1 Elliptic equations

In this section, we consider elliptic operators, that is, we assume that the matrix paijqi,j in
(4.1) is positive. By a linear change of variables with real coefficients (so that real points
of ZpP q correspond by the change of variables), we may restrict ourselves to operators of
the form

P p´iDq “ ∆ ´ i

nÿ

i“1

biBxi
` c where P pXq “ ´

nÿ

i“1

X2

i `
nÿ

i“1

biXi ` c, bi, c P R.

Assume that the bi’s are zero. Then, ZpP q is defined by the equation

nÿ

i“1

X2

i ´ c “ 0. (4.2)

– If c ă 0, ZRpP q is the empty set so that Theorem 1.1 does not apply.
– If c “ 0 then ZRpP q reduces to the singleton 0, which is a singular point of ZpP q.
– If c “ c2

1
ą 0, with c1 ą 0, then ZRpP q is the sphere Sn´1pc1q of dimension n ´ 1 and

radius c1.
Before we elaborate on the third case, and prove the first item in Theorem 1.2, let us

mention a result about continuity of potentials of a single layer of the form

pΦgqpxq “
ż

Γ

gpyqϕpx ´ yqdσpyq, x P Rn. (4.3)

Theorem 4.1. Assume the following holds :
1) the hypersurface Γ is of class C1,
2) The function ϕ : Rnzt0u Ñ R is continuous,
3) The function ϕ is weakly singular at 0, namely there exists constants 0 ă ν ă n ´ 1
and C ą 0 such that

|ϕpxq| ď C

|x|ν as x Ñ 0.

4) g P L
p
dσpΓq with p ą 1 ` ν{pn ´ 1 ´ νq.

Then the potential Φg in (4.3) is continuous on Rn. In particular, its limits on Γ from
the inside and the outside coincide,

pΦgq`pxq “ pΦgq´pxq, x P Γ.

Since we were unable to find a convenient reference for this result, we provide a proof
of Theorem 4.1 in the Appendix.

Proof of i) in Theorem 1.2. We assume c “ c2
1

ą 0. When n ě 2 and c ‰ 0, the polyno-
mial in (4.2) is irreducible in CrXs, and all points of ZpP q are non singular. Moreover, the
homogeneous Dirichlet problem for the Helmholtz operator ∆`c21 on Ω has non trivial so-
lutions in C0pΩq XC2pΩq only when c2

1
is an an eigenvalue of the positive operator ´∆ on

Ω. Finally, a fundamental solution of the Helmholtz operator is given (see e.g. [22, p.40]),
up to a multiplicative constant, by

Enpxq “ |x|1´n{2Yn{2´1pc1|x|q,
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for x ‰ 0, where Yα is the Bessel function of the second kind of order α. Near 0, the
following estimates hold,

Yαpzq „
#

p2{πq logpzq, α “ 0,

´pΓpαq{πqp2{zqα, α ą 0.

and thus

Enpxq „
#

p2{πq logp|x|q, n “ 2,

´pΓpn{2 ´ 1q{πqp2{c1qn{2´1|x|2´n, n ą 2.
(4.4)

In view of (4.4), Theorem 4.1 applies with ϕ “ En and p ą n´1. Together with Theorem
1.1, we get that pΓ, Sn´1pc1qq is a HUP for LppΓq, p ą n ´ 1.

Assume now that c2
1
is an eigenvalue of ´∆ on Ω. Then, there exists some nonzero

solution u P C2pΩq X CpΩq of the homogeneous Dirichlet problem in Ω. Moreover, it is
known, see e.g. Theorems 3.27 and 3.1 of [6] for the case n “ 3, that u actually lies in
C1pΩq, and that

ż

Γ

Bu
Bν pyqEnpx ´ yqdσpyq “

#
upxq, x P Ω,

0, x P RnzΩ,

where ν denotes the outward normal to the surface Γ. Hence, with v “ Bu{Bν P C1pΓq,
one obtains u “ Φv. First, notice that v ‰ 0 since u ‰ 0. Second, similarly to (3.1), one
has

P pλqFpuqpλq “ pvpλq,
and Fpuq is an entire function since u is continuous, with compact support, hence in
L1pRnq. Hence, pv vanishes on ZRpP q and pΓ, Sn´1pc1qq is not a HUP. This finishes the
proof of item i) of Theorem 1.2.

Remark 4.2. When Ω is a ball, it is known that the eigenvalues of ∆ are the zeros of
Bessel functions of the first kind.

Remark 4.3. By the remark in (1.1) and the fact that convexity is preserved by linear
transformation, one can make use of a linear diagonal transformation

T : px1, . . . , xnq ÞÑ pa1x1, . . . , anxnq, ai ą 0, i “ 1, . . . , n,

normalized by
řn

i“1
a2i “ 1, so that the statement i) in Theorem 1.2 becomes the following

one. Let En´1pc1q be the ellipsoid

nÿ

i“1

ˆ
Xi

ai

˙2

“ c2
1
,

whose vector of semi-axes c1pa1, . . . , anq has norm c1. Let Γ be the boundary of a bounded
convex domain in Rn. Then, pΓ, En´1pc1qq is a HUP for LppΓq, p ą n ´ 1 if c21 is different
from an eigenvalue of the operator

´
nÿ

i“1

1

a2i

B2

Bx2
i

on Ω.
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4.2 The Schrödinger equation

In this section, we prove item ii) of Theorem 1.2 by considering the 1-dimensional Schrödinger
equation, corresponding to the operator

P p´iDq “ iBt ` B2

x where P pXq “ ´X1 ´ X2

2
.

Then ZpP q “ tpX1, X2q P C2, X1 ` X2
2 “ 0u and ZRpP q is a parabola in R2.

In the literature, a fundamental solution of the Schrödinger equation is usually given
by

Hptqt´1{2 exppix2{p4tqq, t ě 0,

see e.g. [27, Sect. 6.2], where Hptq denotes the Heaviside function

Hptq “ 0 for t ď 0 and Hptq “ 1 for t ą 0.

Actually, one can also take as a fundamental solution,

E1pt, xq “ t´1{2 exppix2{p4tqq, t ‰ 0,

without the factor Hptq, which allows one to reconstruct solutions to the Schrödinger
equation for t P p´8,8q from an initial data at t “ 0, see [10, Section 4.3.1.b, Example 3].

For some T, L ą 0, and I “ p0, Lq, we consider the rectangular domain

Ω :“ p0, T q ˆ I Ă R2, (4.5)

with vertices
V1 “ p0, 0q, V2 “ pT, 0q, V3 “ pT, Lq, V4 “ p0, Lq.

Let

Φgpt, xq “
ż

Γ

gpu, yqe
ipx´yq2{p4pt´uqq

?
t ´ u

dσpu, yq, (4.6)

where g is a function defined on the boundary Γ of Ω, and dσ is the arc measure on Γ,
which we assume to be positively oriented. Also, we assume that the square root in (4.6)
satisfies ?

t ´ u “ ´i
a

|t ´ u| when t ă u.

Our aim is to show the following result.

Proposition 4.4. Assume the function g to be of class C2 on Γ1 and Γ3. Then the
function Φgpt, xq is of class C2 on R2zp∆0 Y ∆T q, where ∆0,∆T are the vertical lines
t “ 0 and t “ L respectively. Moreover, Φgpt, xq admits left and right limits at each point
of ∆0, resp. ∆L, and these limits coincide.

Proof. We decompose the integral according to the four sides Γ1, Γ2, Γ3, Γ4, of the
rectangle, starting with the horizontal side Γ1 from p0, 0q to pT, 0q, and get

Φgpt, xq “ Φ1gpt, xq ` Φ2gpt, xq ´ Φ3gpt, xq ´ Φ4gpt, xq,
with

Φ1gpt, xq :“
ż T

u“0

gpu, 0qe
ix2{p4pt´uqq

?
t ´ u

du, Φ2gpt, xq :“
ż L

y“0

gpT, yqe
ipx´yq2{p4pt´T qq

?
t ´ T

dy,

Φ3gpt, xq :“
ż T

u“0

gpu, Lqe
ipx´Lq2{p4pt´uqq

?
t ´ u

du, Φ4gpt, xq :“
ż L

y“0

gp0, yqe
ipx´yq2{p4tq

?
t

dy.
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It is clear that the first and third integrals are well-defined for any pt, xq P R2 since the
integrands are absolutely integrable. The second one is well-defined when t ‰ T , and the
fourth one is well defined when t ‰ 0. Moreover, the four integrals define C8 functions
with respect to the variable x P R. The second and fourth ones define C8 functions with
respect to the variable t when t R t0, T u. The first and third ones are also C8 functions
of t when t R r0, T s. When 0 ď t ď T , we may write, with a change of variable v “ t ´ u,

Φ1gpt, xq “
ż t

v“t´T

gpt ´ v, 0qe
ix2{p4vq

?
v

dv, Φ3gpt, xq “
ż t´T

v“t

gpt ´ v, Lqe
ipx´Lq2{p4vq

?
v

dv,

which shows, together with the Leibniz integral rule, that the two integrals are C2 func-
tions of t (recall that we assumed gpu, yq to be a C2 function on Γ1 and Γ3).

Finally, it remains to consider Φ2gpt, xq and Φ4gpt, xq, respectively when t “ T and
t “ 0. Obviously, the integral expressions for Φ2gpT, xq and Φ4gp0, xq are not defined, we
thus compute the left and right limits as t Ñ T˘ or t Ñ 0˘. Recall from the method of
stationary phase that, for α ă 0 ă β,

1?
πǫ

ż β

α

eiy
2{ǫapyqdy “ eiπ{4ap0q ` Opǫq as ǫ Ñ 0`,

where apyq is a C1 function, see [20, Theorem 13.1] or [10, Section 4.5.3]. Hence, for
0 ă x ă L,

lim
tÑT`

Φ2gpt, xq “ lim
tÑT`

ż L

y“0

gpT, yqe
ipx´yq2{p4pt´T qq

?
t ´ T

dy “
?
π

2
eiπ{4gpT, xq,

and

lim
tÑT´

Φ2gpt, xq “ lim
tÑT´

ż L

y“0

gpT, yqe
´ipx´yq2{p4pT´tqq

´i
?
T ´ t

dy

“ i lim
tÑT´

ż L

y“0

gpT, yqe
ipx´yq2{p4pT´tqq

?
T ´ t

dy “ i

?
π

2
e´iπ{4gpT, xq “ lim

tÑT`

Φ2gpt, xq,

which shows, together with the assumption that x P r0, Ls ÞÑ gpT, xq is continuous, that
Φ2g can be extended to the right vertical side Γ2 as a continuous function. With help
of [20, Theorem 13.2], one could also check that, for x R p0, Lq, the left and right limits
of Φ2gpt, xq coincide at T , and are equal to 0 when x R r0, Ls. Though this will be not
important for our analysis, we note that Φ2g has a discontinuity at the right vertices pT, 0q
and pT, Lq of the rectangle if the function gpt, xq does not vanish at these points.

One may check that the function Φ4g exhibits similar behavior on the line t “ 0, in
particular, it can be continuously extended on the left vertical side Γ4 of the rectangle.

Next, in order to apply Theorem 1.1, we need an uniqueness result for the initial
boundary value problem related to the Schrödinger equation, see [4, Lemma 7.1.1, Theo-
rem 7.2.1],
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Theorem 4.5. The initial boundary value problem

$
’’&
’’%

iutpt, xq ` ∆upt, xq “ 0, x P I, t ą 0,

up0, xq “ ϕpxq P H1

0
pIq, x P I “ r0, Ls,

upt, 0q “ 0, upt, Lq “ 0, t ě 0,

has a unique solution u in the space Cpr0,8q, L2pIqq of continuous functions from r0,8q
to L2pIq (actually, the solution is in

Cpr0,8q, H1

0
pIqq X C1pr0,8q, H´1pIqq,

but this result will not be needed to us). Here, H1

0
pIq and H´1pIq denote the usual Sobolev

spaces of the segment I.

Since Φgpt, xq is a C2 function when t ą 0, that is on the right of the vertical line
∆0, in order to prove that t ÞÑ Φgpt, xq is a continuous function from r0, T q to L2pIq, it is
sufficient to check that

}Φgpt, xq ´ Φgp0, xq}L2pIq Ñ 0 as t Ñ 0`,

and, more precisely, that

}Φ4gpt, xq ´ Φ4gp0, xq}L2pIq Ñ 0 as t Ñ 0`, (4.7)

since Φig, i “ 1, 2, 3, are of class C2 in a neighborhood of the segment t0u ˆ I. The fact
that (4.7) holds true can be derived from uniform error estimates for the stationary phase
approximations, see [21]. We let the details to the reader.

Putting together Proposition 4.4 and Theorem 4.5 applied with the initial data ϕpxq “
0 on I “ r0, Ls, we see that the method from Theorem 1.1 applies, leading to item ii) of
Theorem 1.2.

4.3 Hyperbolic equations

Here we prove item iii) of Theorem 1.2 by considering the 1-dimensional wave equation,
that is, the operator

P p´iDq “ B2

t ´ B2

x where P pXq “ ´X2

1 ` X2

2 “ pX2 ´ X1qpX2 ` X1q.

Then ZpP q decomposes into the union of two irreducible varieties, namely the two lines
X1 “ ˘X2 in C2, and

ZRpP q “ ∆` Y ∆´ Ă R2, ∆` : X1 “ X2, ∆´ : X1 “ ´X2.

A fundamental (distributional) solution of the wave equation is known to be, up to a
multiplicative constant,

E1pt, xq “ HptqHpt ´ xqHpt ` xq,

see [27, Sect. 7], where H still denotes the Heaviside function.
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As in the case of the Schrödinger equation, we consider the rectangular domain Ω Ă R2

with vertices p0, 0q, pT, 0q, pT, Lq, p0, Lq, with T, L ą 0. Let g be a C1 function defined
on the boundary Γ of Ω. Then,

Φgpt, xq “
ż

Γ

gpu, yqHpt ´ uqHppt ´ uq ´ px ´ yqqHppt ´ uq ` px ´ yqqdσpu, yq,

where dσ is the arc measure on Γ, which we assume to be positively oriented. In view of
the definition of H , the function Φg rewrites as

Φgpt, xq “
ż

Γt,x

gpu, yqdσpu, yq, (4.8)

where Γt,x is the subarc (possibly empty) of Γ, which intersects the sector

tpu, yq P R2, u ă t, u ´ y ă t ´ x, u ` y ă t ` xu.

Depending on the location of the point pt, xq P R2, it is readily checked that the endpoints
of Γt,x are two of the points

p0, x´tq, p0, t`xq, pt´x, 0q, pt`x, 0q, pT, T´t`xq, pT, t`x´T q, pL`t´x, Lq, pt`x´L, Lq.

Because g has been assumed to be a C1 function, and all coordinates of the above points
are just affine functions of t and x, it follows from (4.8) that the function Φg is of class
C2 in R2.

Assuming pg “ 0 on the two lines X1 “ ˘X2 in R2, we know from the proof of
Theorem 1.1 that the function Φg vanishes outside of Ω, and by continuity also on Γ.
Hence, Φg, which belongs to C2pΩq X C1pΩq is a solution of the wave equation, and
solves the homogeneous Dirichlet problem in Ω. Let us now recall the following result,
see [8, Theorem 1],

Theorem 4.6. The homogeneous Dirichlet problem

pB2

t ´ B2

xqf “ 0 in Ω, f “ 0 on Γ,

has the unique solution f “ 0 in C2pΩqXC1pΩq if and only if T {L is an irrational number.

Actually, [8] considers the pn`1q-dimensional wave equation in a rectangular domain,
and [9] considers more general hyperbolic equations in cylindrical domains.

From what precedes, we see that Theorem 1.1 applies, leading to item iii) of Theorem
1.2. More generally, making use of (1.1), one gets that, for c ą 0, pΓ,∆c,` Y ∆c,´q is an
Heisenberg uniqueness pair for C1pΓq if T {pcLq R Q, where ∆c,` and ∆c,´ are the lines
with slopes c and ´c.

4.4 A simple first order equation

The goal of this section is to prove item iv) of Theorem 1.2 and Theorem 1.3. We consider
the simple differential equation of first order uy “ 0 in R2, associated to the operator

P p´iDq “ iBy where P pXq “ ´X2,
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in a convex domain Σ with boundary Γ. The set Λ is the horizontal line ∆0 :“ tX2 “ 0u.
As is easily checked, a fundamental solution is given by the distribution

E : ϕ ÞÑ
ż 8

0

ϕp0, sqds.

In view of (2.2), we have, for g a function on Γ, integrable with respect to dσ, ϕ a test
function, and x “ px1, x2q,

ă Φg, ϕ ą“
ż

Γ

ă Epyq, ϕpx ` yq ą gpxqdσpxq “
ż

xPΓ

ż 8

y“0

ϕpx1, x2 ` yqgpxqdydσpxq.

We choose as a domain the unit disk Σ “ D with boundary the unit circle Γ “ T. We set

T` “ tpx1, x2q P T, x2 ě 0u, T´ “ tpx1, x2q P T, x2 ă 0u,

and we parameterize these two arcs by the functions s P r´1, 1s Ñ ps,˘
?
1 ´ s2q, so that

dσpxq “ |s|ds?
1 ´ s2

.

Setting gpxq “ g`psq for x P T` and gpxq “ g´psq for x P T´, we get,

ă Φg, ϕ ą “
ż

1

s“´1

ż 8

y“0

ϕps,
?
1 ´ s2 ` yq|s|g`psq dyds?

1 ´ s2

`
ż

1

s“´1

ż 8

y“0

ϕps,´
?
1 ´ s2 ` yq|s|g´psq dyds?

1 ´ s2
.

Letting u “ y `
?
1 ´ s2 in the first double integral and u “ y ´

?
1 ´ s2 in the second

one, the above expression becomes

ă Φg, ϕ ą“
ż

ps,uqPD`

ϕps, uq|s|g`psqdλps, uq?
1 ´ s2

`
ż

ps,uqPD´

ϕps, uq|s|g´psqdλps, uq?
1 ´ s2

,

where D` (resp. D´) denotes the subset of R2 which lie above T` (resp. T´), and dλ

denotes the planar Lebesgue measure. Thus, the distribution Φg is actually a locally
integrable function in L1

locpR2q, namely

Φgps, uq “ χD`
ps, uq g`psq|s|?

1 ´ s2
` χD´

ps, uq g´psq|s|?
1 ´ s2

“ χDps, uq g´psq|s|?
1 ´ s2

` χD`
ps, uqpg`psq ` g´psqq |s|?

1 ´ s2
,

where χA denotes the characteristic function of a set A Ă R2.
Now, assume that pg “ 0 on Λ. Here we can not apply directly Theorem 1.1 since,

a priori, Φg is not a continuous function. Nevertheless, the first part of the proof of
Theorem 1.1 tells us that Φg “ 0 on D`, that is

g`psq “ ´g´psq, a.e. s P r´1, 1s ðñ gpeiθq “ ´gpe´iθq, a.e. θ P r0, 2πs. (4.9)
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Now, if we assume that, for some given angle ρ P p0, πq, one has pg “ 0 on the line
∆ρ :“ tX1 “ pcot ρqX2u, and consider, instead of uy “ 0, the differential equation

ux ´ pcot ρquy “ 0,

we derive, in a completely similar fashion, that

gpeipρ`θqq ` gpeipρ´θqq “ 0, a.e. θ P r0, 2πs. (4.10)

Combining (4.9) and (4.10), we obtain

gpeipθ`ρqq “ gpeipθ´ρqq, a.e. θ P r0, 2πs,

that is, 2ρ is a period of the function θ ÞÑ gpeiθq. By uniqueness of the Fourier coefficients
of a function in L1pTq, we get

an “ ane
i2nρ, n P Z.

Assume an ‰ 0 for some n ‰ 0. Then 2nρ “ 2kπ for some k P Z which implies that ρ{π
is a rational number. Hence, if ρ{π R Q, g is a constant function, and by (4.9), it has to
vanish almost everywhere. Finally, making use of the property (1.1) with T a rotation,
we obtain the HUP stated in item iv) of Theorem 1.2.

Conversely, assume that ρ{π “ k{n P Q. Then, the nonzero function gpeiθq “ einθ ´
e´inθ satisfies (4.9) and (4.10). Hence, with Φ1g and Φ2g the potentials associated to the
fundamental solutions of By and Bx ´ pcot ρqBy, one gets that Φ1g and Φ2g have compact
support since they vanish outside D. Consequently, their Fourier transforms are entire
functions in Cn, which, in view of (3.1), implies that pg vanishes on ∆0 Y ∆ρ. Hence,
pT,∆0 Y ∆ρq cannot be a HUP, and item iv) of Theorem 1.2 is completely proved.

The above result for the circle T can be extended, in some sense, to any strictly convex
curve Γ of class C2, see Theorem 1.3. A proof of this theorem is the goal of the remaining
part of this section. Thus we consider a function g P L1pΓq such that pg vanishes on the
union ∆0 Y ∆ρ of two lines. We introduce two diffeomorphisms s0 and sρ on Γ defined
by the condition that, for x P Γ, the segment px, s0pxqq is vertical (resp. px, sρpxqq makes
an angle ρ ` π{2 with the oriented horizontal axis). Note that, by the assumption of
strict convexity of Γ, s0 and sρ are well-defined. They are involutive maps, and s0 has
exactly two fixed pointsM1,M2 which are the points where the tangeants to Γ are vertical.
Setting tρ “ sρ ˝ s0, a reasoning similar to the one we just made for the circle leads to the
conclusion that

gps0pxqq “ ´gpxq, gpsρpxqq “ ´gpxq, a.e. x P Γ, (4.11)

and thus,
gptρpxqq “ gpxq, a.e. x P Γ. (4.12)

Next, pick any point inside Γ. By translation, we may assume it is the origin O of the
plane, and by dilation, we may also assune that the unit circle T lies inside Γ. We denote
by p the diffeomorphism from Γ to T,

p : Γ Ñ T, x ÞÑ x{}x},

where }x} denotes the euclidean norm in R2.
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‚ppMq
‚M

‚M2 “ tρ1pM1q

‚M1 “ tρ1pM2q

‚

‚
s0pMq

O

Γ

‚
tρ1pMq

Figure 1 : The convex curve Γ, the circle T, the points M,M1,M2 on Γ,
and some of their transforms, as defined in the text.

Moreover, let
rtρ :“ p ˝ tρ ˝ p´1 : T Ñ T, rg “ g ˝ p´1 P L1pTq,

where we notice that rtρ is a C2 diffeomorphism of T. Indeed, Γ being a curve of class C2,
all of the bijective maps s0, sρ, tρ, p are diffeomorphisms of class C2.

First, it is clear that, when ρ “ 0, t0 is the identity map of Γ, and rt0 the identity
map of T, with rotation number 0. Second, consider the unique points M1,M2 alluded to
above, e.g. M1 with the largest x1-coordinate on Γ, and let choose ρ “ ρ1 such that the
segment pM1,M2q makes an angle ρ1 ` π{2 with the oriented horizontal axis. Then,

tρ1pM1q “ sρ1pM1q “ M2 and tρ1pM2q “ sρ1pM2q “ M1.

Hence, M1 is a 2-periodic point of tρ1 , and, similarly, ppM1q is a 2-periodic point of rtρ1 ,
which implies that the rotation number of rtρ1 is 1{2. From the continuity of the map
ρ ÞÑ τprtρq, recall Lemma 2.5, we derive that there exists some angle 0 ă ρ2 ă ρ1 such that
τ2 :“ τprtρ2q R Q. From Denjoy’s theorem 2.6, there exists a homeomorphism h : T Ñ T

such that h ˝ rtρ2 ˝ h´1 is the rotation Rτ2 of angle 2πτ2. It then follows, with (4.12), that

prg ˝ h´1qpxq “ prg ˝ h´1qpRτ2pxqq, x P T.

By the fact that τ2 is irrational, and the uniqueness of the Fourier coefficients of rg ˝ h´1,
we obtain as above that the function rg ˝ h´1 is constant on T, hence also the function g

on Γ. From the first equality in (4.11), we finally conclude that g “ 0 almost everywhere
on Γ. Applying property (1.1) with a rotation finishes the proof of Theorem 1.3.

5 Appendix

We give a proof of Theorem 4.1 about the continuity of single layer potential with weakly
singular kernels.
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Proof of Theorem 4.1. First, when x0 R Γ, Φg is continuous at x0 since

– the map x ÞÑ ϕpx ´ yqgpyq is continuous at x0, for all y P Γ,

– |ϕpx ´ yqgpyq| ď Mgpyq P LppΓq Ă L1pΓq, where M is the sup of |ϕpx ´ yq| when x is
in a neighborhood of x0 that does not intersect Γ, and y P Γ.

Second, assume x0 P Γ. Let TΓx0 and nx0
be the pn ´ 1q-dimensional tangeant space

to Γ at x0, and the normal unit vector to Γ at x0. We write y “ x0 ` τy ` ηynx0
P Γ with

τ P TΓx0 , and we let η “ γpτq be the equation of Γ in a neighborhood of x0. For some
small enough δ ą 0, let

Γpx0, δq “ ty P Γ, τy P Bpx0, δqu,
where Bpx0, δq is the ball of radius δ in TΓx0 . Finally, for x sufficiently close to x0, we
write

x “ x0 ` τx ` ηxnx0
.

Then, we have

Φgpxq ´ Φgpx0q “
ż

yPΓpx0,δq

ϕpx ´ yqgpyqdσpyq ´
ż

yPΓpx0,δq

ϕpx0 ´ yqgpyqdσpyq

`
ż

yPΓzΓpx0,δq

pϕpx ´ yq ´ ϕpx0 ´ yqqgpyqdσpyq. (5.1)

For the first two integrals, for x possibly equal to x0, we have, by Hölder inequality, with
q the exponent conjugate to p,

ˇ̌
ˇ̌
ż

yPΓpx0,δq

ϕpx ´ yqgpyqdσpyq
ˇ̌
ˇ̌

ď
ˆż

yPΓpx0,δq

|ϕpx ´ yq|qdσpyq
˙1{q ˆż

yPΓpx0,δq

|gpyq|pdσpyq
˙1{p

.

The last integral is finite since g P L
p
dσpΓq. For the second one, note that

|ϕpx ´ yq| ď C

|x ´ y|ν ď C

|τx ´ τy|ν .

Moreover,
dσpyq2 “ dτ 2 ` dη2 “ p1 ` γ1ptq2qdτ 2 ď 4dτ 2

for δ small (recall that γ1 is continuous and γ1p0q “ 0). Hence

ˇ̌
ˇ̌
ż

yPΓpx0,δq

|ϕpx ´ yq|qdσpyq
ˇ̌
ˇ̌ ď 2C

ż

Bpx0,δq

dτ

|τx ´ τ |νq ,

(with τx “ 0 if x “ x0) where the last integral over the pn ´ 1q-dimensional ball Bpx0, δq
is convergent since

1 ` ν{pn ´ 1 ´ νq ă p ðñ νq ă n ´ 1.

Hence, by taking δ small, it can be made as small as we wish (uniformly in τx).
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It remains to show that the third integral in (5.1) can be made small. For x close to
x0 so that x R ΓzΓpx0, δq, the function

x ÞÑ
ż

yPΓzΓpx0,δq

ϕpx ´ yqgpyqdσpyq

is continuous at x0 (same argument as in the first case), and thus, the third integral is
small when x is sufficiently close to x0.
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[14] V. Havin, B. Jöricke, The uncertainty principle in harmonic analysis. Ergebnisse der
Mathematik und ihrer Grenzgebiete 28. Springer-Verlag, Berlin, 1994.

[15] H. Hedenmalm, A. Montes-Rodriguez, Heisenberg uniqueness pairs and the Klein-
Gordon equation. Ann. of Math. 173 (2011), 1507-1527.
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