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Abstract

We argue that the T-duality phenomenon is not exclusively a stringy effect but it
is relevant also in the context of the standard point particle dynamics. To illus-
trate the point, we construct a four-parametric family of four-dimensional electro-
gravitational backgrounds such that the dynamics of a charged point particle in
those backgrounds is insensitive to a particular permutation of the parameters al-
though this very permutation does alter the background geometry. In particular,
we find that a direct product of the Euclidean plane with the two-dimensional
Euclidean black hole admits a point-particle T-dual with asymptotically negative
curvature. For neutral particles, this point-particle T-duality picture gets slightly
modified because the T-duality map is no longer defined everywhere but only on
a dense open domain of the space of states. We suggest a possible interpretation
of this phenomenon in terms of a point particle T-fold.

1 Introduction

T-duality in string theory is a phenomenon relating two geometrically inequivalent
Kalb-Ramond-gravitational backgrounds via the dynamics of strings. Speaking
more precisely, T-duality takes place when a string moving in a background (G,B)
is dynamically equivalent to the string moving in the dual background (G̃, B̃) even
though the backgrounds (G,B) and (G̃, B̃) are not geometrically equivalent. Here
by the ”dynamical equivalence” is meant the existence of a canonical transfor-
mation transforming the Hamiltonian equations of motion of the string in the
background (G,B) into its Hamiltonian equations in the background (G̃, B̃). In
mathematical terminology, the T-duality between two inequivalent target geome-
tries (G,B) and (G̃, B̃) is thus established if the phase space P of the string moving
in (G,B) is symplectomorphic to the phase space P̃ of the string moving in (G̃, B̃)
and this symplectomorphism transforms the original Hamiltonian H of the string
into the dual one H̃ .
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A point-particle analogue of the stringy Kalb-Ramond-gravitational background
(G,B) is naturally an electromagnetic-gravitational background (G,A). Indeed,
locally speaking, while string world-sheet couples naturally to the Kalb-Ramond
two-form field B, the point-particle world-line couples naturally to the one-form
field A interpreted as the electromagnetic potential. It is now evident what should
be meant be the T-duality in the point-particle context. Indeed, we shall say that
two geometrically inequivalent electromagnetic-gravitational backgrounds (G,A)
and (G̃, Ã) are T-dual to each other if there exists a canonical transformation
transforming the point-particle Hamiltonian equations of motion in the background
(G,A) into the Hamiltonian equations of motion in the background (G̃, Ã). The
main result of the present article is the construction of the four-parametric family
of explicit examples of such T-dual pairs of dynamically equivalent but geometri-
cally inequivalent electromagnetic-gravitational backgrounds in four dimensions.

It appears that the point-particle T-duality has not been so far suspected to
exist. This is probably due to the fact that there are no winding modes for point
particles which could be exchanged with the momentum modes. On the other
hand, after the discovery of the Abelian T-duality with its momentum-winding
exchange [9, 12], more general T-dualities have been proposed in the framework of
string theory Ref. [5, 4, 3, 10] for which the question of the momentum winding
exchange is not the central one (although it still can be posed, cf. Ref. [11]).
In fact, what really matters for the T-duality to take place is the issue of the
existence of the canonical transformation relating the phase spaces associated to
geometrically inequivalent backgrounds. With this shift of perspective, the ques-
tion of the existence of T-duality in the point particle dynamics should be treated
without prejudices and our result presented in this article should therefore look
less surprising.

It is perhaps worth mentioning that our construction of the point-particle T-
duality examples is the fruits of a combination of a conceptual approach and of
educated guesses. Conceptually, we have taken a lot of inspiration by exploring
the symplectic geometries of the so called Drinfeld doubles which are Lie groups
endowed with suitable symplectic forms. Such doubles have structures with certain
(i.e. Poisson-Lie) dualities built in by construction, however, all point-particle T-
duality examples which we constructed by considering various Drinfeld doubles
suffered from the pathology that the dualizable Hamiltonian did not provide a
complete flow on the domain of definition of the duality canonical transformation.
Fortunately, we were able to cure some of those pathological examples ”by hand”,
loosing of course the Drinfeld double interpretation but gaining the full-fledged,
healthy and globally holding examples of the point-particle T-duality.

The plan of the article is as follows. In Section 2, we study in detail the basic
building block of our T-dualizable four-dimensional backgrounds which is certain
two-parameter deformation of the Euclidean black hole in two dimensions [15].
In Section 3, we consider the direct product of two deformed black holes and we
add to it a judiciously chosen background electric field. Then we describe the
explicit canonical transformation relating this electro-gravitational background to
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its T-dual background, which is obtained by a suitable permutation of the four
deformation parameters. We also prove that the original and the dual backgrounds
are inequivalent as the Riemannian manifolds. In Section 4, we suppress the
background electric field and we find that the T-duality symplectomorphism is
then defined only on a dense open subset of the phase space. We speculate to
interpret this phenomenon in terms of a point-particle analogue of the T-fold
geometry known in string theory [8]. In Section 5, we provide conclusions and an
outlook.

2 Deformed black hole geometry

Consider the standard polar coordinates r, φ on the plane R2 and a two-parametric
family of Riemannian metrics

ds2 =
1

1 + µ2r2
dr2 +

r2

1 + γ2r2
dφ2. (1)

Whatever are the values of the parameters µ and γ, this metric exhibits no curva-
ture singularity, because its Ricci scalar reads

Ric =
4µ2

1 + γ2r2
+

6(γ2 − µ2)

(1 + γ2r2)2
. (2)

The geometry (1) is asymptotically flat except for the case γ2 = 0, for which we
obtain the hyperbolic space of constant negative curvature. If γ2 = µ2 = 1, we
recognize in the formula (1) the well-known Euclidean black-hole metric [15].

Consider an electric scalar potential

ϕ(r) =
1

2

(
γ2 +

1

r2

)
. (3)

The first order Hamiltonian dynamics of a charged point particle of a charge a2

in the geometry (1) and in the electric potential (3) (no magnetic field!) takes
then place in the phase space Pa, parametrized with the Darboux variables pr, r >
0, pφ, φ. The Hamiltonian reads

Ha =
1

2
gjk(r)pjpk + ϕ(r) =

1

2
(1 + µ2r2)p2r +

1

2

(
γ2 +

1

r2

)
(p2φ + a2) (4)

and the symplectic form is

ω = pr ∧ dr + pφ ∧ dφ. (5)

In particular, the corresponding Hamiltonian equations of motion read

ṗr = −rµ2p2r +
p2φ + a2

r3
, ṙ = (1 + µ2r2)pr, φ̇ =

(
γ2 +

1

r2

)
pφ, ṗφ = 0. (6)
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A general solution of these equations depends on four real parameters ζ ∈ [0, 2π[,
κ > 0, pφ, ν and it reads

r(t)2 =

(
p2φ + a2

κ2
+

1

µ2

)
cosh2 (κµ(t+ ν))−

1

µ2
, (7a)

pr(t)r(t) =
κ

µ
tanh (κµ(t+ ν)), (7b)

φ(t) = ζ + γ2pφt+
pφ√

p2φ + a2
arctan


κ tanh (κµ(t+ ν))

µ
√
p2φ + a2


. (7c)

We observe that for all possible values of the parameters ζ, κ, pφ, ν the solution (7)
of the equation of motions is complete, which means that it avoids the singularity
r = 0 and it does not arrive at infinity in a finite time t. We thus conclude that
the Hamiltonian (4) is non-pathological.

3 Charged particle

Consider a four-parametric four-dimensional background T (µ, γ,m, c) obtained as
the direct product of two deformed black holes (1) with the added electric poten-
tials

ds2
×
=

1

1 + µ2r2
dr2 +

r2

1 + γ2r2
dφ2 +

1

1 +m2ρ2
dρ2 +

ρ2

1 + c2ρ2
df 2, (8a)

ϕ× =
1

2

(
γ2 +

1

r2

)
+

1

2

(
c2 +

1

ρ2

)
. (8b)

The dynamics of the charged point particle of the positive charge a2 in the back-
ground T (µ, γ,m, c) is then governed by the Hamiltonian

Ha× =
1

2
(1+µ2r2)p2r +

1 + γ2r2

2r2
(p2φ+a2)+

1

2
(1+m2ρ2)p2ρ+

1 + c2ρ2

2ρ2
(p2f +a2) (9)

and by the symplectic form

ω× = pr ∧ dr + pφ ∧ dφ+ pρ ∧ dρ+ pf ∧ df. (10)
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We now express the coordinates pr, r > 0, pρ, ρ > 0, pφ, φ, pf , f on the phase space
Pa× in terms of new coordinates PR, R > 0, PR,R > 0, PΦ,Φ, PF , F as follows

r = R

√
R2P 2

R
+ P 2

Φ + a2√
R2P 2

R
+ P 2

F + a2
, pr = PR

√
R2P 2

R
+ P 2

F + a2√
R2P 2

R
+ P 2

Φ + a2
, pφ = PΦ, (11a)

ρ = R

√
R2P 2

R + P 2
F + a2√

R2P 2
R + P 2

Φ + a2
, pρ = PR

√
R2P 2

R + P 2
Φ + a2√

R2P 2
R + P 2

F + a2
, pf = PF , (11b)

f = F +
PF√

P 2
F + a2

arctan

(
RPR√
P 2
F + a2

)
−

PF√
P 2
F + a2

arctan

(
RPR√
P 2
F + a2

)
,

(11c)

φ = Φ−
PΦ√

P 2
Φ + a2

arctan

(
RPR√
P 2
Φ + a2

)
+

PΦ√
P 2
Φ + a2

arctan

(
RPR√
P 2
Φ + a2

)
.

(11d)

The transformation (11) is the diffeomorphism of the phase space Pa× with the
inverse diffeomorphism given by

R = ρ

√
ρ2p2ρ + p2φ + a2

√
ρ2p2ρ + p2f + a2

, PR = pρ

√
ρ2p2ρ + p2f + a2

√
ρ2p2ρ + p2φ + a2

, PΦ = pφ, (12a)

R = r

√
r2p2r + p2f + a2

√
r2p2r + p2φ + a2

, PR = pr

√
r2p2r + p2φ + a2

√
r2p2r + p2f + a2

, PF = pf , (12b)

F = f −
pf√

p2f + a2
arctan


 ρpρ√

p2f + a2


+

pf√
p2f + a2

arctan


 rpr√

p2f + a2


,

(12c)

Φ = φ+
pφ√

p2φ + a2
arctan


 ρpρ√

p2φ + a2


−

pφ√
p2φ + a2

arctan


 rpr√

p2φ + a2


.

(12d)

Moreover, the transformation (11) is the symplectic diffeomorphism (or sym-
plectomorphism) of the phase space Pa× because it preserves the symplectic form
ω×. Indeed, inserting the formulas (11) into (10) gives

ω× = dPR ∧ dR + dPΦ ∧ dΦ+ dPR ∧ dR+ dPF ∧ dF. (13)

It remains to show that the canonical transformation (11) can be interpreted as
the T-duality symplectomorphism. For that, we express the Hamiltonian (9) in
terms of the new Darboux coordinates PR, R > 0, PR,R > 0, PΦ,Φ, PF , F . The
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result is

Ha× =
1

2
(1+m2R2)P 2

R+
1 + γ2R2

2R2
(P 2

Φ+a2)+
1

2
(1+µ2R2)P 2

R
+
1 + c2R2

2R2
(P 2

F +a2).

(14)
The comparison of the formula (14) with (9) shows that the role of the parameters
m and µ got exchanged while the parameters c and γ remained in their places.
Said in other words, the Hamiltonian (14) describes the dynamics of the charged
point particle in the dual background T (m, γ, µ, c)

d̃s2
×
=

1

1 +m2R2
dR2 +

R2

1 + γ2R2
dφ2 +

1

1 + µ2R2
dR2 +

R2

1 + c2R2
dF 2, (15a)

ϕ̃× =
1

2

(
γ2 +

1

R2

)
+

1

2

(
c2 +

1

R2

)
. (15b)

To conclude the argument, that this point-particle T-duality indeed does some-
thing non-trivial, it is sufficient to show that the flipping of the parameters µ and
m may alter the Riemannian geometry of the dual background T (m, γ, µ, c) with
respect to that of the original one T (µ, γ,m, c). For that, consider for example the
background T (0, 0, 1, 1) with the metric

ds2
×
= dr2 + r2dφ2 +

dρ2 + ρ2df 2

1 + ρ2
. (16)

We see that this is the Riemannian geometry of the direct product of the Euclidean
plane with the Euclidean black hole [15]. The metric corresponding to the dual
background T (1, 0, 0, 1) is

d̃s2
×
=

1

1 + r2
dr2 + r2dφ2 + dρ2 +

ρ2

1 + ρ2
df 2. (17)

Using the formula (2), we find easily the respective Ricci scalars of the metrics
(16) and (17)

Ric =
4

1 + ρ2
, R̃ic = −2 +

6

(1 + ρ2)2
. (18)

We thus observe that the Riemannian geometries (16) and (17) are inequivalent,

because Ric is strictly positive while R̃ic acquires also negative values.

4 Neutral particle

In this section, we shall discuss the dynamics of a neutral particle in the background
T (µ, γ,m, c). Since the charge a2 vanishes, the electric potential plays no role and
the background can be therefore considered as purely gravitational. We start
our analysis with the two-dimensional metric (1) corresponding to the deformed
Euclidean black hole

ds2 =
1

1 + µ2r2
dr2 +

r2

1 + γ2r2
dφ2. (19)
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The Hamiltonian of the neutral particle in the background (19) reads

H =
1

2
(1 + µ2r2)p2r +

1

2

(
γ2 +

1

r2

)
p2φ (20)

and the symplectic form is as before

ω = pr ∧ dr + pφ ∧ dφ. (21)

Now the neutral particle can reach the origin r = 0 because there is no repulsive
electrostatic potential which could prevent it. This means that the neutral phase
space P is slightly bigger then the charged one Pa and the coordinate chart pr,
r > 0, pφ, φ does not cover it all, so we prefer rather to work with globally defined
coordinates at the price that the rotational symmetry of the background will be
less explicit. Thus, we introduce the metric on the plane R

2 by the formula

ds2 =
4dxdx̄+ γ2(xdx̄+ x̄dx)2 − µ2(xdx̄− x̄dx)2

4(1 + γ2xx̄)(1 + µ2xx̄)
, (22)

where
x = x1 + ix2, x̄ = x1 − ix2 (23)

and x1, x2 are the standard global Cartesian coordinates on R
2. Actually, the

metric (22) is that (1) of the deformed black hole, as it is easy to verify by setting

x = reiφ. (24)

As far as the corresponding neutral phase space P is concerned, it can be globally
described as R

4 covered by the complex Darboux coordinates x = x1 + ix2, p =
p1 + ip2, so that the symplectic form reads

ω =
1

2
(dp̄ ∧ dx+ dp ∧ dx̄). (25)

The standard Hamiltonian is found by inverting the metric (22), which gives the
formula

H =
1

2
pp̄+

µ2

8
(px̄+ p̄x)2 −

γ2

8
(px̄− p̄x)2. (26)

The Hamiltonian (26) and the symplectic form (25) give rise to the Hamiltonian
(20) and the symplectic form (21), upon the canonical transformation

x = reiφ, p =

(
pr +

ipφ
r

)
eiφ. (27)

The equations of motion of the neutral particle in the coordinates x,p then read

ẋ = p+
µ2

2
(px̄+ p̄x)x+

γ2

2
(px̄− xp̄)x, (28)
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ṗ = −
µ2

2
(px̄+ p̄x)p+

γ2

2
(px̄− xp̄)p, (29)

and their general solution, depending on four real parameters ζ ∈ [0, 2π[, κ ≥ 0,
ν, λ, turns out to be

x = ei(ζ−γ2λκt)

(
λ cosh (µκ(t+ ν))− i

sinh (µκ(t+ ν))

µ

)
, p =

−iκei(ζ−γ2λκt)

cosh (µκ(t+ ν))
.

(30)
Similarly as in the charged case, the solutions (30) are complete for all possible
values of the parameters ζ , κ, ν, λ, therefore the neutral Hamiltonian (20) is
non-pathological.

What is crucial for the discussion in the present section is the fact that the
Hamiltonian (20) stays non-pathological even if we cut out the points from the
neutral phase space P for which the complex coordinate p vanishes. Indeed, look-
ing at Eqs. (30), we observe that whenever a solution has a non-vanishing initial
value p(t0) it remains non-vanishing for all times t. Thus we can define a restricted
phase space

Pr = {(x,p) ∈ P ; p 6= 0}, (31)

with the symplectic form (25) and the Hamiltonian (20) (both understood as the
restrictions of ω and H to Pr).

Although the restricted dynamical system (Pr, ωr, Hr) is complete, it lacks the
geometrical interpretation because it misses that static solutions (30) with κ = 0.
However, it will inspire us to serve as a building block of an attempt to construct
a point-particle T-fold.

Consider now the four-dimensional purely gravitational background T (µ, γ,m, c)
with the direct product metric (22) now written in global coordinates x, ξ of the
target space R

2 × R
2

ds2 =
4dxdx̄+ γ2(xdx̄+ x̄dx)2 − µ2(xdx̄− x̄dx)2

4(1 + γ2xx̄)(1 + µ2xx̄)
+

+
4dξdξ̄ + c2(ξdξ̄ + ξ̄dξ)2 −m2(ξdξ̄ − ξ̄dξ)2

4(1 + c2ξξ̄)(1 +m2ξξ̄)
. (32)

The dynamics of the neutral point particle in the background (32) is now given by
the ”doubled” Hamiltonian

H× =
1

2
pp̄+

µ2

8
(px̄+p̄x)2−

γ2

8
(px̄−p̄x)2+

1

2
ππ̄+

m2

8
(πξ̄+π̄ξ)2−

c2

8
(πξ̄−π̄ξ)2.

(33)
and the doubled Darboux symplectic form

Ω× =
1

2
(dp̄ ∧ dx+ dp ∧ dx̄) +

1

2
(dπ̄ ∧ dξ + dπ ∧ dξ̄). (34)

The both quantities H× and Ω× are defined on the neutral direct product phase
space P× parametrized by the global Darboux coordinates x,p, ξ,π. The solutions
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of the direct product dynamical system (P×, H×,Ω×) are obviously obtained by
doubling Eqs.(30), in particular, we see that they are complete and they remain
complete on the following restricted phase space

Pr× = {(x,p, ξ,π) ∈ P×; p 6= 0, π 6= 0}, (35)

with the symplectic form (34) and the Hamiltonian (33) (both understood as the
restrictions of Ω× and H× to Pr×).

Now we define a diffeomorphism of the restricted phase space Pr× by the for-
mulas

X =
p

2|π||p|
(ξ̄π + ξπ̄ + xp̄− x̄p), P =

|π|

|p|
p (36a)

Ξ =
π

2|π||p|
(x̄p+ xp̄ + ξπ̄ − ξ̄π), Π =

|p|

|π|
π. (36b)

Note that the diffeomorphism (36) is involutive, which means that it is equal to
its inverse, and it is also symplectic because it holds

Ωr× =
1

2
(dP̄ ∧ dX + dP ∧ dX̄) +

1

2
(dΠ̄ ∧ dΞ+ dΠ ∧ dΞ̄). (37)

The restricted Hamiltonian in the capital variables now reads

Hr× =
1

2
PP̄ +

m2

8
(PX̄+ P̄X)2−

γ2

8
(PX̄− P̄X)2+

1

2
ΠΠ̄+

µ2

8
(ΠΞ̄+Π̄Ξ)2−

c2

8
(ΠΞ̄−Π̄Ξ)2.

(38)

We observe that the restricted Hamiltonian Hr× expressed in the upper case vari-
ables has the same form as in the lower case ones (33) except that the parameters
m and µ get exchanged! This is of course similar as in the case of the charged
particle but now the situation is not quite the same. Indeed, in the neutral case
Eq. (36) does not give a symplectomorphism of the whole phase space P× but
only of the restricted one Pr× so the interpretation in terms of T-duality is not
straightforward.

We could say that in the neutral case the symplectomorphism (36) of the
restricted phase space Pr realizes a sort of local T-duality between the background
T (µ, γ,m, c) (cf. Eq.(32)) and the permuted one T (m, γ, µ, c), but the inspiration
taken from string theory [8] also suggests to try to interpret (36) as the gluing
symplectomorphism defining a point-particle T-fold.

The idea of the point particle T-fold construction is not to restrict the phase P×

corresponding to the background T (µ, γ,m, c) in order to relate it to the permuted
background T (m, γ, µ, c) but rather to extend it to a bigger phase space Pe× which
would contain the unrestricted phase spaces of both original and dual backgrounds.
The extended phase space Pe× would be obtained by glueing two identical charts P×

(the lower case one and the upper case one) by the transition diffeomorphism (36).
Since each chart is the symplectic manifold and the transition diffeomorphism is
the symplectomorphism, it seems that the space Pe× must be naturally symplectic
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manifold and it could therefore serve as the phase space of an extended dynamical
system (i.e. the T-fold) containing at the same time the totality of the dynamics of
the neutral point particle in two geometrically different backgrounds T (µ, γ,m, c)
and T (m, γ, µ, c).

In the case at hand, the suggested construction of the T-fold fails, however. The
reason is that the gluing symplectomorphism (36) does not fulfil certain technical
condition1 ensuring that the resulting glued space be Hausdorff [6]. We believe,
however, that it is meaningful to continue to look for another local T-duality
symplectomorphism which would fulfil this technical condition and would thus
permit to construct a viable example of the point particle T-fold.

5 Conclusions and outlook

The principal result of this article is the demonstration of the fact that the phe-
nomenon of the T-duality exists not only in the stringy context but also in the
point particle one. The crucial role in the respect is played by the explicit formu-
las (11) and (36) which realize the point particle T-duality symplectomorphisms
respectively for charged and neutral particle moving in the electro-gravitational
background (8).

There are several open problems to be addressed in the context of the point-
particle T-duality. Among others, it would be nice to find out whether realistic
black hole solutions in four space-time dimensions admit point-particle T-duals or
to clarify what is a physical relevance of the T-folds in the point-particle physics.
However, arguably the most prominent open issue is to work out the quantum
status of the point-particle T-duality. Here the situation looks more promising
than in string theory, where only the Abelian T-duality is under full control at the
quantum level while all other known generalized T-dualities are so far established
only classically or were proven to take place up to one or two loops [14, 13, 2, 7, 1].
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