
HAL Id: hal-04937101
https://hal.science/hal-04937101v1

Submitted on 9 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cache allocation in multi-tenant edge computing: an
online model-based reinforcement learning approach

Ayoub Ben Ameur, Andrea Araldo, Tijani Chahed, György Dán

To cite this version:
Ayoub Ben Ameur, Andrea Araldo, Tijani Chahed, György Dán. Cache allocation in multi-tenant
edge computing: an online model-based reinforcement learning approach. IEEE Transactions on Cloud
Computing, 2025, pp.1-4. �hal-04937101�

https://hal.science/hal-04937101v1
https://hal.archives-ouvertes.fr

DRAFT 1

Cache Allocation in Multi-tenant Edge Computing:
An Online Model-based Reinforcement Learning

Approach
Ayoub Ben-Ameur1,2, Andrea Araldo1, Tijani Chahed1, and György Dán2

1SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris
2Division of Network and Systems Engineering, School of Electrical Engineering and Computer Science, KTH

Royal Institute of Technology

Abstract—We consider a Network Operator (NO) that owns
Edge Computing (EC) resources, virtualizes them and lets third
party Service Providers (SPs) run their services, using the
allocated slice of resources. We focus on one specific resource,
i.e., cache space, and on the problem of how to allocate it
among several SPs in order to minimize the backhaul traffic.
Due to confidentiality guarantees, the NO cannot observe the
nature of the traffic of SPs, which is encrypted. Allocation
decisions are thus challenging, since they must be taken solely
based on observed monitoring information. Another challenge is
that not all the traffic is cacheable. We propose a data-driven
cache allocation strategy, based on Reinforcement Learning (RL).
Unlike most RL applications, in which the decision policy is
learned offline on a simulator, we assume no previous knowledge
is available to build such a simulator. We thus apply RL in
an online fashion, i.e., the model and the policy are learned
by directly perturbing and monitoring the actual system. Since
perturbations generate spurious traffic, we thus need to limit
perturbations. This requires learning to be extremely efficient.
To this aim, we devise a strategy that learns an approximation
of the cost function, while interacting with the system. We then
use such an approximation in a Model-Based RL (MB-RL) to
speed up convergence. We prove analytically that our strategy
brings cache allocation boundedly close to the optimum and
stably remains in such an allocation. We show in simulations
that such convergence is obtained within few minutes. We also
study its fairness, its sensitivity to several scenario characteristics
and compare it with a method from the state-of-the-art.

Index Terms—Edge Computing, multi-tenant, cache allocation,
online learning, model-based reinforcement learning.

I. INTRODUCTION

MObile Edge Computing (MEC) consists in deploying
computational capabilities, e.g., RAM, CPU, storage,

GPUs, into nodes at the network’s edge [1]. Such nodes
could be co-located with (micro) base stations, access points,
road side units, etc. By serving users directly at the network,
Network Operators (NOs) can reduce latency and backhaul
traffic, i.e., traffic to/from remote server locations. Backhaul
traffic due to over-increasing user demand imposes high costs
on the NOs, due to the required network infrastructure and
the contracts with other Internet Providers to receive such

data from the Internet.1 MEC is thus strategic for NOs to
reduce such costs. MEC is particular relevant for content
delivery, which might represent 80% of the Internet traffic,
and in particular video [6]. In this context, an extremely
important resource is cache space, so as to store such content
close to users. Big Service Provides (SPs), such as Netflix
or Google, are already deploying MEC solutions to cache
their content [7], [8]: they install their own hardware servers
into the access networks of some NOs, and directly serve
the most popular content to users from there. Such solutions
have important limits. (i) Such solutions are costly and are
only affordable to big SPs. (ii) It is impossible to install
hardware servers in the edge nodes very close to end users,
e.g., in wifi access points or base stations. Since such nodes
are owned or controlled by the NO, the NO is the only one
that can deploy computation resources therein. On the other
hand, the services consumed by users, e.g., video streaming,
are typically provided by third party SPs. And so the question
is how to let SPs run their applications close to the users
on resources owned by the NO. We position our work in the
framework of multi-tenant MEC [9]: the NO virtualizes its
computational resources at the edge (cache space in our case),
allocates them to the SPs (tenants), and lets them use such
resources to serve their respective users. The NO might ask
a payment for the use of such resources [10]. However, we
assume here that SPs can use MEC cache for free to serve
their users directly at the edge, since the consequent reduction
in backhaul related cost for the NO can compensates the cost
of cache deployment [11].

Different from classic caching settings, we consider that
traffic is encrypted by SPs, and so it is impossible for the NO
to know which objects are requested, which ones are popular,
nor whether they are cacheable (for instance video calls). The
NO only allocates storage among SPs and lets each SP decide

1In some cases, the NO could be connected to the Internet via a Transit
Internet Provider, which requires to be paid [2]. In other cases, the NO
could have peering agreements with an Internet Provider, where traffic can
be exchanged for free, but cannot anyways exceed certain limits specified
in the agreement [3]. Another alternative for the NO is to join Internet
Exchange Points (IXPs) [4]. In this case, the price the NO pays increases with
the requested “port capacity”, which increases with the backhaul traffic [5,
Section VI.4].

DRAFT 2

what to cache within the allocated space (Fig. 1).2 We study
the problem of the NO to optimally allocate cache storage
among several SPs, so as to minimize the backhaul traffic,
i.e., the traffic from the Internet to the edge node, without
knowing the requested video content.

Since all traffic is encrypted, the NO can make allocation
decisions based on data-driven strategies, consisting in trial
and error: the NO continuously perturbs cache allocation
and observes induced variation on the backhaul traffic. We
formulate this problem as a Markov Decision Process (MDP)
and we use online model-based Reinforcement Learning (RL)
to solve it: while RL is usually trained offline and then applied
to a real system, we instead train RL on the system while
it is up and running. Therefore, we are not only interested
in finding a good allocation policy, but also in how to find it.
Indeed, the only way for the NO to learn how to optimize the
allocation is to continuously perturb it, but we need to keep
the cost of such perturbations small. Our contributions can be
summarized as follows:

1) We propose a model-based RL agent for cache allocation
among third-party SPs. Starting from no knowledge of
the system, the agent constructs a model of the backhaul
traffic based on observations. Our RL agent includes
the following features: memory replay, learning rate
scheduling and decaying exploration probability (epsilon-
greedy).

2) We analytically prove that the system converges to a state
close to the optimum and stays there with probability 1
for an infinite horizon.

3) We show in simulation the performance of our method
under different scenario parameters and show that it
outperforms the state of the art Simultaneous Perturbation
Stochastic Approximation (SPSA) [12]. We also show the
benefits of using model-based RL over model-free RL.

The remainder of this paper is organized as follows. In
Section II, we review recent related work. In Section III,
we present our system model. In Section IV, we present the
MDP formulation of our problem. Section V and Section VI
discuss the theoretical properties and motivate the use of RL,
respectively. In Section VII, we show our simulation results.
Our simulation code is available as open source.3 Section VIII
contains our conclusion and some hints on future work. All the
proofs are in the Appendix provided as supplemental material.

II. RELATED WORK

We now review recent work from the literature pertaining
to resource allocation and cache management (Section II-A),
with a focus on data-driven approaches to solve such prob-
lems (Section II-B). We also include the case of multiple
resources to evaluate whether restricting them to the case of
one resource could relate to our problem and proposed solution
(Section II-C).

2As in classic content caching, we assume the SPs do not pay the NO for
the cache: cache is used by SPs for free, and the NO compensates the initial
storage deployment cost with backhaul traffic reduction.

3https://github.com/Ressource-Allocation/Cache-Allocation-Project

A. Cache allocation

Authors of [13] propose a cache partitioning approach,
where each cache can be partitioned into slices with each
slice dedicated to a content provider. However, they need
information about the system conditions in order to solve
it (e.g., request rate for each content provider). We assume
instead that no information is available and that optimization
is done by observing the changes in backhaul traffic induced
by perturbing the allocation.

In [14], authors formulate collaborative joint caching and
processing problem as an Integer Linear Program that mini-
mizes the back-haul network cost, subject to cache storage and
processing capacity constraints for only one SP. However, in
our work EC is a multi-tenant environment. Compared with
single-tenancy, multi-tenancy enables higher utilization of the
cache resources in cloud servers as well as in edge servers.

Authors of [15] study optimal content caching problem in
EC, assuming that the NO decides what content to store in
the cache available at the edge, while in our case, because
of encryption, the NO cannot know the content of SPs; it
can thus only allocate cache slots to SPs and let them decide
what content to put in. Our assumption is more realistic, as
today SPs generally require that their traffic stays encrypted
and unknown to the NO.

In [16], the authors propose a resource pricing framework
for one NO and several SPs, for several well-established
resource allocations knowing the demand of the users. We
instead do not know anything about the requests nature. Also,
our focus is on resource allocation and not pricing, we assume
that SPs do not pay for the resources, as we will discuss in
the beginning of Section III.

In [17], the EC network is assumed to have multiple cache
servers to assist SPs, each with its own set of users and acts
as a rational selfish player, aiming to maximize its utility by
making strategies of local self caching. In [11], authors also
consider sharing cache between SPs, by applying coalitional
game theory. They assume that the cache resources at the
edge are owned by a central office equipped as a data center
connecting multiple NOs and each NO pays for these resources
to make them available for SPs. The NO also pays SPs to
convince them to use the cache at the edge and lets them
decide how much resources they get. This may seem counter-
intuitive, as we expect that the NO will get paid when it
provides certain resource. They justify this by the fact that
the interest of the NO is to minimize its expenses: the authors
show that if the NO does not pay SPs to use cache, he will
end up paying more, in order to carry the big traffic from SPs.
However, our allocation decision is centralized by the NO,
who owns the resources, and we do not require any payment
as shall be explained in the beginning of Section III.

Recently, authors of [18] considered the case where the NO
is able to place application images at the edge, in a cache
with limited capacity. The problem is solved via a Stackelberg
game. The authors work under complete information assump-
tion, i.e., the system parameters and utilities are assumed to
be known by the NO, while in our work this information is
unknown.

DRAFT 3

B. Data-driven methods for resource allocation

The main limit of most of the aforementioned works is that
they assume that an exact characterization of the system is
known, i.e., all the quantities and dependencies involved in the
resource allocation problem are known in advance. This is not
the case for our problem, where we do not know the expression
of the cost function we want to minimize, e.g. , inter-domain
bandwidth consumption. We thus need to resort to data-
driven approaches, which can drive cost functions toward the
minimum in the absence of a known characterization of the
system, based solely on monitoring information.

RL has been used for resource allocation in the context of
EC in, for instance, [19], [20], [21], [22], [23]. Joint manage-
ment of the communication and computation resources using
deep RL is considered in [19]. In [20], the authors consider
a cluster with multiple resource types and use deep RL to
choose one or more of the waiting jobs to schedule at each
time step. In [21], the authors solve the problem of allocating
GPU at the edge to run deep neural networks to maximize
the quality of service of the prediction model. Authors of [22]
use a RL approach to allocate CPU time, Virtual CPUs and
memory, to Virtual Machines (VMs). In [23], authors propose
deep RL for allocating resources in a network slicing scenario.
Contrary to our approach, the authors of the works mentioned
above pre-train the RL algorithm offline on a simulated system
before using it on the actual one. Instead, we assume that the
behavior of the system is not known in advance, which makes
it impossible to build a simulator to model it. Our challenge
is thus to train our algorithm online, acting directly on the hot
and running system. This imposes on us a more parsimonious
learning strategy as we need to ensure that the system is not
heavily perturbed during training.

In [24], the authors present a RL algorithm for resource
auto-scaling in clouds: resources are assumed to be unlimited,
however the goal is to allocate to each SP an amount of
resources that does not exceed its needs. In our case, resources
are scarce, allocating resources to one SP means allocating less
for another.

To the best of our knowledge, the only method we can
compare against is SPSA [12], since the latter is the only
work to propose a data-driven approach to partition a finite
amount of cache among several SPs with encrypted content.
The authors do so based on stochastic optimization. However,
they need to continuously perturb the allocation, generating
spurious backhaul traffic that may be non-negligible. We
instead include traffic perturbation into the cost function, thus
managing to keep it low, which allows us to outperform [12],
as shown in Section VII.

A preliminary version of this work was presented in [25].
With respect to it, we added model-based RL, which outper-
forms the simple model-free RL of [25], and we thoroughly
study its convergence analytically, whereas in [25] no theoret-
ical results were available.

C. Multi-resource allocation at the Edge

In [26], the authors consider an EC system under network
slicing in which the wireless devices generate latency sensitive

computational tasks. The allocation of wireless and computing
resources to a set of autonomous wireless devices in an EC
system is considered in [27]. They model the interaction
between the NO, which manages the allocation of wireless
and computing resources, and devices. In order to minimize
completion time, devices autonomously decide whether to
use shared resources for offloading computing tasks so as to
minimize their own completion times or to compute tasks lo-
cally. In [28], authors establish a software-defined networking
based architecture for edge/cloud computing services in 5G
heterogeneous networks, which can support efficient and on-
demand computing resource management to optimize resource
utilization and satisfy time-varying computational tasks. A
dynamic provisioning of computing resources is considered
in [29]. Computing resources are provisioned as VM instances
on the fly. The authors propose two allocation and pricing
mechanisms based on greedy algorithm and linear program-
ming based approximation. A main common assumption of the
papers above is that user devices submit tasks to the NO and
such tasks consume resources to be executed and transmitted.
Contention for resources is then modeled among user devices.
However, we consider that these models are not appropriate
for EC in our vision, since all traffic between devices and
service providers is encrypted to maintain confidentiality and
the NO does not have control over it. Therefore the contention
for resources is, in our vision, between SPs and not between
tasks submitted by users. In our assumption, the NO can only
decide how to allocate resources among SPs and then users
device interact directly with SPs, outside the control of the
NO.

In [30], the authors assume that each SP explicitly requests
a certain amount of resources (e.g., memory, CPU and link
capacity) and consider the difference between the resources
requested and the resources actually allocated to them. The
decision maker (the NO) in this work aims to maximize the
fairness of the resources allocation. In both [31] and [32],
the authors optimize the offloading decision of end users and
resource allocation strategy to minimize the system latency
subject to dynamic cache capacities and computing resource
constraints. Authors of [32] also aim to minimize energy
consumption. We instead assume that the NO allocates its
edge resources so as to satisfy its own goals (backhaul traffic
minimization in our case), without requiring to receive explicit
resource requests from SPs.

An explicit request of SPs of the amount of resources they
are willing to consume is also required in [9] and [33]. The
former relies on a heuristic for resolution and assumes that
SPs are truthful and declare the resources they really need.
The latter makes use of Monte-Carlo Tree Search, SPs pay
proportionally to the resources they are granted. We do not
need such assumptions in our work.

Similar to us, but in the context of network slicing, in [34]
the NO jointly allocates CPU and bandwidth to several tenants,
one per slice, in order to minimize an objective function
relevant to the NO (energy, in their case). However, they
assume the NO knows the expected load of requests of each
tenant and the requirements of each request, while we do not
require this assumption in this paper.

DRAFT 4

Fig. 1: Cache allocation and backhaul traffic (Origin servers
→ Edge) with multiple Service Providers (SPs).

In [35], the authors propose a new market-based framework
for efficiently allocating resources of heterogeneous capacity-
limited edge nodes to multiple competing SPs. Each SP is a
player. Given a price vector of the resources, each SP aims
to maximize its utility subject to a certain budget constraint.
The authors assume that this utility function is known (see
Section 4.2). However, in our case the utility (cost) function
is unknown. Moreover, we consider the utility of the NO (not
SPs), who owns the resources.

In [36], multiple edge servers and only one SP are con-
sidered. The resources on these edge servers are managed
by multiple NOs. The SP has a budget to use resources
at the edge. The end-users subscribed to this SP submit
delay-sensitive jobs with the aim to be executed under delay
constraints. An algorithm is proposed to allocate resources at
each time-slot to the submitted jobs. While this work considers
only one SP, we consider multiple SPs and one NO.

III. SYSTEM MODEL

We consider a system where NO owns cache space K at an
edge node, for instance at the base station, and P SPs provide
video streaming services for end users. Time is slotted. The
NO can share its cache space among the P SPs, and we denote
by θ

(k)
p the cache space allocated to SP p in time slot k. We

consider that cache space is an integer K and each slot can
store one object.
We denote by θ(k) = (θ(k)1 ,...,θ(k)P) the allocation at time slot
k and we define the set of feasible allocations

T ≜

{
θ|

P∑
p=1

θp ≤ K, θp ∈ Z+

}
(1)

Table I summarizes the most frequently used notations in
this paper.

A. Request pattern

We consider that each SP p has a catalog Np of Np = |Np|
cacheable objects. We use the tuple (c, p), c = 1, 2, . . . , Np to
refer to object c of SP p. Requests for objects arrive with rate
λ. We denote by fp the probability that a given request is for
an object offered by SP p, and hence the request arrival rate for
objects of SP p is λ· fp. To capture the fact that not all objects
of an SP may be cacheable (e.g., video calls), we denote by ζp
the probability that a request to SP p is for a cacheable object,
and we refer to this as its cacheability. For a cacheable object
(c, p), we denote by ρc,p its popularity, i.e., the probability
that, among the requests for all cacheable objects of SP p, the

TABLE I: Table of notation

Notation Description
P Number of SPs (Section III)
K Cache total capacity (Section III)
Np Catalog of SP p (Section III-A)
Np Catalog size of SP p (Section III-A)
ζp Cacheability of SP p (Section III-A)
ω Exogenous conditions (Section III-B)
θ Cache allocation (Section III)
a Action of the NO (Section III)
θp Number of slots given to SP p (Section III)
θ∗ Optimal allocation (Section III-C)
∆ Perturbation (Section IV-A)

θprop Proportional allocation (Section VII-B)
λ Total request rate (Section III-A)
fp Probability that a request is for SP p (Section III-A)
ρc,p Popularity of object c of SP p (Section III-A)
λc,p Request rate for object c of SP p (Section III-A)

Cnom,p(θp, ω) Nominal cost for SP p (Section III-B)
Cnom(θ, ω) Nominal cost (Section III-B)
Cpert(a) Perturbation cost (Section III-C)
C(k) Instantaneous cost (Section III-C)
S State space (Section IV-A)
Aθθθ Action space (Section IV-A)
α(k) Learning rate at time slot k (12)
γ(k) Discount factor at time slot k (12)
ϵ(k) Epsilon at time slot k (Section IV-C3)

Ĉnom,p(θp) Model of nominal cost for SP p (Section IV-B)
Ĉnom(θ) Model of total nominal cost (Section IV-B)
M(k) Memory at time slot k (Section IV-C2)
Nmemory Mini-batch size for memory (Section IV-C2)
Nmodel Mini-batch size for model (Section IV-B)

request is for object c. Under this model, a cacheable object
(c, p) receives requests at rate λc,p = λ · fp · ζp · ρc,p.

We adopt the common assumption in the literature that
all objects have the same size [11], [12], [13]. Objects may
represent, for instance, chunks of videos. We consider that
the arrival process is stationary. In practice, object popularity
and request rate change smoothly over time, and as we will
show in Section VII-B our algorithm can converge fast enough
(15 minutes, see Figure 4a) to be able to consider the arrival
process to be stationary.

B. Cost model

The cost of the NO is due to backhaul traffic, which could be
incurred for two reasons. First, for a given cache partitioning θ,
the cache misses cause backhaul traffic. We call the resulting
cost the nominal cost. Observe that for any allocation θ, the
nominal cost is a random variable parameterized by parameters
that are unknown/not observable by the NO, i.e., the requests
of users for video objects that could changes over time. We
denote these unknown parameters, which represent exogenous
conditions that are not under the control of the NO, by ω.
We express this dependence, for any θ, by using the notation
Cnom,p(θ, ω) for the nominal cost due to SP p:

Cnom,p :RP ×X → R

(θ, ω)→
∑

c∈ω∩Np

1− 1θp(c)

DRAFT 5

where X is the topological space of requests and

1θp(c) =

{
1 if c is in the θp cached objects in the edge
0 otherwise.

The total nominal cost due to all SPs, at time slot k, is

Cnom(θ
(k), ω) =

P∑
p=1

Cnom,p(θ
(k), ω) (2)

The second source of backhaul traffic is changing the cache
partitioning between the SPs. We refer this as perturbation
cost. To express the perturbation cost, let us denote by a(k) =
θ(k+1)−θ(k) the perturbation vector, i.e., the change in cache
partitioning of the NO at time slot k. If θ

(k+1)
p > θ

(k)
p then

SP p will download θ
(k+1)
p − θ

(k)
p > 0 objects in its allocated

storage. We can thus express the perturbation cost as:

Cpert(a
(k)) =

P∑
p=1

[θ(k+1)
p − θ(k)p]+

The instantaneous cost C(k) at time slot k is then

C(k) ≜ Cnom(θ
(k), ω) + Cpert(a

(k)), (3)

and the cumulative cost over Z time slots as:

Ccum(Z) =

Z∑
k=1

C(k) (4)

C. Problem formulation

Since for any θ, the total nominal cost Cnom(θ, ω) is a
random variable, the NO aims to minimize its expected value:

θ∗ ∈ argmin
θ∈T

ECnom(θ, ω) (5)

We emphasize that ECnom(θ, ω) is never observable directly,
only a realization Cnom(θ, ω) is. The latter can be considered
as a noisy observation of ECnom(θ), i.e., ∀θ ∈ T

Cnom(θ, ω) = ECnom(θ, ω) + η, (6)

where η is a random variable.
The problem (5) is a contextual bandit problem, where ω is

the context. Algorithms for solving contextual bandit problems
rely on experimenting with different cache allocations, and
hence they will involve perturbation cost that they do not
take into account. Hence it is more reasonable to consider
the following optimization problem:

π∗ = argmin
π∈Π

lim
Z→∞

1

Z

Z∑
k=1

E[C(k)] (7)

where Π is is the set of causal allocation policies.
An allocation policy π is a function π(a|θ) defining the

decisions of the NO: whenever the NO observes state θ, it will
choose an action a with probability π(a|θ). During training,
the NO starts with a certain policy π(0)(·) and then adjusts it,
based on the measured cost, in order to approach the optimal
policy π∗.

Note that, despite the fact that the spurious traffic generated
by perturbations adds to the cost, perturbations are the only
way for the NO to discover how to optimize the “black-box”
function θ → ECnom(θ, ω). Indeed, by observing the effects
of perturbations on the nominal cost, the NO can accumulate
knowledge that can be used to drive the system close to the
optimal allocation θ∗. Therefore, in our data-driven approach,
rather than directly solving (5), which would be infeasible for
the reasons stated above, our aim is to find a sequence of
perturbations {a(k)} in order to minimize the expected mean
cumulative cost (4), i.e.,

Observe that the NO problem is a sequential decision mak-
ing problem under uncertainty, where the uncertainty is due
to the randomness of the users requests. In what follows we
propose an allocation policy based on RL. We will show that,
by doing so, we converge close to the optimal allocation (5).
Note that, for any initial allocation θ(0), the sequence {a(k)}
deterministically induces a sequence of states {θ(k)}:

θ(k+1) = θ(k) + a(k) (8)

We refer to {θ(k),a(k)} as a state-action sequence. Adopt-
ing the standard terminology from the literature [37, Sec-
tion 4.1], the observations of the NO are based on a bandit
feedback model, in that at every time-slot k the NO observes
only the cost (3) of the state-action pair visited in that time-slot
and not the others.

IV. DATA-DRIVEN OPTIMIZATION

A. MDP formulation

Our cache allocation problem can be formulated as a
deterministic MDP. The set of states S consists of all the
allocation vectors that we can visit. To prevent jumping from
an allocation to another which involves a change of a large
number of contents which would imply a high perturbation
cost and which would be detrimental to the operation of an
up and running system, as is our case, we adopt a discretization
step ∆ ∈ N, i.e., the amount by which we change the
allocation, and define S as:

S =

{
θθθ = (θ1, . . . , θP)|

P∑
p=1

θp ≤ K, θp multiple of ∆

}
(9)

The discretization step ∆ constitutes, indeed, a preci-
sion/complexity trade-off. A smaller value of ∆ increases the
precision of the allocation since it allows to converge to a
discrete solution closer to the optimal one (Section VII-A);
it however increases the complexity of the problem since it
expands the space of states.

Observe that S ⊂ T (1). When in state θθθ, the NO can pick
an action from the following action space:

Aθθθ = {a = ∆ · (ep − ep′)|θθθ + a ∈ S, p, p′ = 1, . . . , P}
(10)

where ep is the p-th element of the standard basis of Rp.
We will use the terms allocation/state and

action/perturbation interchangeably. Therefore, an action
a consists in the NO adding ∆ units of storage to a certain

DRAFT 6

SP p and removing the same amount from another SP p′. The
null action corresponds to not changing the allocation (which
happens in (10) when p = p′). Thanks to (8), the transition
from a state to another is deterministic.

Our objective function accounts for both nominal cost as
well as perturbation cost and is given by:

Cγ
cum = lim

Z→∞
E

 Z∑
k=0

γ(k) ·
(
Cnom(θ

(k), ω) + Cpert(a
(k))

)
︸ ︷︷ ︸

Instantaneous cost C(k)

(11)

where 0 < γ < 1 is a hyper-parameter called discount
factor.

B. Online model-based RL

To properly characterize Model-based RL, we first need
individual definitions of planning and Reinforcement Learning.
We can distinguish them based on their knowledge about
the system: planning methods assume that a model of the
system (nominal cost ECnom(θ) vs. allocation θ, in our case)
is available (a-priori or via learning), which allows the agent
to repeatedly plan forward from any state θ. In contrast, for
RL in its simplest form (i.e., model free RL) this model
is not present, so the agent can have information about the
instantaneous cost of a certain allocation, only by physically
visiting it. Model-based RL [38, Section 8] combines both
approaches. In model-based RL, “learning” happens at two
locations in the decision algorithm: 1) to learn the model of
the system, and 2) to learn the policy telling us which actions
to take from any state.

Since we do not know the form of the function θ →
ECnom(θ), the first step of model-based RL involves learn-
ing it from observed data. For that, we construct for each
SP p a model Ĉ

(k)
nom,p(θp) that will approximate the nomi-

nal cost ECnom,p(θp) for any θp. We thus obtain a model
Ĉ

(k)
nom(θ) ≜

∑P
p=1 Ĉ

(k)
nom,p(θp) that approximates the nominal

cost ECnom(θ), at time slot k.
At each time slot k,we perform the classical update of Q-

learning algorithm:

Q(k)(θ(k),a(k)) = (1− α(k)) ·Q(θ(k),a(k))+

α(k) ·
(
C(k) + γ(k) min

a∈A
θ(k+1)

Q(k)(θ(k+1),a)

)
(12)

Then, we take the last measured value Cnom,p(θ
(k)
p) and do

the following:
• We construct model Ĉ(k)

nom(θ).
• Then, we sample Nmodel random state-action pairs from

the state space S and action space A. Let us call
{(θ[i],a[i]),θ[i] ∈ S,a[i] ∈ Aθ[i]}i=1,...,N such sam-
ples. For each i-th sample, we predict a cost Ĉ [i] =
Ĉnom(θ

[i])+Cpert(a
[i]). Note that in this way we are able

to make predictions on state-action pairs that have not
been visited yet, exploiting “similar” pairs observed in
the past.

• We finally perform Nmodel Q-table updates, as in (12), us-
ing Ĉ [i] calculated above in place of C(k) of formula (12).

In line 20 of Alg. 1, we estimate a model of the nominal
cost from the collected observations. Such a model is then
used to perform additional updates of the Q-table. It will be
required in the proof of Theor. V-B.14 that this model has to
be unbiased, in order to avoid driving Q-table updates in the
wrong direction. A simple empirical average of the observed
nominal costs would be an unbiased model, but we need to
collect many samples before empirical averages are sufficiently
close to the expected value of the nominal cost. Moreover, at
the beginning of the learning process, a lot of allocations have
not yet been visited, and thus empirical averages would not
be all available. For this reason, in the first iterations, we fit
a regression model on the collected observations. This model
also gives estimates of the nominal cost in the allocations not
yet visited, which allows to “accelerate” the updates of the
Q-table at the beginning. To obtain unbiasedness, we then
gradually abandon the regression model and we adopt the
empirical averages.

We now formally describe how we estimate the cost model
in Line 20 of Alg. 1. Up to a certain time slot Kreg, model
Ĉ

(k)
nom,p(θp) is obtained by regression using Dp as dataset. Let

us denote Ĉ
(k)
nom,p,reg(θp) the model obtained by regression.

Then, we gradually replace Ĉ
(k)
nom,p,reg(θp) with the empirical

mean:

C
(k)

nom,p(θp) ≜
1

|K(k)
p,θp
|

∑
k′∈K(k)

p,θp

Cnom,p(θp, ω
(k′)) (13)

where K(k)
p,θp

is the set of time-slots k′ ≤ k, in which SP p
has been allocated θp slots.

We define our model at time slot k for any θp ∈ [0,K] as:

Ĉ(k)
nom,p(θp) ≜

Ĉ
(k)
nom,p,reg(θp)

if k ≤ Kreg

or K(k)
p,θp

= ∅

1

|K(k)
p,θp

|
Ĉ

(k)
nom,p,reg(θp)

+

(
1− 1

|K(k)
p,θp

|

)
C̄

(k)
nom,p(θp)

otherwise

(14)

Similar to (2), the cost estimated by the model is Ĉ(k)
nom(θ) ≜∑p

p=1 Ĉ
(k)
nom,p(θp) and the empirical mean of the nominal cost

measured is C̄
(k)
nom(θ) ≜

∑p
p=1 C̄

(k)
nom,p(θp).

The following theorem ensures that our model is an unbi-
ased estimator of the nominal cost.

Theorem IV-B.1. For any SP p and allocated cache slots θp
our model converges uniformly to the expected value of the
nominal cost, i.e.,

u

lim
k→∞

Ĉ(k)
nom(·) = ECnom(·) (15)

where symbol limu indicates that

lim
k→∞

∥Ĉ(k)
nom(·)− ECnom(·)∥∞ = 0 (16)

4In particular in Theor. B-A.1, which is needed for Theor. V-B.1

DRAFT 7

In case a simulation model of the system is available, it can
be used in lieu of the regression model. In this case, instead
of fitting the regression model, we would use observations to
calibrate the simulator, i.e., to find the simulation parameters
that better match the observed costs.

C. Additional enhancements

We now report some enhancements that considerably im-
prove the performance of our algorithm.

1) Learning rate scheduling: The hyper-parameter α(k)

in (12) tells the magnitude of step that is taken towards the
solution. α(k) should not be too big a number as it may
continuously oscillate around the minima and it should not
be too small of a number else it will take a lot of time and
iterations to reach the minima. As in [12], we decrease it
slowly, because initially when we are at a totally random point
in solution space we need to take big leaps towards the solution
and later when we come close to it, we make small jumps and
hence small improvements to finally reach the minima.

α(k) = α(k−1) ·
(
1− 1

1 +M + k

) 1
2+ξ

(17)

where M, ξ > 0 are constants that tune the slope of decrease.
2) Experience replay: In the simplest implementation of

Q-learning, the measurement made in a certain time-slot is
used to update the Q-table in that time-slot only and is never
used again. However, the set of previous measurements (i.e.,
the past “experience”) could be further exploited to improve
the Q-table update in future time-slots. To this aim, Experience
Replay has been proposed [39]. At any time-slot k, in addition
to using the measured instantaneous cost C(k) to update the
Q-table in (12), we also store this measurement in the form
of a triplet

(
θ(k),a(k), C(k)

)
, which we call experience. The

set of experiences accumulated in this way is called memory.
Formally, let us define the memory as:

M(k) = {(θ(0),a(0), C(0)), . . . , (θ(k),a(k), C(k))}

Whenever we update the Q-table, additionally to perform-
ing (12) using the current observation, we also sample the
memory randomly for a mini-batch of experiences of size
Nmemory and we use these random samples as entries for the
Q-table by applying (12).

3) ϵ stretched exponential decay: The value of ϵ(k) is the
probability of taking a random action (exploration) instead of
the best so far, at any time-slot k. We schedule ϵ(k) as in
Fig. 2:

ϵ(k) =

ϵ0 −
[

0.9·ϵ0
cosh(e−

k−A·Z
B·Z)

+ k·C
Z

]
if k ≤ Z

ϵ(Z)

k−Z otherwise
(18)

where ϵ0 is the initial value of ϵ. We chose this particular
shape of scheduling, since it induces an Exploration phase
(high values of ϵ(k)) followed by an Exploitation phase, which
can be controlled in a simple way. Hyperparameter A deter-
mines the length of the Exploration phase. Hyperparameter

B determines the slope of the transition from Exploration to
Exploitation. Hyperparameter C controls the steepness of left
(Exploration) and right (Exploitation) tails of the curve of
the ϵ(k) evolution. This shape is inspired by common prac-
tice [40], but to preserve enough exploration, we introduced
hyperparameter Z, which we call time horizon, after which
the slope of decrease of ϵ(k) diminishes. Overall, our chosen
decay scheduling provides:

• sufficient time for exploration at the beginning.
• preference to exploitation (with respect to exploration) in

the end (quasi-deterministic policy).
• smooth transition while switching from exploration to

exploitation.
Alg. 1 describes how we combine model-based RL with the

enhancements cited above.

V. THEORETICAL PROPERTIES

A. Memory complexity

Since the size of the state space S is O((K/∆)P) and of the
action space A is O(P 2), the memory required to store the Q-
table is O((K/∆)P ·P 2). We assume that the number of SPs
getting a cache slice is limited (3 or 4). The cubic dependence
on P is a limited issue under this assumption. Observe that
we can counter-fight the linear increase of memory complexity
with respect to the cache size K by proportionally increasing
the elementary allocation ∆.

B. Convergence

In our algorithm we make use of a discretization constant
∆, which may be larger than 1. The latter limits the state
space S (9) and consequently prevents us from reaching the
optimal allocation θ∗ defined by (5). We can thus only reach
a discretely optimal allocation:

θ̂
∗
∈ argmin

θ∈S
ECnom(θ, ω) (19)

The following theorem, proved in the Appendix, shows that
our allocation converges to the discretely optimal one.

Theorem V-B.1. If the discount factor γ is sufficiently close
to 1

lim
k→∞

θ(k) = θ̂
∗

with probability 1.

Sketch of the proof. The main steps to prove the above
theorem are:

• We prove that our Q-table Q(k) converges to the optimal
Q-table Q∗ with probability 1.

• We prove that the sequence of actions and states induced
by Q∗ has an absorbing state that is the discretely optimal
state θ̂

∗
.

• We prove that the sequence of actions and states induced
by our Q-table Q(k) also follows Q∗.

• We prove that the sequence of actions and states that we
take online converges with probability 1 to the sequence
induced by our Q-table Q(k) (assuming no more explo-
ration).

DRAFT 8

Algorithm 1: k-th step of Model-based RL

1 α(k) ← calculate the value of α ; // formula (17)

2 ϵ(k) ← calculate the value of ϵ ; // formula (18)

3 with probability ϵ(k): a(k) ← random action ;
// ϵ-greedy policy

4 with probability 1− ϵ(k): a(k) ← best action from
Q(k)(θ,a) ;

5 θ(k+1) ← θ(k) + a(k);
6 C(k) ← Cnom(θ

(k), ω) + Cpert(a
(k));

7 Q(k)(θ(k),a(k))← (1− α(k)) ·Q(k)(θ(k),a(k)) +

α(k) ·
(
C(k) + γmina∈A

θ(k+1)
Q(k)(θ(k+1),a)

)
;

// update Q(k)

8 ///////////////
9 /// Memory replay

10 M(k) ←M(k−1) ∪ {(θ(k),a(k), Cnom(θ
(k)))};

11 for Nmemory times ; // Nmemory is the size of the

memory mini batch

12 do
13 (θrd,ard, C rd

nom)← random element from M(k);
14 θ′rd ← θrd + ard;
15 Q(k)(θrd,ard)← (1− α(k)) ·Q(k)(θrd,ard) + α(k) ·(

C rd
nom + Cpert(a

rd) + γmina∈Aθ′rd Q
(k)(θ′rd,a)

)
;

// update Q(k)

16 end
17 ///////////////
18 /// Model training and inference
19 D(k)

p ← D(k−1)
p ∪ {(θ(k)p , Cnom,p(θ

(k)
p)}; // collect

realization of Cnom,p(θ
(k)
p) for each SP p

20 Ĉ
(k)
nom,p(θp)← estimate model from D(k)

p for Nmodel

times ; // Nmodel is the size of the model mini

batch

21 do
22 θrd ← random state from S;
23 ard ← random action from Aθrd ;
24 θ′rd ← θrd + ard;
25 Compute Ĉ

(k)
nom,p(θrd

p) ; // predict the nominal

cost using the model

26 Ĉ ←
∑P

p=1 Ĉnom,p(θ
rd
p)) + Cpert(a

rd);
27 Q(k)(θrd,ard)← (1− α(k)) ·Q(k)(θrd,ard) + α(k) ·(

Ĉ + γmina∈Aθ′rd Q
(k)(θ′rd,a)

)
; // update

Q(k)

28 end

• Finally, we show that this sequence converges with prob-
ability 1 to a sequence induced by Q∗.

Let us define the discretization gap G∆ as the loss induced
by the fact that we do not allocate cache slot by slot, but only
in multiples of the discretization step ∆:

G∆ = ECnom(θ̂
∗
, ω)− ECnom(θ

∗, ω) (20)

Intuitively, the larger the discretization step ∆, the larger
the discretization gap G∆. The following bound (proved in
the Appendix) shows this dependence between ∆ and G∆.

Proposition V-B.2. G∆ ≤
∑P

p=1

∑∆
c=1 λc,p.

A consequence of Theor. V-B.1, proved in the Appendix, is
the following:

Corollary V-B.3. Let us denote by Ccum(Z) and C∗
cum(Z)

the cumulative cost (4) obtained via Q-learning and via the
optimal theoretical allocation θ∗, respectively. The difference
between the two converges in expectation to the discretization
gap:

lim
Z→∞

1

Z
E [Ccum(Z)− C∗

cum(Z)] = G∆

Therefore, a trade-off emerges: one the one hand, discretiza-
tion allows us to reduce the memory complexity, i.e., state
space and action space (Section V-A), on the other hand
it keeps allocations at a finite distance from the theoretical
optimal cost. We will however see in the numerical results
(Section VII) that this distance is in practice very small.

VI. DISCUSSION ON THE USE OF RL

We now briefly discuss why we preferred our RL setting
over other possible methodologies. First of all, we rule out all
the static optimization techniques that require full information,
due to the online and stochastic nature of the problem at hand.

Simultaneous Perturbation Stochastic Approximation
(SPSA) has been applied in [41] for instance to optimize
systems in a stochastic environment. However, the objective
of such method is just to converge towards the optimum
and no cost is considered for perturbation, the system is
continuously perturbed along multiple directions. In real
situations, perturbing a system can prevent it from working
properly or engenders high cost (as in our problem). Our
RL formulation allows to naturally include the cost of
perturbation in the optimization problem and to consider the
trade-off between converging fast toward the optimum and
limiting the extent and frequencies of perturbations.

We could also interpret our allocation problem at hand
as a “black-box optimization”: we have an unknown system
whose cost function is unknown (Cnom(θ, ω) in our case) and
we aim to find the optimal solution θ∗. In such problems,
Bayesian Optimization techniques [42] trade-off exploration
and exploitation to pick the states to visit, observe the cost at
those states and decide the next state to visit, up to finding
the optimum. However, such techniques suffer from the same
limitation of SPSA: they are meant for offline problems, where
the objective is to retrieve the minimum of the cost function
at the end of the optimization and the cost of jumping from
one state to another is not quantified nor directly minimized.
Our RL framework not only allows us to reach an allocation
close to the optimum at the end, but also implicitly optimizes
the path of states visited during the optimization.

Lyapunov Optimization (LO) has also been used for alloca-
tion problems [43], [44]. However, these works assume that the
expression of the cost or reward function (Cnom(θ, ω) in our
case) is known, the only unknown information is the sequence

DRAFT 9

of future realizations ω of the environment. We do not need
to rely on such a strong assumption, as RL allows to optimize
the system even if the expression of the cost function remains
unknown.

The Markov Decision Process (MDP) underlying our RL
method is a Deterministic MDP (DMDP), as the transition
from one state to another is deterministic in our case. In [45],
transitions are unknown (although deterministic) and authors
use model free Q-learning to solve the MDP. However, we
focus on an infinite-horizon deterministic control system with
an approximation model for the reward (cost).

Our problem can be described as a MAB with switching
cost (MAB-SC) [46], [47]. In that context, we would need to
interpret each allocation vector as an arm and the perturbation
cost as a switching cost. We indeed solve in our case this
MAB-SC problem via model-based RL and as any randomized
strategy, our algorithm is subject to the bounds derived in
this context (Theor. 1 of [47]). We resort to model-based RL
instead of other algorithms proposed in the MAB context, like
EXP3 [48], as we can naturally embed in our algorithm the
model θ → Ĉnom(θ) of the nominal cost, inferred via simple
regression, which would not be as immediate to do using other
MAB algorithms. Observe that, as in [49], our problem is not
a contextual MAB, as the actions determine the states.

Our problem is not an adversarial MAB [50] either. Indeed,
the focus of adversarial MAB is on worst-case analysis: per-
formance bounds are provided under the assumptions that the
environment (the value of ω in our case) or even the actual cost
function expression Cnom(θ, ω) are chosen by an adversary
in order to “hurt” the decision maker (the NO in our case)
and to increase the cost of the system as much as possible.
In such a setting, [51, Theor.3.1] shows that it is impossible
to effectively optimize a DMDP such as ours. For our case,
adversarial analysis is too pessimistic, as the worst case (in our
case it would be for instance users generating a huge amount
of requests only for unpopular non-cached objects) would have
a negligible probability. We instead adopt a stochastic setting,
where the realizations ω of the environment are taken from a
probability distribution that is independent of the NO decisions
and we study the “average” behavior of the system, i.e., the
expected value of the cost and the probability to converge close
to the optimum.

Online decision problems have been presented in an adver-
sarial setting: relevant to our case is Smoothed Online Convex
Optimization (SOCO) [52], [53], which aims to optimize the
cost of a system by also taking into account the perturbation
cost to jump from one state to another. However, such algo-
rithms are studied in an adversarial setting, while we are in a
stochastic setting, as mentioned above.

We have performed some performance analysis using R-
learning instead of Q-learning. However, we observed worst
achieved cost (which confirms previous findings from the
literature [54]) and we omit the obtained results.

VII. NUMERICAL RESULTS

We now evaluate the performance of our RL allocation θ(k)

through simulations developed in Python and compare it to

45 135 225 315
Time (Minutes)

0.00

0.05

0.10

0.15

0.20

ε

ε

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

α

α

Fig. 2: Evolution of ϵ and α vs. time

two static allocations: (i) the theoretical optimal allocation θ∗,
which would ideally be computed by an oracle who knows
exactly the content popularity and thus the expression of
function θ → EC(θ), (ii) the proportional allocation θprop

where θp is proportional to the rate of requests λp directed to
SP p. We also compare it to two dynamic allocation strategies,
namely (iii) the model-free RL version of our algorithm that
we implemented in prior work [25] and (iv) SPSA [12].

We consider a network with 3 SPs. We set the overall
request arrival rate to λ = 4 · 103req/s (the same order
of magnitude of requests supported in one edge location of
Amazon CloudFront [55]). Each of these requests is directed to
SP 1, 2 or 3 with probabilities 0.75, 0.20 and 0.05, respectively.
Note that it is the request rate, independent of the number
of users that generate it, which determines the miss rate
and, in turn, the cost that we want to minimize. We set the
cacheability (Section III-A) of SP1, SP2 and SP3 to ζ1 = 0.4,
ζ2 = 0.9 and ζ3 = 0.9, respectively. Each SP has a catalog of
N1 = N2 = N3 = 107 cacheable objects. Content popularity
in each catalog follows Zipf’s law with exponents β1 = 1.2,
β2 = 0.4 and β3 = 0.2, respectively. The total cache size is
K = 5 ·106 slots. Assuming that 1 slot corresponds to 15 MB
(in the order of a chunk size), the total cache size in MB is
75 · 106 = 75 TB ≈ 3 times the storage of a Netflix Open
Connect Appliance [56]. Even with such storage capacity
deployed in the edge, we cannot cache the entire catalogs,
i.e., one catalog size is 150 TB. Moreover, the same video
could be stored in 20 different versions by Netflix, to adapt
it to different codecs, devices and resolutions. The simulation
time is set to Z = 6 hours. The length of a time-slot is 0.25
second.

We plot a normalized cost, i.e., the amount of objects
downloaded from the Internet (either as a result of an edge
cache miss or of an allocation perturbation) divided by the
total amount of objects requested by the users. All curves are
averaged with a sliding window of 10 min.

A. Pre-tuning of hyper-parameters

We now discuss some preliminary tuning that we performed
in experimentation not shown in this paper on the features
indicated in Section IV-C.

1) For the discretization step ∆, we found out that a good
complexity vs. precision trade-off was to set it to K/50.
To limit perturbations, we give a higher “weight” to the
null action. Indeed, when we take a random action, we set
the probability of choosing any non-null action to only

DRAFT 10

50 100 Formula (21)
Nmemory

0

5

10

15

20

25
Av

er
ag

e
C

os
t (

%
)

(a) Nmemory effect

45 135 225 315
Time (Minutes)

30
40
50
60
70
80
90

100
110

N
M
em

or
y

(b) Variation of Nmemory over time

Fig. 3: Choice of Nmemory

1/P 2 and all the remaining probability is for the null-
action.

2) We set the discount factor γ to 0.99, i.e., very close to 1
to give importance to future rewards and prevent myopic
decisions.

3) For α, the learning rate, we found that convergence was
slow when it was fixed. Therefore, we adopt learning rate
scheduling, which starts at 0.9 and decreases following
(17) to 0.2, with M = 3600 and ξ = 0.01. The variation
of α is illustrated in Fig. 2 (red curve).

4) We make ϵ decay as in (18) with A = 0.3, B = 0.1 and
C = 0.01. Z = 6 hours. These hyperparameters have been
chosen empirically after experimentation and provide a
good compromise between exploration and exploitation.
The black curve in Fig. 2 shows the decay of ϵ.

5) Regarding size Nmemory of the mini-batch of experiences,
we found that small fixed values were not allowing to ex-
ploit past experience, on the other hand, with large values
past experience was excessively dominating the updates.
We thus built a scheduling function that is (i) increasing,
so as to collect sufficient past experience before giving it
importance, (ii) concave and with a plateau, so as to avoid
excessive dominance of past experience over current
observations. After experimenting with scheduling curves
having the aforementioned characteristics, we obtained
the best performance with

N (k)
memory =

Nmax

cosh(e−
k−A·Z
B·Z)

+
k · C
Z

(21)

where Nmax = 100, A = 0.15, B = 0.3, C = 0.7, Z = 6
hours. The choice of N is illustrated in Fig. 3.

6) For Nmodel, we take at each time-slot Nmodel = 50 samples
on which we will apply the model Ĉnom(θ). We rely
here on empirically tuning the number of samples Nmodel,
striking a balance between computational cost and sample
effectiveness.

B. Convergence close to the optimum

The behavior of our algorithm is well illustrated by Fig. 4a:
Our MB-RL algorithm learns the system in only 15 minutes
and converges to a cost close to the theoretical optimum. This
rapid convergence is achieved thanks to the accurate model
we obtain by regression (Fig. 5) and that we use to estimate
the nominal cost for any given allocation (even if the state
is not visited). Although this paper focuses on a stationary

0 90 180 270 360
Time (Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
(k

)

MB-RL
MF-RL
SPSA
Optimal

(a) Default scenario (3 SPs)

0 90 180 270 360
Time (Minutes)

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

C
(k

)

MB-RL
MF-RL
SPSA
Optimal

(b) Scenario with 4 SPs (§VII-D)

Fig. 4: Evolution of total instantaneous cost C(k).

Fig. 5: Model Ĉnom,p(θp), p = 2

scenario, the results suggest that the fast convergence of our
MB-RL algorithm could allow us to adapt even if the system
parameters change over time. For instance, even if the request
pattern is non stationary, our model can adapt to any new
request pattern in 15 minutes. For model-free Reinforcement
Learning (MF-RL), instead, we do not construct a model while
learning the system behavior and we update the Q-table solely
by perturbing the system by taking relatively many suboptimal
actions in a first phase, in order to learn it. For this reason,
perturbation cost is high up to 135 minutes. (see Fig. 7a) After
that, we start to exploit the collected knowledge and we limit
perturbation.

Furthermore, our RL algorithm outperforms SPSA used
in [12], which converges to the optimal allocation in 45
minutes but never reaches the optimum due to the continuous
perturbations it has to apply to estimate the sub-gradient of
the objective function.

We now compare the cost C(k) induced by our policy with
the cost of the static proportional allocation θprop (proportional
to the rate of requests directed to each SP). Note that while
our method deals with both nominal and perturbation costs (3),
the static θprop does not apply any perturbation to the system.
We define the gain of our policy with respect to θprop as:

G(k)
prop =

Cnom(θprop, ω)− C(k)

Cnom(θprop, ω(k))
(22)

Fig. 6 shows that our solution reaches a gain of 60% in less
than 45 minutes with respect to θprop.

To confirm our findings, we plot in Fig. 7a the perturbation
cost Cpert(a

(k)) for the model-based and model-free versions
of our algorithm and for SPSA. Results confirm that after
15 minutes, Cpert(a

(k)) is practically null on an average 10
minute window for the model-based RL which means that
we no longer drastically change the allocation. In the case of
model-free RL, instead, we have to wait about 3 hours for
the system to stabilize and the perturbations to be negligible.

DRAFT 11

0 90 180 270 360
Time (Minutes)

40

20

0

20

40

60

80

G
ai

n
(%

)

Fig. 6: Gain of MB-RL with respect to proportional allocation

0 90 180 270 360
Time (Minutes)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

C
p
er
t(

a
(k

))

MB-RL
MF-RL
SPSA

(a) Perturbation Cost Cpert(a
(k))

0 90 180 270 360
Time (Minutes)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
(k

)

0
1000
2000
3000
4000
5000
6000

C
um

 n
um

 o
f r

an
d.

 a
ct

io
ns

(b) Random actions

Fig. 7: System perturbation

This validates two findings: (i) our algorithm converges to a
cache configuration, in both versions, and moves from there
with a small probability, according to Theor. V-B.1 and (ii)
model-based RL converges 10 times faster than model-free
RL. Observe that for SPSA, Cpert(a

(k)) is always higher than
in our RL algorithms in both versions, which is expected since
SPSA consists in continuously perturbing the allocation.

We map in Fig. 7b each value of C(k) with the nature
of the action taken at the time-slot k: each black point
represents a random action which means the agent is exploring
the environment. The large number of black points in the
beginning confirms that the first phase is an exploration phase
and it corresponds to the high value of ϵ, then the number
of perturbations starts to decrease as the value of ϵ decreases
in order to limit the exploration as stated in Section IV-C3.
We plot in the same figure the cumulative number of random
actions: we observe that it increases rapidly in the first 90
minutes and then starts to stabilize in the rest of the simulation.

We plot in Fig. 8a and in Fig. 8b the evolution of the
allocation θ(k) of the MB-RL and MF-RL algorithms, re-
spectively, over time (center of each figure), the proportional
allocation θprop (left) and the optimal allocation θ∗ (right).
Note that we start by θ0 = θprop. The results show that we
converge to an allocation θ̂

∗
close to θ∗ and we almost stay

in this allocation, which matches our theoretical result stated
in Theor. V-B.1. MB-RL algorithm clearly exhibits greater
stability and convergence speed compared to MF-RL, as it
leverages an explicit model of the environment.

In Fig. 9, we plot, per each timeslot k, how many times
the current state θ(k) has been visited in the past. We see that
between 0 and 15 minutes a lot of states are visited few times,
which corresponds to the exploration phase: the agent keeps
jumping from one state to another to learn the optimal policy.
After 15 minutes, the time in which our algorithm converges,

θPropC
ac

he
 a

llo
ca

tio
n

(%
)

0 180 360
Time (Minutes)

0
20
40
60
80

100
SP3 SP2 SP1

θ ∗

(a) MB-RL

θPropC
ac

he
 a

llo
ca

tio
n

(%
)

0 180 360
Time (Minutes)

0
20
40
60
80

100
SP3 SP2 SP1

θ ∗

(b) MF-RL

Fig. 8: Evolution of the allocation over time

Fig. 9: Number of times current θ is visited

we observe an almost linear behaviour: the agent keeps visiting
the same allocation θ̂

∗
(the absorbing state). The few points

that we observe out of the linear behaviour represent the few
random actions taken by the agent because ϵ > 0. As long
as the value of ϵ is non zero, the agent will choose a random
action at some point, even after reaching θ̂

∗
. The figure shows

that our RL agent exploits more and more the good states, but
never completely ceases visiting other states for exploration
purposes.

C. Fairness

Let xp =
θp

ζp·λ·fp denote the slots given to SP p, normalized
to its amount of cacheable requests. We compute the fairness
of the system with the Jain’s fairness index [57]:

J (x1, . . . , xP) ≜
(
∑P

p=1 xp)
2

P ·
∑P

p=1 x
2
p

(23)

Our results show that cache sharing strategy with our MB-
RL allocation (0.7 fairness) is much fairer than the optimal
allocation θ∗ (0.36 fairness), at almost the same total cost. It
is also close to that of the proportional allocation θprop (0.85
fairness) albeit being much better in terms of cost. Note that
we are also close to the ideal maximum fairness achieved by
the proportional allocation not taking into account cacheability,
i.e., if all contents were cacheable (i.e., ζp = 1, p = 1, .., P).
The latter is 1, by construction, as it is proportional to the rate
of requests directed to each SP; on the other hand, it is an
artificial measure, as it ignores cacheability.

D. Sensitivity analysis

We next study how the performance of our solution is
affected by the request rate λ and the cache capacity K. In

DRAFT 12

250 500 1000 4000
λ(req/s)

0
5

10
15
20
25
30
35
40
45

Av
er

ag
e

C
os

t (
%

)
K= 5 · 106

θ prop

SPSA
MF-RL

MB-RL
θ ∗

(a) To request rate λ

 5 · 104 0
10
20
30
40
50
60
70

 5 · 105
K

0
10
20
30
40
50
60
70

 5 · 106 0

5

10

15

20

25
λ= 4000 req/s

(b) To cache size K

Fig. 10: Sensitivity of the system

Fig. 10 we plot the average cost 1
ZCcum(Z) (4) of MB-RL and

MF-RL algorithm, after Z = 6 hours, and compare it to the
static proportional and optimal allocations.

Let us first focus on the request rate λ. A small λ implies
that only few requests are observed in each time slot, which
may result in a high noise, as defined in (6), and ultimately
affects the accuracy of the update of the Q-table and slows
down the convergence. We thus expect any data-driven ap-
proach to perform best with large λ. This is evident for MF-
RL and SPSA (Fig. 10a), whose cost is far from the optimum
for λ ≤ 1000 req/s. It is however interesting to observe that
MB-RL performs relatively well even with few requests per
second. This shows that embedding the inferred model into
the RL agent increases the sample efficiency of our method.

Fig. 10b shows the average cost measured over Z = 6 hours
for various cache sizes K ∈ {5·104, 5·105, 5·106} and a fixed
request rate λ = 4 ·103req/s. It confirms that the gains of our
MB-RL algorithm hold for different cache sizes, and shows
that gain increases for larger caches. Indeed, for a small cache
size there is not much to optimize: the cost is high with both
proportional and optimal allocations, so even if MB-RL and
MF-RL position themselves between the two, the improvement
in cost is negligible.

Compared to SPSA, we observe in Fig. 10 that our algo-
rithm performs better in any configuration of the system.

We finally verify that the good performance of MB-RL is
maintained when increasing the number of SPs. We simulate
a scenario in the same conditions as in Section VII-B but we
change the number of SPs to P = 4. Each of the requests
is directed to SP 1, 2, 3 or 4 with probabilities 0.60, 0.20,
0.10 and 0.10, respectively. We set the cacheability of SP1,
SP2, SP3 and SP4 to ζ1 = 0.5, ζ2 = 0.7, ζ3 = 0.9 and
ζ4 = 0.9, respectively. Each SP has a catalog of N1 = N2 =
N3 = N4 = 107 cacheable objects. Content popularity in each
catalog follows Zipf’s law with exponents β1 = 2.2, β2 = 0.4,
β3 = 0.1 and β4 = 0.1, respectively. The total cache size is
K = 5 · 106. The simulation time is maintained at Z = 6
hours. The length of a time-slot is maintained at 0.25 second
and total request rate at λ = 4 · 103req/s.

As in Section VII-B, we plot in Fig. 4b the total cost C(k) of
our MB-RL algorithm, the optimal allocation θ∗, MF-RL and
SPSA. The results show that our algorithm rapidly converges
close to optimal cost, outperforming SPSA and MF-RL.

Such small P values remain reasonable as the number of
video streaming SPs using EC (as described in our vision) is

100 101 102 103 104 105

Rank of content
10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2

Pr
ob

ab
ili

ty

Netflix
Amazon
Apple TV

Fig. 11: Content popularity

20:00 02:00 08:00
Time (Hours)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
(k

)

MB-RL
MF-RL
SPSA

Fig. 12: C(k) for real dataset

still limited to big players such as Netflix [56].

E. Results with real-world datasets

To test our optimization in a more realistic scenario, we use
datasets from Netflix [58], Amazon [59], and Apple TV [60].
To estimate the relative popularity of movies within each of the
3 SPs, we normalize the number of times a movie was voted to
obtain the probability distributions of Fig. 11. Request rate λ
is non-stationary and is extracted from the Shanghai Telecom
dataset [61], including ∼7 million requests from 9481 edge
devices to simulate the overall request arrival rate. We make
normalized probability fp that a request is for SP p=Netflix,
Amazon, Appel TV vary with time as follows [62]:

Netflix Amazon Apple TV
01 am - 06 am 0.1198 0.3575 0.5228
06 am - 11 am 0.0425 0.1002 0.8572
08 pm - 01 am 0.1325 0.3042 0.5633

Fig. 12 shows the superior ability of MB-RL to adapt rapidly
to the temporal changes of the load, thanks to the model that
reduces the reliance on blind trial-and-error.

VIII. CONCLUSION AND FUTURE WORK

We proposed a model-based RL algorithm for online edge
cache allocation among several SPs, assuming encrypted, not
all cacheable content: a major challenge of in-network caching.
Our aim is not only to minimize cost, in terms of miss rate, but
also to optimize the way to achieve that, through minimizing
perturbations. We proved that our algorithm converges to an
absorbing discrete optimal state with probability 1 for an
infinite horizon. Simulations in several scenarios, including
synthetic and real traces of user arrivals, showed that our
algorithm converges to a configuration close to the optimal
one, much faster than the compared allocation strategies. This
allows to drastically reduce overall system cost.

REFERENCES

[1] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Auditing cache
data integrity in the edge computing environment,” IEEE TPDS, 2021.

[2] (2020) Internet IP transit provider. [Online]. Available: https:
//www.thousandeyes.com/learning/techtorials/transit-provider

[3] G. Çakmak and H. Suomi, “A comparison of ISP and MNO intercon-
nection models,” in ICT, 2014.

[4] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger,
“Anatomy of a large european IXP,” in ACM SIGCOMM, 2012.

[5] V. Giotsas et al., “O Peer, Where Art Thou? Uncovering Remote Peering
Interconnections at IXPs,” IEEE/ACM ToN, 2021.

[6] Cisco, “White paper,” Cisco Visual Networking Index: Forecast and
Trends, 2017–2022.

DRAFT 13

[7] (2018) Netflix titus. [Online]. Available: https://netflix.github.io/titus/
[8] T. V. Doan, L. Pajevic, V. Bajpai, and J. Ott, “Tracing the Path to

YouTube: A Quantification of Path Lengths and Latencies Toward
Content Caches,” IEEE Communications Magazine, 2019.

[9] A. Araldo et al., “Resource allocation for edge computing with multiple
tenant configurations,” ACM/SIGAPP SAC, 2020.

[10] F. Tütüncüoğlu, A. Ben-Ameur, G. Dán, A. Araldo, and T. Chahed,
“Dynamic time-of-use pricing for serverless edge computing with gen-
eralized hidden parameter markov decision processes,” in IEEE ICDCS,
2024, pp. 668–679.

[11] M. Ahmadi et al., “Cache subsidies for an optimal memory for band-
width tradeoff in the access network,” JSAC, 2020.

[12] A. Araldo et al., “Caching encrypted content via stochastic cache
partitioning,” IEEE/ACM ToN, 2018.

[13] W. Chu et al., “Joint cache resource allocation and request routing for
in-network caching services,” Computer Networks, 2018.

[14] S. Yang et al., “Online orchestration of collaborative caching for multi-
bitrate videos in edge computing,” IEEE TPDS, 2022.

[15] P. Blasco and D. Gündüz, “Multi-armed bandit optimization of cache
content in wireless infostation networks,” in IEEE International Sympo-
sium on Information Theory, 2014.

[16] S. Hoteita et al., “On fair network cache allocation to content providers,”
Computer Networks, 2016.

[17] G. Zheng and V. Friderikos, “Fair cache sharing management for multi-
tenant based mobile edge networks,” MobiArch, 2020.

[18] F. Tütüncüoğlu and G. Dán, “Optimal pricing for service caching and
task offloading in edge computing,” in IEEE/IFIP WONS, 2022.

[19] W. Xiaofei et al., “In-edge ai: Intelligentizing mobile edge computing,
caching and communication by federated learning,” IEEE Network,
2019.

[20] H. Mao et al., “Resource management with deep RL,” HotNets, 2016.
[21] Z. Fang et al., “Qos-aware scheduling of heterogeneous servers for

inference in deep neural networks,” CIKM, 2017.
[22] J. Rao et al., “VCONF: a RL approach to VMs auto-configuration,”

ACM ICAC, 2009.
[23] F. Mason, G. Nencioni, and A. Zanella, “Using distributed reinforcement

learning for resource orchestration in a network slicing scenario,”
IEEE/ACM ToN, 2022.

[24] J. Yuang et al., “Fast reinforcement learning algorithms for resource
allocation in data centers,” IFIP, 2020.

[25] A. Ben-Ameur, A. Araldo, and T. Chahed, “Cache allocation in multi-
tenant edge computing via online reinforcement learning,” IEEE ICC,
2022.

[26] S. Jošilo and G. Dán, “Joint wireless and edge computing resource
management with dynamic network slice selection,” IEEE/ACM ToN,
2022.

[27] ——, “Wireless and computing resource allocation for selfish computa-
tion offloading in edge computing,” in IEEE INFOCOM, 2019.

[28] J. Du et al., “SDN-based resource allocation in edge and cloud comput-
ing systems: An evolutionary stackelberg differential game approach,”
IEEE/ACM ToN, 2022.

[29] T. Bahreini et al., “Mechanisms for resource allocation and pricing in
mobile edge computing systems,” IEEE TPDS, 2021.

[30] F. Fossati et al., “Multi-resource allocation for network slicing,”
IEEE/ACM ToN, 2020.

[31] D. Wang, Y. Bai, G. Huang, B. Song, and F. R. Yu, “Cache-aided mec
for iot: Resource allocation using deep graph reinforcement learning,”
IEEE Internet of Things Journal, 2023.

[32] S. Yang, J. Liu, F. Zhang, F. Li, X. Chen, and X. Fu, “Caching-
enabled computation offloading in multi-region mec network via deep
reinforcement learning,” IEEE Internet of Things Journal, 2022.

[33] M. Elkael et al., “Monkey business: Reinforcement learning meets
neighborhood search for virtual network embedding,” Com.Net., 2022.

[34] W. Huang et al., “Dimensioning resources of Network Slices for energy-
performance trade-off,” in IEEE SCC, 2022.

[35] D. T. Nguyen, L. B. Le, and V. Bhargava, “Price-based resource
allocation for edge computing: A market equilibrium approach,” IEEE
Trans. Cloud Comp., 2021.

[36] S. Zhang, Y. Liang, J. Ge, M. Xiao, and J. Wu, “Provably efficient
resource allocation for edge service entities using hermes,” IEEE/ACM
ToN, 2020.

[37] A. Krause et al., “Submodular function maximization,” Tractability,
2011.

[38] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
The MIT Press, 2018.

[39] W. Fedus et al., “Revisiting fundamentals of experience replay,” ICML,
2020.

[40] S. Natarajan. (2020) Stretched exponential decay
function for epsilon greedy algorithm. [On-
line]. Available: https://medium.com/analytics-vidhya/
stretched-exponential-decay-function-for-epsilon-greedy-algorithm

[41] O. Granichin et al., “Simultaneous perturbation stochastic approximation
for tracking under unknown but bounded disturbances,” IEEE Trans. Aut.
Contr., 2015.

[42] B. Shahriari et al., “Taking the human out of the loop : A review of
bayesian optimization,” Proceedings of the IEEE, 2016.

[43] C.-F. Liu et al., “Latency and reliability-aware task offloading and
resource allocation for mobile edge computing,” IEEE Globecom, 2017.

[44] X. Lyu et al., “Optimal schedule of mobile edge computing for internet
of things using partial information,” IEEE JSAC, 2017.

[45] L. F. Yang et al., “Learning to control in metric space with optimal
regret,” in IEEE Annual Allerton Conference on Communication, 2019.

[46] R. Ortner, “Online regret bounds for markov decision processes with
deterministic transitions,” Theoretical Computer Science, 2010.

[47] O. Dekel, J. Ding, T. Koren, and Y. Peres, “Bandits with switching costs:
T 2/3 regret,” ACM Symposium on Theory of computing, 2014.

[48] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” Society for Industrial and Ap-
plied Mathematics, 2003.

[49] R. Warlop et al., “Fighting boredom in recommender systems with linear
reinforcement learning,” Advances in NIPS, 2018.

[50] P. Alatur et al., “Inferring streaming video quality from encrypted traffic:
Practical models and deployment experience,” ACM Sigmetrics, 2019.

[51] O. Dekel and E. Hazan, “Better rates for any adversarial deterministic
MDP,” ICML, 2013.

[52] G. Goel et al., “Beyond Online Balanced Descent: An Optimal Algo-
rithm for Smoothed Online Optimization,” Advances in NIPS, 2019.

[53] M. Lin et al., “Online optimization with switching cost,” Performance
Evaluation Review, 2012.

[54] W. W. Cohen and H. Hirsh, “To discount or not to discount in rein-
forcement learning: A case study comparing r learning and q learning,”
in Machine Learning Proceedings, 1994.

[55] (2022) Amazon cloud front. [Online]. Available: https://aws.amazon.
com/fr/cloudfront/

[56] (2023) Netflix open connect. [Online]. Available: https://openconnect.
netflix.com/

[57] R. K. Jain et al., “A quantitative measure of fairness and discrimination,”
Eastern Research Laboratory, Digital Equipment Corporation, 1998.

[58] OctopusTeam. (2024) Full Netflix Dataset. [Online]. Available:
https://www.kaggle.com/datasets/octopusteam/full-netflix-dataset

[59] ——. (2024) Full Amazon Prime Video Dataset.
[Online]. Available: https://www.kaggle.com/datasets/octopusteam/
full-amazon-prime-dataset

[60] ——. (2024) Full Apple TV Dataset. [Online]. Available: https:
//www.kaggle.com/datasets/octopusteam/full-apple-tv-dataset

[61] mexwell. (2023) Telecom Shanghai Dataset. [Online]. Available:
https://www.kaggle.com/datasets/mexwell/telecom-shanghai-dataset

[62] Sandvine. (2023) THE GLOBAL INTERNET PHE-
NOMENA REPORT JANUARY 2023. [Online].
Available: https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/
Downloads/2023/reports/Sandvine%20GIPR%202023.pdf

[63] Z. Liu, C. Hu, R. Li, T. Xiang, X. Li, J. Yu, and H. Xia, “A privacy-
preserving outsourcing computing scheme based on secure trusted
environment,” IEEE Trans. Cloud Comp., vol. 11, no. 3, pp. 2325–2336,
2022.

[64] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Machine learning, 1994.

[65] M. Walker, “Convergence of sequences of functions: Some additional
notes lecture notes,” Economics 519: Mathematics for Economists,
University of Arizona, 2017.

[66] M. T. Regehr and A. Ayoub, “An elementary proof that Q-learning
converges almost surely,” 2021.

[67] F. S. Melo, “Convergence of q-learning: A simple proof,” Institute Of
Systems and Robotics, Tech. Rep, 2001.

[68] M. L. Littman and C. Szepesvári, “A generalized reinforcement-learning
model: Convergence and applications,” in ICML, 1996.

[69] T. S. Jaakkola et al., “On the convergence of stochastic iterative dynamic
programming algorithms,” Neural Computing, 1994.

[70] M. G. Bellemare, G. Ostrovski, A. Guez, P. S. Thomas, and R. Munos,
“Increasing the action gap: New operators for reinforcement learning,”
in AAAI, 2016.

[71] D. S. Hochbaum, “Lower and Upper Bounds for the Allocation Problem
and Other Nonlinear Optimization Problems,” Math. Op. Res., 1994.

DRAFT 14

LIST OF FIGURES

1 Cache allocation and backhaul traffic (Origin
servers→ Edge) with multiple Service Providers
(SPs). 4

2 Evolution of ϵ and α vs. time 9
3 Choice of Nmemory 10
4 Evolution of total instantaneous cost C(k). 10
5 Model Ĉnom,p(θp), p = 2 10
6 Gain of MB-RL with respect to proportional

allocation . 11
7 System perturbation 11
8 Evolution of the allocation over time 11
9 Number of times current θ is visited 11
10 Sensitivity of the system 12
11 Content popularity 12
12 C(k) for real dataset 12

LIST OF TABLES

I Table of notation 4

photos/Ayoub-Ben-Ameur.jpeg

Ayoub Ben-Ameur is an applied researcher at
NetMicroscope Inc. (Chicago, IL). He received the
national engineering diploma in Telecommunication
systems from the higher school of communications
of Tunis, Tunisia in 2020. He was awarded a Ph.D.
in Computer Science, Data, and Artificial Intelli-
gence from the Institut Polytechnique de Paris -
Telecom SudParis, France in 2023 where he worked
on data-driven strategies for resource allocation and
pricing in edge computing systems. After securing
funding from the French embassy in Sweden and

from ERASMUS+, he was a visiting researcher at KTH Royal Institute of
Technology in Stockholm, Sweden in 2023.

photos/andrea.jpeg

Andrea Araldo is Assoc. Prof. at the Institut
Polytechnique de Paris. His research interests are
Network Optimization and Smart Mobility. He holds
a PhD in Computer Science from Un. Paris Saclay
(France - 2016). He was visiting researcher at KTH
Royal Institute of Technology (Sweden - 2016) and
Postdoc at the Massachusetts Institute of Technology
(MIT - US - 2017-2018). In 2018 he was awarded
the IEEE ComSoc best paper and in 2022 the French
national Young Researcher grant (ANR JCJC).

photos/tijani.jpeg

Tijani Chahed received the B.S. and M.S. degrees
in electrical and electronics engineering from Bilkent
University, Turkey, and the Ph.D. and Habilitation a
Diriger des Recherches (HDR) degrees in computer
science from the University of Versailles and the
University of Paris 6, France, respectively. He is
currently a Professor with the Networks and Services
Department, Telecom SudParis, France. His research
interests include resource allocation and quality of
service, notably in wireless networks.

photos/gyuri.jpeg

György Dán is professor in teletraffic systems at
KTH Royal Institute of Technology, Stockholm,
Sweden. He received the M.Sc. degree in com-
puter engineering from the Budapest University of
Technology and Economics, Hungary in 1999, the
M.Sc. degree in business administration from the
Corvinus University of Budapest, Hungary in 2003,
and the Ph.D. in Telecommunications from KTH
in 2006. He worked as a consultant in the field of
access networks, streaming media and videoconfer-
encing 1999-2001. He was a visiting researcher at

the Swedish Institute of Computer Science in 2008, a Fulbright research
scholar at the Information Trust Institute at University of Illinois Urbana-
Champaign in 2012-2013, and an invited professor at EPFL in 2014-2015.
His research interests include the design and analysis of content management
and computing systems, game theoretical models of networked systems, and
cyber-physical system security in power systems.

DRAFT 15

APPENDIX A
IMPLEMENTATION CONSIDERATIONS

The system described can be implemented under the fol-
lowing assumptions. Similar to Content Delivery Networks
(CDNs), each SP runs its own infrastructure over the Internet.
As part of this infrastructure, a software SP edge server
(implemented as a set of microservices) runs on the edge.
All requests from users for the content of a specific SP are
redirected to the respective SP edge server, e.g., via DNS
redirection, which is handled by the NO (it would also be
possible that each SP redirects its own requests). All requests
of a certain SP go through its edge server. If the object
requested is not on the edge, the edge server will forward the
request to another server, over the Internet, of its infrastructure.
Although the edge servers of all SPs run in the physical
edge node owned by the NO, the NO cannot access their
data and their processing, as they are protected via state-of-
the art memory encryption technologies, e.g., Intel SGX [63,
§3.2]. The connection between a user and an SP edge server
is encrypted via, we assume for clarity, Transport Layer
Security (TLS). The NO can observe and count TLS records
(e.g., packets) carrying HTTP messages, either requests or
replies with chunks of videos. Such records are denoted by
the TLS field type=application data (23). Although
the NO cannot observe the identifiers of the objects requested
and sent (as they are encrypted into the body of the TLS
records), the NO can count the aforementioned records, thus
obtaining a sufficiently precise estimation of the requests sent
from users to a certain SP, of how many of them are served
directly from the SP edge server (hit rate) and of how many
necessitated a download from another server outside the edge
(miss rate).

One could envisage a collaboration between SPs and the
NO, where SPs accept to provide additional information to
the NO to help it cache content. While this collaboration
could be fruitful and simplify operations, it is not straight-
forward to realize. First, with current technologies, all traffic
is encrypted into TLS sessions, including possible metadata
that could guide the NO in caching. Second, the information
about what content is consumed by which user is a business
asset: user profiling information can be monetized by the SP,
via improving service, customizing advertisements (and thus
selling advertisements at a higher price) or selling it to third
parties. Therefore, it is reasonable to assume SPs are reluctant
to share it with NOs, even when this could help optimize
caching. For these reasons, in this paper we take a conservative
assumption, and we assume no such collaboration exists. This
justifies why we resort to a data-driven approach.

APPENDIX B
PROOF OF THE CONVERGENCE THEOREM V-B.1

In what follows, we aim to prove that if the discount factor
γ is sufficiently close to 1, then

lim
k→∞

θ(k) = θ̂
∗

with probability 1.

This means that the system will converge to a discretely
optimal state (Section V-B) and will stay in that state with
probability 1 as time goes to infinity.

Definition B-.1. Given a Q-table Q(θ,a), ∀(θ,a) ∈ S ×Aθ,
we say that a sequence of states and actions is induced by Q,
if and only if,

a(k) ∈ argmin
a

Q(θ(k),a),∀k > 0

i.e., if and only if it greedily follows Q.

Definition B-.2. Given a sequence Q(k) of Q-tables , we say
that a sequence of state and actions is induced by a sequence
of Q-tables Q(k), if and only if,

a(k) ∈ argmin
a

Q(k)(θ(k),a),∀k > 0

i.e., if and only if it greedily follows Q(k).

We decompose the proof as follows: In Section B-A we
deeply describe the process of updating the Q-table Q(k). In
Section B-B we prove that our Q-table Q(k) converges to
the optimal Q-table Q∗ with probability 1. In Section B-C
we prove that the sequence of actions and states induced by
Q∗ has an absorbing state that is the discretely optimal state
θ̂
∗
. In Section B-D we prove that the sequence of actions

and states induced by our Q-table Q(k) (assuming no more
exploration) is also induced by Q∗. In Section B-E we prove
that the sequence of states and actions {θ(k),a(k)} that we
take online (thus including ϵ-greedy exploration) converges
with probability 1 to the sequence induced by our Q-table
Q(k) if we were not doing any exploration. Finally, we show
that {θ(k),a(k)}, taken online, converges with probability 1 to
the sequence induced by Q∗.

Definition B-.3. We say that Q(k) converges with probability
1 to Q∗, if and only if [64]

P(lim
k→∞

|Q(k)(θ,a)−Q∗(θ,a)|< ϵ) = 1,∀ϵ > 0,∀(θ,a)

A. Consistency Q-table updates

Observe that in Algorithm 1, we update at every time-slot
k the Q-table Nu = 1 + Nmemory + Nmodel times. For
simplicity of notation, up to now we have only referred to
Q-table Q(k)(·, ·), but actually the Q-table has changed Nu

times in one single iteration of Algorithm 1. In this proof, we
need to distinguish all these different versions. Let us denote
with Q{j}(·, ·) the j-th version of the Q-table. In time-slot
k, versions Q{j}(·, ·), for j = k · Nu, . . . , (k + 1) · Nu − 1
are created. Updates of lines 6, 14 and 26 of Algorithm 1
can be described in a unified way: when computing version
Q{j+1}(·, ·), a state action pair (θ{j},a{j}) is chosen, and we
apply an update rule of the following form:

Q{j+1}(θ{j},a{j}) = (1− α{j}) ·Q{j}(θ{j},a{j})

+α{j}(C{j}
nom + Cpert(a

{j}) + γ{j} min
a∈A

θ′{j}
Q{j}(θ′{j},a))

(24)

where θ′{j} = θ{j} + a{j} and α{j} = α(k), γ{j} = γ(k),
for any j = k · Nu, . . . , (k + 1) · Nu − 1. As for the value
of (θ{j},a{j}, C

{j}
nom), it depends on whether the j-th update is

DRAFT 16

obtained using an observed sample (Line 6 of Algorithm 1),
experience replay (Line 14) or the model (Line 26):

(θ{j},a{j}, C{j}
nom)

=

(θ(k),a(k), Cnom(θ
(k), ω))

if j = k ·Nu

(use observed nominal cost)

(θrd,ard, C rd
nom) ∈M(k)

if j = k ·Nu + j′, j′ = 1, . . . , Nmemory

(use nominal cost from memory)

(θrd,ard, Ĉ
(k)
nom(θ

rd))

if j = k ·Nu +Nmemory + j′, j′ = 1, . . . , Nmodel

for randomly chosen
θrd ∈ S,ard ∈ Aθrd

(use estimation of nominal cost from the model)
(24bis)

For j = 1, 2, . . . , we also define function
Ĉ

{j}
nom(·) : S → R as

Ĉ{0}
nom(θ) = 0,∀θ ∈ S

Ĉ{j}
nom(θ) ≜

{
C

{j}
nom if θ = θ{j}(see (24bis))

Ĉ
{j−1}
nom (θ) otherwise

(24tris)

Definition (24tris) allows rewriting update (24) as follows:

Q{j+1}(θ{j},a{j}) = (1− α{j}) ·Q{j}(θ{j},a{j})

+α{j}(Ĉ{j}
nom + Cpert(a

{j}) + γ{j} min
a∈A

θ′{j}
Q{j}(θ′{j},a))

(24quadris)

In practice, we have just replaced C
{j}
nom with Ĉ

{j}
nom.

Thanks to this minor change, we get rid of sequence of
numbers {C{j}

nom}j , replacing it with sequence of functions
{θ → Ĉ

{j}
nom(θ)}j , which is important as the proof of

Theorem B-B.3 (in particular (35)) requires a sequence of
functions. We call (24quadris) the functional form of the Q-
table update.

Observe that at step j, the Q-table is updated only in cor-
respondence to pairs (θ{j},a{j}), while it remains unchanged
in all other values:

Q{j+1}(θ,a) = Q{j}(θ,a)∀(θ,a) ̸= (θ{j},a{j})

Similarly, by construction of (24tris), for any θ ∈ S , the
value Ĉ

{j}
nom(θ) only changes at step j for which θ = θ{j}.

In all the other steps, the value is inherited from the previous
steps. The following theorem characterizes function Ĉ

{j}
nom(·)

used in the functional form of the Q-table updates.

Theorem B-A.1. Function Ĉ
{j}
nom(·) converges uniformly in

expectation to the nominal cost, i.e.,
u

lim
j→∞

E
[
Ĉ{j}

nom(·)|F{j}
]
= ECnom(·). (25)

where limu has the same meaning as in Theorem IV-B.1 and
F{j} = {Q{j}, Q{j−1}, ...} stands for the past at step j.

Proof. We first consider any θ ∈ S and prove pointwise
convergence, i.e. that

lim
j→∞

E
[
Ĉ{j}

nom(θ)|F{j}
]
= ECnom(θ) (26)

To this aim, exploiting the construction of Ĉ
{j}
nom(·), it

suffices to show that

lim
z→∞

E
[
Ĉ{jz}

nom (θ)|F{jz}
]
= ECnom(θ), (27)

where j1, j2, . . . is the subsequence of indices js such that
θ{jz} = θ. We denote with k{j} the timeslot in which version
Q{j}(·, ·) of the Q-table is calculated, i.e., k{j} = k for j =
k ·Nu, . . . , (k + 1) ·Nu − 1. Indices {jz}z∈N can be divided
in three subsequences of indices:

1) Indices {jzw}w∈N such that jzw = k{jzw} · Nu. In this
case, thanks to (24bis),

E
[
Ĉ

{jzw}
nom (θ)|F{jz}

]
= E

[
Cnom(θ, ω

(k{jzw}))|F{jzw}
]

= ECnom(θ)

2) Indices {jzw}w∈N such that jzw = k{jzw} · Nu +
j′, j′ = 1, . . . , Nmemory. In this case, thanks to (24tris),
Ĉ

{jzw}
nom (θ) is a past observation of nominal cost when

state θ was visited. By construction, its expected value

is E
[
Ĉ

{jzw}
nom (θ)|F{jz}

]
= ECnom(θ).

3) Indices {jzw}w∈N such that jzw = k{jzw} · Nu +
Nmemory + j′, j′ = 1, . . . , Nmodel. In this case, thanks
to (24tris), C{jzw}

nom (θ) is obtained via the model explained
in Section IV-B. By exploiting Theorem IV-B.1, we have

that limw→∞ E
[
C

{jzw}
nom (θ)

]
= ECnom(θ).

Since sequence E
[
Ĉ

{jz}
nom (θ)|F{jz}

]
is the union of the three

subsequences above, each of which converges to ECnom(θ),
we obtain the theorem.

Since pointwise convergence 26 holds for all θ ∈ S and S
is finite, then [65, Proposition 1] convergence is also uniform.

B. Convergence of the Q-table

In this section, we will prove that our Q-table Q(k), updated
following (24bis), converges to the optimal Q-table Q∗ with
probability 1. As we combine Q-Learning with a model
that approximates the expected nominal cost Eω[Cnom(θ, ω)]
(Section IV-B) and with other enhancements mentioned in
Section IV-C, we cannot simply rely on the property of con-
vergence of classical Q-learning (Theorem 2 of [66] or [67]).
It is worth noting that many works claim that model-based RL
in all its forms converges [68], however no explicit proof is
provided for the specific form of combining Q-table updates
with a model of the reward (cost in our case).

DRAFT 17

In what follows, we will prove that the process defined
by (24bis) converges to the optimal Q-table Q∗ with prob-
ability 1. We start with two general results Lemma B-B.1 and
Lemma B-B.2, which we obtain by extending a previously
known result.

Lemma B-B.1. Consider a random iterative process δ{j} :
X → Rn defined as

δ{j+1}(x) = (1− α{j}) · δ{j}(x) + α{j} · F {j}(x) (28)

where F {j} : X → Rn is a random function, at each
step j. Process δ{j} converges with probability 1 to 0, i.e.,
P
[
limj→∞ δ{j}(x) = 0

]
= 1,∀x ∈ X , under the following

assumptions:
1) X is finite
2) 0 ≤ α{j} ≤ 1,

∑
k α

{j} =∞ and
∑

k(α
{j})2 <∞

3) ∃0 < ν < 1 :

∥E[F {j}(x)− η{j}(x)|F{j}]∥∞ ≤ ν∥δ{j}∥∞,

where η{j}(·) is a sequence of functions such that
limu

j→∞ η{j}(·) = 0.
4) ∃M > 0, var[F {j}(x)|F{j}] ≤M(1 + ∥δ{j}∥2∞)

Here F{j} = {δ{j}, δ{j−1}, .., F {j−1}, .., α{j−1}, ..} stands
for the past at step j.

Proof. The original version of this theorem is [69, Theorem 1].
The only difference is assumption 3, which in [69] is

∃0 < ν < 1, ∥E[F {j}(x)|F{j}]∥∞ ≤ ν∥δ{j}∥∞.

We need to add the additional term E[η{j}(x)|F{j}] to
account for the error of our model in approximating the
expected value of the cost. Let us define another random
process in the following way:

F
{j}
′ (x) = F {j}(x)− η{j}(x)

δ
{j+1}
′ (x) = (1− α{j}) · δ{j}′ (x) + α{j} · F {j}

′ (x) (29)

Process δ{j}′ (x) respects the assumptions of the original [69,
Theorem 1] and thus

lim
j→∞

δ
{j}
′ (x) = 0,∀x ∈ X , with probability 1. (30)

Let us now define an additional random process

δ
{j}
diff (x) = δ

{j}
′ (x)− δ{j}(x) (31)

and observe that

δ
{j+1}
diff (x) = δ

{j+1}
′ (x)− δ{j+1}(x)

=
[
(1− α{j}) · δ{j}′ (x) + α{j} · F {j}

′ (x)
]

−
[
(1− α{j}) · δ{j}(x) + α{j} · F {j}(x)

]
= (1− α{j}) · (δ{j}′ (x)− δ{j}(x))
+α{j} · (−η{j}(x))
= (1− α{j}) · δ{j}diff (x) + α{j} · (−η{j}(x))

The iterative process above respects the assumptions of [69,
Lemma 1], which states that

lim
j→∞

δ
{j}
diff (x) = 0,∀x ∈ X , with probability 1. (32)

Thanks to (30) and (31), process δ{j}(x) must converge to
0 with probability 1.

Lemma B-B.2. Consider a random iterative process δ{j} :
X → Rn such that, for each x ∈ X , there is an infinite
subsequence of indices Ix = {j1, j2, ..., jz, ...} such that

δ{jz+1}(x) = (1−α{jz})·δ{jz}(x)+α{jz}·F {jz}(x),∀jz ∈ Ix

and
δ{jz+1}(x) = δ{jz}(x),∀jz ∈ N \ Ix.5

Assume that the same assumptions of Lemma B-B.1 hold:
1) X is finite
2) 0 ≤ α{j} ≤ 1,

∑
k α

{j} =∞ and
∑

k(α
{j})2 <∞

3) ∃0 < ν < 1 :

∥E[F {j}(x)− η{j}(x)|F{j}]∥∞ ≤ ν∥δ{j}∥∞,

where η{j}(·) is a sequence of functions such that
limu

j→∞ η{j}(·) = 0.
4) ∃M > 0, var[F {j}(x)|F{j}] ≤M(1 + ∥δ{j}∥2∞)

Then, process δ{j} converges with probability 1 to 0, i.e.,
P
[
limj→∞ δ{j}(x) = 0

]
= 1,∀ x ∈ X .

Proof. Let us fix any x ∈ X . By applying Lemma B-B.1 on
the sequence δ{j1}(x), δ{j2}(x), ... (which is subsequence of
δ{1}(x), δ{2}(x), ...) we obtain that,

lim
z→∞

δ{jz}(x) = 0,∀x ∈ X , with probability 1.

Observe that by construction, for any z ∈ N,

δ{j}(x) = δ{jz+1}(x), for j = jz + 1, jz + 2, ..., jz+1.

This implies that,

lim
j→∞

δ{j}(x) = 0,∀x ∈ X , with probability 1.

We have thus proved point-wise convergence. Thanks to [65,
Proposition 1], since X is finite, this also implies uniform
convergence.

Theorem B-B.3. If Q{j} is updated by update (24quadris),
then Q{j} converges to Q∗ with probability 1.

Proof. We will prove the theorem using Lemma B-B.1. We
define X = S ×A and

F {j}(θ,a) = Ĉ{j}
nom(θ) + Cpert(a)

+ γ{j} min
a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a) (33)

Observe that, by fixing the past F{j}, i.e., all the observed
rewards, actions, states and extractions from the memory and
from the model, up to before update j, table Q{j} is univocally
determined. The only stochastic term in (33) is thus Ĉ

{j}
nom(θ),

while all the others are deterministic. Let us define δ{j}(θ,a)
as follows:

δ{j}(θ,a) = Q{j}(θ,a)−Q∗(θ,a),∀(θ,a) ∈ X (34)

5Observe that the subsequence of indices Ix changes for every considered
x.

DRAFT 18

If (θ,a) = (θ{j},a{j}), we obtain

δ{j+1}(θ,a) = Q{j+1}(θ,a)−Q∗(θ,a)
(24quadris) = (1− α{j}) ·Q{j}(θ,a)

+ α{j}
(
Ĉ{j}

nom + Cpert(a)

+ γ{j} min
a′∈Aθ+a

Q{j}(θ + a,a′)

)
−Q∗(θ,a) + α{j}Q∗(θ,a)− α{j}Q∗(θ,a)

= (1− α{j}) ·
(
Q{j}(θ,a)−Q∗(θ,a)

)
+ α{j} ·

(
Ĉ{j}

nom(θ) + Cpert(a)

+ γ{j} min
a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a)

)
= (1− α{j}) · δ{j}(θ,a) + α{j} · F {j}(θ,a)

(35)

Instead, for (θ,a) ̸= (θ{j},a{j}),

δ{j+1}(θ,a) = Q{j+1}(θ,a)−Q∗(θ,a)
(24tris) = Q{j}(θ,a)−Q∗(θ,a)

= δ{j}(θ,a) (35bis)

Observe that for given past F{j}, δ{j}(θ,a) is deterministic.
Since the exploration never ends (ϵ is always greater than
0), state-action pair (θ,a) is visited infinitely many times.
Therefore, there is an infinite subsequences of indices for
which (35) holds instead of (35bis). We are thus in the case
of Lemma B-B.2.

The first condition of Lemma B-B.2 holds by definition
of the state and action spaces. Moreover, the learning rate
scheduling (Section IV-C1) obeys the second condition of
Lemma B-B.2. The last condition holds because we define
the cost function to be bounded.6 This means that we only
have to show that the third condition of Lemma B-B.2 holds
to prove convergence of Q{j} to Q∗.

The optimal Q-table is a fixed point of a contraction operator
H (see Section 1 of [70]), defined for function m : S×A → R
as:

(Hm)(θ,a) = ECnom(θ) + Cpert(a) + ν · min
a′∈Aθ+a

m(θ + a,a′)

(36)

This operator is a contraction in the sup-norm (Section 1
of [67]), i.e.,

∥Hm1 −Hm2∥∞ ≤ ν · ∥m1 −m2∥∞ (37)
= ν · sup

(θ,a)∈S×A
|m1(θ,a)−m2(θ,a)|

We now prove that the third condition of Lemma B-B.2
holds for our F {j}(θ,a) − η{j}(θ), where F {j}(., .) is de-
fined as in (33) and η{j}(θ) : S → R is defined as
η{j}(θ) = Ĉ

{j}
nom(θ) − ECnom(θ). Theorem B-A.1 shows that

limu
j→∞ η{j}(·) = 0. Therefore, via (33):

6For instance, one could consider that the cost measured at each time-slot
cannot exceed the backhaul link capacity.

∀θ ∈ S,a ∈ Aθ, F
{j}(θ,a)− η{j}(θ)

= Ĉ{j}
nom(θ) + Cpert(a)

+ γ{j} · min
a′∈Aθ+a

Q{j}(θ + a,a′)

−Q∗(θ,a)−
(
Ĉ{j}

nom(θ)− ECnom(θ)

)
= ECnom(θ) + Cpert(a)

+ γ{j} · min
a′∈Aθ+a

Q{j}(θ + a,a′)−Q∗(θ,a)

(36) = HQ{j}(θ,a)−Q∗(θ,a)
(Since Q∗ = HQ∗) = HQ{j}(θ,a)−HQ∗(θ,a).

In the norm-sup, using (37), we obtain:

∥F {j}(·, ·)− η{j}(θ)∥∞ ≤ γ{j}∥Q{j}(·, ·)−Q∗(·, ·)∥∞
= γ{j}∥δ{j}(·, ·)∥∞

Applying expectation given past F{j} (and considering that
δ{j}(·, ·) is deterministic, as we wrote right after (35bis)), we
obtain

E
[
∥F {j}(·, ·)− η{j}(·)∥∞|F{j}

]
≤ γ{j}∥δ{j}(·, ·)∥∞

which proves that the third condition in Lemma B-B.1 holds.
Then, by Lemma B-B.2, δ{j} converges to 0 with probability
1, which implies, via (34), that Q{j} converges to Q∗ with
probability 1.

C. Absorbing state

In this section, we will prove that the sequence of actions
and states induced by Q∗ has an absorbing state that is the
discretely optimal state θ̂

∗
. In what follows, we will use the

concept of sequences defined as follows:

Definition B-C.1. A sequence s = {θ(k),a(k)}k is a sequence
of states and actions such that

θ(k+1) = θ(k) + a(k)

Let us denote with Cγ
cum(s) the cumulative discounted

reward (11) of any sequence s.

Definition B-C.2. Sequence s′ = {θ′(k),a′(k)}k is optimal if,
for any other sequence s′′ having the same initial state as s∗,
we have Cγ

cum(s
′′) ≥ Cγ

cum(s
′).

Definition B-C.3. Q-table Q is optimal if, for any initial state,
any sequence s′′ induced by Q, is an optimal sequence.

We will use the notation Q(k) to refer to the Q-table of
Algorithm 1. We will refer to the following sequences:

• s: state and action sequence induced by sequence Q(k)

of Q-tables obtained with our Algorithm 1. We call it
“offline sequence”.

• sϵ: sequence induced by the online policy: such a se-
quence follows Q(k) with probability 1 − ϵ and takes a
random action with probability ϵ. This is the sequence
that comes out of the actions chosen in lines 3 and 4 of
Algorithm 1. We call it “online sequence”.

DRAFT 19

• s∗: sequence induced by the optimal Q-table Q∗.
It is worth emphasizing that when applying Algorithm 1, we

do not traverse sequence s, as we do not take actions induced
by Q(k). Indeed, we explore from time to time. In this sense,
s is a theoretical sequence, that we use as a reference in our
proofs, but that we never follow in reality. What we really
follow is sϵ.

Lemma B-C.4. Any sequence s∗ induced by Q∗ has an
absorbing state, i.e.,

∃θabs ∈ S, k′ > 0 : θ(k) = θabs, k ≥ k′

Proof. Suppose by contradiction that s∗ = {θ′(k),a′(k)}k
does not have an absorbing state. If that were the case,
we could construct a modified version s′′ of s∗ as fol-
lows. We take the best of the allocations visited, i.e.,
θbest ∈ argmin∞k=0 ECnom(θ

(k)). Suppose k1 is the first time-
slot in which such allocation is visited. Sequence s′′ =
{θ′′(k),a′′(k)}k is as follows:

θ′′(k) =

{
θ′(k) if k ≤ k1

θbest otherwise
(38)

a′′(k) =

{
a′(k) if k ≤ k1

0 (null action) otherwise
(39)

The difference of cumulative discounted cost (11) induced
by the two sequences s∗ and s′′ is

Cγ
cum(s

∗)− Cγ
cum(s

′′)

= lim
T→∞

E
[T∑
k=k1+1

γ(k)

(
Cnom(θ

′(k), ω) + Cpert(a
′(k))

− Cnom(θ
′′(k1), ω)

)]
= lim

T→∞

[T∑
k=k1+1

γ(k)

(
ECnom(θ

′(k), ω)− ECnom(θbest, ω)

+ Cpert(a
′(k))

)]
(40)

For any k, by construction of θbest, we have

ECnom(θ
′(k), ω)− ECnom(θbest, ω) ≥ 0.

Moreover, at least one action a′(k) is non-null, as we have
assumed that s∗ does not have any absorbing state. Therefore,
(40) is positive, which is absurd as it violates Definitions B-C.2
and B-C.3.

Lemma B-C.5. If discount factor γ is sufficiently close to
1, the absorbing state of sequence s∗ is a discretely optimal
allocation (19).

Proof. Let us define an undirected graph G = (S,A) where
each node θ ∈ S is a state and each edge a ∈ A is an action.
Such an edge connects state θ with state θ+a and has weight
ECnom(θ, ω) + Cpert(a). Let us denote with s(θ,θ′) shortest
path on such a graph between nodes θ and θ′, where the
cost of the path is the sum of the cost on the arcs. If such

a path is θ = θ[0] a
[0]

−→θ[1] . . .
a[n−1]

−→ θ[n] = θ′, the discounted
cost accumulated over this path is:

Cγ
cum(s(θ,θ

′)) =

n−1∑
j=0

γj ·
(
ECnom(θ

[j], ω) + Cpert(a
[j])

)
(41)

Let us define:

M ≜ max
θ,θ′∈S

Cγ
cum(s(θ,θ

′)) (42)

Let us take a discretely optimal state θ̂
∗
. Thanks to

Lemma B-C.4, we know that s∗ goes to an absorbing state θabs
at a certain timeslot k′ and does change state anymore. Let
us suppose by contradiction that θabs is not discretely optimal
and define quantity

δC = EC(θabs, ω)− EC(θ̂
∗
, ω). (43)

By construction, δC > 0, otherwise θabs would be the
discretely optimal.

Let us construct another sequence s′′ such that it is the same
as s∗ up to time slot k′. Then, while s∗ stays in θabs, s′′ takes
non-null actions and follows the shortest path s(θabs, θ̂

∗
) and

then it stays in θ̂
∗

and does not change state anymore. Suppose
that n is the length of such a shortest path. Let us compute
the difference between the cumulative discounted cost of s∗ =
{θ′(k),a′(k)} and s′′ = {θ′′(k),a′′(k)}:

Cγ
cum(s

′′)− Cγ
cum(s

∗)

= E
[∞∑
k=0

γ(k) ·
(
Cnom(θ

′′(k), ω) + Cpert(a
′′(k))

)
− γ(k) ·

(
Cnom(θ

′(k), ω) + Cpert(a
′(k))

)]
= E

[k′+n−1∑
k=0

γ(k) ·
(
Cnom(θ

′′(k), ω) + Cpert(a
′′(k))

− Cnom(θ
′(k), ω)− Cpert(a

′(k))

)
+

∞∑
k=k′+n

γ(k) ·
(
Cnom(θ

′′(k), ω) + Cpert(a
′′(k))

− Cnom(θ
′(k), ω)− Cpert(a

′(k))

)]
= γ(k′) · Cγ

cum(s(θabs, θ̂
∗
)) +

∞∑
k=k′+n

γ(k) · ECnom(θ̂
∗
, ω)

−
∞∑

k=k′

γ(k) · ECnom(θabs, ω)

= γ(k′) · Cγ
cum(s(θabs, θ̂

∗
))−

k′+n−1∑
k=k′

γ(k) · ECnom(θabs, ω)

+

∞∑
k=k′+n

γ(k) ·
(
ECnom(θ̂

∗
, ω)− ECnom(θabs, ω)

)
(44)

DRAFT 20

Via (43) and elementary calculus (for the summation of
truncated geometric series), we obtain:

∞∑
k=k′+n

γ(k) ·
(
ECnom(θ̂

∗
, ω)− ECnom(θabs, ω)

)
= −δC ·

∞∑
k=k′+n

γ(k)

︸ ︷︷ ︸
trunc. geom. series

= −δC · γ
k′+n

1− γ
. (45)

By replacing (42) and (45) into (44), we get:

Cγ
cum(s

′′)− Cγ
cum(s

∗)

≤ γ(k′) ·M︸ ︷︷ ︸
a

−
k′+n−1∑
k=k′

γ(k) · ECnom(θabs, ω)︸ ︷︷ ︸
b

− δC · γ
k′+n

1− γ︸ ︷︷ ︸
c

(46)

For γ → 1, terms a and b tends to a constant, while term c
tends to infinity. Therefore, limγ→1 (C

γ
cum(s′′)− Cγ

cum(s∗)) =
−∞. This means that if γ is sufficiently close to 1, then
Cγ

cum(s′′) < Cγ
cum(s∗), which is absurd as it violates Defi-

nitions B-C.2 and B-C.3.

D. Convergence of the offline sequence

In this section, we will prove that sequence s of actions
induced by Q(k) converges to the sequence of actions induced
by Q∗.

Definition B-D.1. Let s1 and s2 be two sequences of actions
and states. We denote the difference of average expected cost
induced by sequences s1 and s2 by:

D(s1, s2) ≜ lim
T→∞

1

T
E

[
T∑

k=0

(
C

(k)
1 − C

(k)
2

)]
(47)

where C(k) is the instantaneous cost defined by (3).

Definition B-D.2. We say that a sequence s1 converges to a
sequence s2 if and only if

D(s1, s2) = 0.

Proposition B-D.3. Let Q
(k)
1 and Q

(k)
2 be two se-

quences of Q-tables such that argmina Q
(k)
1 (θ,a) =

argmina Q
(k)
2 (θ,a),∀k > k′,∀θ ∈ S . Then, if a sequence

s1 is induced by Q
(k)
1 , it must be induced by Q

(k)
2 starting

from k′.

The following lemma proves that our offline sequence s
approaches the optimal sequence of states and actions.

Lemma B-D.4. If s is a sequence induced by Q-tables Q(k),
obtained with our Algorithm 1, then

P
(
∃K > 0, s is induced by Q∗ starting from K

)
= 1

Proof. In Theorem B-B.3, we proved that Q(k) converges with
probability 1 to Q∗. Then, by definition, we have

P
(

lim
k→∞

|Q(k)(θ,a)−Q∗(θ,a)|< e

)
= 1,∀e > 0,∀(θ,a)

(47bis)

Let us denote by ϵmin the minimum difference between two
distinct Q-values of Q∗:

ϵmin

= min

|Q∗(θ,a)−Q∗(θ′,a′)|

∣∣∣∣∣∣
θ,θ′ ∈ S,
a ∈ Aθ,a

′ ∈ Aθ′ ,
Q∗(θ,a) ̸= Q∗(θ′,a′)

Formula (47bis) implies that

P
(

lim
k→∞

|Q(k)(θ,a)−Q∗(θ,a)|< ϵmin

2

)
= 1,∀(θ,a).

This implies that, ∀(θ,a),

P
(
∃Kθ,a > 0,∀k >Kθ,a, |Q(k)(θ,a)−Q∗(θ,a)|< ϵmin

)
= 1. (47tris)

Let us call Eθ,a the following event:

∃Kθ,a > 0,∀k > Kθ,a, |Q(k)(θ,a)−Q∗(θ,a)|< ϵmin

Formula (47tris) implies that P(Eθ,a) = 1,∀(θ,a). Hence
P(Ēθ,a) = 0,∀(θ,a). By taking K = maxθ,a Kθ,a (that
exists since S and A are finite), we can write:

P
(
∃K > 0,∀k > K,∀θ ∈ S,a ∈ Aθ

⇒ |Q(k)(θ,a)−Q∗(θ,a)|< ϵmin

)
= 1

and thus

P
(

∃K > 0,∀k > K,∀θ ∈ S
⇒ argmina Q

(k)(θ,a) = argmina Q
∗(θ,a)

)
= 1

Thanks to Proposition B-D.3, we will have that s is induced
by Q∗ starting from K, hence the result.

Corollary B-D.5. Sequence s converges to sequence s∗.

Proof. Thanks to Lemma B-C.5, we can claim that ∃K∗ > 0,
starting from which s∗ has arrived to a discretely optimal state
θ̂
∗
. Lemma B-D.4 allows us to write:

P
(
∃K > 0,∀k > K, s takes actions induced by Q∗

)
= 1

Let Kmax = max(K∗,K) and let E be the following event:

∃K∗
s ≥ Kmax, starting from which s has arrived to θ̂

∗
.

Thanks to Lemma B-C.5 and Lemma B-D.4, we can write:

P(E) = 1

Let us now compute D(s, s∗) by applying the law of total
expectations:

D(s, s∗) = lim
T→∞

1

T
E

[
T∑

k=0

(
C(k) − C∗(k)

)]

= lim
T→∞

(
P(E) · 1

T
E

[
T∑

k=0

(
C(k) − C∗(k)

)
|E

]

+

�������������������:0

(1− P(E)) · 1
T
E

[
T∑
k

(
C(k) − C∗(k)

)
|Ē

])

= lim
T→∞

1

T

T∑
k=0

[
E[C(k)|E]− E[C∗(k)|E]

]

DRAFT 21

After Kc = max(K∗
s ,K

∗) both s and s∗ will be in the
same state θ̂

∗
, if event E is verified. Therefore, E[C(k)|E] =

E[C∗(k)|E],∀k ≥ Kc and thus

D(s, s∗) = lim
T→∞

1

T

Kc∑
k=0

[
E[C(k)|E]− E[C∗(k)|E]

]
= 0

E. Convergence of the online sequence

In this section, we will prove that the sequence sϵ of states
and actions visited by Algorithm 1 online, converges to θ̂

∗
,

which represents the main result of our work.
To do so, we need to show that

∃ θ̂
∗
, P

(
lim
k→∞

|| θ(k) − θ̂
∗
|| > 0

)
= 0.

We will prove a stronger property: ∃ discretely optimal state
θ̂
∗
∈ S, such that

lim
k→∞

P(θ(k) = θ̂
∗
) = 1. (48)

Let us denote with B(k, d) the event that from time-slot
k− d to k− 1 there have been no random actions taken. The
probability of this event is:

P(B(k, d)) =
k∏

k′=k−d

(1− ϵ(k
′)) (49)

where ϵ(k
′) follows (18). Since limk→∞ ϵ(k) = 0, then ∀d >

0, limk→∞ P(B(k, d)) = 1. If B(k, d) is verified, the actions
taken by our algorithm are those induced by Q(k′′),∀k′′ =
k − d, .., k. Therefore, Lemma B-D.4 applies and if we take
d > K (where K is the one indicated by Lemma B-D.4), we
know that if B(k, d) is verified, then the actions taken by our
algorithm in time-slots k′′ = k−d+K, .., k are those suggested
by Q∗. Hence, Lemma B-C.4 applies and if we take d > K+k′

(where K is the one indicated by Lemma B-C.4), we know
that the state in which our algorithm brings the system in slots
k′′ = k − d+K + k′, .., k, is an absorbing state.

Thanks to Lemma B-C.5, we know that this absorbing state
is θ̂

∗
, if γ is sufficiently large. Therefore, if B(k, d) is verified,

then

θ(k′′) = θ̂
∗
,∀k′′ = k − d+K + k′, .., k.

In other words, if B(k, d) is verified for a sufficiently large
γ, then ∃ discretely optimal state θ̂

∗
such that θ(k) = θ̂

∗
.

Therefore, P(θ(k) = θ̂
∗
) ≥ P(B(k, d)). Since the second term

tends to 1 when k →∞ (49), then (48) is verified.

APPENDIX C
PROOF OF THE COROLLARY V-B.3

Proof. We have seen that our allocations have an absorbing
state θ̂

∗
that is discretely optimal, i.e., there exists k′ > 0 such

that θ(k) = θ̂
∗

for k ≥ k′ with probability 1. We can compute

lim
Z→∞

1

Z
E [Ccum(Z)− C∗

cum(Z)]

= lim
Z→∞

1

Z
E [Ccum(k

′)− C∗
cum(k

′)]

+ lim
Z→∞

1

Z
E
[
Ccum(Z)− Ccum(k

′)

−
(
C∗

cum(Z)− C∗
cum(k

′)

)]
= lim

Z→∞

1

Z

Z∑
k=k′+1

(
E
[
(Cnom(θ

(k), ω) + Cpert(a
(k))

− Cnom(θ
∗, ω)

])
= lim

Z→∞

Z − (k′ + 1)

Z
·
(
Eω[Cnom(θ̂

∗
, ω)]

− Eω[Cnom(θ
∗, ω)]

)
= Eω[Cnom(θ̂

∗
, ω)]− Eω[Cnom(θ

∗, ω)] = G∆

APPENDIX D
PROOF OF PROPOSITION V-B.2

Suppose an oracle that knows exactly (i) the probability fp
that a request is for SP p, (ii) the cacheability ζp and (iii)
the popularity of each object (c, p) within the catalog of each
SP. Such an oracle can compute the rate of requests λc,p =
λ · fp · ζp · ρc,p for each object. The expected value of the
nominal cost when the set of cached objects is K is

ECnom(K) = λ−
∑

(c,p)∈K

λc,p

The following property will be useful later.

Lemma D-.1. The set function K → ECnom(K) is monotoni-
cally increasing, i.e., if K ⊆ K′, then ECnom(K) ≤ ECnom(K′).

To minimize the nominal cost, we resort to a greedy
algorithm for the Simple Allocation Problem [71]: the oracle
puts into the cache the objects with the highest λc,p, up to
filling all K cache-slots. Let us denote with K∗ the set of
cached objects in this way. The optimal allocation θ∗ can be
obtained by simply counting the number of objects of each SP
p that we find in K∗. In particular, θ∗p is equal to the number
of objects of SP p present in K∗.

With no loss of generality, suppose that within the catalog
of each SP p the objects are indexed as c = 1, 2, . . . , Np

and sorted from the most popular to the least, so that λc,p ≥
λc+1,p. If the discretization step is ∆, objects cannot be
selected one by one, but they can only be cached in batches of
∆ elements. We thus divide the catalog of each SP in batches
of ∆ objects. For instance, batch Bi,p is

Bi,p = {object(c, p)|c = (i− 1) ·∆+ 1, . . . , i ·∆}, i = 1, 2, ..

The rate of such a batch is defined as the traffic we can omit
downloading from a distant location if we store this batch into
the cache, i.e.:

λ(Bi,p) ≜
∑

(c,p)∈Bi,p

λc,p.

DRAFT 22

In order to minimize the nominal cost with the discretized
model, the oracle can add to the cache the batches with the
highest rate, up to filling the K cache-slots. We denote by K̂∗

the set of cached objects obtained in this way. The discretely
optimal allocation θ̂

∗
= (θ̂∗1 , . . . , θ̂

∗
P) can be obtained by

simple counting: θ̂∗p is equal to the number of objects of p

that are present in K̂∗.
The construction of K̂∗ and θ̂

∗
is summarized in Algo-

rithm 2, which extends the greedy algorithm. Note that to
construct K∗ and θ∗ one can use the same algorithm, setting
∆ = 1.

Algorithm 2: Compute θ̂
∗

Data: ∆, λc,p∀(c, p).
Result: K̂∗, θ̂

∗

1 K̂∗ ← ∅;
2 θ̂

∗
← 0 = (0, . . . , 0);

3 ip = 1 for p = 1, . . . , P ; // We use this pointer

to save the last added batch of each SP

4 while |K̂∗|+∆ < K; // We can still add a batch

of ∆ objects in the cache

5 do
6 pbest ∈ argmaxPp=1 λ(Bip,p) ; // Select the SP

with the largest batch rate

7 K̂∗ ← K̂∗ ∪ Bipbest ,pbest ; // Add batch of SP pbest

in the cache

8 θ̂∗pbest ← θ̂∗pbest +∆ ; // Give it the

corresponding cache-slots

9 end

The optimality gap can be expressed in terms of the sets
K∗ and K̂∗:

G∆ = ECnom(K̂∗)− ECnom(K∗) (50)

In order to bound the previous quantity, we construct two
sets K− and K+ around K∗ and K̂∗.

Lemma D-.2. There exists two sets K− and K+ such that

K− ⊆ K∗ ⊆ K+ (51)

K− ⊆ K̂∗ ⊆ K+ (52)

and

ECnom(K−)− ECnom(K+) ≤
P∑

p=1

∆∑
c=1

λc,p

Proof. We know that the θ∗p most popular objects of SP p are

stored in K∗. These include the
⌊
θ∗
p

∆

⌋
batches of SP p with the

highest rate. Let us construct a set composed of these batches:

K− =

P⋃
p=1

⌊

θ∗p
∆

⌋⋃
i=1

Bi,p

 (53)

By construction, K− ⊆ K∗. By construction of K̂∗, the
aforementioned batches are also contained into K̂∗. Therefore,
K− ⊆ K̂∗.

We now construct set K+ adding to K− one additional batch
per each SP:

K+ =

P⋃
p=1

⌈

θ∗p
∆

⌉⋃
i=1

Bi,p

By construction K+ ⊇ K∗ and K+ ⊇ K̂∗. Summarizing

what we have obtained so far:

K− ⊆ K∗ ⊆ K+

K− ⊆ K̂∗ ⊆ K+

By construction, we have

ECnom(K+)− ECnom(K−)

=

P∑
p=1

⌈

θ∗p
∆

⌉∑
i=

⌊
θ∗p
∆

⌋λ(Bi,p)
 ≤

P∑
p=1

λ(Bi′,p)

where i′ =
⌊
θ∗
p

∆

⌋
. Since objects are sorted, within each SP p,

from the highest to the lowest rate, the batches have decreasing
rate, and thus λ(Bi′,p) ≤ λ(B1,p) =

∑∆
c=1 λc,p.

Thanks to Lemma D-.1, equations (51)-(52) imply that

ECnom(K−) ≤ ECnom(K∗) ≤ ECnom(K+)

ECnom(K−) ≤ ECnom(K̂∗) ≤ ECnom(K+)

which, in turn, imply that ECnom(K̂∗) − ECnom(K∗) ≤
ECnom(K−) − ECnom(K+). Using (50) and (53), we obtain
the proposition.

