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The Green Revolution

Yield increase
■ Breeding
■ Chemical inputs
■ Mecanization, irrigation

Negative externalities
■ Landscape homogenization
■ Loss of agro-biodiversity
■ Pollution → biodiversity,

environment, human health
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Climate change and yield stagnation

Figure from Schauberger et al. (2018)
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The agroecological transition

■ Agroecology : maximization of ecological processes to minimize the
use of chemical inputs

■ Spatial/temporal diversification : crop rotations, landscape
mosaics, species and cultivar mixtures, agroforestry

■ Importance of plant-plant interactions within-plot diversification
- negative → competition
- positive → complementarity and facilitation

■ Focus on cultivar mixtures
- case study : winter wheat
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Wheat cultivar mixtures

■ 17.5 % of wheat cultivated
surface in France in 2022

■ Few assembling rules
- except for resistance to

fungal diseases
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Wheat cultivar mixtures

■ 17.5 % of wheat cultivated
surface in France in 2022

■ Few assembling rules
- except for resistance to

fungal diseases

■ Difficulties to study cultivar
mixtures

- combinatory explosion
- difficult distinction between

cultivars
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RYT distribution
Meta-analysis on wheat cultivar mixtures (Borg et al. 2018) on the
distribution of the Relative Yield Total (RYT = Yield mixture / Average
yield in monoculture) → large variance
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RYT distribution
Large variance in the same environment: trial of 75 wheat cultivar
mixtures at Le Moulon in France, 2014-2015 (Forst 2018)
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Possible causes of RYT large variance

Expected yield from
Observed yield

versus←→ varietal proportions at sowing
of mixture

and monoculture yields

Possible causes:
■ evolution of varietal proportions between sowing and harvest
■ inherent yield differences between monoculture and mixture for each

cultivar (= phenotypic plasticity)

Hypothesis : these differences are caused by eco-physiological processes
underlying plant-plant interactions
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Differences in varietal proportions
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Phenotypic plasticity

Source : Guntrip & Sibly (1998)
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Yield components

Yield (g/m2) = plant density x #spikes/plant x #grains/spike x grain
weight
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Yield components

Yield (g/m2) = plant density x #spikes/plant x #grains/spike x grain
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Tillering dynamics

→ Focus on competition for light and its effect on tillering in
conventional conditions
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Research question

Understand the performance of cultivar mixtures from the evolution of
varietal proportions between sowing and harvest by focusing on
competition for light:

■ Which traits are important for mixture performance?

■ What is the importance of phenotypic plasticity for these traits and
how is it shaped by plant-plant interactions?

■ Are there differences in plastic responses among genotypes?

⇒ Interdisciplinary approach between field experiments and mechanistic
modeling
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Modeling to study cultivar mixtures

■ Experiments are essential but onerous
- Diversification complicates combinatory designs
- Difficulties raised by cultivar distinction in cultivar mixtures → heavy

and limited design (precision sowing)

■ Modeling → in silico studies
- Taking plasticity into account to make predictions in mixtures
- Explore different processes
- Widen possibilities by simulation

■ Plant models
- Crop models (plot scale)
- Functional-Structural Plant Models (FSPMs, indiviual-based) →

adapted to study heterogeneous canopies and plant-plant interactions
■ FSPMs

- Detailed 3D architecture + radiative model → long simulation times
(ADEL-wheat, CN-wheat, WALTer)

- GreenLab models: simplified architecture + source-sink formalism →
short simulation times
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Modeling strategy

■ Objective of the model: simulate plants grown in cultivar mixtures

■ Future applications: tool to support breeding for mixtures
- Generate large datasets in mixtures to predict mixing ability
- Test assembling of cultivars in mixtures
- Efficient calibration for new cultivars

■ Criteria
- Short simulation time
- Simulation of source-sink relations
- Simulation of competition for light
- Simulation of realistic and plastic tillering dynamics
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Conception of WHEAMM
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Conception of WHEAMM

■ Organs: leaves, internodes, ears (no root system)
■ Organogenesis → thermal time calendar
■ Biomass production by photosynthesis with the Monteith law

q(n) = PARn · Sel(n) · RUE
n : Day
q : Produced biomass (g)
PAR : Photosynthetically Active Radiation (MJ.m−2)
Sel : Exposed leaf surface (m2)
RUE : Radiation Use Efficiency (g.MJ−1)

■ Approximation of Sel with a dedicated method for competition for
light based on disks partition (Cournede et al. 2007)
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Conception of WHEAMM

■ Biomass allocation with
organ-specific beta functions
(Baey 2014)
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Conception of WHEAMM

■ Biomass allocation with
organ-specific beta functions
(Baey 2014)

■ Height simulated as an
independent process → final
height of an internode of rank r
(Lecarpentier et al. 2019) :

h(r) = (a · r + b)2
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Conception of WHEAMM
■ Tillering dynamics

- Emission
- Cessation at R:FR ratio approximated by critical proximity Green

Area Index GAIc (Lecarpentier et al. 2019)
- Regression when allocated biomass to an axis below threshold Tk

(Larue et al. 2019) with protection delay ∆prot (Lecarpentier et al.
2019)
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Conception of WHEAMM
Two model versions

■ Individual plants (700 seconds)
■ Average-plant (8 seconds) → homogeneous canopy
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Experimental data (Gawinowski et al. 2022)

■ Field experiment (Perfomix project) at Le Moulon, France in
2019-2020 and 2020-2021

■ 8 winter wheat elite cultivars with different heading dates or final
heights → two contrasted quaternary mixtures

■ Precision sowing for mixed stands by respecting spatial distributions
■ Phenotyping

- Growth: height, number of tillers, plant biomass, leaves surface and
weight

- Harvest: yield components
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Global sensitivity of WHEAMM in pure stands
■ GlobalSensitivityAnalysis Julia package (Rennels & Anthoff 2022)
■ Computation of first and total order Sobol indices (Sobol 2001) for

24 parameters on different outputs
■ Number of tillers at harvest

20 / 34



Global sensitivity of WHEAMM in pure stands
■ GlobalSensitivityAnalysis Julia package (Rennels & Anthoff 2022)
■ Computation of first and total order Sobol indices (Sobol 2001) for

24 parameters on different outputs
■ Number of tillers at harvest

20 / 34



Automatic calibration of WHEAMM in pure
stands

■ Experimental data → Perfomix experiment for 8 elite cultivars grown
in pure stands with variables throughout growth and at harvest

■ Optim Julia package (Mogensen & Riseth 2018), simulated annealing
algorithm with bounds (Goffe et al. 1994)

■ 16 parameters jointly calibrated for each genotype and season
separately

■ Objective function (Seber & Wild 2003)

RMSE =
1

NV

V∑
v=1

1

NTv

Tv∑
t=1

√√√√ Ivt∑
i=1

(
yvti,obs − yvt,sim

σvt

)2
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Automatic calibration of WHEAMM in pure
stands

Example of simulations with calibrated parameters for genotype Expert in
2019-2020
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Automatic calibration of WHEAMM in pure
stands

■ Better goodness-of-fit in 2019-2020 than 2020-2021

■ Calibrated parameters
- Contrasted estimations between genotypes and/or seasons
- 10% of parameters calibrated to their upper bounds
- High values: extinction coefficient kb, thermal time of emergence
τinit , biomass threshold activating regression Tk

■ Identification of misspecifications regarding tillering dynamics with
parameter Tk

- High values → systematic activation, regression truly controled by
∆prot

- Solution: make regression irreversible and more progressive

■ Non conclusive validation
- Another season → joint calibration
- Another density → tillering misspecifications, calibration on several

densities (Blanc et al. 2021)
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Simulations in mixture

■ "Individual plants" version
■ Perspective to study differences in means and variances between

pure and mixed stands on simulated data → implementation of
stochasticity on the emergence date to simulate inter-individual
variability between plants of the same genotype, even in pure stands

■ Sensitivity analysis in mixture

■ Simulations in mixtures
- Parameter values calibrated in pure stands in 2019-2020
- Simulations of the two quaternary mixtures of the Perfomix

experiment in 2019-2020
- Mixture 1 (contrasted earliness)
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Simulations Mixture 1 in 2019

→ Satisfying tillering (although peak too early and regression too weak
for Expert) but biomass often underestimated
→ Simulated variability largely underestimated
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Convergence of tillering dynamics in mixture

Simulated data for mixture 1 in 2019-2020

→ In accordance with experimental data
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Discussion

Development of WHEAMM
■ All criteria

- Source-sink formalism + minimalist 3D architecture → fast
simulations

- Realistic tillering dynamics in 3 phases with plastic responses to
competition for light

- Implementation of competition for light without detailed 3D
architecture

■ Confrontation to reality
- WHEAMM not fully validated on the PerfoMix experiment
- Satisfying calibration for many cultivars in pure stands
- Simulation of diverse plastic behaviors in mixtures
- Emergence of tillering convergence in mixtures
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Discussion

Importance of sensitivity analysis and automatic calibration in a modeling
cycle

■ "The point of falsifying a model is not to learn that the model is
false but rather to learn the ways in which a model is false" (Gelman
& Shalizi 2013)

■ Essential to good modeling practices (Cournède et al. 2013) but too
rare for FSPMs

■ Manual calibration too subjective
■ No consensus on calibration practices for crop models (Wallach 2011)

but consideration of entire process
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Discussion

Modeling challenges → computation time
■ WHEAMM "average plant" 8 seconds vs WHEAMM "individual

plants" 10 minutes

■ Parallel simulations → possible for sensitivity analyses but not
always for automatic calibration (iterative process)

■ Calibration → parallel computing within the one simulation (parallel
computation of different plants at one timestep)

■ Metamodeling: Gaussian processes (kriging) metamodels to
approximate complex models coupled with a sequential EGO
(expectation global optimization) method

- Successful automatic calibration for tillering parameters in WALTer
(Blanc et al. 2021)

- Further developments required for WHEAMM → plant scale, several
variables
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Conclusion

■ Use of Julia for model development
- Efficiency
- Accessible
- Important number of packages
- Community
- But lack of solutions for some very specific issues...

■ Perspectives
- Solve identified tillering misspecifications, add sources of

stochasticity and a root sink
- Many possible applications, notably coupling WHEAMM with

population genetics models to study heterogeneous populations over
sowing/resowing cycles
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Thank your for your attention!

31 / 34



References I

Baey, C. (2014), Modélisation de la variabilité inter-individuelle dans les modèles de croissance de
plantes et sélection de modèles pour la prévision, PhD thesis.

Blanc, E., Enjalbert, J. & Barbillon, P. (2021), Automatic calibration of a functional-structural
wheat model using an adaptive design and a metamodelling approach, preprint, Bioinformatics.
URL: http://biorxiv.org/lookup/doi/10.1101/2021.07.29.454328

Borg, J., Kiær, L., Lecarpentier, C., Goldringer, I., Gauffreteau, A., Saint-Jean, S., Barot, S. &
Enjalbert, J. (2018), ‘Unfolding the potential of wheat cultivar mixtures: A meta-analysis
perspective and identification of knowledge gaps’, Field Crops Research 221, 298–313.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0378429017309498

Cournede, P.-H., Mathieu, A., Houllier, F., Barthelemy, D. & de Reffye, P. (2007), ‘Computing
Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study
of the Effects of Density on Resource Acquisition and Architectural Development’, Annals of
Botany 101(8), 1207–1219.
URL: https://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcm272

Cournède, P.-H., Chen, Y., Wu, Q., Baey, C. & Bayol, B. (2013), ‘Development and Evaluation of
Plant Growth Models: Methodology and Implementation in the PYGMALION platform’,
Mathematical Modelling of Natural Phenomena 8(4), 112–130.
URL: http://www.mmnp-journal.org/10.1051/mmnp/20138407

Forst, E. (2018), Développement de méthodes d’estimation de l’aptitude au mélange pour la
prédiction des performances et la sélection de mélanges variétaux chez le blé tendre et
co-conception d’idéotypes de mélanges adaptés à l’agriculture biologique, PhD thesis,
Paris-Saclay, Gif-sur-Yvette.

32 / 34



References II

Gawinowski, M., Enjalbert, J., Cournede, P.-H. & Flutre, T. (2022), Contrasted phenotypic
plasticities of life-history traits in interacting plants: case of pure vs mixed stands of wheat,
preprint, Plant Biology.
URL: http://biorxiv.org/lookup/doi/10.1101/2022.10.27.514050

Gelman, A. & Shalizi, C. R. (2013), ‘Philosophy and the practice of Bayesian statistics: Philosophy
and the practice of Bayesian statistics’, British Journal of Mathematical and Statistical
Psychology 66(1), 8–38.
URL: https://onlinelibrary.wiley.com/doi/10.1111/j.2044-8317.2011.02037.x

Goffe, W. L., Ferrier, G. D. & Rogers, J. (1994), ‘Global optimization of statistical functions with
simulated annealing’, Journal of Econometrics 60(1-2), 65–99.
URL: https://linkinghub.elsevier.com/retrieve/pii/0304407694900388

Guntrip, J. & Sibly, R. M. (1998), ‘Phenotypic plasticity, genotype-by-environment interaction and
the analysis of generalism and specialization in Callosobruchus maculatus’, Heredity
81(2), 198–204.
URL: http://link.springer.com/10.1046/j.1365-2540.1998.00354.x

Larue, F., Fumey, D., Rouan, L., Soulié, J.-C., Roques, S., Beurier, G. & Luquet, D. (2019),
‘Modelling tiller growth and mortality as a sink-driven process using Ecomeristem: implications
for biomass sorghum ideotyping’, Annals of Botany 124(4), 675–690.
URL: https://academic.oup.com/aob/article/124/4/675/5429672

Lecarpentier, C., Barillot, R., Blanc, E., Abichou, M., Goldringer, I., Barbillon, P., Enjalbert, J. &
Andrieu, B. (2019), ‘WALTer: a three-dimensional wheat model to study competition for light
through the prediction of tillering dynamics’, Annals of Botany 123(6), 961–975.
URL: https://academic.oup.com/aob/article/123/6/961/5281415

33 / 34



References III

Mogensen, P. K. & Riseth, A. N. (2018), ‘Optim: A mathematical optimization package for Julia’,
Journal of Open Source Software 3(24), 615.
URL: http://joss.theoj.org/papers/10.21105/joss.00615

Rennels, L. & Anthoff, D. (2022), ‘GlobalSensitivityAnalysis’.
URL: https://juliahub.com/ui/Packages/GlobalSensitivityAnalysis/dlLX8/1.1.3

Schauberger, B., Ben-Ari, T., Makowski, D., Kato, T., Kato, H. & Ciais, P. (2018), ‘Yield trends,
variability and stagnation analysis of major crops in France over more than a century’, Scientific
Reports 8(1), 16865.
URL: http://www.nature.com/articles/s41598-018-35351-1

Seber, G. A. F. & Wild, C. J. (2003), Nonlinear regression, Wiley series in probability and
statistics, Wiley-Interscience, Hoboken, N.J.

Sobol, I. (2001), ‘Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates’, Mathematics and Computers in Simulation 55(1-3), 271–280.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0378475400002706

Wallach, D. (2011), ‘Crop Model Calibration: A Statistical Perspective’, Agronomy Journal
103(4), 1144.
URL: https://www.agronomy.org/publications/aj/abstracts/103/4/1144

34 / 34


	References

