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The Green Revolution

Yield increase
m Breeding
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m Mecanization, irrigation
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The Green Revolution

Yield increase

World yields (FAO)

m Breeding 1
Crop

m Chemical inputs - oe gy Jrons

m Mecanization, irrigation

Yield (ax/ha)

Negative externalities
m Landscape homogenization
m Loss of agro-biodiversity

m Pollution — biodiversity,
environment, human health

Year
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Climate change and yield stagnation
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Figure from Schauberger et al. (2018)
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The agroecological transition
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use of chemical inputs
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The agroecological transition

Agroecology : maximization of ecological processes to minimize the
use of chemical inputs

Spatial /temporal diversification : crop rotations, landscape
mosaics, species and cultivar mixtures, agroforestry

Importance of plant-plant interactions within-plot diversification

- negative — competition
- positive — complementarity and facilitation

Focus on cultivar mixtures

- case study : winter wheat
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Wheat cultivar mixtures
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Wheat cultivar mixtures

m 17.5 % of wheat cultivated
surface in France in 2022

m Few assembling rules
- except for resistance to
fungal diseases

m Difficulties to study cultivar
mixtures
- combinatory explosion
- difficult distinction between
cultivars

Wheat cultivar mixtures in France

in % of total cultivated wheat surface
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Source :
FranceAgriMer
et R. Perronne
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RYT distribution

Meta-analysis on wheat cultivar mixtures (Borg et al. 2018) on the

distribution of the Relative Yield Total (RYT = Yield mixture / Average

yield in monoculture) — large variance

Number of microplots

150 =

100 =

50 =

-40 -30 -20 -10

Mean = 2.93%

95% in [-19% ; +23%]

10 20 30 40

0
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RYT distribution

Large variance in the same environment: trial of 75 wheat cultivar
mixtures at Le Moulon in France, 2014-2015 (Forst 2018)

Number of mixtures

75 =

5.0 =

25 =

0.0 =

RYT — 1 (%)

Mean =-1,28%

95% in [-17% ; +15%]

20
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Possible causes of RYT large variance

Expected yield from
Observed yield

Versus . . .
<— varietal proportions at sowing

of mixture
and monoculture yields
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Possible causes of RYT large variance

Expected yield from
Observed yield

versus . . .
<— varietal proportions at sowing

of mixture
and monoculture yields

Possible causes:
m evolution of varietal proportions between sowing and harvest

m inherent yield differences between monoculture and mixture for each
cultivar (= phenotypic plasticity)

Hypothesis : these differences are caused by eco-physiological processes
underlying plant-plant interactions

6/34



Differences in varietal proportions

Dominance relationships

>

Cultivar 1 > Cultivar 2

Sowing mixture

cultivar 1 (50%)

cultivar 2 (50%) Harvest
Y

mix

cultivar 1 (70%)
cultivar 2 (30%)
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Phenotypic plasticity

Trait
Trait
Trait

1 2 1 2 1

= 2-
Environment

Environment Environment

Source : Guntrip & Sibly (1998)

8/34



Yield components

Yield (g/m?) = plant density x #spikes/plant x #grains/spike x grain
weight
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Yield components

Yield (g/m?) = plant density x #spikes/plant x #grains/spike x grain
weight
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Yield components

Yield (g/m?) = plant density x #spikes/plant x #grains/spike x grain
weight
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Number of plants per m?
Number of spikes per plant

Number of grains per spike

Grain filling
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Tillering dynamics
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— Focus on competition for light and its effect on tillering in
conventional conditions
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Research question

Understand the performance of cultivar mixtures from the evolution of
varietal proportions between sowing and harvest by focusing on
competition for light:

s Which traits are important for mixture performance?

m What is the importance of phenotypic plasticity for these traits and
how is it shaped by plant-plant interactions?

m Are there differences in plastic responses among genotypes?

= Interdisciplinary approach between field experiments and mechanistic
modeling
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Modeling to study cultivar mixtures

m Experiments are essential but onerous

- Diversification complicates combinatory designs
- Difficulties raised by cultivar distinction in cultivar mixtures — heavy
and limited design (precision sowing)
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Modeling to study cultivar mixtures

Experiments are essential but onerous
- Diversification complicates combinatory designs
- Difficulties raised by cultivar distinction in cultivar mixtures — heavy
and limited design (precision sowing)
Modeling — in silico studies
- Taking plasticity into account to make predictions in mixtures
- Explore different processes
- Widen possibilities by simulation
Plant models
- Crop models (plot scale)
- Functional-Structural Plant Models (FSPMs, indiviual-based) —
adapted to study heterogeneous canopies and plant-plant interactions

FSPMs

- Detailed 3D architecture + radiative model — long simulation times
(ADEL-wheat, CN-wheat, WALTer)

- GreenLab models: simplified architecture 4+ source-sink formalism —
short simulation times
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Modeling strategy

m Objective of the model: simulate plants grown in cultivar mixtures
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Modeling strategy

m Objective of the model: simulate plants grown in cultivar mixtures

m Future applications: tool to support breeding for mixtures
- Generate large datasets in mixtures to predict mixing ability
- Test assembling of cultivars in mixtures
- Efficient calibration for new cultivars

m Criteria
- Short simulation time
- Simulation of source-sink relations
- Simulation of competition for light
- Simulation of realistic and plastic tillering dynamics

13/34



Conception of WHEAMM

FSPMs 3D architecture 3D +
radiative model Green'Lab
WALTer, ADEL-wheat, CN-wheat e Bl
simulation time
realistic and plastic tillering
- competition for light

competition for light
realistic and plastic tillering
simulation times
source-sink

WHEAMM
(WHEAt Model
for Mixtures)

competition
for light

Method competition for
light
GreenLab models
(perennial plants)

EcoMeristem
+ simulation time
source-sink
realistic and plastic tillering
- competition for light
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Conception of WHEAMM

[ ] Organs: leaves, internodes, ears (no root system)
m Organogenesis — thermal time calendar
m Biomass production by photosynthesis with the Monteith law

n: Day

q(n) — PARn . Sel(n) . RUE q : Produced biomass (g)

PAR : Photosynthetically Active Radiation (MJ.m_Q)
Se/ : Exposed leaf surface (m2)
RUE : Radiation Use Efficiency (g.MJ ™ 1)
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Conception of WHEAMM

Organs: leaves, internodes, ears (no root system)
Organogenesis — thermal time calendar
Biomass production by photosynthesis with the Monteith law

n: Day

q(n) — PARn . sel(n) . RUE q : Produced biomass (g)

PAR : Photosynthetically Active Radiation (MJ.m_Q)
Se/ : Exposed leaf surface (m2)
RUE : Radiation Use Efficiency (g.MJ ™ 1)

Approximation of S with a dedicated method for competition for
light based on disks partition (Cournede et al. 2007)

Plante i Plante j

Surface in
competition
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Conception of WHEAMM

m Biomass allocation with
organ-specific beta functions
(Baey 2014)

Biomass
production

Common pool
of biomass

Allocation

Internodes e
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Conception of WHEAMM

m Biomass allocation with
organ-specific beta functions
(Baey 2014)

Biomass
production

Common pool
of biomass

Allocation

Internodes @

m Height simulated as an
independent process — final
height of an internode of rank r
(Lecarpentier et al. 2019) :

h(r) = (a-r+ b)?
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Conception of WHEAMM

m Tillering dynamics
- Emission
- Cessation at R:FR ratio approximated by critical proximity Green
Area Index GAI. (Lecarpentier et al. 2019)
- Regression when allocated biomass to an axis below threshold T
(Larue et al. 2019) with protection delay Ap.o: (Lecarpentier et al.
2019)

Number
of axes

2) Cessation

Emergence Maturity

Y

L .

- b
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Conception of WHEAMM

Two model versions
m Individual plants (700 seconds)
m Average-plant (8 seconds) — homogeneous canopy

117 =

2% g
Light quality “t -4 :

f / 2
[ { N

3

|
,@ Interactions
T -

Computation of
proximity GAI

Focal plant ' ' '
. Copy of the focal plant

Light quantity

C&ﬁ peﬁion \Eih
overlapping disks

18/34



Experimental data (Gawinowski et al. 2022)

n Field experiment (Perfomix project) at Le Moulon, France in
2019-2020 and 2020-2021

m 8 winter wheat elite cultivars with different heading dates or final
heights — two contrasted quaternary mixtures

m Precision sowing for mixed stands by respecting spatial distributions

Phenotyping
- Growth: height, number of tillers, plant biomass, leaves surface and
weight
- Harvest: yield components
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Global sensitivity of WHEAMM in pure stands

m GlobalSensitivityAnalysis Julia package (Rennels & Anthoff 2022)

m Computation of first and total order Sobol indices (Sobol 2001) for
24 parameters on different outputs

= Number of tillers at harvest

1.00-

0.75-

Indices

First order
+ Total order

=
o
=]

Index value (mean an sd
5

0.00

P
phylio
Ic

T exp |
SLA
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Global sensitivity of WHEAMM in pure stands

m GlobalSensitivityAnalysis Julia package (Rennels & Anthoff 2022)

m Computation of first and total order Sobol indices (Sobol 2001) for
24 parameters on different outputs

= Number of tillers at harvest

1.00-

o
3}
a

Index value (mean an sd)
] 2

0.00

Low influence of Tk (threshold of
biomass allocated to a filler below
which its regression is activated)

phylio

Indices

First order
+ Total order

GAlc
T exp |”
SLA
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Automatic calibration of WHEAMM in pure
stands

m Experimental data — Perfomix experiment for 8 elite cultivars grown
in pure stands with variables throughout growth and at harvest

m Optim Julia package (Mogensen & Riseth 2018), simulated annealing
algorithm with bounds (Goffe et al. 1994)

m 16 parameters jointly calibrated for each genotype and season
separately

= Objective function (Seber & Wild 2003)

RMsE = 30 L g0 |35 (Yoot )’
~ Ny & Ny -

v=1 vot=1 i=1
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Automatic calibration of WHEAMM in pure
stands

Example of simulations with calibrated parameters for genotype Expert in
2019-2020
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Automatic calibration of WHEAMM in pure
stands

m Better goodness-of-fit in 2019-2020 than 2020-2021

23/34



Automatic calibration of WHEAMM in pure
stands

m Better goodness-of-fit in 2019-2020 than 2020-2021

m Calibrated parameters

- Contrasted estimations between genotypes and/or seasons

- 10% of parameters calibrated to their upper bounds

- High values: extinction coefficient kj, thermal time of emergence
Tinit, biomass threshold activating regression Ty

23/34



Automatic calibration of WHEAMM in pure
stands

m Better goodness-of-fit in 2019-2020 than 2020-2021

m Calibrated parameters
- Contrasted estimations between genotypes and/or seasons
- 10% of parameters calibrated to their upper bounds

- High values: extinction coefficient kj, thermal time of emergence
Tinit, biomass threshold activating regression Ty

m ldentification of misspecifications regarding tillering dynamics with
parameter Ty

- High values — systematic activation, regression truly controled by
Aprm‘

- Solution: make regression irreversible and more progressive

23/34



Automatic calibration of WHEAMM in pure
stands

m Better goodness-of-fit in 2019-2020 than 2020-2021

m Calibrated parameters
- Contrasted estimations between genotypes and/or seasons
- 10% of parameters calibrated to their upper bounds
- High values: extinction coefficient kj, thermal time of emergence
Tinit, biomass threshold activating regression Ty

m ldentification of misspecifications regarding tillering dynamics with
parameter Ty
- High values — systematic activation, regression truly controled by
Aprm‘
- Solution: make regression irreversible and more progressive

= Non conclusive validation

- Another season — joint calibration
- Another density — tillering misspecifications, calibration on several
densities (Blanc et al. 2021)
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Simulations in mixture

» "Individual plants" version

m Perspective to study differences in means and variances between
pure and mixed stands on simulated data — implementation of
stochasticity on the emergence date to simulate inter-individual
variability between plants of the same genotype, even in pure stands
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Simulations in mixture

» "Individual plants" version

m Perspective to study differences in means and variances between
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Simulations in mixture

"Individual plants" version

Perspective to study differences in means and variances between
pure and mixed stands on simulated data — implementation of
stochasticity on the emergence date to simulate inter-individual
variability between plants of the same genotype, even in pure stands

Sensitivity analysis in mixture

Simulations in mixtures
- Parameter values calibrated in pure stands in 2019-2020

- Simulations of the two quaternary mixtures of the Perfomix
experiment in 2019-2020

- Mixture 1 (contrasted earliness)
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Simulations Mixture 1 in 2019

Accroc Aubusson Bergamo Expert
o
29
<
S
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o
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Number of days after sowing

— Satisfying tillering (although peak too early and regression too weak
for Expert) but biomass often underestimated
— Simulated variability largely underestimated
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Convergence of tillering dynamics in mixture

Simulated data for mixture 1 in 2019-2020

Pure stand Mixed stand

o / .
ko / l Cultivar

= 6- | |

b | = 0 | Accroc
° — Aubusson
_ﬂn) — Bergamo
£ Expert

=1

=z

()

0 100 200 0 100 200
Number of days after sowing

— In accordance with experimental data
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Discussion

Development of WHEAMM
m All criteria
- Source-sink formalism + minimalist 3D architecture — fast
simulations
- Realistic tillering dynamics in 3 phases with plastic responses to
competition for light

- Implementation of competition for light without detailed 3D
architecture
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Discussion

Development of WHEAMM
m All criteria
- Source-sink formalism + minimalist 3D architecture — fast
simulations
- Realistic tillering dynamics in 3 phases with plastic responses to
competition for light
- Implementation of competition for light without detailed 3D
architecture
s Confrontation to reality

WHEAMM not fully validated on the PerfoMix experiment
- Satisfying calibration for many cultivars in pure stands

- Simulation of diverse plastic behaviors in mixtures

- Emergence of tillering convergence in mixtures
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Discussion

Importance of sensitivity analysis and automatic calibration in a modeling
cycle

s "The point of falsifying a model is not to learn that the model is
false but rather to learn the ways in which a model is false" (Gelman
& Shalizi 2013)
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Discussion

Importance of sensitivity analysis and automatic calibration in a modeling
cycle

s "The point of falsifying a model is not to learn that the model is

false but rather to learn the ways in which a model is false" (Gelman
& Shalizi 2013)

m Essential to good modeling practices (Cournéde et al. 2013) but too
rare for FSPMs

m Manual calibration too subjective

= No consensus on calibration practices for crop models (Wallach 2011)
but consideration of entire process
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Modeling challenges — computation time

s WHEAMM "average plant" 8 seconds vs WHEAMM "individual
plants" 10 minutes
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Discussion

Modeling challenges — computation time

s WHEAMM "average plant" 8 seconds vs WHEAMM "individual
plants" 10 minutes

m Parallel simulations — possible for sensitivity analyses but not
always for automatic calibration (iterative process)

m Calibration — parallel computing within the one simulation (parallel
computation of different plants at one timestep)

m Metamodeling: Gaussian processes (kriging) metamodels to
approximate complex models coupled with a sequential EGO
(expectation global optimization) method

- Successful automatic calibration for tillering parameters in WALTer
(Blanc et al. 2021)

- Further developments required for WHEAMM — plant scale, several
variables
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Conclusion

m Use of Julia for model development
- Efficiency
- Accessible
- Important number of packages
- Community
- But lack of solutions for some very specific issues...

m Perspectives
- Solve identified tillering misspecifications, add sources of
stochasticity and a root sink
- Many possible applications, notably coupling WHEAMM with

population genetics models to study heterogeneous populations over
sowing/resowing cycles
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Thank your for your attention!
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