
HAL Id: hal-04936323
https://hal.science/hal-04936323v1

Submitted on 8 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Adaptive and interoperable federated data spaces: an
implementation experience

Nikolaos Papadakis, Niemat Khoder, Daphne Tuncer, Kostas Magoutis,
Georgios Bouloukakis

To cite this version:
Nikolaos Papadakis, Niemat Khoder, Daphne Tuncer, Kostas Magoutis, Georgios Bouloukakis. Adap-
tive and interoperable federated data spaces: an implementation experience. 20th International Con-
ference on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2025), Apr 2025,
Ottawa, Canada. �hal-04936323�

https://hal.science/hal-04936323v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Adaptive and Interoperable Federated Data Spaces:
An Implementation Experience

Nikolaos Papadakis∗, Niemat Khoder∗, Daphne Tuncer†, Kostas Magoutis‡§, Georgios Bouloukakis∗

{nikolaos.papadakis, niemat.khoder}@telecom-sudparis.eu, daphne.tuncer@enpc.fr,magoutis@ics.forth.gr,
georgios.bouloukakis@telecom-sudparis.eu

∗Télécom SudParis, Institut Polytechnique de Paris, France
†Ecole nationale des ponts et chaussees, Institut Polytechnique de Paris, France

‡University of Crete, Greece
§Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH), Greece

Abstract—As modern smart cities increasingly rely on feder-
ated IoT-enabled data spaces to support their operations, the dy-
namic and heterogeneous nature of these environments introduces
significant challenges. Variations in data models, protocols, and
policies hinder seamless federation and collaboration. To address
these challenges, we present the prototype implementation of
CCDUIT, a modular, scalable, and adaptive software overlay
architecture for cross-federation collaboration. This architecture
dynamically adapts to evolving data exchange requirements, in-
cluding protocol variations, data model discrepancies, and policy
constraints, ensuring continuity and efficiency in data discovery
and exchange. The prototype uses context-aware mechanisms
to autonomously adjust operations, dynamically reconfigure col-
laborations, enforce data exchange policies, and optimize data-
sharing pathways. We validate the prototype using real-world
data spaces operating to address barriers to climate change
mitigation and energy transition. Experimental results highlight
the ability of the architecture to adapt for diverse federation-
specific needs with minimal operational overhead and respond
to dynamic policy changes. We release our prototype as open
source, enabling the community to explore, extend, and adapt it
to their own needs.

Index Terms—Smart Cities, IoT, Data Federation, Software
Overlay, Prototype Implementation, Data Interoperability

I. INTRODUCTION

As modern digital ecosystems become increasingly inter-
connected, federated data spaces [1] [2] have emerged as a
key enabler for cross-domain collaboration and data sharing.
These federations enable entities to share data while maintain-
ing independence, addressing challenges in urban planning,
healthcare, and sustainability. However, while federated sys-
tems within individual domains have demonstrated significant
utility, enabling seamless collaboration across heterogeneous
federations remains a challenge.

Existing solutions within federations typically rely on ho-
mogenizing technologies, such as semantic gateways or data
converters [3]–[5], which help bridge internal heterogene-
ity. However, these approaches falter when applied at the
inter-federation level, where each data space operates under
unique technological (e.g., RESTful APIs vs. MQTT pro-
tocols), semantic (e.g., NGSI-LD vs. Brick data models),
and policy paradigms (e.g., GDPR-compliant data handling).
Furthermore, the static nature of most current solutions fails

to account for the dynamic and evolving requirements of
federated environments, such as changing data-sharing policies
or fluctuating collaboration demands.

In our previous research we introduced a novel soft-
ware overlay architecture designed to address these inter-
federation challenges by enabling scalable, policy-compliant,
and technology-agnostic collaboration across federations, the
CCDUIT architecture [6]. This architecture lays the ground-
work for what can be described as a ”federation of federa-
tions,” where individual federations can dynamically interact
without sacrificing their autonomy or operational sovereignty.
Although conceptually promising, the design’s feasibility and
effectiveness remained unvalidated in real-world contexts.

This paper focuses on bridging that gap by presenting a
prototype implementation of this architecture, bringing the
architecture to life. To validate the prototype, we apply it to
a real-world use case involving federations that collaborate
on climate change mitigation and energy transition initia-
tives, based on the Energy4Climate Interdisciplinary Center
(E4C) [7]. This scenario, with its complex and evolving collab-
oration requirements, serves as an ideal testbed to demonstrate
the capabilities of the system.

The primary contributions of our work include:
1) A comprehensive realization of the CCDUIT software

overlay architecture.
2) Demonstration of the practical applicability of the pro-

totype in a real-world scenario.
3) A detailed experimental analysis to evaluate the pro-

totype’s functionality, operational overhead and respon-
siveness to policy changes

4) The release of the prototype as an open source ar-
tifact [8], accompanied by detailed documentation to
enable reproduction, extension, and further exploration
by the research community.

The remainder of this paper is structured as follows: In §II
we discuss our motivation along with the real-world challenges
we address. The details of the prototype implementation,
including the technologies used and the rationale behind them,
are presented in §III. In §IV, we describe the experimental
evaluation setup and provide a detailed analysis of the results,
focusing on both performance and policy adaptation capabil-

ities. Related work is explored in §V, comparing existing so-
lutions and highlighting the unique advantages of the selected
approach. Finally, §VI concludes the paper with key findings
and outlines potential directions for future research.

II. MOTIVATION

In the face of increasing energy demands and climate
change, achieving energy efficiency has become a priority
for research institutions and industries alike [7]. Modern
building networks with advanced energy management systems
offer opportunities to address these challenges. However, even
cutting-edge buildings often operate in isolation, and their
systems are unable to collaborate effectively across a shared
ecosystem.

Fig. 1. Illustration of the Three Building Testbed for Collaborative Energy
Management Solutions, Representing Distinct Federations

As a testbed for exploring collaborative energy management
solutions, we use a network of three distinct buildings (Fig. 1):
A smart innovation center, a residential facility, and a climate
research laboratory, each embodying advanced technologies
designed to promote sustainability and belonging to a different
operational federation. The innovation center features rooftop
solar panels, battery storage, and a Building Management
System (BMS) that optimizes its HVAC (Heating, Ventilation,
and Air Conditioning) operations. The residential facility
incorporates electric vehicle chargers, smart thermostats, and
solar energy systems. The climate lab provides meteorological
data through a series of weather monitoring instruments.

Despite their individual capabilities, these buildings cur-
rently operate in silos. The innovation center and residential
facility control their HVAC systems based on predefined
schedules, without factoring in real-time occupancy patterns
or localized weather conditions. This results in energy waste,
either by heating and cooling unoccupied spaces or responding
inefficiently to environmental changes. The hyperlocal weather
data from the climate laboratory, which could significantly im-
prove the energy management of other buildings, remains un-
derutilized. Moreover, technical disparities between buildings
create additional barriers to collaboration: while the innovation
center and the climate lab use NGSI-LD [9], [10] data models
accessed via RESTful APIs, the residential facility relies on
the BRICK [11] schema and MQTT for communication.

The need for a unifying framework to enable seamless col-
laboration between such diverse systems is evident. Effective
collaboration would allow these buildings to dynamically share
and integrate data, optimizing HVAC operations in response
to both real-time conditions and contextual information. For
example, the climate lab could provide localized real-time
weather updates to inform HVAC adjustments in the inno-
vation center and residential facility, ensuring comfort while
minimizing energy use. Similarly, Digital Twins occupancy
and building data for residential and innovation buildings
could guide the development of machine learning models for
heating and cooling strategies, reducing unnecessary energy
expenditure in unoccupied spaces.

However, achieving this vision requires overcoming sig-
nificant technical and operational challenges. Interoperability
between systems with differing data models and communica-
tion protocols must be addressed, all while maintaining data
sovereignty (that is, the control over who can access, modify,
and forward data). This is where the CCDUIT software overlay
architecture plays a critical role. Designed to bridge heteroge-
neous systems, it provides a modular and scalable framework
that enables seamless data exchange, policy compliance, and
adaptive decision making across diverse environments.

III. PROTOTYPE IMPLEMENTATION

A. Overview

The core purpose of the CCDUIT [6] software overlay
architecture is to enable seamless collaboration between dif-
ferent federations, each with its own data models, commu-
nication protocols, and operational constraints. By serving as
an adaptable bridge, the system allows these federations to
exchange data, share contextual information, and collaborate
effectively while preserving their individual autonomy. As
this work focuses on the prototype, the detailed rationale
and design of the architectural mechanisms are only briefly
outlined here. Readers are encouraged to consult the full paper
for an in-depth explanation of the underlying architecture [6].
At a high level, Fig. 2, the system works by creating a
dynamic network where federations act as nodes connected
by two types of interactions: one for exchanging actual
data and the other for sharing contextual information, such
as policies and metadata. These interactions are continuously
monitored and adjusted on the basis of the current needs and
conditions of each federation. For example, if two federations
use different data formats or protocols, the system adapts
their communication in real time by transforming the data or
aligning the protocols as needed. This ensures smooth data
flow despite system differences.

A critical aspect of this adaptability is the use of policies
(see listing 1), which define rules for how and when data
can be shared. They encapsulate constraints related to privacy,
security, data sovereignty, and operational guidelines. For
instance, a policy might specify that certain environmental
data can only be shared with federations that adhere to
specific sustainability standards, or that health-related data
must comply with strict privacy regulations, or as in our

Fig. 2. Federations with distinct policies, technologies, and topologies,
unified through the CCDUIT architecture.

experiments whether to allow specific federations by their id
and not just their characteristics.

1 { ” i d ” : ” urn : ngs i − l d : C o n t e x t P o l i c y : P o l i c y 1 ” ,
2 ” t y p e ” : ” C o n t e x t P o l i c y ” ,
3 ”name” : ” p o l i c y 1 ” ,
4 ” d e s c r i p t i o n ” : ” S i m p l i f i e d Example P o l i c y ” ,
5 ” p r o v i d e r F e d e r a t i o n ” : ” urn : ngs i − l d : F e d e r a t i o n : F e d e r a t i o n 1 ” ,
6 ” p e r m i t t e d C o n t e x t T y p e s ” : [” community ” , ” f e d e r a t i o n ” , ” p o l i c y ” , ” f u n c t i o n ”] ,
7 ” ContextBrokerURL ” : ” h t t p : / / l o c a l h o s t : 1 0 5 1 / ngs i − l d / v1 / e n t i t i e s ” ,
8 ” s h a r i n g R u l e s ” : [
9 {” urn : ngs i − l d : F e d e r a t i o n : F e d e r a t i o n 2 ” : {” c a n R e c e i v e ” : t r u e , ” canForward ” :

f a l s e }},
10 {” p u b l i c ” : {” c a n R e c e i v e ” : f a l s e , ” canForward ” : f a l s e}}] ,
11 ” m o d i f i c a t i o n P o l i c y ” : {
12 ” l a s t M o d i f i e d ” : ” 2024 −12 −05T14 : 0 5 : 0 9 Z” ,
13 ” modi f iedBy ” : ” Admin 24 ”} ,
14 ” G e o g r a p h i c R e s t r i c t i o n s ” : n u l l}

Listing 1. Example of an instance of a policy context entity in NGSI-LD
key-values format. This Policy allows Federation 2 to receive information but
to not share/forward information regarding Federation1

The system dynamically enforces these policies by contin-
uously synchronizing them across federations and applying
them to data exchanges in real time. When a federation
requests data or initiates collaboration, the system checks the
relevant policies, determines what can and cannot be shared,
and adapts the interactions accordingly. In short, the system
continuously monitors policy changes and automatically up-
dates itself to reflect these modifications, ensuring that all
exchanges remain fully compliant with the updated policies.

The architecture was designed to realize these capabilities
through a fully modular design, as illustrated in Fig. 3 (A).
Central to its operation is the Interaction Engine, a subsystem
that facilitates data interoperability between federations. Sup-
porting the Interaction Engine is the Contextual Knowledge
Base (KB), a graph-structured repository for storing essential
information about federations, such as their data models,
policies, and available resources. To simplify and manage
interactions, the architecture provides a suite of APIs. The
Interaction API allows federations to initiate and control data
exchanges, query context entities, and trigger collaborative
operations dynamically. Meanwhile, the Administration API
empowers system administrators to handle tasks like system
configuration, policy management, and real-time monitoring.
Together, these APIs form a crucial interface layer. The system
also includes a robust policy management mechanism to
ensure that all inter-federation exchanges adhere to predefined
rules. Policies are encoded and shared via the Context Ex-
change Mechanism, guaranteeing compliance with federation-
specific governance frameworks. Additionally, a Publish/Sub-

scribe Schema organizes all node communication into top-
ics representing federation-specific entities, data types, and
policies. To ensure adaptability in dynamic environments, the
architecture integrates Dynamic Adaptation Mechanisms.
These mechanisms enable the system to autonomously recon-
figure interactions in response to changes in data exchange
requirements, evolving policies, or federation configurations.

In the following subsection, we detail how these theoretical
components have been translated into a functional prototype.

B. Implementation Details

Implementing CCDUIT brings the conceptual architecture
to life through a working prototype that embodies the princi-
ples of modularity, scalability, and interoperability. To achieve
this, we carefully selected technologies that support these
goals, Fig. 3 (B), ensuring that the system can dynamically
adapt to the challenges inherent in federated collaborations.
The prototype is primarily developed in Python due to its
simplicity, and extensive ecosystem of libraries for web devel-
opment, data processing, and communication. The codebase,
including the prototype and API endpoints, is available on our
GitHub page GitHub repository and permanently archived in
our Zenodo repository Zenodo repository [8].

Fig. 3. (A) High level overview of architecture components of a CCDUIT
node, (B) Prototype node implementation details.

At the core of context management is the Contextual Knowl-
edge Base (KB), implemented using the Orion-LD context
broker. Orion-LD1 adheres to the NGSI-LD standard, repre-
senting context data in a structured JSON-LD format and uses
MongoDB [12] as its back-end storage. This choice allows
for a flexible graph-based approach to the rest of the context
data. Orion-LD stores and serves queries to context data, but
is not designed for fast real-time updates that would allow for
dynamic synchronization between federations. To address this,
we integrated Mosquitto [13] MQTT brokers for asynchronous
communication. MQTT (Message Queuing Telemetry Trans-
port) is a lightweight publish/subscribe protocol ideal for low-
latency communication. When a federation updates a policy,
the Policy Management Service stores it in Orion-LD and
simultaneously publishes it to a Mosquitto topic. The Policy
Monitoring Service listens to these topics, ensuring federations
receive and apply policy changes in real time. This dual
approach leverages the strengths of both technologies: Orion-
LD provides a reliable and queryable context store, while
Mosquitto ensures rapid dissemination of critical updates.

1https://github.com/FIWARE/context.Orion-LD

https://github.com/satrai-lab/ccduit
https://zenodo.org/records/14753342
https://github.com/FIWARE/context.Orion-LD

The prototype’s functionality is exposed through a set of
RESTful APIs built using FastAPI2. By keeping API endpoints
lightweight and delegating business logic to dedicated service
layers, we ensure the code remains maintainable and adapt-
able for future enhancements. The implemented interaction
engine handles the complexities of data exchange between
federations. When an exchange is initiated, the Interaction
Engine retrieves the necessary conversion functions from the
Knowledge Base (Orion-LD) to adapt data models and trans-
late communication protocols. Our implementation currently
supports the HTTP and MQTT protocols, providing a proof
of concept for the system’s adaptability. The modular design
of the Interaction Engine means that additional protocols can
be integrated with minimal effort in the future. Collaboration
between federations follows a structured workflow. When a
federation wants to collaborate, the service sends a request
to the target federation. The target federation evaluates the
request against its policies and responds accordingly. Once
approved, the system automatically establishes context and
policy synchronization channels, ensuring that data exchanges
adhere to the rules of each federation.

Our implementation demonstrates the core functionalities
of CCDUIT, but there is room for improvement. For example,
fully automating the context exchange process and supporting
additional communication protocols would further enhance
flexibility. However, our prototype provides a solid foundation
for validating the architecture in real-world scenarios.

IV. THE CCDUIT PROTOTYPE IN PRACTICE

The experimental setup, Fig. 4 for evaluating our prototype,
mirrors the real-world collaboration scenario described in the
motivation section II. It involves three distinct buildings that
represent different federations: a smart innovation center, a
residential facility, and a climate research lab. Each building
belongs to a separate federation (Federations 1,2 and 3), each
employing unique data models and communication protocols.
The data used in these experiments consist of synthetic oc-
cupancy observations and historical weather data from 2019,
replayed in real-time to simulate realistic conditions.

Each federation is equipped with a CCDUIT node, im-
plemented in Python, and deployed using Docker containers.
All nodes run on the same machine, featuring a 12th Gen
Intel Core i7-12700H processor (20 cores, 2.3 GHz base
frequency) and 16 GB RAM. Context entities and policies
are represented using the NGSI-LD format, and interactions
between federations are facilitated through Swagger-defined
RESTful APIs provided by the prototype.

To evaluate the prototype, we conducted two types of ex-
periments: one measuring latency overhead for real-time data
exchanges across different data models and protocols, and an-
other assessing the system’s responsiveness to policy updates,
such as terminating interactions or propagating new policies
across federations. The evaluation focuses on latency and
responsiveness as critical factors for real-time cross-federation

2https://fastapi.tiangolo.com/

Fig. 4. Experimental Setup

collaboration, with scalability already explored in prior work
[6] and robustness left for future exploration, as the current
goal is to validate the prototype’s core adaptation mechanisms.
All experiments are designed to be reproducible, with detailed
instructions provided in the artifact repositories [8] to facilitate
validation and further exploration.

A. CCDUIT Prototype Performance Evaluation

Evaluation of CCDUIT performance focuses on two key
aspects of interaction latency: startup latency and ongoing
interaction latency. We consider these two distinct phases
because they capture different operational behaviors of the
prototype. Startup latency, or cold start overhead, measures
the delay from the moment a user initiates a data-exchange
interaction to the reception of the first converted data at the
destination endpoint. This phase includes the time required
for the prototype to search for the relevant context in the KB,
apply the necessary data transformations, and align commu-
nication protocols before initiating the interaction. Once the
interaction is established, subsequent data exchanges occur
at regular intervals. The latency for each of these exchanges,
termed interaction latency overhead, measures the time from
when the interaction handling service requests data until it
arrives at the destination.

We evaluated latencies by testing scenarios with varying
data models, protocols, and with and without using our
prototype. In the ”without” parts, buildings exchanged data
directly using native protocols and APIs, such as an NGSI-
LD HTTP endpoint communicating with another NGSI-LD
HTTP endpoint or an MQTT broker connecting directly to
another MQTT broker. In these cases, no dynamic adaptation
or policy enforcement was applied.

First the cold start latency, representing the delay associated
with initializing data exchanges, was evaluated across all
scenarios. In each case, the cold start experiment was repeated
20 times to ensure consistency, and the results are presented in
the corresponding Fig. 5. The ’cold start’ latency for the non
CCDUIT solutions, is due to the time that it takes to connect
to each broker. As expected, scenarios that required complex
transformations and protocol adaptations exhibited higher cold
start latencies. However, the prototype’s performance remained
within reasonable limits. In addition to measuring cold start la-
tency, we evaluated the ongoing interaction latency. The results
of these experiments, presented in the accompanying Fig. 6,

https://fastapi.tiangolo.com/

Fig. 5. Cold start latency measurements across different scenarios.

illustrate the latency incurred under different configurations
and help us assess the prototype’s efficiency and adaptability.
Each scenario consisted of 100 data exchanges at an average
interval of 0.8 seconds, repeated over five runs each. In the first

Fig. 6. Ongoing interaction latency for various data exchange scenarios
A⃝ B⃝ C⃝, comparing the overhead introduced by CCDUITunder different

configurations.

scenario (scenario A⃝), we measured the interaction latency
for exchanges where both federations used the NGSI-LD data
model and communicated over HTTP, without CCDUIT. The
results consistently showed low latency, since no additional
processing or transformation was required. We then intro-
duced CCDUIT to the same setup, measuring the interaction
latency when the system was actively managing the exchanges.
Although the prototype ensured context-sensitive validation
and policy enforcement, the latency increased only slightly
compared to the baseline. This increase is attributable to the
prototype’s context-checking, policy-checking, and transfor-
mation mechanisms.

In the second scenario (scenario B⃝), we explored data
exchanges where both federations used the Brick data model
and communicated over MQTT, first without CCDUIT. As
expected, this setup also demonstrated low latency due to the
straightforward communication process. When we introduced
CCDUIT to manage these MQTT-to-MQTT exchanges, we

observed a modest latency increase, consistent with the addi-
tional processing.

The third more complex and more relevant scenario (sce-
nario C⃝), involved federations with different protocols. We
evaluated exchanges where one federation used the Brick
data model with MQTT and the other used NGSI-LD with
HTTP. The transformation process introduced a higher latency
compared to homogeneous scenarios, reflecting the compu-
tational effort required for real-time adaptation. However,
the results showed that CCDUIT successfully managed these
exchanges, maintaining a consistent latency pattern. In all
experiments,the results consistently indicated that CCDUIT
introduced manageable latency overhead, with initial latencies
typically below 1.5 seconds and ongoing interaction latencies
below 80 milliseconds for most scenarios. Given that real-time
HVAC adjustments or occupancy updates in smart buildings
typically operate on timescales of several seconds, these
latency values are acceptable for practical deployment. The
slight increase in latency is justified by the added benefits
of dynamic adaptation, interoperability, and data sovereignty
enforcement.

B. CCDUIT Prototype Policy Adaptation Evaluation

To further assess the adaptability of CCDUIT, we conducted
a series of experiments designed to measure the system’s
responsiveness to policy updates.

In the first set of experiments, we measured how quickly
CCDUIT responds to a policy update that requires the ter-
mination of an active data interaction. This scenario reflects
a critical use case in which an ongoing data exchange must
be stopped because a policy change no longer allows the
interaction. The experiment involved initiating a data exchange
between two federations, updating the policy to restrict this
exchange, and then recording the latency from the moment
the policy was updated until the interaction was terminated.
This test was repeated 100 times to ensure the reliability of the
results. The findings, illustrated in the accompanying graph,
Fig. 7, demonstrate that CCDUIT efficiently detects policy
changes and terminates interactions within a short latency
window. In addition to evaluating termination latency, we

Fig. 7. Response time of CCDUIT to policy updates requiring the termination
of active data interactions.

tested the ability of CCDUIT to propagate policy updates
across a linear federation network. In this setup, we considered

the three federations of the motivating scenario connected
sequentially. Federation 1 collaborates with Federation 2, and
Federation 2 collaborates with Federation 3. The goal was to
measure how quickly a policy update in Fed. 1 is forwarded
to Fed. 2 and subsequently to Fed. 3.

Two key latency metrics were recorded during this exper-
iment. The first metric, latency between consecutive federa-
tions, measured the time taken for a policy update to travel
from Fed. 1 to Fed. 2 and then from Fed. 2 to Fed. 3.
The second metric, end-to-end network latency, captured the
total time from the initial policy update in Fed. 1 to its final
reception in Fed. 3. These tests were carried out over 100 runs
to account for variability and ensure accurate measurements.
The results in Fig. 8 demonstrate that CCDUIT efficiently
propagates policy updates, exhibiting a low, linearly increasing
latency (and as expected 1→3 latency equals the sum of 1→2
and 2→3 latencies).

Fig. 8. Latency metrics for propagating policy updates across multiple feder-
ations. The graph illustrates both the latency between consecutive federations
and the end-to-end network latency from Federation 1 to Federation 3

In general, the evaluation shows that CCDUIT introduces
manageable latency overhead while providing critical func-
tionalities such as context-aware data transformation, protocol
adaptation, and policy enforcement.

V. RELATED WORK

Federated data spaces have evolved significantly
[14] [15] [16] [17] [18]. Although these advances have
contributed valuable solutions to isolated aspects of the
problem, they lack the ability to offer a comprehensive,
adaptive framework for seamless, cross-federation
collaboration. Existing solutions focus on specific challenges
within federated ecosystems. For example, data converters
such as FIWARE’s IoT Agents [4] and Apache NiFi [3]
address data format discrepancies by transforming data into
standardized models such as NGSI-LD. Although effective
within their respective scopes, these tools often require manual
model-specific configurations, making them less adaptable to
dynamic, heterogeneous environments. Similarly, platforms
such as the one proposed by Akasiadis et al. [5] support
multiple communication protocols, such as REST/HTTP,
MQTT and AMQP, through microservices. However, these
approaches lack the ability to dynamically adapt to evolving
federation requirements and policy changes. Semantic
gateways, such as the Semantic IoT Gateway framework [19],
facilitate semantic alignment by mapping different data

models and ontologies to a shared understanding. Although
these gateways preserve contextual integrity during data
exchanges, maintaining such mappings in large, dynamic
federations is resource intensive and difficult to scale.
Furthermore, initiatives like SOFIE [20] leverage Distributed
Ledger Technologies (DLTs) to enable secure federation
of IoT platforms, while trust-based models [21] manage
collaboration by rewarding or penalizing entities based on
trust scores. Although these solutions improve security and
reliability, they do not fully address the technical complexities
of interoperability between federations.

Despite these advancements, existing solutions often re-
quire compromising the native technologies of federations by
homogenizing data models or embedding one system within
another. These compromises reduce flexibility, limit scalabil-
ity, and impede the autonomy of individual federations. The
CCDUIT architecture addresses these limitations. CCDUIT
provides a unified framework that dynamically manages data
models, communication protocols, and policy constraints with-
out requiring federations to alter their underlying technologies.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we present a prototype implementation of
our previous work, the CCDUIT architecture, designed to
enable seamless and adaptive collaboration between federated
data spaces with heterogeneous data models, protocols, and
policies. The modular, scalable, and self-adaptive design of
the prototype allows federations to maintain operational auton-
omy while dynamically managing data exchanges and policy
enforcement.

Our evaluation demonstrated that the prototype introduces
minimal latency for both initial and ongoing data interactions,
even when handling complex transformations and protocol
adaptations. In addition, the system efficiently enforces data
sovereignty by promptly responding to policy updates and
propagating changes across federations. Future work includes
extending support for additional communication protocols,
automating more context exchange processes, and optimizing
data transformation to further reduce latency. Integrating ML
techniques for predictive adaptation and improving system
resilience for larger federation networks are also promising
directions. Real-world deployments in diverse domains, such
as smart cities and green energy (e.g. hydro power plant
clusters), will help refine the capabilities of the system.

CCDUIT sets the foundation for scalable, policy-compliant
and interoperable federations. By open-sourcing the prototype,
we invite the community to explore, extend, and contribute to
the advancement of federated data ecosystems.

ACKNOWLEDGEMENTS

This work is partially supported by the Horizon Europe
project DI-Hydro under grant agreement number 101122311
and the Energy4Climate Interdisciplinary Center (E4C), which
is supported by 3rd Programme d’Investissements d’Avenir
[ANR-18-EUR-0006-02].

REFERENCES

[1] P. DS4SSCC. (2024) Data spaces for smart and sustainable cities
and communities (ds4sscc). Accessed: 2024-06-11. [Online]. Available:
https://www.ds4sscc.eu/

[2] B. Otto, “A federated infrastructure for european data spaces,”
Commun. ACM, vol. 65, no. 4, p. 44–45, mar 2022. [Online]. Available:
https://doi.org/10.1145/3512341

[3] S.-S. Kim, W.-R. Lee, and J.-H. Go, “A study on utilization of spatial
information in heterogeneous system based on apache nifi,” in 2019 In-
ternational Conference on Information and Communication Technology
Convergence (ICTC), 2019, pp. 1117–1119.

[4] I. Zyrianoff, A. Heideker, L. Sciullo, C. Kamienski, and M. Di Felice,
“Interoperability in open iot platforms: Wot-fiware comparison and in-
tegration,” in 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), 2021, pp. 169–174.

[5] C. Akasiadis, V. Pitsilis, and C. D. Spyropoulos, “A multi-protocol
iot platform based on open-source frameworks,” Sensors, vol. 19,
no. 19, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/
19/19/4217

[6] N. Papadakis, G. Bouloukakis, and K. Magoutis, “Ccduit: A software
overlay for cross-federation collaboration between data spaces,” in
2024 IEEE 21st International Conference on Software Architecture
Companion (ICSA-C), 2024, pp. 143–150.

[7] J. Badosa, P. Crifo, D. Dalmazzone, P. Drobinski, C. Guivarch, N. Gi-
rard, M. Marot, G. Memmi, and D. Suchet, Eds., Energy4Climate (E4C)
Interdisciplinary Center White Book - Energy and Climate: Research
Perspectives. Palaiseau, France: Institut Polytechnique de Paris and
Ecole des Ponts, 2020.

[8] N. Khoder and N. Papadakis, “Ccduit prototype software overlay arti-
fact,” https://zenodo.org/records/14753342, https://github.com/satrai-lab/
ccduit, 2024, accessed: Dec 15, 2024.

[9] S. Jeong, S. Kim, and J. Kim, “City data hub: Implementation of
standard-based smart city data platform for interoperability,” Sensors,
vol. 20, no. 23, 2020. [Online]. Available: https://www.mdpi.com/
1424-8220/20/23/7000

[10] “Context information management (cim) ngsi-ld api v1.4.2,” 04 2021.
[Online]. Available: https://www.etsi.org/deliver/etsi gs/CIM/001 099/
009/01.07.01 60/gs cim009v010701p.pdf

[11] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong,
A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal, M. Bergés, D. Culler,
R. K. Gupta, M. B. Kjærgaard, M. Srivastava, and K. Whitehouse,
“Brick : Metadata schema for portable smart building applications,”
Applied Energy, vol. 226, pp. 1273–1292, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261918302162

[12] H. Krishnan, M. Elayidom, and T. Santhanakrishnan, “Mongodb – a
comparison with nosql databases,” International Journal of Scientific
and Engineering Research, vol. 7, pp. 1035–1037, 05 2016.

[13] R. Light, “Mosquitto: server and client implementation of the mqtt
protocol,” The Journal of Open Source Software, vol. 2, 05 2017.

[14] N. Papadakis, G. Bouloukakis, and K. Magoutis, “Comdex: A
context-aware federated platform for iot-enhanced communities,” in
Proceedings of the 17th ACM International Conference on Distributed
and Event-Based Systems, ser. DEBS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 37–48. [Online].
Available: https://doi.org/10.1145/3583678.3596890

[15] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and A. Ki-
tazawa, “Fogflow: Easy programming of iot services over cloud and
edges for smart cities,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 696–707, 2018.

[16] F. Cirillo, G. Solmaz, E. L. Berz, M. Bauer, B. Cheng, and E. Kovacs,
“A standard-based open source iot platform: Fiware,” IEEE Internet of
Things Magazine, vol. 2, no. 3, p. 12–18, Sep 2019.

[17] J. Carvajal Soto, O. Werner-Kytölä, M. Jahn, P. J., D. Bonino, C. Pas-
trone, and M. Spirito, “Towards a federation of smart city services.” 11
2015.

[18] A. Morelli, L. Campioni, N. Fontana, N. Suri, and M. Tortonesi, “A
federated platform to support iot discovery in smart cities and hadr
scenarios,” 09 2020, pp. 511–519.

[19] K. Kotis and A. Katasonov, “Semantic interoperability on the web of
things: The semantic smart gateway framework,” in 2012 Sixth Inter-
national Conference on Complex, Intelligent, and Software Intensive
Systems, 2012, pp. 630–635.

[20] D. Lagutin, F. Bellesini, T. Bragatto, A. Cavadenti, V. Croce, Y. Kortes-
niemi, H. C. Leligou, Y. Oikonomidis, G. C. Polyzos, G. Raveduto,
F. Santori, P. Trakadas, and M. Verber, “Secure open federation of
iot platforms through interledger technologies - the sofie approach,” in
2019 European Conference on Networks and Communications (EuCNC),
2019, pp. 518–522.

[21] H. Yahyaoui, Z. Maamar, M. Al-Khafajiy, and H. Al-Hamadi,
“Trust-based management in iot federations,” Future Generation
Computer Systems, vol. 136, pp. 182–192, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X22002023

https://www.ds4sscc.eu/
https://doi.org/10.1145/3512341
https://www.mdpi.com/1424-8220/19/19/4217
https://www.mdpi.com/1424-8220/19/19/4217
https://zenodo.org/records/14753342
https://github.com/satrai-lab/ccduit
https://github.com/satrai-lab/ccduit
https://www.mdpi.com/1424-8220/20/23/7000
https://www.mdpi.com/1424-8220/20/23/7000
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.07.01_60/gs_cim009v010701p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.07.01_60/gs_cim009v010701p.pdf
https://www.sciencedirect.com/science/article/pii/S0306261918302162
https://doi.org/10.1145/3583678.3596890
https://www.sciencedirect.com/science/article/pii/S0167739X22002023

	Introduction
	Motivation
	Prototype Implementation
	Overview
	Implementation Details

	The CCDUIT prototype in practice
	CCDUIT Prototype Performance Evaluation
	CCDUIT Prototype Policy Adaptation Evaluation

	Related Work
	Conclusions and Future Work
	References

