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Abstract

Due to its invariance to rigid transformations such as rotations and reflections,
Procrustes-Wasserstein (PW) was introduced in the literature as an optimal trans-
port (OT) distance, alternative to Wasserstein and more suited to tasks such as the
alignment and comparison of point clouds. Having that application in mind, we care-
fully build a space of discrete probability measures and show that over that space
PW actually is a distance. Algorithms to solve the PW problems already exist, how-
ever we extend the PW framework by discussing and testing several initialization
strategies. We then introduce the notion of PW barycenter and detail an algorithm
to estimate it from the data. The result is a new method to compute representa-
tive shapes from a collection of point clouds. We benchmark our method against
existing OT approaches, demonstrating superior performance in scenarios requiring
precise alignment and shape preservation. We finally show the usefulness of the PW
barycenters in an archaeological context. Our results highlight the potential of PW
in boosting 2D and 3D point cloud analysis for machine learning and computational
geometry applications.

1 Introduction

In force of its capability to find correspondences between sets of objects, in the last decade
computational optimal transport (OT, Peyré et al., 2019) has become more and more
ubiquitous in machine learning. Notable examples relate to learning tasks from (almost)
any data type including images (Solomon et al., 2015; Feydy et al., 2017), graphs (Vayer
et al., 2019a; Vincent-Cuaz et al., 2021), shapes (Eisenberger et al., 2020) or text (Zhang
et al., 2017; Grave et al., 2019). More generally and possibly more importantly OT allows
one to assess the distance between probability distributions thus leading to applications
in machine learning that go far beyond the comparison of sets of objects, such as domain
adaptation (Courty et al., 2016) or adversarial training (Arjovsky et al., 2017), just to cite
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Figure 1: (Top) Two point clouds representing a bird shape in different position. OT
barycenters using (a) Free Wasserstein (b) Gromov-Wasserstein with MDS (c) Gromov-
Wasserstein with TSNE (d) Procrustes-Wasserstein.

some. However, here we keep the focus on the first framework we cited (i.e. data alignment
and matching) since the applications we discuss in this work are of that kind.

Based on the modern formulation of Kantorovich (1942), the standard optimal trans-
port tool to compare two sets of objects is the Wasserstein distance. If we assume that each
set is a point cloud, in order to fix the ideas, adopting the Wasserstein distance to quan-
tify the similarity between the the clouds specifically requires to compute the Euclidean
distance (or other) between the points of the first cloud and those of the second. Since,
moreover, each point is equipped with a probability mass defining its importance within
its cloud, we can say that the Wasserstein distance takes into account both the geometry
and the distributional properties of data. However, the Wasserstein distance suffers from
some limitations that makes it unfit to some applications such as point cloud matching.
Indeed, it is sensitive to the way the two clouds are embedded in the space and in partic-
ular to isometries. To address some of the limitations of the Wasserstein distance, Mémoli
(2011) introduced the Gromov-Wasserstein (GW) distance. Unlike standard OT frame-
works, which assume that the compared probability measures are supported on a shared
metric space, GW compares distributions defined on distinct spaces. In the point cloud
matching examples, GW requires computing two pairwise distance (or similarity) matrices
between the points within each cloud. Points not being in the same cloud are never com-
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pared explicitly. GW is invariant to isometries and particularly suitable for the comparison
of data sets with unknown correspondences or in different coodinate systems. However,
GW has (at least) two main drawbacks: i) its rather prohibitive computational cost, al-
though some solutions exist (Vayer et al., 2019b; Chowdhury et al., 2021) and ii) the GW
barycenters are still pairwise distance/similarity matrices. If one wishes to represent them
in the original features domain, dimensionality reduction techniques are needed. This last
drawback can be severe when computing mean shapes where a high fidelity to the original
is required (see Figure 1).

Mixing Procrustes and Wasserstein costs was recently done (Zhang et al., 2017; Grave
et al., 2019) in order to introduce into the Wasserstein optimization problem invariances
to global transformations such as rotations and reflections in the space. In this sense
Procrustes-Wasserstein (PW) can be seen as a compromise between GW (with whom it
shares some invariances) and Wasserstein (since the two measures are directly compared
with each other).

Related works. Among the earliest PW formulations, Zhang et al. (2017); Grave et al.
(2019) aimed at jointly estimating an orthogonal and a permutation matrix to align word
embeddings across different languages. Differently from Zhang et al. (2017), which initial-
ized the orthogonal matrix using an adversarial training phase, Grave et al. (2019) proposed
a convex relaxation of the initialization by reformulating the problem over the convex hull.
Alvarez-Melis et al. (2019) extended the previous works by incorporating global invariances
directly into the optimization process. Their approach is not limited to invariances with
respect to isometries but generalizes to broader invariance classes (characterized by Schat-
ten p-norm ball) up to the recovery of Gromov-Wasserstein. This extension is particularly
useful in scenarios where data are not simply related by rigid transformations. Addition-
ally, employing a convexity-annealing strategy and considering a relaxed PW version, they
eliminate the need for an ad-hoc initialization, avoiding strong dependence on an initial
guess. In contrast with previous works, two-sided PW (TWP, Jin et al., 2021) adopts a
two-fold transformation on both the source and target measures. Such an extension en-
ables to handle data that lie in distinct spaces, transporting them into a common latent
space. The optimal solution is obtained by solving a component-wise convex optimization
problem, combining two-sided Procrustes Analysis with a relaxed Wasserstein formulation.
Aboagye et al. (2022) tackle the computational limit of PW by proposing a quantized ver-
sion of the problem (qWP). The quantization step that discretizes the distributions enables
for the joint estimate of the alignment and transformation. qWP leverages a quantization
procedure inspired by Grave et al. (2019), such as k -means++, and reduces the problem
to linear programming (LP). This technique not only simplifies the computation but also
enhances the approximation quality of OT solvers, thus leading to a more efficient solutions
with a fixed computational cost.

Contribution of our work. Despite the hetereogeneous use of the PW cost in the above
mentioned works, to the best of our knowledge i) it was never showed that Procrustes-
Wasserstein distance actually is a distance; ii) PW barycenters were never defined/learned
from the data. With a focus on scenarios where the objects to compare are geometric
shapes represented as point clouds (and hence working with discrete measures) the main
contribution of this paper is twofold: we define a quotient space of discrtete measures over
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which PW is a distance and we provide an estimation algorithm for the PW barycenter.
We then show that one of the main advantages of PW is its capability to produce very
faithful barycenters in particular conditions. In the illustrative example in Figure 1, two
birds differ in both number of vertices and pose (rotation and/or reflection). As it can be
seen, among the three tested OT methods, the PW barycenter result in more consistent
geometric characteristics. We finally present a concrete application of the PW barycenters
to detect morphological changes on archaeozoological data.

The paper is organized as follows: we provide a backgroung on the PW problem and
the formal definitions and proof where PW is a distance in section 2. We then introduce
the PW barycenters and the algorithm to compute it in section 3. We investigate different
intializations for specific matchin point clouds and a clustering applicaton ot our barycenter
in section 4. We conclude presenting a concrete real-world application in section 5.

2 Procrustes-Wasserstein: an OT distance

Notation. We denote by Σn the n − 1 probability simplex. So when saying that p :=
(p1, . . . , pn) ∈ Σn, we mean pi ≥ 0 for all i and

∑n
i=1 pi = 1. We denote by ⟨·, ·⟩F the Frobe-

nious dot product, hence ⟨A,B⟩F := trace(BTA), with A,B two compatible matrices. The
set of the the orthogonal matrices of order d is denoted by O(d).

Consider two matrices X ∈ Rn×d and Y ∈ Rm×d, where xi (respectively xj) is the i-th
row (j-th column) of X. Similarly for Y . We attach two discrete probability measures µX

and µY to X and Y , respectively:

µX =
n∑

i=1

piδxi
, p ∈ Σn (1)

and

µY =
m∑
j=1

qjδyj
, q ∈ Σm.

Given an orthogonal matrix P ∈ O(d), we denote by µY P the measure defined on the
transformed support of Y , namely µY P :=

∑m
j=1 qjδyjP .

Given W2(µX , µY ), the 2-Wasserstein distance between µX and µY , we attack the fol-
lowing minimization problem

min
P∈O(d)

W 2
2 (µX , µY P ) = min

P∈O(d)
Γ∈Π(p,q)

⟨CP (X, Y ),Γ⟩F (2)

where Π(p,q) is the set of the admissible transport plans, i.e.

Π(p,q) = {Γ ∈ Rn×m
+ |Γ1m = p,ΓT1n = q}

and CP (X, Y ) ∈ Rn×m
+ with

(CP (X, Y ))ij = ∥xi − yjP∥22.
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The above minimization problem is a generalization of the one described in Grave et al.
(2019) and can be seen as a particular case of the one discussed in Alvarez-Melis et al.
(2019).

By definition of CP (X, Y ) it is easy to show that

CP (X, Y ) = RX +RY − 2XP TY T ,

where the i-th row of RX ∈ Rn×m is (∥xi∥22, . . . , ∥xi∥22) and the j-th column of RY ∈ Rn×m

is (∥yj∥22, . . . , ∥yj∥22)T . By plugging this into Eq. (2) and thanks to the bilinearity of ⟨·, ·⟩F
we get

⟨CP (X, Y ),Γ⟩F = ⟨RX +RY ,Γ⟩F − 2⟨XP TY T ,Γ⟩F
= ⟨u,p⟩+ ⟨v,q⟩ − 2⟨XP TY T ,Γ⟩F ,

(3)

where u ∈ Rn is such that ui = ∥xi∥22 and v ∈ Rm such that vj = ∥yj∥22. As such, the
minimisation problem in Eq. (2) is equivalent to

max
P∈O(d)
Γ∈Π(p,q)

⟨XP TY T ,Γ⟩F . (4)

We now consider the set Md of all discrete measures of the same form as in Eq. (1).
Namely, the generic µX ∈ Md is a measure supported on some X ∈ Rn×d, for some finite
n and a fixed d and for some probability vector p. With a slight abuse of notation, given
a permutation σ in S(n), the set of all possible permutations of n elements, we denote by
σ(X) = (xT

σ(1), . . . ,x
T
σ(n))

T the matrix X after the permutation of its rows according to σ.

Similarly, we denote by σ(p) = (pσ(1), . . . , pσ(n)) the permuted histogram. We introduce
the following equivalence relation onMd

µX1 ∼ µX2 if ∃P ∈ O(d), ∃σ ∈ S(n)

such that X1 = σ(X2)P and p1 = σ(p2).

Thus, µX1 ∼ µX2 if and only if they share the same probability vector, up to a per-
mutation, and the same support up to the same permutation of the points and a rigid
transformation (rotation, reflection or a combination of both).

If we denote

PW2(µX , µY ) :=

 min
P∈O(d)
Γ∈Π(p,q)

⟨CP (X, Y ),Γ⟩F

1/2

, (5)

then

Theorem 2.1. PW2(·, ·) is a distance onMd/ ∼.

The proof of the above theorem is in Supplementary Material A. Moreover we have the
following

Corollary 2.2. For all µX , µY inMd it holds that PW2(µX , µY ) ≤ W2(µX , µY ).
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Algorithm 1 PW problem

1: Input: Locations and histograms (X,p), (Y,q); initial correspondences Γ0.
2: %% Initialization
3: UΣV T ← SVD(Y TΓT

0X)
4: P0 ← UV T , P ← P0

5: while not converged do
6: CP ← cost(X, Y P )
7: %% Update matching
8: Γ← EMD(C,p,q) %% Earth Mover Distance
9: %% Update P

10: UΣV T ← SVD(Y TΓTX)
11: P ← UV T

12: end while
13: Return: Γ∗, P ∗

Proof. It suffices to note that

PW2(µX , µY ) : = min
P∈O(d)

W2(µX , µY P )

≤ W2(µX , µY Id) = W2(µX , µY ).

3 Procrustes-Wasserstein barycenter(s)

Now that we established that PW2 is a distance onMd/ ∼, consider r empirical measures
measures µX1 , . . . , µXr , inMd, with supports {Xj}rj=1 and probability vectors {pj}rj=1. We
look for a barycenter µX with unknown support X ∈ Rn×d and weights p given by the
solution to the following problem

f(p, X) :=
1

r

r∑
j=1

PW 2
2 (µX , µXj

). (6)

In a general setting, we might consider positive weights λj associated with each measure
µXj

, with λ := (λ1, . . . , λr) ∈ Σr. For simplicity, we present the case λj =
1
r
.

3.1 Differentiability of f(p, X) with respect to X

In this section we assume that p is known. Let X ∈ Rn×d and Y ∈ Rm×d. Consider
the transport cost as a function of X as outlined in Equation (3). The minimization of
PW 2

2 (µX , µY ) with respect to X can be developed as

min
X

PW 2
2 (µX , µY ) = min

X
min
P, Γ
⟨CP (X, Y ),Γ⟩F

= min
X

(
⟨u,p⟩+ 2min

P, Γ
⟨−X,ΓY P ⟩F

)
,

(7)
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where constant terms in Y and q are discarded. While the first term is a convex quadratic
function of X (since ui = ∥xi∥22), the second term renders the optimisation of PW 2

2 (µX , µY )
with respect to X non-convex. Thus, the best we can do is to look for local minima
via Newton-Raphson. Denote by (P ∗,Γ∗) the optimal alignment and transport plan for
PW 2

2 (µX , µY ). Calling g(X) the objective function in Eq. (7)

g(X) := ⟨u,p⟩ − 2⟨X,Γ∗Y P ∗⟩F ,

the gradient and the Hessian of g(·) with respect to X are

∇Xg = 2diag(p)X − 2Γ∗Y P ∗,

and
HXg = 2diag(p).

Thus, the update of X reads

X(k+1) = X(k) − (HXg(X
(k)))−1 · ∇Xg(X

(k))︸ ︷︷ ︸
Newton step

= X(k) − (X(k) − diag(p−1)Γ∗Y P ∗)

= diag(p−1)Γ∗Y P ∗.

(8)

The update formula provides a meaningful geometric interpretation. The matrix diag(p−1)Γ∗,
whose n rows belong to the simplex Σm, computes weighted barycenters of points in Y ,
with weights defined by the optimal transport plan. This is analogous to the Wasserstein
barycenter update Cuturi and Doucet (2014), where each point in Y contributes to the up-
dated locations in X proportionally to Γ∗. However, in the PW framework, the additional
right multiplication by P ∗ allows for a simultaneous optimal alignment of the barycenter.

The steps to optimize f(p, X) with respect to the locations X are outlined in Algo-
rithm 2. Solving Problem (6) involves computing r independent PW distances between
the barycenter (µX) and the measures µXj

. Thus, the first step (lines 4-5) consists into
solving all PW 2

2 (µX , µXj
) and finding r solutions (Γ∗

j , P
∗
j ) following the interative scheme

introduced in (Grave et al., 2019) that we report here in Algorithm 1 for completeness.
The second step (line 7) updates the locations of the barycenter using the update formula
in Eq. (8).

3.2 Differentiability of f(p, X) with respect to p

Despite the obvious difference between the minimisation problem in Eq. (6) and its Wasser-
stein counterpart illustrated in Cuturi and Doucet (2014), it can be observed that

f(p, X) =
1

r

r∑
j=1

PW 2
2 (µX , µXj

)

=
1

r

r∑
j=1

W 2
2 (µX , µXjP ∗

j
).
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Algorithm 2 Procrustes-Wasserstein barycenter (PWB)

1: Input: LocationsXj ∈ Rnj×d and histograms pj ∈ Rnj for j = 1, . . . , r; initial barycen-
ter locations X0; barycenter histogram p

2: X = X0

3: while not converged do
4: for j ∈ (1, . . . , r) do
5: (Γ∗

j , P
∗
j )← PW2

(
X,p; Xi, aj

)
6: end for

7: X = X + 1
r

(∑r
i=1 Γ

∗
iXiP

∗
i

)
· diag(p−1)

8: end while
9: Return: X∗

where, P ∗
j is the optimal isometry aligning µXj

with the barycenter. Denoting X̂j := XjP
∗
j ,

the analogy with the Wasserstein dual LP formulation is straightforward

max
αj ,βj

⟨αj,p⟩+ ⟨βj,pj⟩, (9)

where in the PW framework the couplings (αj, βj) must satisfy

αj,i + βj,k ≤ (CP ∗
j
)ik = ∥xi − x̂j,k∥2,

where (CP ∗
j
) is the cost matrix incorporating the orthogonal alignment and x̂j,k denotes

here the k-th row of X̂j. Eq. (9) is a linear programming (LP) problem for each j, with con-
straints defined by (CP ∗

j
). The optimization of f(p, X) with respect to p can be approached

analogously to Cuturi and Doucet (2014), leveraging the solutions of the dual problems,
e.g. α := 1

r

∑r
j=1 α

∗
j . For completeness, we provide Algorithm 3 in the supplementary

material, detailing the procedure for the optimization with respect to p.
When pursuing the joint optimization of Eq. (6) with respect to (p, X), the outlined

strategy remains the one presented in Algorithm 2, except for an additional equation after
line 7 updating the weights p according to Algorithm 3.

4 Experiments

All the point clouds considered in this section are assumed to be centered at they Euclidean
barycenter and scaled in such a way to be enclosed the 1D or 2D unit ball. We leave for
future works extensions of the PW framework accounting for translations and scaling.

4.1 Initialization for point cloud matching

It is well known that a primary challenge in the computation of PW lies in its initializa-
tion (Grave et al., 2019; Alvarez-Melis et al., 2019). In this section, we inspect several
initialization strategies of Γ0 (Algorithm 1) for PW in the context of 2D/3D point cloud
matching.

Let us consider a pivot measure µX1 , either representing a 2 or 3-dimensional point
cloud. Since it is assumed that each point is equipped with the same (uniform) probability
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Figure 2: Convergence comparison between different initialization approaches across ran-
domly generated shapes. Each row corresponds to a different initialization method while
each column corresponds to a run of the Algorithm 1 with a different shape. Red cells
indicates successful convergence of the matching (in terms of rotation/reflection and cou-
plings), while blue cells denotes failure.

mass, with a sligth abuse of notation we identify µX1 with X1. We generate 50 clouds
by randomly adding extra vertices, Gaussian noise and vertex permutation to X1. We
also include a random rotation and reflection. We thus generate X i

2 for i = 1, . . . , 50 that
underline the same geomertric structure of X1 (e.g. they represent a perturbed versions
of the pivot). We look for a pairwise clouds registration, in terms of global alignment and
couplings. We test different approaches, with the objective to compute Γ0.

1. Euc-GW. Gromov-Wasserstein based on Euclidean pairwise distances is computed
for each pair of point clouds and Γ0 is set equal to the optimal GW plan.

2. Geo-GW. Same as before but with geodesic pairwise distance in place of the Eu-
clidean.

3. Fiedler-W. Fiedler vector (Fiedler, 1973) is the eigenvector associated with the al-
gebraic connectivity (i.e. the second-smallest eigenvalue) of the Laplacian matrix of
a connected graph. Since point clouds can be easily transformed into graphs (Cover
and Hart, 1967; Preparata and Shamos, 2012) G. We propose to resort to a Wasser-
stein matching between Fiedler vectors to initialise Γ0. More specifically, for a fixed
i, we compute the Fiedler vectors of X1 and X i

2, denoted as f1 and f i
2, respectively,

and we standardize them. Furthermore, we compute both the Wasserstein distance
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between (f1, f
i
2) and (f1,−f i

2) (to account for the vectors orientation). The transport
plan yielding the smaller distance determines Γ0.

4. UPCA-W.Given two point clouds, X and Y , the first step involves computing the
eigenvector matrices QX and QY , of their covariance matrices. The multiplication
XQX (resp. Y QY ) leads to a matrix X ′ (respectively Y ′) that is uncorrelated, e.g.
the principal axes of X ′ and Y ′ correspond, up to the directions, to the standard
coordinate axes of the d-dimensional Euclidean space.Moreover, fixing X, the matrix
Y QT

XQY brings Y into the same (principal component) basis as X, once more up to
the direction of the axes. At this stage, a Wasserstein matching can be performed
between X and Y QT

XQY . In the case of d = 2, there are 22 possible combinations of
directions to check, requiring the resolution of four independent Wasserstein problems.
Similarly, for d = 3, we must solve 23 Wasserstein problems. As with Fiedler-W, the
transport plan associated to the smallest distance defines the initialization Γ0.

Convergence results of the Algoritm 1 for the four presented initialization techniques are
summarized in Figure 2. Red colour for the cells denotes convergence to the global minimum
(matching succeeded) while blue colour denotes failure (convergence to local minima). We
observe that GW initializations generally lead to a good success rate. However, despite their
invariance to isometries, there are instances where the GW transport plan fails to establish
the correct couplings. In cases where the data underline specific geometric structure GW
could reveal optimal, however its computational cost makes it use clearly prohibitive when
working with larger point clouds. In contrast, the Fiedler-W initialization consistently
ensures robust convergence. In the tested scenarios, the Fiedler vectors prove to be optimal
for capturing the geometry of the data. Finally, in the two cases, UPCA-W does not
demonstrate effectiveness, particularly in the 3D case. We leave a further investigation
of this approach for future works. Additional results and visualisations are available in
Supplementary Material C.

4.2 Clustering

In this section, we propose an unsupervised application of PW for performing clustering
directly in the space of point clouds. Our approach draws inspiration from the k -means
reformulation presented in Peyré et al. (2016) with Gromov-Wasserstein barycenters. We
consider the MNIST dataset of handwritten digits with specific focus on the first five digits,
from 0 to 4 (Figure 3, left). For each digit class, we consider 10 images and convert them
into 2-dimensional point clouds (Figure 3, center). This results in a dataset of 50 point
clouds, which we aim to cluster with respect to the digit class (thus k = 5). Differently
from Peyré et al. (2016), we avoid applying random rotations to the dataset to highlight
some benefits of PW even in scenarios where the input data are already aligned (at least
in terms of reflection and rotation).

To initialize the centroids, we adopt a strategy inspired by k -means++ as follows. We
randomly select one point cloud from the 50 and label it as the first “candidate.” The
first centroid is determined by applying Euclidean k -means clustering to the candidate
cloud, where the number of clusters equals the number of points specified for the OT
centroids (PW barycenters). This ensures that the points sampled from the candidate
form a uniform representation. Next, we identify the point cloud among the remaining 49
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Figure 3: Clustering k -means of MNIST dataset. (Leftmost) Subset of considered images.
(Center-left) Corresponding 2D point clouds representation. (Center-right) Clustering cen-
troids computed with different OT barycenters. (Rightmost) Confusion matrices. Rows
correspond to the digits, while columns correspond to the clusters. The colour is propor-
tional to the nuumber of digits to each cluster.

Algorothm Time (s) ARI NMI

EMD 9.18 0.4069 0.5652
Euc-GW 675.19 0.5500 0.6815
Geo-GW 378.82 0.3797 0.5724
PW 130.11 0.7669 0.8361

Table 1: Clustering results for MNIST dataset.

that is the farthest from the first candidate, based on the PW distance. This farthest point
cloud becomes the second “candidate”, and its centroid is computed using the same idea
as for the first. By iterating this process: select the point cloud that is farthest from all
previously selected candidates and compute its centroid, we obtain an initial configuration
of five centroids. This approach ensures a well-distributed initialization with respect to the
PW distance.
Using the same initialization technique, we compare k -means clustering across different
OT metrics. Specifically, we present comparisons between discrete Wasserstein (Earth
Mover’s Distance, EMD), Gromov-Wasserstein with Euclidean distances (Euc-GW), with
geodesic distances (Geo-GW) and PW with a Wasserstein initialization to establish initial
correspondences.

The clustering results are reported in Table 1, where we provide the computational
time (in seconds), the adjusted rand index (ARI) and the normalized mutual info score
(NMI) for each of the presented approaches. We also provide in Figure 3 (Center-right) and
Figure 3 (Rightmost) the estimated centroids (OT barycenters) and the confusion matrices,
respectively. From the results, we observe that the PW-based calstering provide the best
performances, in terms of ARI and NMI. Moreover, clustering results optimal for the digits
0, 1, and 3. Consistent with findings from Peyré et al. (2016), the digits where clustering is
less effective are 2 and 4, reflecting greater variability in handwritten style. Differently form
the GW-based cluetsring, PW-based successfully returns more representative centroids for
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Figure 4: PW barycenter evolution of two 3D point clouds describing an archaeologi-
cal (Leftmost) and a modern (Rightmost) astragalus of sheep’s species. The four middle
columns of the grid correspond to representative interpolations each assigned with a value
of η. (row1) Progressive interpolation in the euclidean space, note that the two input point
clouds are not aligned and no priori knowledge on pairwise correspondence is considered.
The P ∗ solution of PW permits us to optimally display the frontal view (row2) and top
view (row3), in order to match reference manuals of morpholocial criteria in archaeology.

all the five considered digits. EMD-based clustering proves to perform well for certain
digits. However, it consistently fails to identify digit 3. The superior performance of PW
over EMD underscores the significance of incorporating optimal rotations, even in scenarios
where the input data are already aligned, at least in the sense that poses is consistent.

5 Application: tracking the morphological evolution

of domestic animals

The breeding of domestic ungulates began over 9500 years ago, leading to considerable
phenotypic and genetic changes, adapted to the socio-economic and cultural requirements
of human societies. In south-west Asia, from the end of the Bronze Age onwards, ar-
chaeozoological (Vila and Helmer, 2014; Vila et al., 2021; Abrahami and Michel, 2023)
and palaeogenetic data (Her et al., 2022) indicate that zootechnical practices were used
for the management and selection of sheep morphotypes. This led to a significant in-
crease in phenotypic diversity and a decrease in genetic diversity. While the morphological
changes observed are relatively well documented by palaeogenetic data, identifying the
processes linked to morphological transformations in the bones of this species remains
complex: which parts of the bone are modified (anatomical characteristics)? How do they
change (bone plasticity)? Why do they change (morpho-functional adaptations linked to
anthropic and environmental factors)? To track these morphological changes, traditionally
archaeozoologists rely on visual comparisons and manual measurements. These methods
can be time-consuming and subject to interpretational bias, especially when dealing with
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intra-specific variations. With the advent of 3D scanning technologies, bones can now be
digitized and represented as point clouds or meshes, opening new avenues for quantitative
analysis and machine learning. In this context, OT offers a mathematically robust frame-
work to tackle the problem of comparing and interpreting bone shapes. The objective of
this study is to highlight the morphological evolution over time, i.e. the transition from
archaeological to modern, by directly comparing three-dimensional representations of the
astragali (ankle bone) for one archaeological sheep dated to the Chalcolithic period and
one modern sheep from the same region, the Zagros mountain in Iran. With this objective,
let us consider two measures µX and µY , with associated locations X and Y of nearly 10k
vertices, representing an archaeological and a modern bone structure of the sheep species,
respectively. By assigning weights λX and λY respectively, we seek for a 10k PW barycen-
ter via Algorithm 2, that defines an interpolation between the two bone’s structures. Set
η ∈ [0, 1] and re-write λX = 1–η and λY = η. By varying η we can iterate the minimization
problem (6) and thus model the intermediate stages of morphological changes between the
two bones, enabling the study of evolutionary trajectories and species transformations over
“time”. In order to create a pipeline that is as robust and accurate as possible, a priori step
in this methodology is the normalization of the data. To ensure a meaningful comparison
and avoid any bias, we resort to a volume-based normalization which consists in two key
steps. First, we set to the origin the volumetric center of mass. Second, we constrain the
shape to have a unit volume. This technique allows the model to compute interpolations
that best capture morphological changes and are less influenced by overall distortions. We
remark that the purpose of this section is not in comparing different types of normalization,
however, different pre-processing techniques can be tested. Figure 4 shows the evolution
of the bone structure from archaeological to modern, by means of PW barycentres. In
row1 is reported the progressive interpolations in the 3D space. We can see that the four
barycenters, corresponding to four distinct values of η, are well representative of the input
point clouds. The colouring of the bones reflect the point-wise similarity between each
barycenter and the moder sheep (the rightmost bone) form the archaeological sheep (the
leftmost bone). In yellow are outlined the parts of the bone that are more similar, while in
blue the parts that different the most. The colour of the archaeological bone, on the other
hand, reflects the distance between itself and the modern bone.
As expected, we see that the first barycenter is the closest to the archaeological bone. As
we get closer to the modern sheep, the PW distance increases and the blue areas become
more pronounced. By exploting the solution of the PW barycenter problem, we benefit of
a complete registration of the barycenters, we can thus visualize different views: the dorsal
view (row2) and the proximal view (row3). These orientations facilitate the observation
of changes in the overall proportions of the bone and more targeted changes, particularly
to the proximal trochlea, i.e. the upper pulley-shaped articular surface. A notable obser-
vation is the widening of the lateral lip in the proximal trochlea of the modern specimen
in comparison to the archaeological specimen. The proximal view also demonstrates a
narrowing of the tuberculus tali and a development of the projecting medial ridge in the
modern specimen compared to the archaeological specimen. For a better understanding of
the bone anatomical features is provided in Figure 7 in supplementary material.

Discussion. The proposed approach allows us to trace the evolutionary trajectories of
species by interpolating between bone shapes. This method provides archaeozoologists
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with a powerful quantitative tool to infer how species adapted, evolved, or were selectively
bred by humans. Furthermore, the same technique could be used to compute a “mean”
representative bone shape for species for which morphological criteria are not well-defined.
In conclusion, by directly working on 3D models, this approach offers a robust solution
that aim to avoid the subjectivity inherent in traditional morphological analysis. The use
of the PW distance and PW barycenters introduce a rigorous and quantitative framework
for analyzing shapes while offering to archaeologists a detailed and objective tool for inter-
preting species evolution, domestication patterns, and morphological diversity, ultimately
enhancing our understanding of the past.

6 Conclusions

In this paper, we carefully defined a space of discrete probability measures over which
Procrustes-Wasserstein is a distance and provided a formal proof of such claim. This opens
the door to a wider application of PW in various machine learning tasks, particularly when
dealing with complex data structures. We also introduced PW barycenters extending the
literature of OT barycenters. Our formulation enables the construction of representative
measures that exhibit an improved visual loyalty to the geometry of the observed data. We
propose applications that demonstrated the properties and advantages of our approach,
with comparisons with state-of-the-art methods. Future works could explore denser formu-
lations of the barycenter problem (via entropic regularisation) leading to smoother solutions
and broader applicability to large-scale datasets.
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A Proof of Theorem 2.1.

Proof. First we check that PW2(µX , µY ) = 0 iff µX ∼ µY . The left implication is clear : if
µX ∼ µY , it means that there is (σ∗, P ∗) such that Y = σ∗(X)P ∗ and q = σ∗(p). Then
(σ∗, P ∗) is the solution of the problem in Eq. (5), with the Kantorovich formulation being
equivalent to the Monge’s one. Vice-versa, if

PW2(µX , µY ) = min
P∈O(d)

W2(µX , µY P ) = 0,

it means that there exists à P ∗ such that the 2-Wasserstein distance between µX and µY P ∗

is null, or equivalently that µX and µY P are the same measure up to a permutation of the
points in the support together with their masses.

Second we prove that PW2(µX , µY ) = PW2(µY , µX) for all µX , µY in Md. Let us
assume that (P ∗,Γ∗) is solution of Problem (4), with P ∗ ∈ O(d) and Γ∗ ∈ Π(p,q). Then
d(µY , µX) is defined by the maximization over Q ∈ O(d) and Θ ∈ Π(q,p) of

⟨Y QTXT ,Θ⟩F = tr(ΘTY QTXT ) = tr(XQY TΘ)

= tr(ΘXQY T ) = ⟨XQY T ,ΘT ⟩F
≤ ⟨X(P ∗)TY T ,Γ∗⟩F ,

by optimality of (P ∗,Γ∗) and where we used that the trace of a matrix equals the trace of
its transposed and the trace is invariant under cyclic permutations of its arguments. The
above equation shows that if (P ∗,Γ∗) is the stationary point leading to PW2(µX , µY ) then,(
(P ∗)T (Γ∗)T

)
is the solution leading to PW2(µY , µX) and vice-versa. Thanks to Eq. (3), it

is now immediate to verify that PW2(µX , µY ) = PW2(µY , µX).
Third, we show that the triangular inequality is satisfied : PW2(µX , µY ) ≤ PW2(µX , µZ)+

PW2(µZ , µY ), for all µX , µY , µZ inM(d). For all µZ ∈MD it holds that

W2(µX , µY P ) ≤ W2(µX , µZP ) +W2(µY P , µZP ) = W2(µX , µZP ) +W2(µY , µZ),

where the first inequality holds since the Wasserstein distance is symmetric and satisfies
the triangular inequality (as any distance) and the second equality comes from the fact
that if we equally rotate or reflect the supports of two measures the Euclidean distances
between any pair of points in the supports will be unchanged. From the above equation,
paired with Eq. (2) we deduce that, for any µZ ∈Md

PW2(µX , µY ) ≤ PW2(µX , µZ) +W2(µY , µZ).

Now, if we replace Z with Z∗ = ZP ∗ where P ∗ is solution of

min
P∈O(d)

W2(µY , µZP ),

we obtain

PW2(µX , µY ) ≤ PW2(µX , µZ∗) +W2(µY , µZ∗) = PW2(µX , µZ∗) + PW2(µY , µZ),

where the last equality holds by the definition of PW. Finally, since Z and Z∗ only differ
by right-multiplication with an orthogonal matrix, PW2(µX , µZ∗) = PW2(µX , µZ).
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B Optimization of PW2 with respect to p

In this section we provide for clarity the algorithm for the optimization of the weights p, al-
ready proposed by Cuturi and Doucet (2014) within the context of Wasserstein barycenters.
In our framework we assume p ∈ Σn and denote ◦ the Schur’s product.

Algorithm 3 Optimization of p

1: Input: Cost matrices with orthogonal alignments CPj
∈ Rn×nj and histograms pj ∈

Rnj for j = 1, . . . , r
2: Set p̂ = p̃ = 1n/n
3: while not converged do
4: β = (t+ 1)/2
5: p← (1− β−1)p̂+ β−1p̃
6: α← 1

r

∑r
j=1 α

∗
j using all dual optima α∗

j of Eq. (9)

7: p̃← p̃ ◦ e−t0βα

8: p̃← p̃/p̃T1n

9: p̂← (1− β−1)p̂+ β−1p̃
10: t← t+ 1
11: end while
12: Return: p
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C Additional results

(a) 2-dimensional target
(X1)

(b) 2-dimensonal perturbed sources
(
Xi

2

)
.

(c) Matching results with Euc-GW. (d) Matching results with Geo-GW.

(e) Matching results with Fiedler-W. (f) Matching results with UPCA-W.

Figure 5: Comparisons of PW matching results with different initialization approaches (2D
dog). Matchings reflect the convergence results reported in Figure 2
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(a) 3-dimensional target (X1) (b) 3-dimensonal perturbed sources
(
X

(i)
2

)
.

(c) Matching results with Euc-GW. (d) Matching results with Geo-GW.

(e) Matching results with Fiedler-W. (f) Matching results with UPCA-W.

Figure 6: Comparisons of PW matching results with different initialization approaches (3D
dragon). Matchings reflect the convergence results reported in Figure 2
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Figure 7: Proximal view of the modern astragalus and its main anatomical features pre-
sented in the Section 5
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