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Identifying the Best Transition Law

Mehrasa Ahmadipour, élise Crepon, Aurélien Garivier
UMPA, ENS de Lyon, Lyon, France

1. Abstract
Motivated by recursive learning in Markov Decision Pro-
cesses, this paper studies best-arm identification in bandit
problems where each arm’s reward is drawn from a multi-
nomial distribution with a known support. We compare
the performance reached by strategies including notably
LUCB without and with use of this knowledge. In the first
case, we use classical non-parametric approaches for the
confidence intervals. In the second case, where a probability
distribution is to be estimated, we first use classical devia-
tion bounds (Hoeffding and Bernstein) on each dimension
independently, and then the Empirical Likelihood method
(EL-LUCB) on the joint probability vector. The effective-
ness of these methods is demonstrated through simulations
on scenarios with varying levels of structural complexity.

2. Introduction
The importance of interactions between entities such as
human-computer interfaces, complex decision-making in
autonomous systems like self-driving cars (Chen et al.,
2024), or dynamic difficulty adjustment (DDA) in online
gaming (Lopes & Lopes, 2022) has fostered the develop-
ment of Reinforcement Learning (RL) as a model for dy-
namical systems where responsible agents aim for optimal
decisions in an uncertain environment. Markov Decision
Processes (MDP) proved able to capture many interesting
features of these scenarios, while providing a rich toolbox
of computationally efficient and mathematically founded
algorithms(Puterman, 1994; Bertsekas, 2005; Sutton, 2018;
Moerland et al., 2023a).

An MDP is defined as a tuple consisting of the state space S ,
the action set A, the transition probability kernel P , and the
reward function R. At time t, a (deterministic) policy is a
mapping πt : S → A that specifies which action to choose
according to the current state. To determine the optimal
policy in an MDP, Bellman equations provide a recursive
formulation for the value function Vt(s), the expected cu-
mulative reward starting from state s at time t. In the case

of a finite horizon T , the optimal policy π∗ satisfies:

V π∗

t (s) = max
π∈Π

[
R(s, a) +

∑
s′∈S
P(s′ | s, a)V π∗

t+1(s
′)

]
.

(1)

When the transition probabilities are fully known in the
problem, the agent can compute an optimal policy without
interacting with the environment – a process known as Plan-
ning (see (Moerland et al., 2023b)). Otherwise, the process
of learning requires the estimation of expected future re-
turns. This paper focuses on a particular learning sub-task:
the choice of the policy at time t with known value function
Vt+1

1. The player, in state s, can transition to one of d
possible next states s′, each associated with a certain value
Vt+1(s

′). She chooses an action a ∈ A, and transitions to a
next state S′ according to the transition probability vector
Pa (see Figure 1). Each destination state has an associated
expected value, and the goal is to find the best action that
maximizes this expected value.

s

s′1 · · · s′d

Figure 1. A learner at s selects a color and transitions to S′. Each
color represents a probability vector, meaning that the likelihood
of arriving at a destination varies depending on the chosen color.

This decision-making problem is very reminiscent of a
Multi-Armed Bandit (MAB) problem, as the outcome of
each action a depends only on the current state s and transi-
tion probabilities Pa, independently of past decisions. The
considered task is usually called Best Arm Identification
(BAI): identify the arm yielding the highest expected value
with as few samples as possible.

But the considered bandit problem has a specific feature:

1the use of this sub-task in a backward induction for a step-by-
step solution to the dynamic programming formulation is left for
future work.
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the support of the arms, {Vs′ : s′ ∈ S}, is known for all
arms. This feature can be used or not by the agent: in the
non-structured setting, the agent ignores these values and
simply adopts a classical bandit strategy. She can then rely
on established algorithms such as LUCB (Kalyanakrishnan
et al., 2012) and Track&Stop (Garivier & Kaufmann, 2016).
In the structured setting, each arm is modeled as multino-
mial distribution on a known support – see also (Agrawal
et al., 2020). For this case, we propose Structured-LUCB, a
modified version of the LUCB algorithm, and an Empirical
Likelihood approach (EL-LUCB) inspired by (Filippi et al.,
2010). The goal of this paper is to investigate in which way
the structured approach outperforms the non-structured one
in specific scenarios on the support of the distribution, while
in others, the non-structured method can perform better.

3. State-of-the-art and connections
In this work, we focus on the fixed-confidence PAC (Prob-
ably Approximately Correct) setting for MAB problems.
While the fixed-budget setting remains somewhat mysteri-
ous (see e.g., (Bubeck et al., 2012)), the fixed-confidence
setting is better understood since its sample complexity
was identified in (Garivier & Kaufmann, 2016) thanks to
change-of-measure techniques. Different structures for ban-
dit arms have been considered: multi-modal (Saber & Mail-
lard, 2024), linear (Abbasi-Yadkori et al., 2011), contex-
tual(Lu et al., 2010), kernel-based models(Neu et al., 2024),
etc. However, these models do not address bandit problems
with multinomial reward distributions. We propose novel
adaptations of LUCB, —Structured-LUCB using Bernstein
and Hoeffding inequalities— and an EL-LUCB algorithm.

In the Structured-LUCB, we use empirical Bernstein bounds
which have been investigated in UGapE (Gabillon et al.,
2012) and in the context of Racing algorithms (Mnih et al.,
2008; Heidrich-Meisner & Igel, 2009), where Bernstein-
based methods were used to design efficient stopping times.
Bernstein-based concentration is also used in regret min-
imization in (Audibert & Bubeck, 2010). The empirical
likelihood method seems particularly well suited for multi-
nomial distributions. In the EL-LUCB algorithm, we em-
ploy Kullback–Leibler (KL)-divergence-based confidence
regions with LUCB, inspired by the regret minimization al-
gorithms of (Filippi et al., 2010), (Kaufmann & Kalyanakr-
ishnan, 2013) or (Cappé et al., 2013). These structured
methods aim to improve performance by incorporating ad-
ditional information about the underlying probability vector
and its constraints on a simplex.

Our study compares these two methodologies under vari-
ous scenarios. We employ the Top-two (leader-challenger)
sampling rule (Russo, 2016; Jourdan et al., 2022; You
et al., 2023), which has shown robust performance in both
Bayesian and frequentist settings, to guide our sampling

strategies. Recent work by (Jourdan et al., 2022) extends
this method to bounded distributions, and (You et al., 2023)
presents a further enhancement with theoretical guarantees.

By contrasting Structured and Non-Structured algorithms,
we explore whether leveraging known structures can yield
significant benefits in terms of sample efficiency and de-
cision accuracy. To the best of our knowledge, no prior
research has systematically examined shifting perspectives
between the two approaches. Our contribution lies in this
comparative analysis, providing insights into when and how
structural assumptions can be beneficial.

The paper is organized as follows. We begin by formally
explaining the model and our assumptions. We then develop
the non-structured approach before the structured cases. We
finally present the numerical experiments that we compare
and discuss on different algorithms.

4. System Model
We consider K multinomial distributions P1, . . . , PK . Each
distribution has d mutually exclusive outcomes, associated
with values V = [v1, . . . , vd] ∈ Rd. An outcome vi repre-
sents the value obtained at the next state S′. We describe
each distribution as a vector Pa = [pa,1, . . . , pa,d] lies on

the simplex ∆d :=
{
θ ∈ Rd+1

∣∣∣ ∑d+1
i=1 θi = 1, θi ≥

0 for all i = 1, . . . , d
}

, i.e., pa,i ≥ 0 and
∑d

i=1 pa,i = 1.

At discrete time intervals t = 1, 2, . . . , the learner selects
an action At ∈ A and receives an independent sample
ZAt

= [ZAt,1, · · · , ZAt,d] where we assume ZAt
is a one-

hot vector indicating the next state S′. Specifically, ZAt
is

drawn such that P[ZAt
= ei] = pAt,i, where ei is the i-th

standard basis vector in Rd. Denoting by p · v the scalar
product of two vectors p and v, the expected value of the
reward V under the probability vector Pa is expressed as
EPa

[V ] =
∑d

i=1 pa,ivi = Pa ·v. Without loss of generality,
we can assume the following order:

EP1 [V ] > EP2 [V ] > · · · > EPK
[V ]. (2)

The learner empirically constructs P̂a and attempts to find
the action a∗ that maximizes the expected reward as soon
as possible:

max
a∈A

Pa · V s.t. Dist(P̂a, Pa) ≤ ϵ, (3)

where Dist(·, ·) quantifies the “distance” between the esti-
mated transition probabilities P̂a and the optimistic transi-
tion probabilities Pa. We define this distance more precisely
later, first using an L-norm, then using the KL-divergence.

We operate in the fixed-confidence regime, where a maximal
risk parameter δ ∈ (0, 1) is fixed.
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Definition 1. A strategy is called δ-PAC (Probably Ap-
proximately Correct) if, for every tuple of distributions
P = (P1, . . . , PK), it satisfies PP [τ < ∞] = 1 and
PP [â

∗ ̸= a∗] ≤ δ.

Definition 2 (Sample Complexity). Given a bandit model
with K arms, the fixed-confidence sample complexity κ is
defined as the minimum expected number of samples needed
by a δ-PAC algorithm:

κ := inf
PAC algorithms

lim sup
δ→0

E[τ ]
log 1

δ

. (4)

To achieve the goal of identifying the best arm, the learner
must employ a strategy denoted by the triple

(
(At), τ, â

∗
)

,
which includes a sampling rule At determining the chosen
arm based on past actions and rewards, a stopping rule τ ,
and a recommendation rule â∗ that suggests the best action
at termination. The learner’s strategy is crucial for efficiently
identifying the best arm, requiring a careful balance between
exploration and exploitation, while considering the observed
outcomes to make informed decisions about arm selection
and termination of the sampling process.

For simplicity, we assume that the rewards are bounded:

Assumption 1. Assume that vi ∈ [0, 1] for all i ∈
{1, . . . , d}.
Since the deviations of any [0, 1] random variables from its
expectation are bounded by those of a Bernoulli distribution
with the same mean, this assumption allows us to model
the expected reward using a Bernoulli distribution with pa-
rameter µa := EPa

[V ]. Our initial approach to the problem
employs the known BAI methods within the MAB for Single
Parameter Exponential Family(SPEF) distributions.

5. Non-Structured Approach
We assume that rewards are i.i.d. and follow a Bernoulli
distribution with parameter µa := EPa [V ] under Assump-
tion 1. This setting leads to a MAB problem with distri-
butions belong to the SPEF as described in (Garivier &
Kaufmann, 2016). The concept of distinguishability is
employed to characterize the lower bounds for the sam-
ple complexity in (Garivier & Kaufmann, 2016). This
notion is quantified using the KL-divergence, denoted as
KL(x, y) := x log(xy ) + (1− x) log( (1−x)

(1−y) ). Denote by S
a set of SPEF bandit models such that each bandit model
µ = (µ1, . . . , µK) in S has a unique optimal arm a∗(µ).
For each µ ∈ S , there exists an arm a∗(µ) s.t. They use the
notion of the alternative set

Alt(µ) := {Λ ∈ S : a∗(Λ) ̸= a∗(µ)},

which is the set of problems Λ for which the optimal arm
a∗(λ) differs from the optimal arm a∗(µ) of the reference

distribution µ. They characterize a lower bound for any
δ-PAC strategy and any bandit model µ ∈ S under a given
risk level δ ∈ (0, 1):

E[τδ] ≥ T ∗(µ)KL(δ, 1− δ), (5)

where

T ∗(µ)−1 := sup
ω∈ΣK

inf
Q∈Alt(µ)

K∑
a=1

ωaKL(µa, Qa). (6)

Here, the set of proportions for pulling arms is defined as
ΣK = {ω ∈ RK

+ :
∑K

i=1 ωi = 1}.

The assumption of SPEF on bandits’ distributions allows
the inner minimization of (6) to be solved and to obtain
an explicit formulation for the optimal weights ω. The
same authors introduced an asymptotic optimal algorithm
matching this lower bound, called Track&Stop (T&S). But
its computational complexity often motivates the use of
more practical alternatives such as the LUCB (Lower and
Upper Confidence Bound) algorithm.

5.1. Non-structured LUCB

The LUCB algorithm is a standard approach for the PAC
problem in stochastic multi-armed bandits, specifically for
BAI. The main idea is to construct and iteratively refine
upper and lower confidence bounds around each arm’s em-
pirical mean (Kalyanakrishnan et al., 2012) until they are
separated.

At each round t, for each arm a, we compute a confidence
bonus (CB) βNo-St

a (n, t). Over time, βNo-St
a (n, t) shrinks

according to a concentration inequality (e.g., Hoeffding or
Bernstein). Let µ̂a(t) := P̂a(t) ·V be the empirical estimate
of arm a’s expectation at time t. For the current best arm
a and the current second best arm b, we construct lower
confidence bound and upper confidence bound respectively.
The algorithm stops when

µ̂a(t)− µ̂b(t)−
[
βNo-St
a (n, t) + βNo-St

b (n, t)
]
≥ ϵ, (7)

where βNo-St
i

(
nt
i, t

)
=

√
log

(
2Kt
δ

)
2ni(t)

is derived from Ho-
effding’s inequality. We call this approach Non-structured
because the algorithm ignores the vector V .

6. Structured System Model
We now consider the model introduced in Section 4 as a
K-action bandit problem where rewards are drawn i.i.d.
from multinomial distributions Pa, a ∈ A and V =
[v1, v2, . . . , vd] is the support. We rely here directly on
estimates of all d components of the probability vector
Pa. We construct the empirical distribution as a vector
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P̂At
= 1

nAt

∑nAt
i=1 δZi

where each component is given by

P̂At,i =
1

nAt

∑nAt

k=1 I(ZAt,k = ei) with I being the indica-
tor function. We keep the Assumption 1 to facilitate the
comparison of previously non-structured approach with the
proposed structured cases. We address a more general case
involving bounded support probabilities and heavy-tail dis-
tributions, as introduced and analyzed in (Agrawal et al.,
2020). While SPEF distributions in (Garivier & Kaufmann,
2016) allow inner minimization of (6) in Euclidean space,
introducing a probability vector confines the problem to
the simplex. Agrawal et al. (Agrawal et al., 2020) address
this by using functions KLL

inf and KLU
inf , which measure

the minimal KL-divergence required to distinguish a dis-
tribution η from alternatives with means below or above
a threshold x. Specifically, for distributions κ1, κ2 over a
finite set with mean m(κ), define

KLU
inf(η, x) := min

κ∈L
m(κ)≥ x

KL(η, κ),

with a similar definition for KLL
inf(η, x). Inspired by

(Honda & Takemura, 2010) in regret minimization setup,
Agrawal et al. propose a Lagrangian dual problem to over-
come the technical challenge of lower bounding sample
complexity in this simplex-based model and proved (5) with
new definition of inner minimization of T ∗(P) using KLL

inf

and KLU
inf . In (Agrawal et al., 2020), a modified version of

T&S is proposed.

The computational complexity issue is further exacerbated
in the modified T&S algorithm, where the complexity in-
creases due to the need to solve an optimization problem
involving two KLinf terms. Additionally, incorporating the
effect of V when transitioning from Track-and-Stop to mod-
ified Track-and-Stop is not straightforward. In the latter,
the support vector independently influences the Lagrangian
problem, making it difficult to unify and clearly reflect the
impact of V . These challenges motivate us to explore the
Structured-LUCB algorithm practically, where the influence
of V on the algorithm becomes more transparent to analyze.

6.1. Structured-LUCB

The Structured-LUCB algorithm constructs confidence
bounds for each d component of the probability vectors
and combines them to compute confidence intervals for ex-
pected rewards. Each pa,i is estimated independently. The
algorithm applies larger thresholds in decision-making for
components with vi that are more likely to occur, prioritiz-
ing areas of higher uncertainty. Algorithm 1 provides the
schema for the Structured-LUCB algorithm. At time t, let
p̂k,i(t) denote the empirical estimate for the probability of
arm k producing outcome vi, and let βSt

k,i(n, t) quantify the
uncertainty of this estimate based on n samples. Following
the LUCB framework, we require a lower bound for the best

arm a and an upper bound for the current second-best arm b
on the i-th outcome:

pa,i ≥ p̂a,i(t)− βSt
a,i(n, t), (8)

pb,i ≤ p̂b,i(t) + βSt
b,i(n, t), (9)

where the CB βSt
k,i(n, t) is derived using either Hoeffding’s

inequality:

βStr-H
k,i (n, t) =

√
log( 2dKt

δ )

2nk(t)
, (10)

or Bernstein’s inequality, which incorporates the variance
for tighter bounds:

βST-B
k,i (t) =

√
2σ̂2

k,i,t

√
ln
(
2dKt

δ

)
2nk

+
ln

(
2dKt

δ

)
3nk

, (11)

where σ̂2
k,i,t denotes the variance at time t , calculated as

σ̂2
k,i,t = p̂k,i(t)(1− p̂k,i(t)), providing confidence bonuses

(CBs) that depend more closely on the observed variance.

The lower and upper confidence bounds for the expected
rewards of arms a and b are given by :

LCBstr
a (t) =

d∑
i=1

(
p̂a,i(t)− βSt

a,i(n, t)
)
vi, (12)

UCBstr
b (t) =

d∑
i=1

(
p̂b,i(t) + βSt

b,i(n, t)
)
vi. (13)

The algorithm stops when LCBstr exceeds UCBstr , ensur-
ing that the expected reward of arm a is sufficiently higher
than that of arm b with high confidence. Since the confi-
dence bounds are uniform across all components of each
probability vector, the stopping condition is simplified to:(
P̂a(t)− P̂b(t)

)
· V −

(
βSt
a,i(n, t) + βSt

b,i(n, t)
)
· |V | ≥ ϵ,

(14)

where |V | is L1-norm of vector V . Next in this section, we
look at a joint estimation of d components of the probability
vectors.

6.2. Structured Model 2: EL-LUCB Method

The problem introduced in (3) can be interpreted as a max-
imization of an unknown probability vector Pa in the di-
rection of a known vector V . While the Structured-LUCB
algorithm considers this problem as an estimation of all
component independently, we suggest here to think of a
joint estimation within a KL-ball, that reminiscent of the
approach in (Filippi et al., 2010) for a regret minimization
problem. In previous Structured-LUCB, the Dist(·, ·) was
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Algorithm 1 Structured-LUCB Algorithm with Leader-
Challenger Sampling Strategy

1: Input: V , δ, α ∈ [0, 1]
2: Output: Optimal arm a∗

3: Initialization: ∀a ∈ A, na ← 1, ∀a ∈ [K], observing
the reward Za and P̂a ← Za

4: while LCBstr
l − UCBstr

c (t) < ϵ do
5: for a ∈ [K] do
6: Choose β = min(βStr-H

k,i , βST-B
k,i ) based on (10)-

(11)
7: Construct (LCBstr

a ,UCBstr
a ), ∀a ∈ A

8: end for
9: l← argmaxa LCBstr

a

10: c← argmaxa ̸=aleader UCBstr
a

11: Assign at ←

{
l if X = 1 ∼ Bernoulli(α),
c otherwise.

12: Observe: Reward Zat
from pulling arm at

13: update the parameters
14: end while

defined as an L-norm while here we use Dist(P̂a, Pa) :=
KL(P̂a, Pa) ≤ ϵ.

The primary modification, compared to Algorithm 1, ap-
pears on the seventh line, where the construction of the
LCBs and UCBs is specified. At each iteration, given the
updated empirical distributions of the leader arm P̂a and
the challenger arm P̂a, we apply Algorithm 2 from (Fil-
ippi et al., 2010) to obtain respectively a lower bound on
P̂a(t) · V and an upper bound on P̂b(t) · V .

At each iteration of the loop, the updated KL−ball, or more
specifically the KL-ellipses, around the estimates shrinks
until there is no overlap, indicating that the estimates have
reached a desired precision. The Algorithm 2As of (Fil-
ippi et al., 2010) is solved using a Lagrangian multiplier
approach.

7. Experiments and Discussions
In this section, we explore our proposed algorithms for dif-
ferent cases and explain the different results obtained. We
focus on three algorithms: Non-structured LUCB (or simply
LUCB with Assumption 1), Structured-LUCB presented in
Alg 1 and the EL-LUCB algorithm explained in Subsec-
tion 6.2.

The results are averaged on 100 trials. The confidence
parameter is set to δ = 0.05, the sampling probabilities of
leader-challenger are initialized at [0.5, 0.5]. The reward of
each arm is drawn according to a row of the matrix P . Its
columns contain the probabilities of each outcome of V . We
evaluate their performance on different support vectors V .

7.1. Structured-LUCB vs. Non-structured-LUCB

In the situations where the outcome probabilities are highly
concentrated on a single outcome of V for each arm, the
structured algorithm does not offer significant advantages
over the non-structured algorithm. Both algorithms will
perform similarly and non-structured algorithm can quickly
and accurately estimate the expected rewards based on ob-
served averages with less complex implementation effort.
We hence consider the following cases to determine the
suitability of each algorithm under varying conditions:

P test1 =

0.5 0.3 0.2
0.4 0.3 0.3
0.3 0.2 0.5

 , V test1 = [0.5, 0.1, 0].

Figure 2 shows that for V test1, the Structured-LUCB algo-
rithm significantly outperforms Non-structured-LUCB.

For the same P , we change the support to Vtest2 =
[0.9, 0.6, 0.4], as shown in Figure 3, Structured-LUCB
demonstrates less efficient performance compared to Non-
structured-LUCB.

The reasoning lies in how the stopping time and the effect
of V are introduced in the algorithms. In Non-structured-

Figure 2. Comparing the stopping times of two algorithms on V test1
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LUCB, the summation of CBs for Bernoulli distributions in
(7) is not effected by V . However, in the stopping condition
of the Structured-LUCB algorithm (14), V plays a signifi-
cant role. While the Hoeffding’s CB is scaled directly by
V , the Bernstein’s CB is more affected by the features of V .
Here, we provide the summation of Bernstein’s CBs for two
arms in terms of Hoeffding’s CBs:

∆St-B :=
( ln ( 2dKt

δ

)
3nt

a

+
ln
(
2dKt

δ

)
3nt

b

)
.(

d∑
i=1

vi)

+

√√√√2

d∑
i=1

(
σa,iβ

ST-Hf
a,i + σb,iβ

ST-Hf
b,i

)2

· ||V ||. (15)

In the structured case, the vector V is integrated into the
stopping condition, making the algorithm sensitive to both
individual outcomes vi and the l1-norm of V . This sensitiv-
ity is particularly evident when using Hoeffding’s bound and
becomes more nuanced with Bernstein’s bound. By com-
paring the structured CB to the non-structured CB, we can
draw the following insights. When |V | ≤ 1, the Structured-
LUCB stops earlier because its CBs shrink more rapidly.

Figure 3. Comparing the stopping times of two algorithms on
V test2.

This accelerated reduction is due to the CB being scaled by
|V |. In contrast, when |V | ≥ 1 the Non-structured-LUCB
algorithm becomes the preferred choice. However, if the
number of states d is very large (d≫ 1), it may offset the
advantage of having |V | ≤ 1 in the structured scenario.

The EL-LUCB Method LUCB-based algorithms have two
main procedures: updating empirical distributions and con-
structing CBs. Their dependence on V is trackable because
each step’s contribution can be isolated. In contrast, the
EL-LUCB method directly builds upper and lower bounds
at each iteration rather than separately constructing CBs,
making the role of V less transparent. We illustrate V ’s
impact through various examples.

First, we run the EL-LUCB (EL) algorithm for previous
cases. Interestingly, it remains robust across both supports,
showing consistent performance despite changes in the dis-
tribution’s support. It outperforms both Structured-LUCB
and Non-structured-LUCB:

Figure 4. Comparing the stopping times of EL-LUCB algorithm
on V test1 (above) and V test2 (below).

In these examples, EL-LUCB works on a same range
Range(V ) = max(V )−min(V ) on the support and seems
the condition KL(·, ·) ≤ ϵ as we can see does not directly by
each component of V . Consequently, we propose two cases

6
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where the distinguishability of two arms remains close and
we show how the performance is affected by the range of V .
We consider

P test2 =

[
0.142 0.311 0.153 0.391
0.386 0.114 0.154 0.344

]
,

V test3 =
[
0.144, 0.152, 0.505, 0.984

]
,

V test4 =
[
0.573, 0.518, 0.409, 0.505

]
,

where the range of V changes from ∆V test3 = 0.84 to
∆V test4 = 0.164.

We tailored these two cases so that the expected re-
wards of two arms remain close, yielding EP [0][V

test3] −
EP [1][V

test3] = 0.04 and EP [0][V
test4] − EP [1][V

test4] =
0.014.

Figure 5. Comparing the stopping times of EL-LUCB algorithm
on V test3 with low range (above) and with V test4 high range (below)

It appears that EL-LUCB ’s stopping time is lower than the
previous approaches in both cases, at the price of a some-
what higher computational complexity for solving several
Lagrangian problems.

8. Conclusion
We presented and compared two multi-armed bandit (MAB)
frameworks to tackle the choice of a transition in a finite
horizon Markov decision process with known future values.
Experimental results compared stopping times and the im-
pact of leveraging distributional support across various sce-
narios, illustrating that incorporating structure – when avail-
able – may significantly improve performance and decision-
making efficiency. The quantitative amplitude of this gain
remains to be better understood from a theoretical point of
view.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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