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Abstract—Key-Value Stores (KVSs), commonly used for stor-
ing sensitive data, face significant security challenges when de-
ployed in untrusted cloud environments. These environments are
susceptible to various types of attacks exploiting a compromised
OS or running a side-channel attacks. To protect sensitive data
from these types of attacks distributed TEE-based KVSs have
been proposed. However, these solutions are still vulnerable to
side channel attacks that may compromise any node and leak
all its data at once. Active defense mechanisms against side
channel attacks, such as Oblivious RAM, are impractical to
deploy due to their significant performance overhead or the
requirement for additional hardware (e.g., FPGA). Consequently,
these defense mechanisms are often skipped in favor of perfor-
mance in most existing TEE-based KVSs, which weakens their
security. To address this issue, we present TruShare, a practical
distributed in-memory KVS that integrates TEEs (Intel SGX)
and Shamir Secret Sharing (SS) to provide security against high-
privileged spywares while tolerating side-channel attacks on a
fraction of storage nodes, without requiring costly active defense
mechanisms. We implemented TruShare and evaluated its per-
formance using 25 Microsoft Azure VMs. Compared to its closest
competitors, TruShare considers a stronger threat model while
providing more practical performance than solutions relying on
active defense mechanisms against side-channel attacks.

Index Terms—Key-Value-Store, Trusted Execution Environ-
ment, SGX, Secret sharing

I. INTRODUCTION

Key-Value Stores (KVSs), such as Redis [1], Dy-
namoDB [2], and RocksDB [3], have experienced a surge in
popularity in the age of cloud computing since 2010. Initially
designed to provide a high-speed and scalable data storage
solution for unstructured or semi-structured data, KVSs have
evolved to handle sensitive information, including session
data [2], cryptographic keys [4], and wallet data [5]. While
sensitive data is often stored in private infrastructures, there
are situations where it may need to be outsourced to external
public cloud-based KVSs to remain accessible and ready for
use by authorized requesters. This use case is common across
various industries, including Key Management Systems [4].

However, outsourcing confidential data to cloud-based
KVSs raises significant security concerns [6]. In this paper
we aim at considering a particularly strong threat model
where all machines of a cloud environment could be subject
to a spyware attack, i.e., a software that exploits the high
privileges of the operating system (OS) to leak data (e.g.,
FinSpy [7]). Furthermore, we assume that up to half of the

machines could be exposed to side-channel leakage attacks
(SCAs) [8] where attackers can extract sensitive information
by analyzing indirect signals (e.g., timing, power consumption,
memory patterns), even though these attacks typically have
high prerequisites.

There exist many secure KVS solutions to protect private
values in untrusted environments. These can be classified
in three categories: (i) software-based encrypted databases
(e.g., [9], [10]); (ii) secret sharing-based solutions (e.g., [11],
[12], [13], [14], [15]), where secrets are split into n shares
stored in different machines requiring a threshold of t shares
to reconstruct a secret and (iii) solutions relying Trusted-
Execution Environments (e.g., [16], [17]). However, the two
first categories of solutions are insufficient under our target
threat model as a spyware attack running on all machines
can leak decryption keys in the first family of solutions
and can recover all the necessary shares to reconstruct the
values in the second family of approaches. Hence, the most
appropriate KVSs are those relying on Trusted Execution
Environments (TEEs) [18]. TEEs are widely regarded as a
hardware-based solution for creating secure environments that
are isolated from the system’s software stack, including the OS
and other privileged software (including spywares). TEEs have
various implementations by vendors (e.g., Intel SGX [19],
ARM TrustZone [20], and AMD SEV [21]), with Intel SGX
being the most popular and widely used due to its extensive
ecosystem (supported by Intel CPUs and Microsoft Azure) and
Intel’s continuous support. As such, existing SGX-based KVSs
like Avocado [16] and Treaty [17] mitigate the spyware threat
across all server nodes. However, bare TEEs fail to mitigate
SCAs. Thus, existing SGX-based KVSs, that rely on simple
replication or horizontal sharding of user data, may leak all
the stored secrets if any node becomes a victim of a SCA.

Existing active defenses against SCAs can be categorized
into cryptographic and non-cryptographic approaches [22].
Cryptographic methods, such as Oblivious RAM (ORAM),
protect against access pattern-based attacks by accessing
multiple memory locations per operation and frequently re-
shuffling or re-encrypting data with random seeds. However,
this approach is prohibitively slow, with performance penal-
ties as high as 83 times slower in some cases [23]. Non-
cryptographic methods introduce comparatively lower over-
heads but typically either protect against only specific types



of SCAs or require additional hardware like FPGAs [22]. Due
to these significant trade-offs in performance or reliance on
extra hardware, practical SGX-based KVSs generally opt not
to implement SCA defenses.

In this paper, we aim at addressing the lack of SCA tol-
erance in practical SGX-based KVSs by proposing TruShare,
a distributed in-memory KVS that integrates SGX and Secret
Sharing (SS) at its core. This combination allows both tech-
nologies to complement each other: SGX provides an enclave
to protect each data share in memory across all storage nodes
from high-privileged spyware attacks, while SS introduces a
natural resilience to SCAs. Specifically, as long as fewer than
t nodes are compromised, SS ensures that no data is leaked,
regardless of the type of SCA. In an environment where the
evolution of SCAs is unpredictable and existing mitigations
are costly, our philosophy does not aim to prevent SCAs
but to tolerate them, buying time while safeguarding data
even if a subset of nodes is compromised. The most effective
and efficient mitigation of SCAs remains patching emerging
vulnerabilities through hardware or microcode updates, usually
performed by the hardware provider.

TruShare goes beyond simply combining SGX and SS
by incorporating several practical properties. It tolerates the
unresponsiveness (e.g., crashes) of up to f(≤ [(Nmax−1)/2])
nodes and mitigates integrity threats of same fraction of
nodes through client-side versioning. Additionally, TruShare
supports horizontal storage scaling by adding new nodes up
to Nmax, while minimizing share redistribution using adapted
Highest Random Weight (HRW) hashing algorithm [24] to
save bandwidth. Last but not least, TruShare includes a node
join protocol that generates or recovers missing key-share pairs
when new nodes are introduced. This is accomplished through
HRW and an adapted version of the Herzberg’s scheme [25].

We implemented and evaluated TruShare through security
comparison and practical experiments on 25 Microsoft Azure
VMs. Specifically, we compare the security properties of
TruShare architecture against near competitors [15], [14], [16],
[17] and conclude that our system provides better confiden-
tiality properties against leakage attacks (including SCAs). We
evaluate TruShare’s node throughput of get/put operations with
different read/write ratios and compare it to our system without
SGX. Results show a slight overhead induced by our use of
SGX. We evaluate the scalability of TruShare according to
different deployment settings. Finally, we performed experi-
ments with faults to measure their impact on the latency of
get operation and recovery.

The remaining of the paper is organized as follows. In §II
and §III we present background and our system model. In
§IV, we present an overview of TruShare before presenting
TruShare protocol details in §V. In §VI, we compare the
security properties of TruShare against its competitors and
present its implementation details in §VII before assessing its
performance in §VIII. Finally, we survey related work in §IX,
before concluding in §X.

II. BACKGROUND

In this section we introduce the necessary background used
in this paper, namely: TEEs, Intel SGX, Shamir’s Secret
Sharing and the Highest Random Weight hashing protocol.

A. Trusted Execution Environments

TEEs are isolated, secure areas within processors designed
to safeguard applications or specific application segments from
other processes, including a potentially compromised Operat-
ing System. TEEs are commonly used for secure transactions,
digital rights management (DRM), and protecting sensitive
information like encryption keys or biometric data. Presently,
TEEs are offered by major CPU vendors, including ARM
TrustZone [20], Intel SGX (Software Guard eXtension) [19],
and AMD SEV (Secure Encrypted Virtualization) [21]).

B. Intel SGX

Intel SGX [19] is the TEE implementation of Intel. SGX al-
lows splitting applications into untrusted (non-sensitive) parts
that do not necessitate protection and trusted (sensitive) parts
that do. The latter runs within an encrypted secure memory
region called an enclave, ensuring both confidentiality against
non-authorized users and reliable execution. Code and data
within the enclave are only decrypted inside the CPU during
execution. The lastest iteration of SGX, namely SGX2 [26]
expands the maximum enclave size from 128MB to 1TB but
removed the built-in integrity check of enclave pages. While
this improves the performance of protected applications, it
opens the door to integrity threats, particularly rollback attacks
which represent a significant threat in this context. Another
important feature of SGX is Remote Attestation [27] (RA) that
allows an entity, like a client, to verify that a remote SGX
enclave is running the expected code on genuine hardware.
Despite its security features and Intel regularly releasing
patches to address newly discovered threats, SGX remains
vulnerable to SCAs [8] that may leak data from enclaves.

C. Shamir’s Secret Sharing

SSS [11] is a cryptographic method developed by Adi
Shamir that enables the secure distribution of a secret into
multiple shares (n) in such a way that a subset of those
shares (t), known as the threshold, is required to reconstruct
the original secret. The secret s is divided by a dealer using
a polynomial P of degree t-1 such that P (0) = s. Each
participant with id i is given a share, corresponding to a point
on the polynomial, P (i). The ingenious aspect lies in the fact
that knowledge of any number of shares less than t reveals no
information about s, but once the threshold is reached, s can
be reconstructed using polynomial interpolation.

D. Highest Random Weight hashing protocol

Highest Random Weight (HRW) hashing [24], also known
as Rendezvous hashing, is a technique used in distributed sys-
tems for load balancing and data partitioning. In this hashing
scheme, illustrated in Figure 1, each node Si in the system
is assigned a weight computed by a hash function h applied
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S1 S2 S3 S4 S5 S6 S7 S8 S9

h(S2,O) > h(S5,O) > h(S6,O) > h(S8,O) > h(Si,O) 

Object O

HRW

Fig. 1: HRW protocol followed by a client C to determine K = 4
servers among 12 servers Si to store the object O. The top-4 nodes
w.r.t to O are S2, S5, S6, S8

to both the node identifier Si and the item being hashed O.
Since we want to replicate O across K nodes, the rendezvous
nodes should be the top-K nodes with the highest weights
among all the nodes. This method ensures that each item is
consistently mapped to the same specific servers. In the event
that one of the top-K nodes is unavailable, the requester can
seamlessly redirect the request to the subsequent top-K active
nodes, where it can push the object O or locate it. Furthermore,
HRW possesses the property of minimal disruption among
hashing functions when a node Si crashes or is spawned.

III. SYSTEM MODEL

Let us consider a System Administrator that has a maximum
quota of Nmax nodes (servers) that could be deployed on the
cloud to store confidential data. N(≤ Nmax) denotates the
number of already deployed nodes. Clients can interact with
the storage API of the nodes by issuing get or put requests to
pull or push their secrets.

System goals. TruShare seeks to provide four properties
about the secrets stored in its nodes: (i) Confidentiality: the
secrets of clients are not disclosed; (ii) Integrity: the secrets of
clients can be correctly recovered; (iii) Availability: the secrets
of clients are available even under failure assumptions; (iv)
Eventual consistency: nodes will eventually converge to a state
where the secrets of clients are correctly recoverable.

Data and access models. We consider that the secrets of
clients are KV records where the key part K identifies the
confidential data V that is modifiable only by the owner. We
target use cases where each client is responsible for updating
its own keys. This assumption implies that there is no put
concurrency between clients about the same key. Such use case
can represent Single Writer Multiple Reader databases [28].
The governance policy that authorizes or prohibits access to
data to TruShare clients is a transversal work that is out of the
scope of this paper.

Threat Model. Table I summarizes the adversarial capa-
bilities of TruShare nodes where f ≤ [(Nmax − 1)/2]. CO,
IN, and AV regroup attacks that threaten respectively the
confidentiality, the integrity, and the availability of stored data.
The f nodes exhibit a byzantine behaviour usually considered
in BFT systems [29] including the ability to perform SCAs,
whereas high-privileged spywares can affect all the nodes.
We assume that clients are trustworthy and do not exhibit

Nmax − f f

CO High-privileged spyware ✓ ✓
Side-channel leakage attack ✗ ✓

IN Data tampering ✗ ✓
Rollback ✗ ✓

AV Crashing ✗ ✓
Unresponsiveness for user requests ✗ ✓

TABLE I: Adversarial capabilities of TruShare nodes. ✓and ✗refer,
respectively, to the ability or inability to carry out different attacks
by two distinct proportions of TruShare nodes
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Fig. 2: TruShare overview.

malicious behaviour in their put operation because they do
not have an interest in polluting their own data.

IV. TRUSHARE OVERVIEW

Figure 2 illustrates the general architecture of TruShare,
comprising server-side and client-side components. On the
server-side, TruShare includes N nodes already deployed,
each identified by a unique ID (Si in the figure) and hosting
an in-memory KVS within an SGX2 enclave. Clients perform
two types of operations: (i) put(k,v) operation, where they
divide a secret v into n (≤N) shares sharei, using (t,n)-
threshold SS, and assign each pair (k, sharei) to a distinct
node among N (step 1 in Figure 2); and (ii) get(k) operation,
where they reconstruct v from t (< n) correct shares using
SS (step 2 ). Each session of operations is preceded by
remote attestation (RA) in order to ensure that the client
is communicating with genuine SGX enclaves and a secure
channel establishment from client to enclave using SSL. The
introduction of a new node initiates a node join protocol (step
3 ), during which it constructs its KVS by interacting with

existing nodes. At this step, we summarize the notations we
introduced so far in Table II.

In a nutshell, TruShare relies on the following key principles:
Combining SGX with Secret Sharing: We combine SGX2
with SS on TruShare nodes in order to inhibit high-privileged
spywares threat on all the nodes and we choose the appropriate
parameters for t, n and the necessary metadata to tolerate up
to f byzantine nodes including SCAs (see III:System goals).
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TABLE II: Notations used in TruShare

Notation Designation
Nmax Maximum number of authorized nodes to deploy

N(≤ Nmax)
- Number of already deployed nodes
- Number of nodes with high-privileged spyware

f(≤ [Nmax−1
2

]) Number of byzantine nodes among Nmax

n Total number of shares for secrets
t Required shares to reconstruct secrets

Further details are given in § V-A.
HRW-based put and get operations: We define SS-specific
get and put protocols based on HRW (i) to deterministically
sample the n nodes that should hold the shares among the N
nodes, (ii) and to save bandwidth during get operations by
targeting only the appropriate nodes. Further details are given
in § V-B.
HRW-based node join protocol: This protocol (depicted in
each node of Figure 2) is used whenever a new server Snew

is introduced to replace a crashed server or to extend the
in-memory storage to host more secrets. Specifically, Snew

gathers keys and generates shares that should belong to him
in order to maintain the number of shares of each secret to n,
through a two step protocol:
Keys discovery: Snew connects to all alive nodes through
mutual RA and each node applies HRW to figure out the keys
that Snew can claim. Specifically, we make sure that Snew

obtain a key only and only if it ranks among the top-n servers
for that key, according to the order established by HRW.
Shares recovery: We apply Herzberg scheme [25] to securely
recover the shares associated with the discovered keys on
Snew. We support the protocol with HRW to locate the domain
of top-n nodes for each key.

Further details about each step are given in § V-C.

V. TRUSHARE DETAILED DESCRIPTION

In this section, we describe in details the TruShare key
principles previously enumerated.

A. Composing SGX with Secret Sharing

By employing SGX2 across all servers, we inherently
prevent high-privileged spywares from stealing shares on
any of the nodes. To circumvent the remaining byzantine
behaviours of f nodes (that should be fixed to any value
between 0 and [Nmax−1

2 ]), including SCAs, we build our
solution step-by-step to mitigate different concerns.
SCAs concern: To prevent the reconstruction of a secret in
case of collusion of f nodes that use SCAs, the minimum
required number of shares to rebuild the secret should be set
as (1) t ≥ f + 1.
Availability concern: Ensuring that the secrets remain
recoverable during get operations in a context where f
nodes may crash or not respond requires (2) n ≥ f + t; this
guarantees that t nodes are always responding.
Eventual consistency and freshness concerns: In TruShare,
if a client sends two successive put requests for the same key,
the system ensures that the nodes store the latest version of
the share by using client-side versioning. The client associates

a monotonic version number to each key it possesses and
appends this version number to all the shares that belongs to
the same secret during put operation. This ensures that nodes
will only store key-share pairs that have a higher version
number than the one currently stored, guaranteeing that the
most recent data is retained.
Integrity concern: SGX2 removes integrity check from its
TEE implementation, meaning that an attacker can either
blindly write the memory of f nodes, or restore a previous
snapshot of their memory. Because the memory remains
encrypted, attackers can only inject blind faults into f nodes.
To prevent this type of attacks using the version number
appended to each share; both in case of blind writes and
in case of replay attacks, clients performing get operations
must consider t shares with identical version number and
isolate the others as invalid. This approach is based on the
assumption that an attacker will not be able to manipulate
the encrypted memory precisely enough to inject an invalid
share while retaining a valid version number.

From (1) and (2), the overarching rule for maintaining
TruShare confidentiality and availability is n ≥ 2f + 1. It
also means that at the initialization of TruShare nodes, the
minimum number of nodes N should be 2f + 1 i.e., N ≥ n.
The same rule allows TruShare to maintain secrets integrity
because it guarantees that there is a majority of correct nodes
(n− f > f ) that holds correct shares.

B. HRW-based put and get operations

We adapt the HRW hashing algorithm to fit the sharding
protocol of our SS-based KVS. Figure 3 illustrates the HRW-
based put(key, value) protocol. First, ( 1 ) the client applies
HRW hashing to all node IDs Si of the deployed nodes (N )
alongside key. The resulting hashes are used to sort the node
IDs in decreasing order and the top-n nodes are selected to
host the shares. Subsequently, ( 2 ) the value is split using
(t, n)-threshold SS to generate n shares sharei based on the
top-n nodes. As we mentioned in V-A, the client appends the
version number v of the key to the generated shares. Finally,
( 3 ) each record < key, sharei, v > is sent to a node Si

among the top-n through a secure SSL channel established
after attesting that Si is running in an enclave. The put is
considered successful if the client receives n − f positive
acknowledgements at least.

The get(key) protocol is straightforward: Step 1 remains
unchanged. Subsequently, the client multicasts a get request to
all nodes among the top-n and waits for t shares with identical
versions numbers.
Our usage of HRW optimizes bandwidth usage when making
get requests by reducing the potential number of share owners
from N to n. It accomplishes this by shifting the network
overhead of probing N nodes through the network to a local
overhead involving hash computation and sorting.
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Fig. 3: HRW-based put(Key, Value) protocol.

C. HRW-based node join

In the event of a node crash, TruShare maintains function-
ality without requiring KV record rebalancing, thanks to the
HRW protocol which preserves the node order and allows un-
interrupted put or get requests. When Snew replaces a crashed
node or expands storage, it establishes a secure channel with
existing nodes, and follows a two-step protocol to recover
and populate the missing KV records. To ensure successful
recovery, system administrators must first spawn nodes with
the same IDs as the crashed ones before considering extension,
as HRW will not guarantee Snew ranks among the top-n for
missing keys otherwise.

1) Keys discovery: The first step for a new node to recover
its KVS is key discovery. The joining node broadcasts its
ID, Snew, to all active nodes. Each active node then runs the
DISCOVER_LOST_KEYS(Snew) procedure in Algorithm 1
which adds Snew to the list of nodes (line 22). Then, for
each key k in its KVS, the node computes the HRW-sorted
list of nodes (line 25). Snew receives key k only if it ranks
among the top-n nodes, referred to as neighbors for key k.
Additionally, Snew gets the ID of the new (n + 1)th node
in the HRW ranking which may hold a share of k (line 30).
This information is essential for issuing a delete command to
it later, to free up memory and ensure at most n shares exist
for a given secret.

2) Shares recovery: Once Snew has discovered its keys, it
employs the Herzberg scheme [25] to regenerate the shares
associated with them. While Cobra [15] uses this scheme to
create a broadcast domain to regenerate shares of a new node,
we use it to create multicast domains, because our keys may
belong to different top-n groups. We assume that the original
polynomial utilized by a client to partition its secret into shares
is P such that degree(P ) = t − 1, P (0) = secret and
P (i) = sharei, i.e., the share of the Si. The goal for Snew is
to compute P (new) = sharenew without knowing or leaking
P (0).

Algorithm 1 Keys discovery

1: Snew: ID of the new node
2: Sup: Set of IDs of all nodes (including crashed nodes)
3: t, n: SS parameters
4: Ks: List of keys mapped to the current node
5: h(): Hash function used for HRW protocol
6:
7: procedure HRW-SORTING(Sup, k)
8: ▷ map each node of Sup with its hash w.r.t to k then

return a sorted map according to the hashes
9: nodes to hashes← map < node id, hash >

10: for Sj ∈ Sup do
11: nodes to hashes[Sj ]← h(Sj , k)
12: end for
13: sort(nodes to hashes)
14: return nodes to hashes
15: end procedure
16:
17: procedure DISCOVER LOST KEYS(Snew)
18: < key, node id > lost keys[ ]
19: ▷ create a void array of (key, node id)
20: ▷ key: a key that should be mapped to Snew

21: ▷ node id: the last node among the top-n nodes for
key

22: Sup ← Sup ∪ Snew

23:
24: for k ∈ Ks do
25: nodes to hashes← HRW-sorting(Sup, k)
26: sorted Sup ← nodes to hashes.get keys()
27: ▷ Get the keys part of the ordered map in an

array (starting index is 0)
28: if h(Snew, k) ≥

nodes to hashes[sorted Sup[n− 1]] then
29: ▷ Snew is a neighbour for k
30: lost keys.add(< k, sorted Sup[n] >)
31: end if
32: end for
33: return lost keys ▷ transfer the lost keys list to

Snew

34: end procedure

1. Distributed Polynomial Generation (DPG). Snew initiates
a DPG involving all the N deployed nodes: each Si of
N generates a polynomial Ri of degree t − 1, such that
Ri(new) = 0, and broadcasts Ri(j), i.e., a share of Ri, to
every other node Sj of N .
2. Shares reconstruction. For each discovered key k, Snew

uses HRW to determine the list lk of the top-n nodes that
hold k (but excluding Snew and crashed nodes). lk forms the
multicast domain for k. Then, Snew requests each Si ∈ lk
to sum up the received polynomial shares Rj(i), i.e., to
compute the polynomial share R(i) =

∑
j/Sj∈lk

Rj(i) with
R(new) = 0. Finally, each node Si ∈ lk sends (P +R)(i) =
sharei+R(i) to Snew which possesses sufficient points to ex-
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ecute polynomial interpolation and evaluate (P +R)(new) =
P (new) + R(new) = P (new). This process is repeated for
each discovered key k.
3. Extra share deletion. As explained in V-C1, Snew issues
a delete request of the KV-pair to the new (n+ 1)th node in
the ranking to free up memory and ensure at most n shares
exist for a given secret.
Ensuring consistency of the shares of R. In the case where
a node Si has not received a polynomial share from Sj , the
computed share R(i) may be incomplete and thus may impact
the recovered share. To overcome that situation, each node
Si informs Snew of the list of nodes Rlisti from which it
received a share Rj during DPG. In that way, Snew will be
able to sample for each discovered key k a subset of size t or
more that indicates the elements to include in the computation
of R for each Si ∈ lk, leading to an implicit consensus.
Dealing with integrity concerns. A malicious node Si can
blindly modify either its shares of secret or one of its received
polynomial shares Rj(i). To overcome the former integrity
violation, Snew applies polynomial interpolation only after
receiving t shares sharei+R(i) with identical version number
(see V-A:Integrity concern), indicating that the correct shares
have been used in the sum. In the same way, to detect a
tampered polynomial share Rj(i), Snew can choose a random
code and ask the nodes Si during DPG to generate Ri

appended to the random code. Then each enclave can check,
before computing its share R(i), that the involved polynomial
shares have all the same random code.

VI. SECURITY COMPARISON

Table III compares the security guarantees of TruShare
against near competitors on confidentiality, integrity and avail-
ability fields. The percentages represent the level of resiliency,
i.e., the proportion of nodes that can be exposed to the
considered threat. Methods that combine BFT [29] and SS
such as [13], [14], [15] focus on the linearizability (Lin)
property, i.e., each operation is ordered in real-time ensuring
that each read reflects the most recent write. For all types of
threats, they tolearate 1/3 of compromised nodes. Distributed
SGX-based KVSs such as [16], [17] completly inhibits high-
privilged spwayre threat using SGX. However, they rely on
simple state replication of values or horizontal sharding across
nodes, meaning that they do not tolerate any side-channel leak-
age attack. Similarly, TruShare inhibits high-privilged spyware
threat using SGX, but also allows to tolerate all other threats,
including SCAs on up to half of the nodes (maximum possible
value of f/N ). However, TruShare trades linearizability for
eventual consistency (EC), i.e., nodes that store the same key
will eventually converge to a consistent state with client-side
versioning, but before the convergence, read operations are not
guaranteed to reflect the most recent write.

VII. IMPLEMENTATION

We implemented TruShare using C++ and the official SGX
SDK from Intel. Our implementation makes use of a modified
version of fletcher’s implementation of SSS [30] for the

BFT+SS
[13], [14]

[15]

Distributed
TEE-based

KVSs
[16], [17]

TruShare

High-privileged spyware 33% 100% 100%
Side-channel leakage 33% 0 Up to 50%

Integrity threats
(data tampering or rollback) 33% 50%

with SGX1 Up to 50%

Availability threats
(crash or unresponsiveness) 33% 50%

with SGX1 Up to 50%

Consistency model Lin Lin EC

TABLE III: Security comparison between TruShare and near com-
petitors. Values of the first four lines correspond to the proportion of
tolerated faults. Lin = Linearizability, EC = Eventual Consistency

tasks of splitting a secret and combining shares. We integrate
this implementation into an SGX enclave, incorporating the
join protocol as an additional feature. The KVS itself is
a sample C++ std::map<string, string> with our
HRW-based get/put API interface. We utilize the asynchronous
API of the official gRPC library [31] to handle commu-
nications. A preliminary version of TruShare is available
here: https://github.com/aghia98/TruShare/tree/Sample KVS
in enclave grpc ss HW multiple machines recovery

VIII. PERFORMANCE EVALUATION

We performed an experimental evaluation of TruShare. Our
evaluation aims at answering the following questions:

Q1: What is the throughput of TruShare servers w.r.t
different number of worker threads and w.r.t different types of
workloads (read=100%, 50%)?
Q2: What is the overhead induced by the use of SGX on a
TruShare server throughput performance?
Q3: How does TruShare servers throughput scale when
changing the parameters N and n?
Q4: What is the latency of get and recovery operations with
different number of faults?

We address questions Q1 and Q2 in § VIII-B, we respond to
Q3 in § VIII-C and we deal with Q4 in § VIII-D.

A. Setup and Methodology

All experiments were conducted on a cluster of 25 Azure
VMs. Ten VMs represented TruShare nodes, each equipped
with 16 vCPUs (Intel Xeon 8370C, SGX2-enabled DC16s v3)
and 128GB of memory. The remaining 15 VMs were used
to deply clients. Each of them had 32 vCPUs and 16GB of
memory. All VMs ran Ubuntu Linux 22.04 LTS and were
configured with C++17. Throughput was evaluated using the
YCSB (Yahoo! Cloud Serving Benchmark) C++ implementa-
tion [32]. All experiments used 1KB secrets.

B. Single-node KVS

Figure 4 shows the throughput performance of a sin-
gle TruShare node across two distinct types of workloads
(read=50% and 100%), with varying numbers of worker
threads until the CPU was saturated. This comparison includes
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Fig. 4: Comparison of throughput (in KTPS) between TruShare and
TruShare-native for different YCSB workloads and worker threads

TruShare-native to assess the overhead induced by SGX2.
Regardless of the workload type, TruShare reaches approx-
imately 25 KTPS with 16 worker threads, with a negligible
advantage for read intensive scenarios. Moreover, results show
that the throughput overhead induced by SGX2 enclaves is
in the range of 8 to 12%. The overhead mainly comes from
the cost of transferring data from in and out of the enclave.
As performances are similar regardless of the workload, we
keep workload A (r=0.5%) as a reference for the subsequent
experiments.

C. Scalability

This section analyzes how varying the number of secret
shares n and the total nodes N affects throughput, with a
workload read ratio of 50%. In Figure 5, we select four values
for N (4, 5, 7, 10) and vary n from 1 to 10. For each valid
combination (i.e., where n ≤ N ), we measure the overall
throughput of TruShare. The results show that as N increases
relatively to n, the throughput of TruShare improves. This
is because additional nodes beyond the required n enhance
parallelism, allowing more capacity to process requests.

To understand how the relationship between n and N
affects throughput, we use previous experiment data to create
Figure 6. For each combination, we compute the ratio n/N
and record the corresponding throughput. The figure shows
that as the n/N ratio increases, throughput decreases, and vice
versa. This provides a clear indication of the throughput range
achievable for other untested combinations.

D. Experimentation with faults

Figure 7 shows the latency of the get operation when
N = n = 9 and t = 5 under varying numbers of faulty
nodes (0 to 4). These faulty nodes represent those that may
have rolled back or tampered with their shares. The total
latency includes the various operations performed during the
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Fig. 5: TruShare’s throughput with respect to different combinations
of n and N
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Fig. 6: TruShare’s throughput w.r.t the proportion n/N

get operation (i.e., HRW, sending the request and waiting for
responses, and reconstructing the secret). The client waits to
receive t correct shares (with the same version number) before
performing reconstruction. The more faulty shares there are,
the longer the client is likely to wait before receiving a set of
t correct shares. We observe that the latencies of HRW and
reconstruction are negligible (respectively 19µs and 270µs)
compared to the networking cost. Furthermore, increasing the
number of faulty nodes from 0 to 4 only induces an additional
2ms of networking latency in average.
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Reconstruction Latency

Network+server latency

Fig. 7: Latency of get operation with N = n = 9, t = 5 and varying
number of faulty nodes

Similarly, table IV presents the recovery latency of 10k
secrets for a node when N = n = 10 and t = 5,
thus considering up to 4 faulty nodes. The key discovery
process demonstrates a near-constant duration of 1.2 seconds,

7



Faulty nodes 0 1 2 3 4
keys discovery 1.2
shares recovery 29.72 29.79 29.84 29.92 30.09

TABLE IV: Latency of recovery protocol (keys discovery and shares
recovery) in seconds for 10K secrets and N = n = 10, t = 5 and
varying number of faulty nodes

while the shares recovery introduces a minimal overhead of
370ms, which we estimate negligible considering the amount
of reconstructed secrets (10K of 1KB per share).

IX. RELATED WORK

There exist two families of related work, that aim at bringing
different security properties to KVSs or to optimize already-
existing building blocks: BFT-based secret sharing (SS) and
TEE-based KVSs.

BFT-based SS. Depspace [13], VSSR [14], and Cobra [15]
combine BFT [29] and SS to enhance BFT’s linearizability.
These solutions provide confidentiality by sharding the global
state using SS. However, these methods don’t address confi-
dentiality when all nodes are compromised by high-privileged
spyware. Additionally, they distribute storage across all nodes
(n = N ), ignoring limited storage constraint. In contrast,
TruShare leverages TEEs to mitigate high-privileged spyware
on all nodes and uses HRW to select only a subset of nodes
n from the available N for storing objects, conserving main
memory.

TEE-based KVSs. Distributed TEE-based KVSs such as
Avocado [16], Treaty [17] and methods that combines BFT
SMR with TEE such as [33] aim to provide confidentiality
guarantees in an environment where high-privileged spyware
can spy on user code and data. However, they rely on
entire state replication or horizontal sharding, meaning that
compromising a single node with a single SCA may leak all
the machine stored secrets at once. In contrast, TruShare uses
(t,n)-threshold SS to split a secret into n shares across different
machines and tolerate f = t− 1 SCAs.

X. CONCLUSION AND FUTURE WORK

We present TruShare, a secure and confidential distributed
KVS based on Intel SGX and Secret Sharing for untrusted
environments. Our design includes three key contributions: (1)
We combine Intel SGX and Shamir’s Secret Sharing to ensure
confidentiality, integrity, and availability against Byzantine
nodes, high privileged spywares and side-channel attacks, con-
sidering a stronger threat model than competitors. (2) We use
a deterministic approach for distributing and collecting shares
via HRW, optimizing bandwidth and minimizing disruption
from node crashes or spawning. (3) We introduce a node join
protocol that enables new storage nodes to build their KV
state while complying with HRW. Performance assessments
of TruShare show its scalability potential by leveraging the
ratio n/N and the negligible impact of faulty nodes on the
latency of get and recovery operations. These results suggest
TruShare is suitable for real-world applications.

We intend to extend this work in the following directions.
First, we aim to add support for concurrent put operations by
leveraging a tailored consensus protocol for HRW to achieve
linearizability. We anticipate some performance overhead from
this addition due to the consensus establishment. Thus, a
linearizable-ready TruShare should be employed only for
suitable applications. Another area of improvement is related
to remote attestation, where we aim to decentralize the process
of attesting TruShare nodes by utilizing blockchain to provide
an immutable and consensual source of attestation verification.
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