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La convection engendrée par forçage radiatif, ou
comment reproduire en laboratoire les régimes
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Abstract. We consider the turbulent heat transport induced by thermal convection. The widespread belief is
that the transport properties of the turbulent flow should be independent of the tiny molecular diffusivities
for asymptotically strong driving, but the associated “ultimate” scaling regime proves challenging to observe
experimentally using standard convection cells (Rayleigh–Bénard geometry). We thus recently introduced an
alternate experimental setup where convection is driven radiatively, with internal heating within the lower
region of the body of fluid. This setup naturally leads to the ultimate regime of thermal convection. We then
discuss how adding global rotation to the experimental setup has led to the first laboratory observation of the
diffusivity-free regime of rapidly rotating turbulent convection, also known as the “geostrophic turbulence”
scaling regime.

Résumé. Cet article traite du transport turbulent de chaleur engendré par convection thermique. Si la
croyance dominante est que les propriétés de transport de l’écoulement turbulent sont asymptotiquement
indépendantes des diffusivités moléculaires du fluide, ce régime dit « ultime » semble difficile à mettre en
évidence dans les expériences traditionnelles de laboratoire (dispositif de Rayleigh–Bénard). Nous avons
donc récemment développé un dispositif de convection par chauffage radiatif, dans lequel le fluide est
chauffé en volume dans sa partie inférieure. Nous montrerons comment ce dispositif conduit naturellement
à l’observation du régime ultime de convection thermique en laboratoire. Nous décrirons ensuite l’ajout
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d’une rotation globale à ce dispositif expérimental, ingrédient important des écoulements géophysiques
et astrophysiques. Nous montrerons en particulier comment ce dispositif a permis la première observation
expérimentale du régime ultime de convection en rotation rapide, dit régime de « turbulence géostrophique ».

Keywords. turbulent convection, geophysical and astrophysical fluid dynamics, rotating turbulence.

Mots-clés. convection turbulente, dynamique des fluides géophysiques et astrophysiques, turbulence en
rotation.
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Thermal convection is a key driver of geophysical and astrophysical flows, be it in stellar and
planetary interiors, in exoplanetary atmospheres, in the Earth ocean and in the oceans of outer
solar system satellites [1–7]. In these various contexts the convective flow is typically strongly
turbulent. A standard modeling assumption thus consists in assuming that the zeroth-law of
turbulence applies [8]: the large-scale quantities should be related in a way that does not involve
the tiny molecular diffusivities (of momentum, heat, or tracer concentration).

The vast majority of the physics literature on thermal convection focuses on the Rayleigh–
Bénard (RB) convection setup, where a layer of fluid is sandwiched between a hot bottom
plate and a cool top one. While arguably the simplest setup from a theoretical point of view,
RB convection appears to be a questionable model for geophysical and astrophysical flows.
Indeed, the diffusivity-free argument above suggests that the turbulent heat flux should be
related to the temperature difference between the two plates in a way that does not involve the
molecular diffusivities. As discussed in Section 1, this corresponds to the Nusselt number Nu
(dimensionless heat flux) increasing with the Rayleigh number Ra (dimensionless temperature
difference) as Nu ∼ Raγ, with γ= 1/2. While the precise value of the exponent γ remains debated
for the highest Ra achieved in laboratory experiments, all measured values lie in the range
0.26 ≤ γ ≤ 0.38 [9–15], that is, the measured exponent is always strictly less than 1/2 (restricting
attention to smooth top and bottom plates, see below).

The lower value for the exponent γ results from the boundary layers adjacent to the top and
bottom plates, which throttle the heat flux throughout the entire cell. Based on this observa-
tion, several alternate setups have been designed to mitigate the role of the boundary layers and
observe diffusivity-free convection in the laboratory: convection in tall vertical channels [16–
20], Rayleigh–Bénard convection with rough boundaries [21–27], and radiatively driven convec-
tion [28–30]. After briefly reviewing the results obtained using the first two experimental setups,
we discuss radiatively driven convection in greater detail, with an emphasis on its ability to re-
produce various diffusivity-free regimes of geophysical and astrophysical relevance.

In Section 1 we introduce standard RB convection together with the standard theoretical pre-
dictions for the exponent γ, before briefly reviewing results obtained in tall channel experiments
and in RB experiments with rough boundaries. We introduce the radiatively driven convection
setup in Section 2, focusing first on the observation of the diffusivity-free regime of non-rotating
convection. In Section 3 we discuss the influence of rapid global rotation and the laboratory re-
alization of the geostrophic turbulence scaling regime – the diffusivity-free or “ultimate” regime
of rapidly rotating convection – using a rotating radiatively driven convection experiment. We
conclude in Section 4.

1. A primer on Rayleigh–Bénard convection

The RB setup is sketched in Figure 1(a): a layer of fluid of height H lies between a warm bottom
plate maintained at temperature T0 +∆T and a cool top plate maintained at temperature T0. At
the theoretical level, the layer can be considered infinite or periodic in the horizontal directions.
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Figure 1. Rayleigh–Bénard convection (a) consists of a layer of fluid sandwiched between
a hot bottom plate and a cool top one, the plates being kept at fixed temperatures. One
typically measures the emergent heat flux. By contrast, radiatively driven convection (b) is
powered by radiative heating and effective internal cooling, the boundaries being thermally
insulated. One typically measures the emergent vertical temperature drop.

The density depends linearly on temperature T , ρ = ρ0[1−α(T −T0)]. Following the traditional
Boussinesq approximation, the other coefficients characterizing the fluid’s properties are inde-
pendent of temperature: kinematic viscosity ν, thermal diffusivity κ, thermal expansion coef-
ficient α, specific heat capacity C , etc. One can also show that, for small enough temperature
drop ∆T , the density variations need only be included in the expression of the weight of the fluid
element [31], while the velocity field can be considered incompressible (divergence-free).

There are two dimensionless control parameters for such Boussinesq RB convection. The
Rayleigh number,

Ra = αg∆T H 3

κν
, (1)

characterizes the intensity of the thermal driving as compared to diffusive effects. The Prandtl
number,

Pr = ν

κ
, (2)

characterizes the relative importance of viscosity and thermal diffusion. To some extent, Pr can
be considered constant for a given fluid: Pr ≃ 7 for water around room temperature, Pr ≃ 3×10−2

for liquid metals, Pr ≪ 1 in typical astrophysical settings.
At low Rayleigh number the fluid remains motionless, with warm fluid sitting below heavier

cooler fluid and heat diffused from the bottom to the top plate. However, this situation becomes
unstable at stronger driving amplitude, that is, above a threshold value Rac of the Rayleigh
number. Cellular motion arises, the system trying to reach the lower-potential-energy state where
heavy fluid lies below lighter fluid. After reaching saturation, the flow is typically steady slightly
above threshold and destabilizes at higher values of Ra through secondary instabilities. At very
high Ra the flow is turbulent. As compared to the diffusive state, convective motion greatly
enhances the heat transport from the bottom to the top plate. Indeed, fluid elements receive
heat near the bottom plate, rise, and eventually deposit the heat at the cool top plate. Such
convective transport is very efficient and greatly dominates over diffusive transport for large
Rayleigh number, Ra ≫ Rac . The overall efficiency of the heat transport can be characterized
using the mean heat flux P transferred across any horizontal surface z = const. in statistically
steady state. Non-dimensionalizing this heat flux P with the diffusive heat flux of the steady
motionless state leads to the Nusselt number:

Nu = PH

ρ0Cκ∆T
. (3)
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The heat flux P is a central quantity of the convection system, related to most other global
quantities of interest. The heat flux P is directly proportional to the rate of mechanical energy
input into the system, which in statistically steady state is balanced by viscous dissipation. The
heat flux P is also related to the input of buoyancy variance into the system, the latter being
balanced by turbulent mixing. A significant fraction of the research on thermal convection has
thus been devoted to the determination of the scaling behavior of Nu as a function of Ra and
Pr in controlled laboratory experiments and numerical simulations. The goal is to determine
the behavior of Nu at asymptotically large Ra, and one typically seeks a power-law of the form
Nu ∼ RaγPr χ. However, two competing theoretical predictions have been put forward for the
values of the exponents γ and χ.

1.1. “Classical” scaling regime

The classical theory is based on the observation that the temperature is almost homogeneous
in the interior of high-Ra RB convection, with sharp gradients located within the boundary
layers adjacent to the top and bottom plates. The interpretation is that the bulk turbulent
flow efficiently mixes temperature, hence the isothermal profile in the interior of the domain.
However, fluid hardly moves (in the vertical direction) near the top and bottom plates, hence
the existence of boundary layers connecting the isothermal interior with the boundary values
of the temperature field. Because the fluid hardly moves near the boundaries, heat transfer
is dominated by diffusion in the boundary layers. Assuming that diffusive transfer across the
boundary layers throttles the overall heat flux, we estimate P as

P ∼ ρ0Cκ∆T

δ
(4)

where δ denotes the thickness of the thermal boundary layer. The boundary layer thickness δ can
be deduced from a marginal stability argument initally articulated by Howard [32]: the Rayleigh
number based on δ is comparable to the threshold Rayleigh number for thermal convection,

Ra(δ) = αg∆Tδ3

κν
≃ Rac . (5)

The rationale is the following: if δ were much thinner than (5), the boundary layer could grow
diffusively. However, if δ were greater than the estimate (5), the boundary layer itself would
become convectively unstable. The boundary layer would then spontaneously erode andδwould
decrease. The conclusion is that, in statistically steady state, the boundary layer thickness δ
is given by (5), where Rac is a constant number, typically of the order of 103. Substituting the
estimate (5) for δ into equation (4) yields, after multiplication by H/(ρ0Cκ∆T ):

Nu ∼ H

δ
∼ Ra1/3 , (6)

that is, γ= 1/3 and χ= 0.

1.2. Diffusivity-free or “ultimate” scaling regime

The competing theoretical prediction, attributed to Spiegel and Kraichnan [33–35], is based on
the zeroth law of turbulence. In a loose sense, the law states that large-scale quantities in a
turbulent flow are related in a way that does not involve the tiny molecular diffusivities. In the
present situation, one seeks a scaling relation between P and ∆T that does not involve κ nor ν.
Start from the general scaling relation:

Nu ∼ RaγPr χ . (7)
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Demanding that P and ∆T be related in a way that does not involve ν leads to χ= γ so that:

Nu ∼ (Ra ×Pr )γ . (8)

Remembering that κ appears at the denominator of Nu, the only way for P and ∆T to be related
in a way that does not involve κ is to have the right-hand side of (8) be inversely proportional to
κ. We conclude that:

Nu ∼
p

Ra ×Pr , (9)

that is, γ = χ = 1/2. The scaling relation (9) is sometimes attributed to E.A. Spiegel [33, 34],
who is said to have put forward the idea in an astrophysical context without publishing it. In
the meantime, his then postdoc advisor R.H. Kraichnan published a similar prediction, up to
logarithmic corrections [35]. Kraichnan’s approach consists in arguing that the boundary layers
of the classical theory above should become turbulent at sufficiently high Rayleigh number.
He assumes that a turbulent velocity boundary layer arises at large Ra, and that this turbulent
boundary layer resembles those of standard shear flow turbulence, with a logarithmic layer and
a viscous sublayer in the immediate vicinity of the boundary. This structure for the boundary
layer leads to the prediction (9) divided by a logarithmic correction in Rayleigh number. In the
physics and fluid dynamics community the scaling-law (9) is often referred to as the “ultimate”
scaling regime of convection, possibly because according to Kraichnan the velocity boundary
layers should ultimately become turbulent as Ra increases. In the astrophysics community, (9) is
referred to as the mixing-length scaling-law and is believed to be the relevant scaling-law for the
extreme parameter regimes of astrophysical flows.

1.3. Non-standard RB setups to achieve the diffusivity-free regime

As discussed above, for standard RB convection the measured heat transport exponent γ is
significantly smaller than 1/2 as a result of the throttling effect of the boundary layers. Insightful
alternate experimental setups were therefore designed to mitigate the role of the boundary layers.

Among the different strategies that have been deployed, one option consists in studying
convection in a narrow vertical channel connecting two large reservoirs of cool and warm fluid
at top and bottom, respectively. The goal is to have a tall enough channel for the system to be
considered virtually infinite in the vertical direction. One then seeks a relation between the heat
flux and the bulk vertical temperature gradient. One difficulty is then to identify the relevant
lengthscale to define the associated dimensionless numbers. In early experiments, Gibert et
al. [16] employed a mixing-length based on the ratio of the temperature fluctuations to the
temperature gradient. With this definition, the resulting Nusselt number increases with the
square root of the resulting Rayleigh number, indicating diffusivity-free scaling. However, it was
further shown in Ref. [19, 20] that the mixing-length scales as the width L of the domain: as a
consequence, the turbulent heat flux in tall vertical channels is related to the vertical temperature
gradient in a way which does not involve the molecular diffusivities, but which explicitly involves
the width L of the domain. While such a diffusivity-free regime is a significant achievement at
the fundamental level, this strong dependence on lateral width makes the setup ill-suited as a
model of geophysical or astrophysical flows. Indeed, the latter flows typically correspond the
limit L →∞ for fixed height H , opposite to the limit considered in tall vertical channels. As an
alternative, one may try to reach this L →∞ regime while avoiding the top and bottom boundary
layers by simulating thermal convection numerically using periodic boundary conditions in the
vertical direction. However, in such numerical simulations the heat flux diverges as a result of
the emergence of “elevator” modes. The conclusion seems to be that convective flows in the
horizontally infinite plane layer are always aware of the height H of the layer.
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An alternative strategy to disrupt the throttling effect of the boundaries consists in replacing
the smooth top and bottom boundaries by rough plates. This approach leads to an increased
value for the exponent γ. The latter reaches 1/2 in some experiments, the precise value of the
exponent and of the prefactor depending on details of the roughness elements (see e.g. Refs. [22,
27]). The exponent was observed to revert to a more modest value at higher Rayleigh number in
some experiments and idealized numerical simulations [27, 36, 37], with a high-Ra value close
to 1/3, when the thin boundary layer follows the roughness elements. Multiscale roughness (a
fractal boundary) may be a way to disrupt the boundary layers up to arbitrarily high Rayleigh
number [38].

Additionally, in other experiments with regular roughness elements the exponent remains
close to 1/2 up to the highest Ra achieved experimentally [24]. It could be that the relaxation
to γ = 1/3 occurs at even higher Ra, or that the roughness has helped the system transition to
an ultimate scaling regime. As compared to Kraichnan’s theory, this ultimate regime would be
characterized by a prefactor that depends on details of the roughness of the two plates.

In the following section we discuss radiative heating as an alternate way to observe diffusivity-
free thermal convection, in a way that survives the limit L →∞. As compared to the use of rough
plates, radiative heating comes with its own advantages and challenges. For instance, rough
plates are much simpler to implement in a pre-existing RB experiment than radiative heating. On
the other hand, radiative heating is arguably simpler to handle at the theoretical level: in contrast
to rough-plate convection, radiatively driven convection is amenable to linear stability analysis
with a well-defined threshold Rayleigh number for the emergence of convection. Additionally,
the high-Ra exponent does not depend on the details of the structure of a rough boundary.
In particular, radiatively driven convection is easily simulated numerically using high-accuracy
pseudo-spectral solvers [39].

2. Radiatively driven convection

2.1. An experimental setup to bypass the boundary layers

One way to mitigate the throttling effect of the boundary layers is to input the heat predominantly
beyond the latter, directly into the bulk turbulent flow as represented in Figure 1(b). We put this
idea into practice by employing radiative heating in the experimental setup described thereafter
and sketched in Figure 2. A cylindrical tank of radius 10cm with a transparent bottom plate
contains a mixture of water and carbon-black dye. A powerful spotlight shines at the tank from
below, and the absorption of light by the dye induces radiative heating. Following Beer–Lambert’s
law, the light intensity decreases exponentially with height z measured from the bottom of the
tank, over an e-folding absorption scale ℓ, and so does the internal heat source. The absorption
length ℓ is easily tuned through the concentration of the dye. For large dye concentration the
heat source is localized in the immediate vicinity of the bottom plate, with ℓ much smaller than
the thickness of the velocity and temperature boundary layers. Such a heat source is similar to
an imposed bottom heat flux; we thus expect a throttling effect associated with the presence of
the bottom boundary layer, in a similar fashion to RB convection. By contrast, using lower dye
concentration, ℓ can be made much thicker than the boundary layers. The heat is then directly
input into the bulk turbulent flow, bypassing the high thermal impedance of the boundary layers.

Achieving a clean exponentially decreasing heat source inside the tank requires a few precau-
tions. The light emitted by the spotlight first travels through a water-cooled water tank which effi-
ciently filters out infrared radiation. In addition, we use carbon-black dye, which absorbs visible
light at the same rate regardless of wavelength. Assuming a horizontally homogeneous light flux,
the internal radiative heat source inside the tank reads (P/ℓ)e−z/ℓ, where P denotes the energy
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flux radiated by the spotlight in the form of visible light (P is expressed in units of W.m−2). De-
scribing the experiment within the framework of the Boussinesq approximation, the governing
equation for the temperature T (x, y, z, t ) inside the tank reads [28]:

∂t T +u ·∇T = κ∇2T + P

ρ0Cℓ
e−z/ℓ , (10)

where u(x, y, z, t ) denotes the velocity field.

2.2. Secular heating and effective internal cooling

Cooling the fluid through the top surface would necessarily introduce boundary layers, which
would negate the careful efforts deployed to bypass these layers on the heating side [40]. Instead,
we resort to secular heating as an analog to internal cooling. Assuming adiabatic boundary
conditions, one can average equation (10) over space to obtain the evolution equation for the
spatially averaged temperature T (t ):

dT

dt
= P

ρ0C H

(
1−e−H/ℓ

)
≃ P

ρC H
, (11)

where H denotes the height of fluid and we have assumed ℓ ≪ H to obtain the last equality.
Equation (11) indicates that the mean temperature inside the tank increases linearly with time,
because heat is supplied at a constant rate. To investigate the internal temperature structure

H

T1

T2

Ω

P

ℓ

DC motor

WIFI 

microcontroller

water + dye

sapphire plate

water-cooled thermal 

and IR screens

metal-halide spotlight

polyoxymethylene

diaphragm

Figure 2. Radiatively driven convection in the laboratory. A powerful spotlight shines
from below at a mixture of water and dye. The resulting internal heat source decreases
exponentially with height over the absorption length ℓ, delivering a total heat flux P . With
the goal of studying both rotating and non-rotating convection, the cylindrical tank is
attached from above to a DC motor. Two thermocouples T1 and T2 measure the vertical
temperature drop.
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within the fluid, one can introduce the variable θ(x, y, z, t ) = T (x, y, z, t )−T (t ) which represents
the temperature fluctuations around the spatial average and obeys:

∂tθ+u ·∇θ = κ∆θ+ P

ρ0C

(
e−z/ℓ

ℓ
− 1

H

)
. (12)

In the parentheses is the radiative heat source, together with an effective uniform heat sink that
balances the heat source over space average. Secular heating thus induces an effective uniform
internal cooling in equation (12), offering a way to avoid any boundary layer on the cooling side.
As for the traditional Boussinesq set of equations, equation (12) is coupled to the incompressible
Navier–Stokes equation, the latter including a buoyancy term proportional to θ. Solutions to
this set of equations reach a statistically steady state in the long time limit, which we wish to
characterize. To wit, we measure a first temperature T1(t ) using a thermocouple touching the
bottom plate of the tank, and a second temperature T2(t ) using second probe placed in the
bulk of the fluid volume (at z = H/2 for non-rotating experiments and at z = 3H/4 for rotating
experiments). At the outset of an experiment we fill the tank up to a height H with cold water
mixed with carbon-black dye, before turning on the spotlight. While the two temperature signals
drift with time as a result of secular heating, after an initial transient phase the temperature drop
T1(t )−T2(t ) reaches a statistically steady state. We denote as ∆T the resulting time-averaged
temperature drop, measured in the statistically steady phase. Examples of timeseries T1(t ) and
T2(t ) can be found in Refs. [28, 30]. Because of the large body of fluid, the rise of the mean
temperature is fairly slow. This allows for an extended statistically steady state lasting many
turnover times, while having a mean temperature that remains close to room temperature.
The Boussinesq approximation is very well satisfied in this quasi-stationary state (as further
confirmed by the good agreement with numerical simulations in Refs. [28, 30]).

The knowledge of both the flux and the temperature drop gives us access to the Rayleigh
number Ra and Nusselt number Nu. While these two parameters allow for a clear comparison
with the RB literature, none of them is a true control parameter of our experiment. We thus also
define the flux-based Rayleigh number RaP as:

RaP = Nu ×Ra = αg PH 4

ρCκ2ν
. (13)

Although not independent from Ra and Nu, the flux-based Rayleigh number RaP is a true control
parameter of the experiment, in the sense that it does not depend on the response of the flow and
hence can be specified at the outset of an experimental run.

2.3. Experimental observation of the ultimate scaling regime

A suite of experiments typically consists in fixing the value of the dimensionless absorption length
ℓ/H and performing experimental runs for various heights H of fluid. Lepot et al. [28] initially
focused on two limiting situations of interest: ℓ/H < 10−4, where the heating is similar to fixed
flux RB convection, and ℓ/H = 0.05, which is sufficient to bypass the boundary layers. The
resulting plots Nu versus Ra clearly confirm the intuition discussed above: ℓ/H < 10−4 leads
to the classical regime of convection, with a best-fit exponent γ= 0.31, close to 1/3. By contrast,
ℓ/H = 0.05 leads to a best-fit exponent γ = 0.54, very close to the prediction 1/2 of the ultimate
scaling regime. The experiment thus provides an efficient way to bypass the boundary layers and
observe ultimate scaling regimes of convection in the laboratory.

The transition between the two regimes was further characterized by Bouillaut et al. [29], who
performed additional experiments for various values of ℓ/H . The resulting dataset is shown in
the (Ra, Nu) plane in Figure 3. Low ℓ/H data are compatible with the classical scaling regime,
while high ℓ/H data are compatible with the ultimate or diffusivity-free scaling prediction.
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Figure 3. Nusselt number as a function of the Rayleigh number for various values of the
absorption length ℓ. At fixed Ra, the Nusselt number increases with ℓ/H . Symbols are △:
ℓ/H = 5×10−6 m; ⋆: ℓ/H = 0.0052; +: ℓ/H = 0.0030; ♢: ℓ/H = 0.0060; ∗: ℓ/H = 0.012; □:
ℓ/H = 0.024; �: ℓ/H = 0.048; #: ℓ/H = 0.05; ▽: ℓ/H = 0.096. The solid and dashed lines
are eyeguides.

Additionally, one observes that the prefactor of the scaling law depends on the dimensionless
absorption length ℓ/H . Bouillaut et al. [29] introduce a simple “roll” model to predict the
dependence of Nu on ℓ/H . The main idea consists of following the trajectory of a fluid element
traveling at the periphery of the large-scale roll-shaped mean circulation of the turbulent flow.
The fluid heats up as it travels within the radiatively heated region near the bottom of the tank,
subsequently sharing that excess heat as it rises into the bulk region (see Ref. [29] for a detailed
description of the model). Assuming that the speed of the mean circulation scales as a free-
fall velocity, Bouillaut et al. [29] conclude that the Nusselt number should be proportional to
ℓ/H for fixed Ra in the diffusivity-free regime. One thus expects data points pertaining both
to the classical scaling regime and the ultimate scaling regime to collapse onto a single master
curve when plotting Nu(ℓ/H)2 as a function of Ra(ℓ/H)6. Indeed, the classical scaling regime
Nu ∼ Ra1/3corresponds to Nu(ℓ/H)2 ∼ [Ra(ℓ/H)6]1/3, while the ultimate scaling regime Nu ∼
(ℓ/H)Ra1/2 corresponds to Nu(ℓ/H)2 ∼ [Ra(ℓ/H)6]1/2. As shown in Figure 4, this representation
indeed leads to a good collapse of the data onto a single master curve, which provides a validation
of the dependence of Nu on ℓ/H predicted by Bouillaut et al. [29].

For large enough Ra(ℓ/H)2 the boundary layers are bypassed. However, there is still a sub-
dominant amount of heat that is directly input into the boundary layers. As inferred by Bouillaut
et al. [29] through a refinement of their roll model and further confirmed using numerical sim-
ulation in Ref. [41], this process affects the high-Prandtl-number regime with no-slip boundary
conditions, whereas it is negligible for low Prandtl number or stress-free boundary conditions
(regardless of Pr ).

2.4. Maximal heat transport efficiency?

The quest for the ultimate regime of thermal convection is deeply connected to the conjecture
that turbulent convection may self-organize to maximize the heat transport. This idea, initially
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Figure 4. Rescaled Nusselt number as a function of the rescaled Rayleigh number, for
various values of the absorption length ℓ (same symbols as Figure 3). The data indicate
a clear transition from an exponent γ = 1/3 (dashed line) to an exponent γ = 1/2 (solid
line).

put forward by Malkus [42], was addressed at a more mathematical level by Howard [32], who
solved the associated variational problem and obtained an upper bound on the Nusselt number
of the form Nu ≃ Ra1/2, that is, γ ≤ 1/2 (see also Refs. [43, 44]). This bound only holds for
the RB setup, however, and it turns out that radiatively driven convection allows for higher
values of the exponent γ. Specifically, an analytical high-Rayleigh-number asymptotic solution
to convection driven by internal heat sources and sinks was derived in Ref. [45]. The asymptotic
solution achieves heat transport beyond the ultimate scaling regime, with Nu ∼ Ra. While
this asymptotic solution is observed in 2D DNS of radiatively driven convection with suitable
boundary conditions [45], it is not realized in 3D DNS nor is it realized in the above-mentioned
laboratory experiments. Instead, as intuition suggests, the high-Reynolds-number experimental
flow is strongly turbulent and does not realize the idealized laminar flow solution computed
by [45]. Spurred by this observation, the bounding procedure was subsequently refined in
Ref. [46] by distinguishing between laminar versus turbulent branches of solutions (the bounding
procedure was also extended to arbitrary distributions of heat sources and sinks, see Ref. [47]).
The authors of Ref. [46] show that, for branches of flow solutions that obey the zeroth-law of
turbulence (viscous energy dissipation rate independent of viscosity), the scaling exponent γ is
bounded from above by 1/2 at asymptotically high Ra (in other words, only non-turbulent flows
can achieve γ> 1/2). Because the experimental data reviewed above are compatible with γ= 1/2,
one concludes that radiatively driven convection maximizes the heat transport over turbulent
flow solutions [46].

3. Radiatively driven rotating convection: observation of the diffusivity-free scaling
regime

Radiatively driven convection is an appealing experimental setup to include the various addi-
tional ingredients of geophysical and astrophysical flows, such as global rotation or magnetic



Gabriel Hadjerci, Vincent Bouillaut, Benjamin Miquel, Sébastien Aumaître and Basile Gallet 11

field. The goal is to achieve the diffusivity-free regimes that are typically invoked when mod-
eling geophysical and astrophysical convective flows, but remain out of reach of RB experi-
ments [48–50] (see Ref. [51] for the rotating version of the “classical” scaling regime discussed
in Section 1.1). As compared to RB convection using plates with regular roughness, an appealing
aspect of radiatively-driven convection is that it comes with no preferred scale in the horizontal
directions. This feature is particularly desirable when convection is subject to rotation or mag-
netic field, because these two ingredients tend to select a specific horizontal scale. The competi-
tion between the roughness scale of the plate and the preferred scale of rotating/magnetic con-
vection may then complicate the analysis (see the careful studies in Refs. [52, 53]). At the numer-
ical level, rotating convection with periodic boundary conditions in the vertical direction [54] is
also subject to “elevator modes” (see e.g. Ref. [55] for a discussion).

3.1. Rapid rotation: the geostrophic turbulence scaling regime

We consider convection subject to global rotation around the vertical axis z, restricting attention
to astro- and geophysically relevant cases where centrifugal effects are negligible. Rotation then
enters the governing equations through the addition of the Coriolis term in the Navier–Stokes
equation. The rotation rate Ω is an additional dimensional control parameter of the system, its
dimensionless counterpart being the Ekman number E = ν/(2ΩH 2). The Nusselt number is a
function of the three control parameters of the system:

Nu =F (RaP ,Pr,E) , (14)

where F generically denotes the existence of some scaling relation. Due to the presence of an
additional dimensionless parameter as compared to the non-rotating case, one cannot derive
scaling predictions solely based on the dimensional analysis arguments introduced in Section 1.

Additional progress can be made by focusing on the rapidly rotating regime, E ≪ 1. In this
asymptotic regime, the critical (flux-based) Rayleigh number for the emergence of convection
increases as Ra(c)

P ∼ E−4/3. Crucially, Julien and Knobloch performed an asymptotic reduction of
the rotating Boussinesq system [56, 57]. The resulting reduced model was extensively studied by
means of numerical simulations [58, 59]. Most importantly, the reduced model indicates that, in
the asymptotic regime of rapid rotation, the control parameter is the supercriticality RaP /Ra(c)

P ∼
RaP E 4/3. That is, instead of RaP , Pr and E appearing independently in the equations, only Pr
and the grouping RaP E 4/3 arise in the reduced set of equations describing the asymptotic rapidly
rotating regime. The Nusselt number thus depends only on these two control parameters:

Nu =F (RaP E 4/3,Pr ) , (15)

provided rotation is fast enough. The next step consists in combining equation (15) with the
dimensional analysis arguments put forward in Section 1. Specifically, assuming the existence of
a diffusivity-free regime of rapidly rotating convection amounts to demanding that the function
F in (15) be such that κ and ν can be crossed out on both sides of the equation. This leads to the
“geostrophic turbulence” (GT) scaling regime of rapidly rotating convection [58]:

Nu ∼ Ra3/5
P E 4/5Pr−1/5 . (16)

To our knowledge, this scaling prediction was initially put forward in Ref. [1] based on phe-
nomenological arguments. In the context of rapidly rotating RB convection, it is more often
cast in terms of the standard temperature-based Rayleigh number. Substituting RaP = Nu ×Ra
into (16):

Nu ∼ Ra3/2E 2Pr−1/2 . (17)
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3.2. Experimental realization

As reported in Ref. [30], the radiatively driven convection setup can be adapted to include
global rotation, allowing for an experimental realization of the insightful but somewhat academic
numerical setup considered in Ref. [60]. Because no cooling is required and radiative heating
is contactless, one can simply attach the tank from above to a motor and spin it around the
vertical axis, see Figure 2. We perform the temperature measurements in the rotating frame, using
thermocouples located on the axis of the cylinder and connected to a microcontroller. The tank is
filled with cool water before rotation is turned on at a constant rateΩ. After a waiting phase of at
least ten minutes, allowing for the fluid to settle in solid body rotation, we turn on the spotlight.
The dimensional control parameters are varied in the range H ∈ [10,25]cm and Ω ≤ 85rpm, to
avoid centrifugal effects. Specifically, suites of experiments were performed in Ref. [30] with fixed
height H of fluid and various values of the rotation rate Ω, for two values of the dimensionless
absorption length, ℓ/H = 0.024 and ℓ/H = 0.048 (see Ref. [30] and the associated supplementary
information for tables of parameter values and estimates of the negligible centrifugal effects).

A convenient way to plot the resulting dataset consists in introducing diffusivity-free param-
eters. The diffusivity-free flux-based Rayleigh number is defined as R = RaP E 3/Pr 2, while the
diffusivity-free Nusselt number is defined as N = Nu E/Pr . These two dimensionless combi-
nations do not involve κ nor ν. If the system indeed achieves diffusivity-free convection, then
the entire dataset should collapse onto a master curve in the (R,N ) plane. Additionally, if
this diffusivity-free regime is the GT regime (16), then the master curve must be a power-law
N ∼R3/5 (as obtained by substituting Nu =N Pr /E and RaP =RPr 2/E 3 into (16)).

The entire dataset collected by [30] is shown in Figure 5 in the (R,N ) plane. The dataset does
collapse onto a master curve, with two distinct power-law behaviors. For larger values of R, the
master curve agrees well with a power-law N ∼R1/3, which corresponds to the ultimate regime
of non-rotating convection (9) recast in terms of N and R. By contrast, for lower values or R (say
for R ≲ 3×10−7) the data agrees well with the GT scaling prediction N ∼R3/5. We conclude that
radiatively driven convection transitions from the ultimate regime of non-rotating convection to
the ultimate regime of rapidly rotating convection as rotation increases. To facilitate comparison
with numerical studies [58, 60–62], Hadjerci et al. [63] show that the transition value R ≃ 3×10−7

to enter the GT regime corresponds to a transition value of approximately 0.03 for the convective
Rossby number, within the expected range [64]. That being said, the scatter around the master
curve is arguably greater in the crossover region between the two asymptotic regimes, which
suggests the possible existence of an intermediate regime involving the diffusivities.

Beyond the sole heat transfer, the GT regime comes with scaling predictions for the tempera-
ture fluctuations, the flow speed and the horizontal scale of the flow [64]. Radiatively driven ro-
tating convection was recently shown to obey these additional scaling predictions based on fur-
ther processing of the experimental data from Ref. [30], together with a suite of Direct Numerical
Simulations of rotating radiatively driven convection using the solver Coral [63].

4. Conclusion

Radiatively driven convection provides an efficient way to achieve diffusivity-free convection in
the laboratory. At the theoretical level, radiatively driven convection in the horizontally infinite
plane layer is well-suited for theoretical studies, from linear stability analysis to upper-bound
theory. This relative simplicity also makes radiatively driven convection well-suited to include
the additional physical ingredients encountered in geophysical and astrophysical contexts, such
as rotation or magnetic field. As an example, the rapidly rotating radiatively driven convection
experiment has led to the first experimental observation of the diffusivity-free GT regime of
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Figure 5. Diffusivity-free Nusselt number N as a function of the diffusivity-free flux-based
Rayleigh number R for various fluid heights: blue, H = 10 cm, RaP ≃ 2.5.1010; green, H = 15
cm, RaP ≃ 1.3.1011; red, H = 20 cm, RaP ≃ 3.5.1011; black, H = 25 cm, RaP ≃ 9.1011.
The dimensionless absorption length is ℓ/H = 0.024 (filled circles) or ℓ/H = 0.048 (open
squares). The triangles are DNS data for RaP = 1012, Pr = 7, and ℓ/H = 0.048 (see
Ref. [30]). In the rapidly rotating regime R ≲ 3.10−7, the master curve agrees closely
with the geostrophic turbulence scaling prediction N ∼ R3/5, shown as an eye guide.
Experimental and numerical error bars are visible when larger than the symbol size.

rapidly rotating convection. Magnetic field could be the next ingredient to add, for instance by
designing a radiatively driven liquid metal convection experiment driven by induction heating.

While we believe radiatively driven convection is interesting in itself, independently of RB con-
vection, an intriguing question is whether the two systems can be related at the quantitative level.
Can one infer the asymptotic behavior of the latter setup based on measurements performed us-
ing the former setup? Is there any link between the diffusivity-free regimes potentially arising in
both systems? We are currently investigating this issue further and hope to report on it soon.
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