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Summary
Background Major depressive disorder (MDD) is a leading cause of disability, with a twofold increase in prevalence in
women compared to men. Over the last few years, identifying molecular biomarkers of MDD has proven challenging,
reflecting interactions among multiple environmental and genetic factors. Recently, epigenetic processes have been
proposed as mediators of such interactions, with the potential for biomarker development.

Methods We characterised gene expression and two mechanisms of epigenomic regulation, DNA methylation
(DNAm) and microRNAs (miRNAs), in blood samples from a cohort of individuals with MDD and healthy controls
(n = 169). Case-control comparisons were conducted for each omic layer. We also defined gene coexpression
networks, followed by step-by-step annotations across omic layers. Third, we implemented an advanced multiomic
integration strategy, with covariate correction and feature selection embedded in a cross-validation procedure.
Performance of MDD prediction was systematically compared across 6 methods for dimensionality reduction, and
for every combination of 1, 2 or 3 types of molecular data. Feature stability was further assessed by bootstrapping.

Findings Results showed that molecular and coexpression changes associated with MDD were highly sex-specific and
that the performance of MDD prediction was greater when the female and male cohorts were analysed separately,
rather than combined. Importantly, they also demonstrated that performance progressively increased with the
number of molecular datasets considered.

Interpretation Informational gain from multiomic integration had already been documented in other medical fields.
Our results pave the way toward similar advances in molecular psychiatry, and have practical implications for
developing clinically useful MDD biomarkers.
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Research in context

Evidence before this study
Developing molecular biomarkers to improve the diagnosis
and management of complex psychiatric disorders, such as
major depression, is a crucial endeavour. However, recent
studies that examined easily accessible peripheral tissues, such
as blood, have revealed limited performance when attempting
to predict depression. Essentially, there is currently no
validated biomarker to complement clinical evaluation by a
psychiatrist. Previous efforts have encountered significant
challenges, likely reflecting the large heterogeneity in genetic,
epigenetic and environmental factors that contribute to
depression in the general population. Interestingly, efforts in
other medical fields have suggested that the analysis of
multiple molecular layers may yield improvements.

Added value of this study
Here, we aimed at testing the hypothesis that simultaneous
investigation of multiomic biomarkers from the same
individual may help improve the prediction of depression. To
do so, we applied 3 genome-wide sequencing and microarray
methodologies to generate expression profiles for protein-

coding genes and microRNAs, and to assess DNA methylation
levels, in peripheral blood samples from a naturalistic cohort
of patients with depression and healthy controls. We then
implemented a multiomic integrative framework that
encapsulated correction for clinical covariates and feature
selection within a cross-validation procedure. Our results
indicate that the performance of depression prediction
gradually increased when an increasing number of molecular
layers were considered. In addition, we found that
performance also significantly improved when men and
women were analysed separately. This adds significant value
to the literature by indicating that combining several types of
molecular measures has the potential to improve the
diagnosis of mental disorders.

Implications of all the available evidence
While the added value of multiomic integration had already
been illustrated for other types of medical conditions, our
study paves the way toward similar advances in molecular
psychiatry, and has practical implications for the development
of clinically useful biomarkers of depression.
Introduction
Major depressive disorder (MDD) is a systemic disease
defined by clinically significant changes in mood,
cognition, sleep, and appetite. It is widespread, with a
life-time prevalence ranging from 2 to 21%,1 and highest
rates in the United States and some European coun-
tries.2,3 Starting at puberty, the female:male ratio is
approximately 2 to 1,4 suggesting significant sex differ-
ences. While multiple therapeutic strategies are avail-
able, their efficacy is unsatisfactory,5 with more than
30% of patients who exhibit resistance to antidepressant
medication. MDD is also recurrent and associated with
comorbidities, overall representing a significant public
health burden.6 In this context, developing molecular
biomarkers to improve diagnosis, and ultimately
personalise treatment, is critical towards better care.

The investigation of molecular dysregulation in
MDD has been facilitated by rapid progress in high-
throughput technologies. Available brain and periph-
eral studies, which largely focused on the transcriptome,
have established a robust overview of most frequently
affected pathways, including immune and stress re-
sponses, inflammatory processes, neurotrophic factors
and neurotransmitters, among others (for reviews, see7,8).
Importantly, these studies also provide accumulating ev-
idence that MDD biomarkers may significantly vary
among males and females,9 urging to directly examine,
rather than simply control for, sex differences.10,11

Despite these advances, the clinical validity of mo-
lecular biomarkers of MDD remains limited. This likely
reflects the involvement of multiple etiological factors,
which complicates the understanding of underlying
pathophysiology. Over the last decade, family and
genome-wide association studies (GWAS) have quanti-
fied the proportion of the risk for MDD attributable to
genetic polymorphisms, with an estimated heritability
around 37%.12 Epidemiological studies, on the other
hand, have shown that environmental factors, including
stressful life events, also significantly contribute. At
their interplay, recent advances point towards a critical
role for epigenetics, defined as mechanisms that
mediate gene by environment interactions.13 Therefore,
www.thelancet.com Vol 113 March, 2025
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characterising epigenetic processes has the potential to
yield biomarkers that may better capture MDD
complexity.

Another important avenue relates to the integra-
tion of multiple types of molecular data. Character-
ising differences between patients with MDD and
healthy individuals at the level of single omic layers is
unlikely to fully describe molecular interactions
leading to the disease, in part due to clinical hetero-
geneity and technical limitations inherent to each
methodology. To overcome this difficulty, research on
other medical conditions, such as cancer or chronic
respiratory diseases,14,15 has suggested that integration
of several molecular modalities represents a prom-
ising strategy for case–control classification. In the
case of MDD, such efforts have mainly used “step-by-
step” strategies, whereby sparse differences are
identified individually at the level of each omic layer,
using arbitrary thresholds, and then aggregated.16,17

These previous studies, however, did not compre-
hensively leverage the genome-wide and multiomic
nature of available data, nor did they quantify how
combining multiple layers may generate more rele-
vant MDD biomarkers.

To address these challenges, the present work was
designed to characterise and integrate transcriptomic
data with two layers of epigenomic regulation, DNA
methylation (DNAm) and microRNAs (miRNAs),
generated using peripheral blood samples from patients
with MDD (n = 80) and healthy controls (n = 89).
Importantly, all analyses were conducted separately in
each sex. First, we analysed each omic layer individually
to extract genome-wide signatures of MDD that were
subsequently validated with external datasets or meta-
analyses. Second, we defined the network organisation
of gene coexpression. This identified gene modules that
were significantly associated with MDD and enriched
for epigenomic dysregulation. Finally, a genome-wide
and multiomic integration framework was developed,
building on the Momix package18 and Similarity
Network Fusion (SNF),19 both of which were encapsu-
lated in a Cross-Validation (CV) procedure. This iden-
tified candidate biomarkers corresponding to subsets of
features that most efficiently clustered patients and
controls, and were then tested for stability through
bootstrapping. Overall, results indicated that MDD
biomarkers were more predictive when they were spe-
cifically identified in each sex, while multiomic inte-
gration gradually improved performance over single
omics.
Methods
Ethics
The study was conducted in accordance with the
Declaration of Helsinki and approved by the ‘Comité de
www.thelancet.com Vol 113 March, 2025
Protection des Personnes Sud Méditerranée II’, France
(study #2011-A00661-40), with written informed con-
sent obtained from all participants.

Human cohort
Eligible participants were recruited during a naturalistic
multi-centric cohort study registered at ClinicalTrials.gov
(ID: NCT02209142).20 The study involved 8 departments
of psychiatry in 6 different French cities (Marseille,
Montpellier, Nîmes, Tours, Besançon and Clermont-
Ferrand). Participants were enrolled between 04/05/
2012 and 04/03/2015. Cases met DSM-IV-TR criteria for
a severe MDD episode at the time of blood sampling
(17-item Hamilton Depression Rating Scale, HDRS,
score≥19; RRID:SCR_003686), and were treated as
usual at inclusion, upon discretion of the treating psy-
chiatrist. Exclusion criteria for both groups were: a
history of substance use disorder in the past 12 months;
a diagnosis of schizophrenia, psychotic or schizo-
affective disorder according to DSM-IV (RRID:SCR_
003682); a severe progressive medical disease; preg-
nancy; vaccination within a month before the inclusion
in the study; and being under 18. In the present study,
bipolar patients were also excluded. Healthy controls
were free of any psychiatric disorder according to semi-
structured interviews. The Childhood Trauma Ques-
tionnaire (CTQ)21 was administered to both controls and
patients. Complete blood counts (total white blood cells,
neutrophils, lymphocytes, monocytes, and platelets)
were obtained using a Sysmex XN-10/XN-20 Hematol-
ogy Analyzer (Norderstedt, Germany). Sex was self-
reported by participants. Sample size was originally
defined in May 2011, before registration, with the initial
goal of investigating a single omic layer (mRNA). It was
computed with the ssize.fdr R package. We made the
following assumptions concerning cases and controls:
(i) a mean difference of mRNA gene expression of 1,
with a common standard deviation of 1.3; (ii) a false
discovery rate (FDR) representing the wrongly assigned
over- or under-expression mRNA transcripts set at 5%;
(iii) a power of 90%; (iv) a proportion of transcripts that
do not exhibit any difference of expression set at 99.5%.
Using a bilateral design, a target sample size of 87
participants per group was obtained. While 248 partici-
pants were initially recruited (148 adults diagnosed with
current MDE and 100 healthy controls), due to the
clinical exclusion criteria mentioned above and the
exclusion of additional participants due to quantity and/
or quality of nucleic acid obtained, a final sample size of
n = 169 participants was reached, corresponding to
n = 80 patients with MDD and n = 89 healthy controls
(Fig. 1, Figs. S1–S2 and Table S1). In this final sample,
missing values regarding covariates (body mass index,
BMI for 6 patients with MDD, blood counts for 14 pa-
tients with MDD) were imputed to the median of each
covariate, computed in patients with MDD. Peripheral
3
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Fig. 1: Cohort characteristics and overview of data analysis strategies. a. Cohort description: summary table detailing the cohort statistics
according to sex, including the number of controls and patients with MDD and the proportion of participants for which DNAm, mRNA and
miRNA data were available. b. Omics data integration: summary of the analytical strategies employed in the study: (1) single-omic differential
analyses; (2) gene co-expression analysis followed by step-by-step integration; (3) advanced multiomic integration. Expected outcomes of these
analyses included the description of a molecular signature of MDD, the identification of potential MDD biomarkers, and the development of a
predictive model for distinguishing patients with MDD from controls. BMI: body mass index; HDRS: Hamilton depression rating scale; RIN: RNA
integrity number.
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blood samples were collected from all participants and
used as described below.

DNA methylation arrays
DNA was extracted from venous blood collected in
EDTA-tubes, using PureLinkTM genomic DNA mini kit
(Invitrogen, Cat #K182002), and deaminated using the
EZ-96 DNA Methylation Kit (Zymo Research,
Cat #D5004). Bisulfite conversion efficiency was
controlled by qPCR, with 1 assay targeting a methylated
region of DNAJC15 and 2 assays targeting the GNAS
locus (both unmethylated and methylated alleles).
Deaminated DNA derived from blood, amplified in
parallel, served as positive control. All samples passed
quality control (i.e., Ct-values for either the 2 GNAS loci,
or the DNAJC15 locus, reached the amplification
threshold no later than 5 cycles compared to the positive
control). DNAm levels were then measured using
Infinium MethylationEPIC v1 BeadChip microarrays
(interrogating around 850 K CpG sites), following
www.thelancet.com Vol 113 March, 2025
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Illumina’s recommendations (Illumina, San Diego, CA,
Cat #WG-317-1003). Probes were annotated to genes
using Illumina’s probe-gene annotation manifest (https://
support.illumina.com/array/array_kits/infinium-methy
lationepic-beadchip-kit/downloads.html) for both single-
omic and gene network analyses. In the latter, a probe
was annotated to a given module when it was annotated in
the manifest to a gene belonging to that module.

RNA-sequencing
Venous blood was passed through LeukoLOCK™ filters
(Life Technologies, Ambion, Cat# AM1933) to eliminate
red blood cells, platelets, and plasma. Leukocytes trap-
ped on LeukoLOCK filters were lysed with TRI reagent
(Ambion, Cat #AM9738) and mixed with Bromo-3-
chloro-propane (Sigma–Aldrich, St. Louis, MO, USA,
Cat #B62404). After centrifugation, total RNA from the
aqueous phase was precipitated with ethanol, purified
on a spin cartridge, washed, eluted with 0.1 mM EDTA,
and submitted to DNase treatment (DNA-free™ kit, Life
Technologies, Ambion, Cat #AM1906). RNA quantity
and quality were assessed using a NanoDrop-1000
(Thermo Fisher Scientific) and 2100 Bioanalyzer (Agi-
lent). Total RNA was used for both miRNA-sequencing
and RNA-sequencing. RNA-sequencing libraries were
prepared from 500 ng of total RNA, using poly-A cap-
ture and the QIAseq Stranded mRNA Select kit (Qiagen,
Cat #180451) and TruSeq Stranded mRNA LT Sample
Preparation Kit (Illumina, San Diego, CA, Cat
#20020595) for females and males, respectively. Libraries
were amplified by PCR, quantified by microcapillary
electrophoresis, pooled at equimolar concentrations and
sequenced on a NovaSeq 6000 (100bp, paired end) for
females, or a HiSeq 4000 for males (50bp, single end),
generating a mean of 40.09 ± 0.80 million reads/sample.

MiRNA-sequencing
MiRNA libraries were prepared using the Bioo Scientific
NEXTflex Small RNA-Seq kit v3 (Bioo Scientific, Cat
#NOVA-5132-06), following the manufacturer’s in-
structions. Briefly, 500 ng of total RNA was used as
input, and NEXTflex 4N adenylated adapters were
ligated to the 3′- and 5′-ends of the RNA. After adapters
ligation and clean-up with magnetic beads, first-strand
cDNA was synthesised, cleaned, isolated and amplified
by PCR (16 cycles). Libraries were profiled using a
Fragment analyser (Advanced analytical technologies),
quantified using the Qubit dsDNA HS assay (Life
Technologies, Cat #Q32851), pooled, denatured and
sequenced on an Illumina NextSeq 500, generating a
mean of 8.6 ± 0.02 million reads/sample.

Raw data processing
For DNAm data, the R package ChAMP (v2.16.2,
RRID:SCR_012891) was used.22 For RNA-sequencing,
raw reads were trimmed with bbduk23 and aligned to
www.thelancet.com Vol 113 March, 2025
the GRCh38.p12 human reference genome using STAR
v2.5.3a (RRID:SCR_005622)24 and Gencode v29 anno-
tations (RRID:SCR_014966). Gene expression was
quantified using HTSeq v0.11.2 (RRID:SCR_005514).25

For miRNA-sequencing data, reads were trimmed us-
ing cutadapt v1.18 (RRID:SCR_011841) and aligned
following the QuickMIRseq pipeline,26 which uses 2
databases for alignment. First, a small RNA and mRNA
database was generated with sequences collected from
GRCh38.p12. Then, a miRNA/hairpin database
was generated with sequences collected from miRBase
(v22-www.mirbase.org, RRID:SCR_003152).27 Reads
were aligned using bowtie v1.2.2 (RRID:SCR_005476) at
default parameters, and quantified using HTSeq-count
(RRID:SCR_011867). The miRTarBase R package
(RRID:SCR_017355) was used to identify targets from
differentially expressed miRNAs.28

Analyses of covariates
To identify sources of biological or technical variation
(Figs. S1–S2), the variancePartition R package
(RRID:SCR_019204)29 was applied to miRNA- and RNA-
sequencing data, and the ChAMP R package (with the
champ.SVD function that uses a singular value
decomposition) to DNAm data. Covariates (age, BMI,
HDRS, RIN) were compared between controls and pa-
tients with MDD using a 2-way ANOVA (sex, MDD
status; see Table S1). For miRNA- and RNA-sequencing,
white blood cell counts were used in differential
expression models (only polynuclear neutrophils and
lymphocytes were included, due to collinearity among
white blood cell subtypes, as expected; see below and
Fig. S2). For EPIC arrays, following the ChAMP pipe-
line, blood cell composition was inferred using House-
man’s method.30 Since smoking status showed
significant correlation with MDD (p-value = 2.24 × 10−3,
Chi-squared test), it was not included in final models.

Differential expression and methylation analyses
To compare MDD cases and controls, sex-specific dif-
ferential analyses were conducted independently on
each omic. For EPIC arrays, the following probes were
discarded: corresponding to non-CG sites; showing a
detection p-value> 0.01 in ≥1 samples; bead counts<3
in ≥5% of samples; identified as SNPs in31; or aligning
to multiple locations, or to the X or Y chromosomes
(n = 724,504 probes remaining). DNAm data were
adjusted for covariates using the Combat function from
the sva R package (RRID:SCR_012836),32 without
applying the preservation function (see Results). Then,
differentially methylated probes (DMP, corresponding
to individual CpG sites) were identified using ChAMP.
For miRNA- and RNA-sequencing data, lowly expressed
miRNAs (keeping those with ≥1 reads in ≥60% of
either cases or controls, n = 735 remaining) and RNAs
(keeping those with >10 reads in average,
5
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nfemale = 16287, nmale = 16290 remaining) were first
filtered out, followed by covariate adjustment and the
identification of differentially expressed miRNAs
(DEmiRNAs) and genes (DEGs), using DESeq2
(RRID:SCR_015687, Wald test, WT).33 Each modality
was adjusted for specific covariates based on biological
factors outlined in the literature and our analysis of
potential sources of variance (see above and Figs. S1–
S2): DNA methylation (DNAm) data were adjusted for
age, slide, array, BMI, and blood cell composition (using
Houseman’s method); mRNA data were adjusted for
age, BMI, RNA integrity number (RIN), lymphocyte
percentage, and polynuclear neutrophil count; miRNA
data were adjusted for library preparation batch effects,
age, BMI, RIN, lymphocyte percentage, and polynuclear
neutrophil counts. For pooled analyses of male and fe-
male data, sex was included as an additional covariate to
account for potential sex-based differences.

Gene ontology
Functional enrichments were computed using: (i) for
DNAm data, the missMethyl R package34 with the top
10,000 DMPs; and for mRNA data, the Webgestalt
implementation of Gene Set Enrichment Analysis
(GSEA, RRID:SCR_003199, weighted Kolmogorov–
Smirnov statistic, KS),35 with 10,000 permutations on
GO, KEGG, Wikipathway or Reactome databases; or the
fgsea R package (RRID:SCR_020938)[preprint]36 when
using lists of DEG, CpGs or DEmiRNA from previous
studies as gene sets.

Rank–rank hypergeometric overlap (RRHO) analysis
To compare female and male data, we used Rank–Rank
Hypergeometric Overlap (RRHO2, RRID:SCR_
022754),37 as described previously,38,39 using the R
package available at: https://github.com/Caleb-Huo/
RRHO2. For each omic, results from differential anal-
ysis in each sex were ranked based on the following
metric: −log10(p-value) x sign(log2 Fold Change). Then,
the RRHO2 function was applied to the 2 lists at default
parameters (with step size equal to the square root of the
list length). Of note, to enable the processing of high
numbers of DNAm probes, we implemented a paral-
lelised version of RRHO2 using the mcmapply function
(see Code Availability). Significance of hypergeometric
overlaps between female and male changes are reported
as −log10(p-values) with p-values corrected using the
Benjamini–Yekutieli procedure.

Stepwise multiomic gene network integration
Coexpression network construction
For Weighted Gene Co-expression Network Analysis
(WGCNA, RRID:SCR_003302), RNA-sequencing gene
counts were adjusted using linear models (for the same
covariates as above), after variance stabilisation nor-
malisation.33 Then, WGCNA was performed on adjusted
counts in male and female separately.40 The optimal sets
of WGCNA parameters were selected to maximise
odds-ratio of the overlaps between gene modules and
pathways of the Reactome database41 (power = 13,
MinModuleSize = 20 for males, power = 9, MinModule-
Size = 15 for females, and DeepSplit = 4, CutHeight = 0.1
for both). Gene modules were tested for preservation in
other blood transcriptome datasets using z-summaries of
the WGCNA’s modulePreservation function.

Gene module annotations
Gene modules were tested for enrichment in: i) differ-
ences in gene expression identified in each sex, using
GSEA; ii) targets of DEmiRNAs, using an hypergeo-
metric test and the fgsea::fora function, iii) DNA
methylation dysregulation, using fgsea and the
following approach: each module was converted into a
set of CpGs according to Illumina’s probe-gene anno-
tation manifest, and tested for enrichment in the dis-
tribution of all CpG probes, ranked according to the
direction and significance of their dysregulation in
MDD; iv) single nucleotide polymorphisms (SNP,
assigned to their nearest gene within 1 Mb) associated
with MDD, bipolar disorder, self-reported childhood
maltreatment (CTQ scores) or BMI, using MAGMA
(RRID:SCR_005757)42 and summary statistics from
previous GWAS.43–47 Associations between each mod-
ule’s eigengene and MDD status, HDRS or CTQ scores
were evaluated using Spearman correlations. To estab-
lish a hierarchical order of relevance among modules
associated with MDD, we implemented a Module Pri-
oritisation Score corresponding to a ranking based on
the weighted average of normalised enrichment scores
(see below).

Module prioritisation score
For each module and each test (enrichment, correlation
or association test), sub-scores were computed as fol-
lows. First, we calculated sub-scores based on enrich-
ment tests for MDD associated mRNA dysregulation
(referred to as sDEGs) and DNAm changes (referred to as
sDMPs). To compute these scores for each module, the
GSEA outputs were used as follows:

{−log10(padj)×NES,if adjusted p − value<0.05
0,otherwise

For DEmiRNA targets enrichments, the outputs
of the Over-Representation Analysis (ORA) tested
for each DEmiR and each module were derived as fol-
lows:

sDEmiRs = ∑Pmir

Total Number DEmiRs
,

where Pmir = { 1, if adjusted p − value < 0.05

0, otherwise
www.thelancet.com Vol 113 March, 2025

rridsoftware:SCR_015687
rridsoftware:SCR_003199
rridsoftware:SCR_020938
rridsoftware:SCR_022754
rridsoftware:SCR_022754
https://github.com/Caleb-Huo/RRHO2
https://github.com/Caleb-Huo/RRHO2
rridsoftware:SCR_003302
rridsoftware:SCR_005757
http://www.thelancet.com


Algorithm: Label Propagation principle

1 Data: Y0
train , W = (wij) ∈ Rn × n , Tmax .

2 Results: Ŷtest ∈ R(n−ntrain) × K .

3 Init: P = (pij) ∈ Rn×n such that ∀(i, j), pij = wij∑n
j=1wij

;

4 Y0
test ← 0(n−ntrain) × K ;

5 t← 0;

6 while t < Tmax do

7 [Yt+1
train

Yt+1
test

] = P[Yt
train

Yt
test

]; (1)

8 Yt+1
train ← Y0

train ;

9 t ← t + 1;

10 end

11 Ŷtest ← YTmax
test
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Then, the correlation coefficient ρ between module
eigengenes and clinical variables such as CTQ scores,
HDRS (RRID:SCR_003686) and MDD status, was
used to derive scores (sCTQ , sHDRS and sMDD) giving
priority to modules that have significant correlation
and higher absolute correlation coefficient values
to these variables. These scores were computed as
follows:

{−log10(padj) × |ρ|, if adjusted p − value < 0.05
0, otherwise

Finally, as described in the section “Stepwise mul-
tiomic gene network integration”, MAGMA was used to
test for enrichment in SNPs associated with MDD, bi-
polar disorder, CTQ scores or BMI. From these results
(available in Table S10), multiple scores (sGWAS−MDD,
sGWAS−CTQ , sGWAS−BD1, sGWAS−BD2 and sGWAS−BMI) were
derived as follows:

{−log10(p-value), if p − value < 0.05
0, otherwise

These sub-scores were then aggregated for each
module to reflect their degree of association with MDD.
Priority was given to enrichments for differential ana-
lyses results, with a penalty applied to modules associ-
ated with the BMI GWAS (regarded as a confounding
factor). The final Module Prioritisation Score (MPS) was
calculated as follows:

MPS= 1
18.5

(3.0 × [s∗DEGs + s∗DEGs + s∗DEmiRs]
+ 2.0 × [s∗CTQ + s∗HDRS + s∗MDD]
+ 1.0 × [s∗GWAS−MDD + s∗GWAS−CTQ + s∗GWAS−BD1

+ s∗GWAS−BD2] − 0.5 × s∗GWAS−BMI)
where the star ∗ indicates that sub-scores were nor-
malised prior to their aggregation, to ensure unbiased
comparison. The min–max normalisation was used to
contain all subscores in the range from 0 to 1.

SNF Label Propagation
Let us introduce ntrain and n − ntrain, the number of
samples in the train and test set, respectively, and
Y0

train = (y0,trainik ) ∈ Rntrain×K , the disjunctive table associ-
ated with the assigned labels in the train set; in other
words, y0,trainik = 1 if sample i is in group k, and y0,trainik =
0 otherwise. Label propagation provides a way to
estimate

Ŷtest ∈ R(n−ntrain) × K that characterises the probability
for each sample in the test to belong to each group. This
estimation is performed through the following algorithm:
www.thelancet.com Vol 113 March, 2025
where W denotes the pairwise similarity matrix between
all samples (both from the train and test sets) computed
by SNF, Tmax is the maximum number of iterations and
0(n−ntrain)×K is a matrix of dimension (n − ntrain) × K only
made of zeros. From equation (1), yt+1,testik , the estimation
at step t + 1 of the probability of the test sample i to
belong to group k, can be written as follows:

yt+1,testik =
∑ntrain
l=1

wily
0,train
lk + ∑n

l=ntrain+1
wily

t,test
lk

∑n
l=1

wil

(2)

It can be interpreted as a weighted mean of the
probability of each sample to belong to the group k (if a
sample comes from the train set, this probability is either
0 or 1), where the weights depend on the similarity be-
tween sample i and all the others. In equation (2), the
only elements that depend on step t are yt,testlk and at t =
0, they are all equal to zero. Thus, at the first iteration,
what matters is the distance of the considered test
sample to the train samples. Then, progressively, as the
probability of each test sample increases in a specific
group and decreases in all the others, this will modify
the test samples’ neighborhood, hence the notion of
propagation.

Multiomic integration
Pre-processing and sampling for CV
Pre-processing was applied separately for each train set
of the CV procedure. For mRNA and miRNA, counts
were filtered out as described above. Then a variance
stabilisation normalisation was applied,33 followed by
covariate corrections, as described above. For DNAm
data, Combat was used to adjust for covariates, with
2 modifications: (i) we used neuroComBat v1.0.5, an
improved version dedicated to CV procedures: https://
github.com/Jfortin1/ComBatHarmonization/tree/master/
7
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R48,49; (ii) for the pooled and female cohorts, the Slide
covariate was corrected separately in the train and test
sets, as it was composed of too many categories for
proper representation (in train/test sets) and correction
across all CV folds; for the male cohort, for similar
reasons, both Slide and Array were corrected separately.
Furthermore, to avoid situations with a Slide category
represented by a single observation, which would
impact correction models, all observations of each
Slide category were associated with either the train or
the test set. Due to computational limitations, a pre-
filtering was applied to DNAm data, with 10%
of most variable CpGs selected for downstream
analyses.

Pre-processing and sampling for bootstraps
The preprocessing described in the previous para-
graph was applied to each bootstrap sample, with 3
modifications: (i) filtering for all 3 omics was under-
taken prior to any resampling, to ensure that the input
set of variables was identical across all bootstrap
samples (important to derive confidence intervals for
each feature); (ii) all observations belonging to the
same Slide category were not sampled together
anymore, as this would have impacted the random-
ness of the resampling (with replacement); (iii) as a
consequence, there were cases when a Slide category
was composed of a single observation, which pre-
vented computing and correcting for an intra-category
variance. The Python library neuroComBat by default
corrects for a batch effect at the mean level and, if
possible, at the variance level. This default option was
used for the CV procedure. For the bootstrap pro-
cedure, as situations where only the mean could be
corrected were frequent, we opted: (i) for the DNAm
and Slide covariates, to always only correct at the
mean level (never at variance level), to harmonize the
analysis across samples and hopefully lead to more
robust variable selection; (ii) for other covariates (less
frequently concerned), the bootstrap sample was dis-
carded and another one drawn (which was not feasible
for Slide due to a high number of categories with few
observations).

Post-processing for Bootstrap
Both JIVE and RGCCA’s implementations heavily rely
on SVD, which can induce rotational indeterminacies.
The current implementation of RGCCA being
sequential (i.e., each component is estimated one after
another), this indeterminacy reduces to a sign inde-
terminacy which is handled in the current version of
the R package. JIVE estimates all components simul-
taneously. As a result, weight matrices are similar
across bootstrap samples up to a rotation matrix.
Following,50 for each bootstrap sample, a Procrustes
problem was solved to learn a rotation matrix allowing
to realign the current weight matrix (composed of all
10 estimated factors) to a reference one. The reference
corresponds to the weight matrix estimated out of
the whole cohort (either female/male/pooled), with
the same combination of omics, without any
resampling.

Statistics
Feature selection
Only participants with complete data across all 3 omic
blocks were included in this integration. Building on the
Momix benchmark,18 we encapsulated 6 joint Dimen-
sion Reduction (jDR) methods in a CV procedure:
RGCCA, JIVE, MCIA, MOFA, intNMF and SciKit-
Fusion in order to extract common variance between
the HDRS matrix and every possible combination of
either 1 (mRNA, miRNA, DNAm), 2 (mRNA/miRNA,
mRNA/DNAm, miRNA/DNAm) or 3 (mRNA/miRNA/
DNAm) omics (7 possible combinations). For each
combination of jDR method and omics, a factor matrix
F = [f1,…, fR] ∈ Rn×R, representing the shared variance
across the data tables considered was derived (where n is
the number of samples and R = 10 the number of fac-
tors extracted). Among these 10 factors, fr⋆ , the one that
correlated most (in absolute value) with MDD status,
was kept. Then, weight vectors w(r⋆)

l ∈ Rpl , l = 1,…, L−1
(where l refers to 1 omic table among the L−1 consid-
ered, the HDRS matrix aside), used to compute fr⋆ , were
retrieved. These weights represent the contribution of
each feature to the factor of interest. For each modality,
only the top 10%-ranking elements of w(r⋆)

l (in absolute
value) were retained.

Clustering with SNF
To evaluate the ability of selected features to estimate
meaningful clusters of participants with regard to MDD
status, we used SNF.19 While SNF is an unsupervised
integrative clustering technique, in the present work it
was applied following supervised feature selection, and
its parameters were tuned in a supervised manner. To
do so, several sets of SNF parameters were evaluated
through CV (every possible combination between
neighbours ∈ {10, 20, …, 50}, iters ∈ {10, 20,…, 60} and
α ∈ {0.3,0.4,…,0.8}). Systematically, K = 2 clusters were
estimated through SNF and compared to the MDD
status with the metric: Area Under the ROC Curve
(AUC; SNF provides probabilities of belonging to a
cluster). Then, cluster labels were transferred from the
train to the test set using label propagation (imple-
mentation provided by SNF). This consists in an itera-
tive propagation, to the test set, of labels defined during
training, based on a measure of similarity between
samples. The set of parameters leading to the highest
AUC averaged across all test sets was kept.
www.thelancet.com Vol 113 March, 2025
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Cross-validation
A repeated 5-fold CV (5 repetitions, Fig. S3) with strat-
ification was used to prevent overfitting. For each re-
sampling to be representative of the original dataset,
stratification was systematically undertaken based on
MDD status and sex (pooled cohort only) covariates. The
Slide covariate (specific to DNAm) was also accounted
for in the re-sampling process. For each train set (4/5 of
samples), pre-processing, feature selection and clus-
tering were performed as described above. For the test
set (remaining 1/5), variables selected on the train set
were extracted, pre-processed by applying the different
models fitted on the train set and label propagation was
used to transfer inferred clusters from the train to the
test. For comparison, the same CV procedure was
applied to features corresponding to differential ana-
lyses results (estimated on each train set separately) and
to all features without selection.

Bootstrapping
A bootstrap resampling strategy51 was employed to
evaluate feature stability for the 2 jDR methods that
proved most accurate (JIVE, RGCCA). B = 1000 boot-
straps of the same size as the original cohort were
repeatedly sampled, with replacement. For the pooled
cohort, each re-sampling was stratified according to sex,
to ensure that the sex ratio was representative of the
original cohort. For each re-sampling, pre-processing
and jDR-based feature selection were performed as
described above. Two metrics were computed for each
variable, each omic combination and each jDR method
through the 1000 samplings: first, the occurrence of
selection, corresponding to the number of times a
feature was associated with the highest discriminative
factor with regard to MDD, and in the top 10%-ranking
weights among its omic modality (in absolute value);
second, the sign ratio of the weights w(b),(r⋆)

lk obtained
across all bootstraps (i.e., the ratio of the number of
positive and negative weights, with the lower number as
numerator), where k, b, l and (r⋆) stand respectively for
the feature, the sample, the omic and the best factor
index (according to correlation with MDD status). This
ratio can be seen as a non-parametric way of estimating
the probability for a weight w(b),(r⋆)

lk to change signs
across bootstraps. It ranged between 1/B (as B sam-
plings were undertaken) and 1 (as many negative as
positive estimates). The lower this probability, the less
likely a weight is to change sign across bootstraps, and
therefore the more confidently it can be considered
different from zero. These probabilities were adjusted
using the Benjamini-Hochberg procedure.52 Stable fea-
tures were defined by an adjusted probability <0.05 and
an occurrence of selection >80%.

Role of funders
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
www.thelancet.com Vol 113 March, 2025
writing of the report. The corresponding authors had
full access to all the data in the study and had final re-
sponsibility for the decision to submit for publication.
Results
Single-omic analyses identify mRNA, miRNA and
DNAm changes in MDD
We first identified differentially methylated probes
(DMPs), differentially expressed miRNAs (DEmiRNAs)
and differentially expressed genes (DEGs) between pa-
tients with MDD and controls (see Tables S2–S4 for full
genome-wide results). For DNAm, among the >700 k
probes analysed (Fig. 2a), a limited subset met an FDR
threshold <0.1 in females (81 hypomethylated and 74
hypermethylated), while none were identified in males.
This reflects our analytical strategy, in which correction
for covariates was conducted without the preservation
function implemented by default in the popular Com-
bat/ChAMP package (see Methods). We indeed observed
that, while this function strongly preserved the ranking
of probes in differential methylation results, it strongly
inflated their p-values, likely increasing false positives
(see Fig. S4 for results with preservation). Similar ef-
fects have already been reported for simulated data, or
in studies investigating methylomic changes associated
with obesity or genetic variants.53 As such, all down-
stream results presented in this study are based on an-
alyses without preservation. Importantly, despite the
moderate number of genome-wide significant DMPs in
our conservative approach, concordance with results
from previous studies was still detectable using the
GSEA threshold-free algorithm (Table S5). Accordingly,
significant enrichments were observed for DMPs iden-
tified by Tao et al. when comparing drug-naive adoles-
cents presenting a first MDD episode with healthy
controls.54 Used as gene sets, these probes were signif-
icantly enriched among those with methylation changes
in both our male (normalised enrichment score,
NES = 1.04, padj = 5.74 × 10−2, KS) and female
(NES = 1.05, padj = 2.70 × 10−3, KS) cohorts.

For miRNAs, miR-124-3p was the only genome-wide
significant hit in males (log2FC = 1.88, padj = 9.9 × 10−3,
WT), and was similarly upregulated in females
(log2FC = 2.08, padj = 0.054, WT; Fig. 2b). Interestingly,
these findings are consistent with the considerable
attention that this specific miRNA has received over the
last few years as a candidate MDD biomarker.55 In fe-
males, 44 additional miRNAs were significantly dysre-
gulated (23 up, 21 down). Comparison with results from
previous studies,56 again using GSEA, showed signifi-
cant enrichment for upregulated miRNAs in both our
male and female cohorts (females: NES = 1.55,
padj = 4.3 × 10−3; males: NES = 1.63, padj = 4.5 × 10−3,
KS). These findings indicated that, similar to DNAm,
our data captured part of a miRNA signal previously
associated with MDD.
9
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Fig. 2: Differential analysis results for single-omic comparisons of patients with MDD and controls. Representation of results obtained for
sex-specific analyses in male and female cohorts, with double volcano plots for differentially methylated CG sites (DNAm, panel a), differentially
expressed miRNAs (b) or mRNAs (c), as well as counts of features with an adjusted p-value ≤0.1 (d; see main text for details).
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Regarding mRNAs, large numbers of features met
genome-wide significance, with 2749 (1527 up, 1222
down) and 1775 (1159 up, 616 down) DEGs in females
and males, respectively (FDR < 0.1; Fig. 2c and d). For
validation, these results were compared with those from
a recent large meta-analysis of MDD peripheral blood
studies.57 Using GSEA, up- or downregulated DEGs
from the latter study were significantly enriched in
similar directions in our male cohort (up: NES = 1.53,
padj = 1.6 × 10−3; down: NES = −1.60, padj = 1.6 × 10−3,
KS), while no significant enrichment was found in
females. Overall, these results provide external valida-
tion for each individual omic layer analysed in the pre-
sent work.

Comparisons across females and males reveal
shared and sex-specific MDD signatures
We next compared molecular differences associated
with MDD in females and males. The concordance
between sexes was low for the 3 omic modalities
(Fig. 3a–c). Among those passing a relaxed nominal
significance threshold (p < 0.05), only 2.6% of DNAm
www.thelancet.com Vol 113 March, 2025
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Fig. 3: Comparisons across females and males of molecular changes associated with MDD. a. Overlap of DMPs (nominal p-value ≤0.05,
WT). b. Overlap of DEmiRNAs (nominal p-value ≤0.05, WT). c. Overlap of DEGs (nominal p-value ≤0.05, WT). d. Top functional enrichments of
differentially methylated DNAm probes (DMP, passing nominal p-value ≤0.05), identified using missMethyl. Enrichments were computed by
hypergeometric testing against Gene Ontology terms (see Methods), or against the present’s study list of DEG identified in male or female
patients with MDD (last line, n = 2111). The figure depicts the number of genes in each enrichment, while arrows indicate whether enrichments
originated from up- or down-regulated DMP, or both (no arrow). e. Top functional enrichments of mRNA dysregulations (adjusted p-value
≤0.05, hypergeometric test) associated with MDD, identified using GSEA. Numbers at the end of each bar indicate the normalised enrichment
score (NES), whose sign indicates whether enrichments originated from up- or down-regulated mRNAs. f–h. Heatmaps representing two-sided
rank–rank hypergeometric overlap analyses (using the RRHO2 algorithm), and displaying threshold-free overlaps among molecular changes
associated with MDD in male and female cohorts.
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probes (n = 2674/102041), 7.0% of mRNA (n = 483/
6870) and 6.1% of miRNA (n = 9/148) showed changes
in a similar direction in both sexes (Tables S2–S4). At
such thresholds, specific DNAm probes and miRNA
showed differences in 1 sex only (with overlaps among
MDD- and sex-associated changes observed for both
molecular layers; Fig. S5), suggesting that future studies
www.thelancet.com Vol 113 March, 2025
should more systematically explore their potential in-
teractions. Overall, results are consistent with the
increasing recognition of large sex-differences in
MDD.58,59

Next, we conducted functional enrichment analyses
in males and females, starting with DNAm probes using
missMethyl and the Gene Ontology (GO) and KEGG
11
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databases. Results showed similar trends and concor-
dant directionality in both sexes, involving terms related
to neuronal function such as dendrite development and
regulation of axonogenesis (see Fig. 3d, Tables S6 and
S7 for the distribution of probes along gene features).
Interestingly, hypergeometric testing of these probes
against the present study’s list of DEG showed signifi-
cant overlaps, indicating convergence among the 2 omic
layers. For mRNA, in comparison, gene sets enriched
for MDD dysregulation (using GSEA and the KEGG
database, and KS tests) were relatively more divergent
(Fig. 3e and Table S8): in females, they involved hor-
mone synthesis, such as thyroid/parathyroid, ovarian
steroids, aldosterone (NES = 1.84, FDR = 0.03) and
cortisol (NES = 1.84, FDR = 0.02), and the glutamatergic
synapse (NES = 1.86, FDR = 0.04). In males, they were
notably related to: immune responses, such as phago-
cytosis (NES = 2.14, FDR < 10−4), Toll-like receptor
signalling (NES = 1.67, FDR = 1.8 × 10−2), leukocyte
transendothelial migration, necroptosis (NES = 1.72,
FDR = 1.19 × 10−2), IL-17 signalling pathway
(NES = 1.76, FDR = 7.22 10−3); energy metabolism,
including oxidative phosphorylation (NES = 1.81,
FDR = 3.81 × 10−3) glycolysis (NES = 1.71,
FDR = 1.37 × 10−2), pentose phosphate pathway
(NES = 1.84, FDR = 2.96 × 10−3), carbon metabolism
(NES = 1.82, FDR = 3.99 × 10−3); the proteasome
(NES = 2.21, FDR < 10−4); mTOR signalling
(NES = 1.56, FDR = 4.59 × 10−2); and the synaptic vesicle
cycle (NES = 1.88, FDR = 1.61 × 10−3). These results are
consistent with previous peripheral blood studies of
MDD, which identified similar GO terms related to
the stress axis, immunity and brain neuronal physi-
ology.17,25 They also document significant sex differ-
ences in MDD, which we further characterised using
RRHO2.

RRHO2 performs iterative hypergeometric testing
for all combinations of ranking thresholds applied to
each female or male dataset, generating “threshold-free”
genome-wide comparisons (Fig. 3f–h, Table S9). Inter-
estingly, this approach uncovered global patterns of
similarity, wherein large groups of mRNA, miRNA and
methylation probes exhibited dysregulation in similar
directions among males and females with MDD. Most
significant overlaps involved upregulated features (cor-
responding to RRHO2 bottom-left quadrants;
DNAm: −log10(p-val) = 410.3; miRNA: −log10(p-
val) = 8.5; mRNA: −log10(p-val) = 29.1), with milder but
still strongly significant overlaps also detected for
downregulated ones (upper-right quadrants;
DNAm: −log10(p-val) = 193.01; miRNA: −log10(p-
val) = 1.58; mRNA: −log10(p-val) = 3.95). As such, while
most significantly affected features poorly overlapped
(Fig. 3a–c), a stronger sex concordance became detect-
able when considering larger groups of genes and
probes that individually exhibited milder MDD-related
changes.
Intriguingly, in addition to these adaptations occur-
ring in similar directions, the RRHO2 analysis also
identified, for the mRNA layer, groups of genes showing
opposite changes across males and females (corre-
sponding to the 2 upper-left and bottom-right quad-
rants). While a global pattern of MDD-related molecular
concordance across males and females is intuitive, as
shown here in blood tissue and previously described in
the brain,29 this restricted additional discordance is
surprising. Another post-mortem brain study of MDD,
however, brings support to this notion.30 In a meta-
analysis, 52 genes were identified as similarly sex-
discordant across 3 regions (dorsolateral prefrontal
cortex, anterior cingulate cortex, basolateral amygdala).
Of note, no significant overlap was detectable between
this gene list in the brain, and our own discordant genes
in blood (Fig. S6), possibly reflecting the low number of
genes involved, or differences across tissues. Overall,
these results suggest a model whereby MDD may
associate with gene expression changes that predomi-
nantly exhibit similar directionality in both sexes, while
a discordant pattern may simultaneously affect smaller
and potentially tissue-specific gene sets. Further work
will be necessary to substantiate this hypothesis.

Stepwise network-based annotations identify male
and female gene modules associated with MDD
As a first strategy to integrate the 3 omic layers, we next
used a step-by-step approach. WGCNA was applied to
RNA-Seq data to construct gene coexpression networks,
followed by annotation of gene modules using multio-
mic enrichments. This strategy builds on recent work
on other psychiatric disorders.60 To provide external
validation of modules that were generated, their pres-
ervation was first assessed in blood transcriptomic data
from participants to the GTEX consortium (whole
blood),61 or from Krebs et al. (peripheral blood mono-
nuclear cells).62 As expected, most modules showed
good preservation (z-summary>2; Fig. S7a): this was
the case for 96.3 and 88.8% of our male and female
modules compared to GTEX, and 99.0 and 91.8% of our
modules compared to Krebs et al., respectively. In total,
135 and 111 modules were identified in females and
males, respectively (Table S10). Interestingly, regard-
less of their preservation or association with MDD,
these modules showed very different gene composition
across sexes (as assessed using pairwise Jaccard
indices, JI; Fig. S7b–d). Hence, there are significant sex
differences in the organisation of gene co-expression
networks in blood tissue, as already illustrated by
other groups.58,63

We then sought to identify modules that are most
relevant for MDD, by primarily quantifying their
enrichment for MDD-related molecular differences
observed in the present or in previous studies
(Table S11). To do so, we computed a prioritisation
score (see Methods) based on the following criteria:
www.thelancet.com Vol 113 March, 2025
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i) enrichment in mRNA or DNAm changes (GSEA,
threshold-free), or in targets of DEmiRNAs; ii) asso-
ciation with MDD diagnosis, MDD severity (HDRS
score), or a past history of childhood trauma, a risk
factor for MDD (CTQ score) and iii) enrichment in
genetic variation associated with mood disorders or
childhood trauma in previous GWAS (using MAGMA,
see Methods and Table S11). The twenty modules (10
in each sex) with highest priority scores are presented
in Fig. 4a. Across all modules, we found significant
correlations among associations of module eigen-
genes with MDD status, HDRS score, mRNA dysregula-
tion in MDD, and targets of miRNA-124-3p (Fig. S8),
consistent with the notion that WGCNA co-expression and
differential expression analyses capture partly overlapping
phenomena.
a

Fig. 4: Sex-specific WGCNA modules prioritised for their association wi
section represents a module. Male modules are highlighted in blue, fema
tests conducted for prioritisation. From the outside to the inside, Circle 1 (
GSEA); C2: DEmiRNAs targets enrichment test (log odds-ratio); C3: enrich
test between module eigengenes and MDD status (C4), or CTQ score (Chi
childhood trauma (C7), bipolar disorder type I (C8) or II (C9) in genome-wi
gradient was applied for each module’s enrichment that met statistical sig
associated with MDD (M:ME48 and F:ME129). These 2 modules, as well a
changes in females as opposed to males (Fig. 3h). The circle-shaped vertic
expression between genes, those in red to pairs of miRNAs and their kn
connectivity.
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We then focused on the 2 top modules for in-depth
analysis (one in males, M:ME48, one in females,
F:ME129), and their annotations. Specifically, the male
module M:ME48 was composed of 181 genes, and was
significantly enriched in genes upregulated in males
with MDD (NES = 2.10, padj = 1.1 × 10−3, KS).
Conversely, the female module F:ME129, composed of
66 genes, was enriched for genes downregulated in
females with MDD (NES = −2.12, padj = 3.4 × 10−3, KS).
These 2 modules also shared enrichments for targets of
the 6 same miRNAs (miRNA-124-3p, miRNA-532-3p,
miRNA-92a-3p, miRNA-1270, miRNA-181d-5p and
miRNA-4286), with only 2 additional miRNAs specif-
ically associated with each module (miRNA-550a-3p and
miRNA-320b for M:ME48; miRNA-4516 and miRNA-
5585-3p for F:ME129). The network organisation of
b

th MDD. a. Circos plot of the top 10 MDD related modules in females and males: each triangular
le ones in red. Concentric circles represent results from step-by-step enrichment or correlation
C1): enrichment test for MDD-related mRNA dysregulation (normalised enrichment score, NES,
ment tests for MDD-related DNAm methylation dysregulation (NES, GSEA); C4-5: correlation
ldhood Trauma Questionnaire, C5); C6-9: enrichment tests for SNPs associated with MDD (C6),
de association studies (computed using the MAGMA approach, see main text; p-value). A colour
nificance (p-value < 0.05). b. Graphical network representation of the 2 modules most strongly
s others, were enriched for genes identified in RRHO2 as showing opposite MDD-related mRNA
es represent genes, the triangle ones miRNAs. Grey-coloured edges correspond to weighted co-
ow targets in the mirBase database. The size of the vertices is proportional to their degree of
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these 2 modules is presented in Fig. 4b, with DEGs and
validated targets of DEmiRNAs highlighted as hubs
within each module. Interestingly, the differentially
expressed miRNA-124-3p (males: padj = 9.9 × 10−3,
females: padj = 5.4 × 10−2, WT) appeared centrally
located in both modules, with significant enrichment for
its target genes (M:ME48: padj = 4.5 × 10−27; F:ME129:
padj = 2.31 × 10−13, KS), suggesting that this miRNA
may potentially act as a regulator among these modules
(and potentially others, see Fig. S9). Gene ontology,
KEGG and Reactome pathways (Table S10) identified
enrichments of M:ME48 in immune response,
including neutrophil-mediated immunity and neutro-
phil degranulation, while F:ME129 was enriched in
terms primarily involved in cellular response to
stress. Overall, this step-by-step network approach
provides a sex-specific description of modular gene
coexpression changes in MDD, and identifies mod-
ules that are most significantly affected at multiomic
levels.

Advanced integration provides more accurate and
sex-specific multiomic biomarkers of MDD
Finally, with the goal of fully leveraging our genome-
wide and multiomic data, we implemented a super-
vised integration framework designed to identify
features that discriminate patients with MDD from
healthy controls, building on Momix18 and SNF19 (Fig. 5,
and Methods). The SNF approach computes patient
similarity matrices for each omic modality, before
merging them into a single network, using a nonlinear
method based on message passing theory. While the
method can handle all available features, a subset may
be particularly relevant to MDD. As such, here we first
opted to apply multiomic dimensionality reduction
methods from Momix18 to identify the top 10% features
that co-varied most according to MDD severity, and
benchmarked 6 jDR methods: RGCCA, JIVE, MCIA,
MOFA, intNMF and SciKit-Fusion. Then, these features
were extracted to generate a fused similarity matrix
(across omics) and to cluster individuals into two groups
in the train dataset, using SNF, with parameters opti-
mised to predict the MDD/control status (i.e., to maxi-
mise the AUC, the performance metric; see Methods).
Finally, the SNF label propagation procedure was
applied to the test dataset to assign each new individual
to a cluster. For comparison, the AUC was also
computed using sets of features corresponding to re-
sults from single-omic differential analyses (Diff), or
without any selection (No selection). Importantly, to
quantify how consideration of sex or an increased
number of omic layers may improve the MDD/control
classification, the whole procedure was independently
applied to the female cohort, the male cohort, or their
combination, as well as to every combination of 1, 2 or 3
omic types. Finally, to control for overfitting and biases
due to the cohort size or covariate corrections, a start-to-
end repeated 5-fold CV was conducted, while feature
stability was evaluated through bootstrapping.

Results are presented in Fig. 6. Best AUCs were
obtained with features identified by JIVE and RGCCA,
the 2 jDR methods that, importantly, classified patients
and controls significantly better than Diff and No se-
lection (Fig. 6a). In comparison, features prioritised by
intNMF, MCIA and Scikit-Fusion did not provide such
improvements, while MOFA outperformed only No se-
lection, but not Diff (see Discussion for more details). For
downstream analyses, we therefore focused on JIVE and
RGCCA and, using bootstrapping, assessed the stability
of the features they identified. Stable mRNA and DNAm
features (see Table S12 for full lists) were found to
significantly overlap across different omic combina-
tions, as well as to overlap within, but not across, sex-
specific cohorts (Fig. S10). Stable features also
converged with results obtained previously using single-
omic or step-by-step network strategies. Accordingly, the
2 top modules M:ME48 and F:ME129, as well as 8/10
and 4/10 of the female and male MDD-related modules,
were significantly enriched for stable mRNA features
(Fig. S11). Interestingly, additional gene modules pre-
viously not prioritised during the step-by-step network
approach also showed significant enrichment for stable
features, suggesting an informational gain provided by
this third multiomic strategy.

Finally, we investigated the impact of sex and multio-
mic aggregation onMDDprediction. First, results showed
that stratification by sex significantly improved perfor-
mance in both female (p = 2.7 × 10−16, t-test) and male
(p = 0.045, t-test) cohorts, compared to the pooled one
(Fig. 6b), as shownby the greaterAUC.Consistentwith the
sex-differences described above at single-omic level or
during network integration, these results reinforce the
importance of accounting for sex towards developing
MDD biomarkers. Second, comparisons across omic
combinations showed that AUCs progressively increased
with the number of omic layers used: performance tended
to improve from1 to 2 (p = 0.13, t-test), or from2 to 3 omics
(p = 0.079, t-test), and became significantly better from 1 to
3omics (p=4.8×10−3, t-test).Overall, these results indicate
that multiomic panels of biomarkers have the potential to
improve the prediction of MDD.
Discussion
By combining transcriptomic data and two layers of
epigenomic regulation derived from peripheral blood
samples, the present work delineated MDD associated
molecular signatures. Our findings demonstrated that
the resulting biomarkers were more predictive when
identified specifically in each sex, while multiomic
integration performed better than single-omic analyses.

Comparisons with previous studies first provided
external validation for each omic layer. At DNA
methylation level, changes in patients with MDD
www.thelancet.com Vol 113 March, 2025
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Fig. 6: Comparisons of MDD/control classification performance across different combinations of omic data, and stratification by sex. a.
Boxplot of AUCs (Area Under the Curve) obtained for each of 7 feature selection methods: differential analyses, Diff; jive; rgcca; intNMF; mcia;
mofa; scikit; or no selection. Mean AUCs for each method were first compared to those obtained using differential analyses (p-values in purple)
or without any selection (p-values in red, t-tests). AUCs were computed on the test data for each of the 25 splits of the cross-validation (5-fold,
with 5 repetitions) for every combination of 1, 2 or 3 types of omic data, for males, females, or pooled cohorts. b. Detailed representation of the
performance achieved by the 2 best joint dimension reduction methods (JIVE and RGCCA) according to sex stratification and the number of
omic data considered (p-values correspond to pair-wise comparisons).
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showed enrichments for neuronal physiology, including
dendrite morphogenesis and neurotrophin signalling.
This is in line with previous studies of MDD and other
neuropsychiatric disorders, which suggest that, in
Fig. 5: Summary of the multiomic integration and classification fram
repetitions), every combination of 1, 2 or 3 types of omic data, as well as c
scale for depression) were given as inputs to 6 different joint dimension
matrices were then correlated with the MDD/control status, and the top
highest correlation with MDD) were extracted to construct new matrices
then generated for each train set, using SNF, in order to infer 2 clusters o
each train set were applied to each corresponding test set, and the SN
individuals in each test set.
addition to pathophysiological mechanisms occurring in
the brain, parallel molecular adaptations may also be
detectable in blood.64–66 Regarding miRNAs, results from
multiple analyses all converged on the identification of
ework. For each of the 25 splits of a 5-fold cross validation (with 5
linical severity of depression (scores from the 17-item Hamilton rating
reduction methods (jDR). For each train dataset, the resulting factor
10% of omic features contributing to the best factor (i.e., showing
with only those selected features. A multiomic similarity matrix was
f individuals. Finally, covariate correction and feature selection from
F label propagation procedure applied to predict the group of new
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the brain-enriched miRNA 124-3p, which was upregu-
lated in patients with MDD of both sexes, was centrally
located within the two modules prioritised in females
and males by network integration, and also belonged to
stable miRNA features during multiomic integration (in
males, when considering miRNA and DNAm with
RGCCA). This is consistent with the fact that this
miRNA has been extensively investigated in recent years
in rodent models of depression, and found significantly
upregulated in the blood of patients with MDD.67,68

Our study was conducted with a systematic and
careful consideration of sex. Females and males with
MDD show substantial differences in clinical presenta-
tion, course, rates or types of psychotropic drug pre-
scription,69 and response to antidepressant treatment.70,71

As such, pathophysiological molecular processes, as well
as associated peripheral biomarkers, are expected to
differ as a function of sex. Importantly, although most
MDD studies include this factor as covariate, only a few
directly quantified its impact, and did so in brain tissue
only.58,59,72 Here we extended such consideration to pe-
ripheral blood, across 3 omic modalities. Results from
various analytical strategies systematically pointed to-
ward important differences. At single-omic level, fea-
tures most strongly impacted by MDD significantly
differed among females and males, with a degree of
convergence that only emerged when loosening signif-
icance thresholds (RRHO2). This was further reflected
in functional enrichment, particularly for the mRNA
layer: in males, enriched terms included immune sys-
tem response, IL-7 signalling pathway and Toll-like re-
ceptors; in females, glutamatergic signalling, production
and secretion of thyroid and parathyroid hormone,
aldosterone and ovarian steroidogenesis (KEGG path-
ways). Interestingly, sex variations in some of these re-
sponses have already been documented in MDD: in
males, increased levels of immune response proteins
were observed (including C-reactive protein),73 while
inflammatory indicators were better predictors of the
condition.74 Regarding gonadal steroids, although their
interactions with stress regulation have been well-
characterized in rodents, only a few human studies
suggest that they may mediate the stronger link
observed in females between life stress and MDD.75–77

Our results provide molecular data that appear consis-
tent with these notions, and will need to be confirmed in
larger cohorts. Strong sex differences further emerged
during our second (network) and third (multiomic)
integrative strategies. The gene composition of modules
identified using WGCNA showed low concordance
across sexes, regardless of their association with MDD.
This was expected, as similar differences have been
previously described by the GTEx consortium in blood
and other tissues.63,78 More surprisingly, among the 2
modules most significantly associated with MDD, some
of the observed dysregulations occurred in opposite di-
rections in males and females (Fig. 4), and features
www.thelancet.com Vol 113 March, 2025
prioritised for case/control classification exhibited clear
sex-specificity. Taken together, these findings extend on
previous evidence by suggesting that, across 3 omic
layers, MDD may manifest with distinct, and possibly
partly opposite, molecular biomarkers among females
and males. Importantly, our multiomic prediction of
MDD status significantly increased when features were
identified in each sex independently, despite the asso-
ciated reduction in sample size and statistical power.
This indicates that, in the future, considering sex may
help improve the identification of reliable MDD bio-
markers, and that a better understanding of these dif-
ferences may help prioritize sex-specific and potentially
more efficient therapeutic options.

The second main aspect of the present work was the
integrative analysis of multiple omic layers. To do so, we
implemented a supervised selection of molecular fea-
tures (jDR), followed by SNF for prediction of clusters of
individuals. Previously, Bhak and colleagues16 used su-
pervised machine learning (random forest) to differen-
tiate 56 suicide attempters, 39 patients with MDD, and
87 controls, based on gene expression and methylation
data, and reported accuracies around 0.9, depending on
the clinical groups considered. However, the features
used for optimisation of classifier models corresponded
solely to differentially expressed and methylated loci.
This first step of feature selection was not embedded in
the training procedure, suggesting that the leave-one-out
CV procedure used to test classifiers may have over-
estimated their performance. In our framework, to try
and control for overfitting, covariate correction and
feature selection were both conducted independently
within each of 25 CV iteration-splits (see Fig. S2), fol-
lowed by bootstrap analysis to test for feature stability.
Importantly, because this methodology was applied to a
cohort assessed in parallel for 3 omic layers, we were
able to systematically quantify the informational gain
attainable for predicting MDD status when considering
1, 2, or 3 layers. Among the 6 jDR approaches used for
feature selection, JIVE, RGCCA and MOFA generated
the best results. Of note, JIVE and RGCCA out-
performed results obtained when using features corre-
sponding to single-omic differential analyses (DEGs,
DEmiRNAs or DMPs). Rather than case–control com-
parisons, these results therefore argue for the added
value, when trying to predict MDD status, of integrative
methods that consider covariance between multiomic
measures and clinical severity. Further, they document
the quantitative relationship between multiomic aggre-
gation and classification power in MDD. This advocates
for the identification and design of multiomic panels of
biomarkers. Beyond diagnosis, such panels are expected
to contribute to stratification based on severity, identi-
fication of patient subgroups, or prediction of treatment
response, with the long-term goal of reaching clinical
utility and personalised medicine. To do so, fully
leveraging the unsupervised nature of SNF to identify
17
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subgroups of patients, introducing sparsity during
feature selection (with e.g. SGCCA,79 netSGCCA,80 or
PathME),81 applying techniques such as kernel-based
approaches or deep learning (to address nonlinear in-
teractions, as in cancer research),82 as well as integrating
time-series data, environmental and lifestyle factors, all
represent appealing perspectives to model the complex
and dynamic interactions underlying MDD.

This study has limitations, among which the cohort
size. With around 170 individuals, and despite a sig-
nificant boost from multiomic integration, we achieved
an arguably modest prediction performance that calls
for efforts to test its generalizability to larger replication
cohorts, ideally characterized across a broader panel of
omic layers. Another limitation stems from biases
associated with the imputation of missing covariate
data, and multiomic integration restricted to partici-
pants with complete omic blocks. Also, while we rigor-
ously analysed potential confounding variables and
adjusted for factors such as sex, age, BMI, and blood cell
composition, a more in-depth statistical analysis of in-
teractions between MDD and sex is warranted, as well as
consideration of additional factors. Among these,
although prior studies have highlighted an influence of
smoking, only a marginal effect was detected in our
cohort. Similarly, while psychotropic medications likely
affect blood molecular measures, they were not
considered due to their heterogeneity across our natu-
ralistic cohort, and sample size limitations. Therefore,
we cannot rule out the possibility that hidden effects
from some of these factors may contribute to part of the
associations reported in the present work. Finally, at a
methodological level, fine tuning each jDR method
(percentage of selected features, number of dimensions,
method-specific parameters), or the use of nested CV,
may improve prediction performance.

In conclusion, the present study provides evidence
that implementing sex-specific and multiomic strategies
will be instrumental in developing clinically useful
biomarkers of MDD.
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