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NEW INVARIANT SURFACE MEASURES FOR THE
CUBIC SCHRÖDINGER EQUATION

JEAN-BAPTISTE CASTERAS, ANA BELA CRUZEIRO, AND ANNIE MILLET

Abstract. We construct new invariant measures supported on mass
level sets for the cubic defocusing nonlinear Schrödinger equation in
dimensions 1 and 2.

1. Introduction

Consider the following equation for λ P t´1,`1u

(1) i
Bv

Bt
“ ´∆v ` λ|v|2v,

in the torus T
d of dimension d “ 1, 2, with initial conditions v0 P Hs, for

some s P R. When λ “ 1 (resp. λ “ ´1), the equation is defocusing (resp.
focusing). Recall that (1) can be seen as a Hamiltonian PDE, i.e.,

du

dt
“ i

BH

Bu
,

where

Hpuq “
1

2

ż

Td

|∇u|2dx `
λ

4

ż

Td

|u|4dx.

From this reformulation, it is easily seen that Hpuq is an invariant quantity.
One can also check that the mass

Mpuq “

ż

Td

|u|2dx,

and the momentum

P puq “ i

ż

Td

uuxdx

are conserved. In general, these three conservation laws are the only known
ones. But in some very special cases, others are available. For instance, if
d “ 1, the cubic Schrödinger equation possesses a Lax pair structure which
allows to construct an infinity of conservation laws see [10, 29]. In this
case, the equation is said to be completely integrable. Let us point out that
very recently people were able to construct a continuum of conservation laws
(whereas the earlier results only provided infinite but countable ones). We
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refer to [28] for results regarding the Benjamin-Ono equation, [15] for the
cubic NLS in the whole line, [7] for the KdV and modified KdV equations
(the non-linear term vBxv is replaced by v2Bxv).

Our goal in this paper is to construct new invariant measures for the cubic
NLS equation in dimension 1 and 2. First, let us describe in a few words the
situation in the d-dimensional case. Let Hpp, qq “ Hpp1, . . . , pd, q1, . . . , qdq
be a Hamiltonian and let us consider its associated flow in R

2d i.e.

(2) 9pi “
BH

Bqj
, 9qi “ ´

BH

Bpj
, i, j “ 1, ..., d.

Then, using the conservation of H, Liouville’s theorem states that the Gibbs
measure e´Hpp,qqΠd

j“1dpjdqj is invariant under the flow generated by (2).

Notice that, for any (reasonable) function F pp, qq which is conserved by

the flow (2), the measure F pp, qqe´Hpp,qqΠd
j“1dpjdqj is also invariant. The

situation is much more delicate in the infinite dimensional case.
In analogy with the Euclidean case R

d, by a scaling argument, one expects

(1) to be (at least locally) well-posed for initial data inHs, for s ą sc “
d

2
´1.

The space Hsc is called critical. In [12], it is proved that (1) for d “ 1 in
the focusing and defocusing case is globally well-posed for initial data in Hs,
s ą ´1

2
. The same result holds for the 1d modified KdV equation. When

d “ 2, Bourgain [2] obtained the local well-posedness of (1) for initial data
in Hs, s ą 0. The global well-posedness in this exact situation was obtained
in [13] for small initial data in Hs, for any s ą 0. In dimensions 3 and
4, for energy-critical non-linearity, local well posedness was proved in H1,
while global well-posedness was shown for "small" initial data; see [14] and
the references therein. For higher dimensions, we refer to the very recent
reference [18] concerning local well-posedness results in critical spaces.

Starting from the work of Lebowitz, Rose and Speer [19], and later on from
the paper of Bourgain [3], the statistical approach to Schrödinger equations
has been considerably developed. It consists in constructing invariant prob-
ability (Gibbs) measures for the solutions of these equations, based on their
invariant quantities. The solutions are proved to exist starting almost every-
where from the support of the measures and can be rather singular, typically
living in Sobolev spaces of low regularity.

This approach uses techniques from probability theory, where transport
properties of Gaussian measures under linear and nonlinear transformations
have an old tradition. In the framework of Hamiltonian partial differential
equations, of which Schrödinger systems are an example, invariant (or quasi-
invariant) measures are associated to conservation laws and are weighted
Gaussian measures. We refer to the works [23] and [25] where the authors
prove the quasi-invariance of Gaussian measures under the flow generated
by the quintic NLS in the defocusing case on T

3 (which is energy critical).
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For the cubic non-linear Schrödinger equation (NLS), in the defocusing
case and on the two-dimensional torus, a renormalisation must be intro-
duced. This equation was studied in [4], with the construction of a Gibbs
measure associated to the Wick ordered Hamiltonian and the existence of
the corresponding flow defined on the support of the measure was proved.
We also refer to [24] for related results.

In the recent paper [9] the authors generalize Bourgain’s work and consider
Wick ordered power nonlinearities in the Schrödinger equation which are of
higher degree, proving the existence of strong solutions with respect to the
associated Gibbs measure.

The Gibbs measures are absolutely continuous with respect to Gaussian
ones. We consider the corresponding abstract Wiener spaces in the sense
of Gross [11]. Then we use techniques from quasi-sure analysis on these
spaces, as established by Malliavin [20]. For a non degenerate functional
on an abstract Wiener space we can consider its level sets, which are (finite
codimensional) submanifolds of that space. In [1] Airault and Malliavin
defined a disintegration of the Gaussian measure into a family of conditional
laws or surface measures and proved a geometric Federer-type coarea formula
providing this disintegration. Such measures do not charge sets of capacity
zero.

In this work we study the defocusing cubic renormalised NLS on the two
dimensional torus (as in [4]) and construct surface measures for the mass,
which is a conserved quantity of the equation. Then we prove existence
of weak solutions living on the level sets of the mass and defined almost
everywhere with respect to the surface measures. We therefore provide a
more precise result than those obtained with respect to the Gibbs measures
constructed so far.

We refer also to the work [21], where a different kind of conditioning and
corresponding measures for NLS have been considered.

Let us describe more precisely the result of [21]. The authors construct a
measure of the form

dµ0 “ Z´1
0 e

1

4

ş

T
|u|4dP0,

where Z0 is a normalisation constant and P0 is defined by

P0pEq “ lim
εÑ0

P
´

E
ˇ

ˇ

ˇ

ż

T

|u|2 P Aεpaq, i

ż

T

uux P Bεpbq
¯

,

where Aεpaq, Bεpbq are neighborhoods shrinking nicely to a and b as ε Ñ 0.
In fact, this measure is shown to exist for polynomial nonlinearities ˘|u|p´2u

with 2 ă p ď 6 (the mass needing to be small if p “ 6). We also refer to [5]
for related results for the derivative NLS.

Let us also mention that an active line of work in the construction of
Gibbs measure is to find optimal integrability thresholds for such a measure
to exist; see for instance [22].
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Our methods are similar to those in [8], where surface measures supported
by level sets of the enstrophy were constructed for the Euler equation on the
torus.

We are interested in the cubic defocusing Schrödinger equation in the one
and two dimensional torus, namely

(3) i
Bv

Bt
“ ´∆v ` |v|2v

with initial conditions v0 of low regularity. If the solution is assumed to be

at least L2, we can use the following change of variables v “ e
itp1´2}u}2

L2
q
u.

In this case, (3) is equivalent to

(4) i
Bu

Bt
“ ´∆u`

´

|u|2 ´ 2}u}2L2

¯

u ` u.

Notice that it is not anymore the case if the solution does not have a finite
mass. Our aim is to take initial data in the support of a surface measure
supported on mass level sets. Formally, let

dµ2s “ Z´1
s e´ 1

2
}u}2

Hsdu,

where Zs is a normalisation constant and du is formally the Lebesgue mea-
sure, which is well-known to not exist on infinite dimensional vector spaces.
The Gaussian measure µ2s can also be seen as the law of the random variable

ω Ñ
ÿ

nPZd

gnpωq

p1 ` |n|2qs{2
einx,

where tgnu are independent standard complex-valued Gaussian variables on
a probability space pΩ,A,Pq. For σ P R, it is easy to check that

E

”

ÿ

nPZd

p1 ` |n|2qσ
ˇ

ˇ

ˇ

gn

p1 ` |n|2qs{2

ˇ

ˇ

ˇ

2ı

ă 8 iff σ ă s´
d

2
.

So this random series converges in L
2pΩ,HσpTdqq if and only if σ ă s´

d

2
. In

what follows, we will always take s “ 1. We see that, when d “ 2, solutions
distributed according to µ2 do not have a finite mass, which implies that
equation (3) and (4) are not equivalent. The previous remarks also show that
the support of this Gibbs measure is necessarily rough. We point out that an
alternative method to construct invariant measures is the so-called Inviscid-
Infinite-dimensional limits method due to Kuksin and Shirikyan [16, 17]. We
refer to [6, 26, 27] for applications related to NLS.

We set Vr “ tϕ P L2|Epϕq “ ru, for r ą 0 where

(5) Epϕq “

ż

Td

|ϕ|2dx ´ 1td“2u

ÿ

k‰0

2

|k|2
.

In section 4, we prove that this quantity is well-defined in dimension 2.
Our main result reads as follows :
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Theorem 1.1. Let d “ 1 or d “ 2. Then, for all r ą 0, there exists a
probability measure σr defined on L2 with support on Vr, a probability space
pΩ,F ,Pq and a CpR, Vrq-valued stochastic process u such that

‚ u “ uω is a global weak solution to (1) if d “ 1 or (4) if d “ 2 for P

a.e. ω P Ω.
‚ σr is invariant in the sense that the law of uptq is σr for all t P R.

Let us also point out that our result can be easily generalised to more
general dispersions namely in (1), we could have taken any power of the
Laplace operator p´∆qs, s ą 0 as well as any odd power nonlinearities. In
the case of a more general dispersion of the form p´∆qs, the difference would
have been the value of the parameter a “ 2 in the above renormalisation to
define Epϕq (see (5)). Instead of taking it equal to 2, it would have been
chosen as a “ 2s.

In section 2, we describe the Gaussian measures we will use, define the
Sobolev and Wiener spaces. Finally, we state a result by Airault and Malli-
avin [1] which constructs a surface measure supported by a level set of some
functional defined on a Wiener space; this will be the main ingredient in
the construction of our invariant measure. In section 3, we prove Sobolev
estimates on the non linear term projected on low frequencies; in dimension
2 this will require a renormalisation of this cubic term. A similar renormal-
isation was also considered in [4]. In Section 4, we prove several estimates
for a renormalisation of the mass. Finally, we prove Theorem 1.1 in Section
5. Some technical lemma is proved in the appendix.

2. Preliminaries

Let us first state several basic facts about Gaussian measures. Next, we
rewrite the cubic Schrödinger equation into frequency.

2.1. The Gaussian measures. Given a function ϕ P L2pTdq, set ϕ “
ř

kPZd ϕkek, where ekpxq “ 1
2
eikx, k P Z

d, with kx “ k1x1 ` . . . ` kdxd.

For a ą 0 let us consider the Gaussian measures on L2pTdq

dµa “ ΠkPZddµka, dµkapzq “
|k|a

2π
e´ 1

2
|k|a|z|2dxdy,

with z “ x` iy P C, k “ pk1, . . . , kdq P Z
d and |k|2 “ k21 ` . . . ` k2d.

Suppose that tϕk, k P Z
du are independent complex-valued Gaussian ran-

dom variables with distribution µka. For later purpose, let us notice that

Eµapϕkq “ 0, Eµapϕkϕk1 q “ 0, Eµapϕkϕk1q “ δk,k1
2

|k|a
,

and, for any p ě 1,

(6) Eµap|ϕk|2pq “
cp

|k|ap
, where cp “ 2pp!.
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Indeed, letting x “ Repϕkq, y “ Impϕkq, we have

Eµap|ϕk|2pq “
|k|a

2π

ż

RˆR

px2 ` y2qpe´|k|a x2`y2

2 dxdy

“ |k|a
ż

R`

r2pe´|k|a r2

2 rdr

“ 2pp! |k|´ap.

2.2. The Sobolev spaces. We next recall some definitions of functional
spaces such as Sobolev spaces and Wiener spaces. The Sobolev spaces of
order β on the torus are defined by

Hβ “
!

ϕ P L2 :
ÿ

k‰0

|k|2β |ϕk|2 ă `8
)

and are endowed with the corresponding Hilbert scalar product.
We will work with the Gaussian measure µ2. This measure is supported

in the space Hβ with β ă 0. This is a consequence of the fact that
ş

ř

k‰0 |k|2β |ϕk|2dµ2 “ 2
ř

k‰0
|k|2β

|k|2 converges for β ă 0; it is also a con-

sequence of µ2 being the measure induced by the process
ř

|n|ą0
1
n
Gnenpxq,

where tGnun are independent standard complex Gaussian random variables.
For β ă 0, the triple pHβ,H1, µ2q is an abstract Wiener space in the sense

of Gross (see [11]).
Given a Hilbert space G, we consider the Malliavin derivative of a func-

tional F : Hβ Ñ G, in the Cameron-Martin direction v P H1, namely the
(a.e.) limit

lim
εÑ0

1

ε
pF pϕ ` εvq ´ F pϕqq, x P H1.

By the Riesz theorem this derivative gives rise to a linear gradient operator
∇ such that the limit above coincides with ă ∇F pϕq, v ą. One can iterate
this procedure and obtain higher order gradients ∇r. Let us for instance
consider the second derivative of F . For ϕ P Hβ , and v,w P H1, iterating
the first derivative, we obtain

∇2F pϕqpv,wq “ DvDwF pϕq.

We define the Hilbert-Schmidt norm

}∇2F pϕq}2
H.S.pH1bH1,Hβq “

ÿ

j,k

}DêjDêkF pϕq}2
Hβ ,

where têjuj is an orthonormal basis ofH1. The corresponding Sobolev spaces

are W
p
r pHβ;Gq, that is the space of maps F : Hβ Ñ G such that F P

L
p
µ2

pHβ;Gq, the gradients ∇sF : Hβ Ñ H.S.pbsH
1, Gq are defined for every

1 ď s ď r and belong to Lp
µ2

pHβ;H.S.pbsH
1, Gqq. We equip this space with

the norm

}f}W p
r pHβ ;Gq “ }f}Lp

µ2
pHβ ;Gq `

ÿ

1ďsďr

}f}Lp
µ2

pHβ ;H.S.pbsH1,Gq.
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We also denote W8 “
Ş

r,pW
p
r pHβ ;Rq and W8pHβq “

Ş

r,pW
p
r pHβ ;Hβq.

2.3. The nonlinear Schrödinger equation. Using the decomposition of
the solution ϕpx, tq “

ř

k ϕkptqekpxq into frequencies, the cubic Schrödinger
equation (3) for ϕ can be rewritten as the family of equations

d

dt
ϕk “ ´i|k|2ϕk ´ iBkpϕq, |k| ą 0,

where

Bkpϕq “
ÿ

l,m

ϕk´mϕl`mϕl.

The functions tekuk are eigenfunctions for the operator ´∆ with eigenvalues
|k|2 “ k21 ` . . .`k2d; we set Akpϕq “ ´|k|2ϕk, corresponding to the Laplacian
A “ ∆.

For any n P N, we define

Bnpϕq “ ΠnpBpΠnpϕqqq,

where

Πn

´

ÿ

k

ϕkek

¯

“
ÿ

k:1ď|k|2ďn

ϕkek.

2.4. Surface measures. When g P W8, it is possible to consider a redef-
inition of g, namely a function g˚ that coincides with g almost surely, and
is defined and continuous outside sets of capacity zero (c.f [20]). Using such
redifinitions a construction of surface measures on Wiener spaces was made
in [1]. These measures are defined on level sets of W8 functionals, and do
not charge zero capacity sets.

Let E be a real-valued functional defined on Hβ and consider the surfaces
Vr “ tϕ|Epϕq “ ru for r ą 0. Assume that E and }∇E}´1

H1 belong to the
corresponding spaces W8.

Denote the C8 densities of dpE˚µ2q (resp. dpE˚gµ2q) with respect to the

Lebesgue measure by ρprq “
dpE ˚ µ2q

dr
(resp. ρgprq “

dpE ˚ gµ2q

dr
); they

are well defined and smooth, cf. [1]. We have

Theorem 2.1. [1] Let r ą 0 be such that ρprq ą 0. Then there exists a
Borel probability measure defined on Hβ, denoted by νr, with support on Vr
and such that

ż

Vr

g˚pϕqdνr “
ρgprq

ρprq
,

for any g˚ redifinition of g.

This will be a crucial ingredient to construct our invariant measures.
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3. Norm estimates for B

Our goal in this section is to derive Sobolev estimates for the vector field
B. We will see that we need to renormalize B when the dimension d “ 2.
We proceed as follows: for every N P N and k P Z

2, we let

(7) p: B :qNk “ Bk ´ 4
´

ÿ

m:1ď|m|ď|N |

1

|m|a

¯

ϕk,

with a “ 2. Notice that this sum diverges when |N | Ñ 8 if d “ 2. In dimen-
sion 1, a renormalisation is not needed (since the sum is converging). More
precisely our aim in this section is to show that in dimension 2 p: B :qN be-

longs to L2p
µapHβ,Hβq and ∇sp: B :qN belongs to L2p

µapHβ,H.S.pbsH1,Hβqq,
for any p ě 1, s P N

˚ and β ă 0, uniformly in N . Thanks to our estimate,
we will be able to prove that p: B :qN converges in L

2p
µapHβ,Hβq. We will

denote its limit by : B :. We begin by estimating p: B :qN .

Proposition 3.1. Let a “ 2 and β ă 0 and p ě 1 an integer.
In dimension 1, B is Lp-integrable with respect to the measure µa and to

the norm Hβ.
In dimension 2, p: B :qN is Lp-integrable with respect to the measure µa

and to the norm Hβ , uniformly in N . We denote by : B : its limit as N Ñ 8.

Notice that our choice of parameters is related to the fact that we want
to work on the abstract Wiener space pHβ,H1, µ2q, with β ă 0.

Proof. By abuse of notation, in this proof, we will drop the subcript N in
: B :N in dimension 2. We will work at fixed N and will notice at the end
that, thanks to the normalisation, our estimates do not depend on N .

Let p be odd; we are going to show that : B : P L2p
µapHβ,Hβq.

In a first step, we compute Eµap|B|2pq.
For every k P Z with k ‰ 0 we have

|Bkpϕq|2 “
ÿ

l,l1‰0,m,m1,|l|_|m|_|l1|_|m1|ďN

Tkpl,m, l1,m1q,

where, for m R tk,´lu and m1 R tk,´l1u,

Tkpl,m, l1,m1q :“ ϕk´mϕl`mϕl1ϕlϕk´m1ϕl1`m1 .

Note that EµarTkpl,m, l1,m1qps “ 0 except in three cases: k´m “ l, k´m “
k ´m1 and k ´m “ l1 `m1.

Case 1 Let k ´ m “ l; then we have to impose that either l ` m “ k ´ m1

or l `m “ l1 `m1.
Case 1.1 If l `m “ k ´m1, we deduce that, since k ´ l “ m “ m`m1,

we have m1 “ 0. Therefore, Tkpl, k ´ l, l1, 0q “ |ϕk|2|ϕl|
2|ϕl1 |

2. Thus,

‚ if m ‰ 0, k ‰ l and k ‰ l1, the indices k, l, l1 are pairwise different;
‚ if m ‰ 0 and l “ l1, then Tkpl, k ´ l, l, 0q “ |ϕk|2|ϕl|

4;
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‚ if m ‰ 0 and l1 “ k, then Tkpl, k ´ l, k, 0q “ |ϕk|4|ϕl|
2;

‚ if m “ m1 “ 0 and l1 ‰ k, then Tkpk, 0, l1, 0q “ |ϕk|4|ϕl1 |
2;

‚ if m “ m1 ‰ 0 and l “ l1 ‰ k, then Tkpl, k ´ l, l, k ´ lq “ |ϕk|2|ϕl|
4;

‚ finally, if m “ m1 “ 0 and l1 “ k, then Tkpk, 0, k, 0q “ |ϕk|6.

Case 1.2 If l`m “ l1 `m1, we deduce that k “ l`m “ l1 `m1 and hence
k ´m1 “ l1. Therefore, Tkpl, k ´ l, l1, k ´ l1q “ |ϕk|2|ϕl|

2|ϕl1 |
2. Thus,

‚ if m ‰ 0, m1 ‰ 0 and l ‰ l1, the indices k, l, l1 are pairwise different;
‚ if m “ 0 and m1 ‰ 0, then Tkpk, 0, l1, k ´ l1q “ |ϕk|4|ϕ1

l|
2.

In the other cases, that is m ‰ 0 and m1 “ 0 (resp. m “ m1 “ 0), we have
again Tkpl, k ´ l, k, 0q (resp. Tkpk, 0, k, 0q).

Case 2 Let k´m “ k´m1, which implies m “ m1. Then we have to impose
either l `m “ l or l `m “ l1 `m1.

Case 2.1 If l ` m “ l, we deduce m “ m1 “ 0, so that l1 “ l1 ` m1.
Therefore, Tkpl, 0, l1, 0q “ |ϕk|2|ϕl|

2|ϕl1 |
2. Thus

‚ the indices k, l, l1 can be pairwise distinct;
‚ if k “ l1 ‰ l, then Tkpl, 0, k, 0q “ |ϕk|4|ϕl|

2;

In the other cases k “ l ‰ l1 (resp.k “ l “ l1), we have again Tkpk, 0, l1, 0q
(resp. Tkpk, 0, l, 0q).

Case 2.2 If l ` m “ l1 ` m1, since m “ m1 we conclude that l “ l1.
Therefore, Tkpl,m, l,mq “ |ϕk´m|2|ϕl`m|2|ϕl|

2. Thus,

‚ if m ‰ 0, l ‰ k ´ m and l ‰ l ´ 2m, the indices k ´ m, l, l ` m are
pairwise distinct;

‚ if m ‰ 0 and l `m “ k ´m, then l ‰ k ´m and Tkpk ´ 2m,m, k ´
2m,mq “ |ϕk´m|4|ϕk´2m|2;

‚ if m “ 0 and l ‰ k, then Tkpl, 0, l, 0q “ |ϕk|2|ϕl|
4;

Finally, when m “ 0 and k “ l (resp. ,m ‰ 0 and l “ k ´m) we have again
Tkpk, 0, k, 0q (resp. Tkpl, k ´ l, l, k ´ lq).

Case 3 Let k ´ m “ l1 ` m1; then we have to impose either l ` m “ l or
l `m “ k ´m1.

Case 3.1 If l ` m “ l, that is m “ 0, we have k “ l1 ` m1. Therefore,
Tkpl, 0, l1, k ´ l1q “ |ϕk|2|ϕl|

2|ϕl1 |
2. Thus,

‚ the indices k, l, l1 can be pairwise distinct;
‚ if k ‰ l “ l1, then Tkpl, 0, l, k ´ lq “ |ϕk|2|ϕl|

4.

When k “ l ‰ l1 (resp. k “ l1 ‰ l), we have again Tkpk, 0, l1, k ´ l1q (resp.
Tkpl, 0, k, 0q).
Finally, if k “ l “ l1, we have again Tkpk, 0, k, 0q.

Case 3.2 If l `m “ k ´m1, we deduce that m`m1 “ k ´ l “ k ´ l1, so
that l1 “ l. Therefore, Tkpl,m, l, k ´m´ lq “ |ϕk´m|2|ϕl`m|2|ϕl|

2. Thus

‚ if m ‰ 0, l ‰ k ´ m and l ‰ k ´ 2m, the indices k ´ m, l, l ` m are
pairwise distinct;

‚ if m ‰ 0 and l “ k ´m, then Tkpl, k ´ l, l, 0q “ |ϕl|
4|ϕk|2.
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The other cases m ‰ 0 and l`m “ k´m (resp. m “ 0 and l ‰ k) give again
Tkpk´2m,m, k´2m,mq (resp. Tkpl, 0, l, k´ lq. Finally, the case m “ 0 and
l “ k gives again Tkpk, 0, k, 0q.

As a summary, we have proven that

Eµap|Bk|2pq “ Er|ϕk|6ps ` 4
ÿ

|l|ďN,|l1|ďN,l‰k,l1‰k,l‰l1

Er|ϕk|2psEr|ϕl|
2psEr|ϕl1 |

2ps

` 2
ÿ

|l|‰N,l‰k,1ď|m|ďN,l`m‰k´m

Er|ϕk´m|2psEr|ϕl`m|2psEr|ϕl|
2ps

` 4
ÿ

|l|ăN,l‰k

Er|ϕk|4psEr|ϕl|
2ps ` 4

ÿ

|l|ďN,l‰k

Er|ϕk|2psEr|ϕl|
4ps

`
ÿ

1ď|m|ďN,m‰k,2m‰k

Er|ϕk´m|2psEr|ϕk´2m|4ps.

(8)

We first deal with p “ 1. Set

DN :“
ÿ

l:0ă|l|ďN

ż

|ϕl|
2dµa.

The above discussion implies that

(9) Eµa r|Bk|2s “ 4D2
NEµa r|ϕk|2s ` 4DNEµa r|ϕk|4s ` IN,1pkq ` IN,2pkq,

where

IN,1pkq “Eµa r|ϕk|6s ` 4Eµar|ϕk|2s
ÿ

0ă|l|ďN,l‰k

Eµar|ϕl|
4s

`
ÿ

0ă|m|ďN

Eµar|ϕk´m|4sEr|ϕk´2m|2s,

IN,2pkq “ 2
ÿ

0ă|m|ďN,0ă|l|ďN,l`m‰k,l`2m‰k

Eµar|ϕk´m|2sEµar|ϕl|
2sEµa r|ϕl`m|2s.

In dimension 1, it is easy to see that supN rDN ` IN,1pkq ` IN,2pkqs ă 8.
In dimension 2, the identity (6) and the upper estimate (12) in Lemma

6.1 imply that for β ă 0 we have

sup
N

ÿ

0ă|k|ďN

|k|2βIN,1pkq ă 8,

and the upper estimate (11) implies

sup
N

ÿ

0ă|k|ďN

|k|2βIN,2pkq ă 8.

A similar (easier) computation, based on m “ 0 and l “ k ´ m ‰ k,

implies that for T̃kpl,mq “ ϕk´mϕl`mϕlϕk, we have
ÿ

|l|,|m|ďN

EµarRe pT̃kpl,mqs “Er|ϕk|4s ` 2
ÿ

1ď|l|ďN,l‰k

Er|ϕk|2sEr|ϕl|
2s.(10)
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Using (9) and (10) we deduce that

Eµar|Bkpϕq ´ CNϕk|2s “ IN,1pkq ` 4D2
NEr|ϕk|2s ` 4DNEr|ϕk|4s

´ 2CNEr|ϕk|4s ´ 2CNEr|ϕk|2s2DN ` IN,2pkq ` C2
NEr|ϕk|2s.

Therefore, if CN “ 2DN , we have

Eµa r|Bkpϕq ´ CNϕk|2s “ IN,1pkq ` IN,2pkq,

and, for β ă 0,

sup
N

ÿ

0ă|k|ďN

|k|´2βEµar|Bkpϕq ´ CNϕk|2s ă 8.

For more general integers p, we proceed recursively. Indeed, we have
formally (to simplify computations, we use erroneously the independence
of |Bkpϕq ´ CNϕk|2p and |Bk|2 ´ C2

N |ϕk|2, but the argument can be made
rigorous)

Eµa

`

|Bkpϕq ´CNϕk|2p`2
˘

“ Eµa

`

|Bkpϕq ´ CNϕk|2pr|Bkpϕq|2 ´ 2CNRepϕkBkq ` C2
N |ϕk|2s

˘

“ Eµa

`

|Bkpϕq ´ CNϕk|2pr|Bkpϕq|2 ´ C2
N |ϕk|2s

˘

“ Eµa

`

|Bkpϕq ´ CNϕk|2prIN,1pkq ` IN,2pkqs
˘

ď CEµa

`

|Bkpϕq ´ CNϕk|2p
˘

.

This concludes the proof.
�

Next, we turn to estimate the first derivative of : B :. We have

Proposition 3.2. Let d “ 1, 2. For a “ 2 and β ă 0, the gradient of the vec-
tor field B for d “ 1 (resp. : B : for d “ 2) belongs to L2p

µapHβ;H.S.pH1,Hβqq
for any integer p ě 1.

Proof. As in the previous proof, we work at fixed N but we drop the subscript
N in p: B :qN . A straight-forward computation gives

DejBkpϕq “
ÿ

l,m

pϕl`mϕlδj,k´m ` ϕk´mϕlδj,l`m ` ϕl`mϕk´mδ´j,lq

“
ÿ

lRt0,j´ku

ϕl`k´jp2ϕl ` ϕ´lq.

Thus, we have

|DejBkpϕq|2 “
ÿ

l,l1Rt0,j´ku

ϕl`k´jp2ϕl ` ϕlqϕl1`k´jp2ϕl1 ` ϕl1 q.

Let us first consider the 1-dimensional case. Since

}∇Bpϕqpêjq}2
Hβ ď c

ÿ

k

|k|2β

|j|2

ˇ

ˇ

ˇ

ÿ

lRt0,j´ku

ϕl`k´jp2ϕl ` ϕ´lq
ˇ

ˇ

ˇ

2

,
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we obtain that

Eµa

“

}∇Bpϕq}2H.S.pHb,Hβq

‰

ď c
ÿ

k,j

|k|2β

|j|2
Eµa

”

ÿ

l,l1Rt0,l`k´ju

Tj,kpl, l1q
ı

,

where Tj,kpl, l1q “ ϕl`k´jp2ϕl ` ϕ´lqϕl1`k´jp2ϕl1 ` ϕ´l1q.

Case 1: l “ l1, Tj,kpl, lq “ |ϕl`k´j |2p4|ϕl|
2 ` 2ϕlϕ´l ` 2ϕ´lϕl ` |ϕ´l|

2q.
‚ If k “ j, EµarTj,jpl, lqs “ 4Eµa r|ϕl|

4s ` Eµar|ϕl|
2sEµa r|ϕ´l|

2s.
‚ If k ‰ j and 2l`k´j ‰ 0, EµarTj,kpl, lqs “ 4Eµa r|ϕl`k´j |2sEµa r|ϕl|

2s`
Eµar|ϕl`k´j |2sEµa r|ϕ´l|

2s.
‚ If k ‰ j and 2l`k´j “ 0, EµarTj,kpl, lqs “ 4Eµa r|ϕl`k´j |2sEµa r|ϕl|

2s`
Eµar|ϕl`k´j |4s.

Case 2: l ‰ l1.
‚ If k “ j, Tj,jpl, l

1q “ 4|ϕl|
2|ϕl1 |

2 ` 2|ϕl1 |
2ϕlϕ´l ` 2|ϕl|

2ϕl1ϕ´l1 ` ϕl1ϕ´l1 .
Therefore, Eµa rTj,jpl, l

1qs “ 4Eµa r|ϕl|
2sEµa r|ϕl1 |

2s.
‚ If k ‰ j, EµarTj,kpl, l1qs “ 0, except if l ` k ´ j “ ´l1. In that case

we have Eµa rTj,kpl, l1qs “ Eµar|ϕl`k´j |2sEµar|ϕ´l|
2s if l ` k ´ j ‰ ´l, and

Eµar|ϕl`k´j |4s if l ` k ´ j “ ´l.

For a “ 2 and β ă 0 we have

ÿ

k,j‰0

|k|2β

|j|2

”

ÿ

l‰0

|l|´2a `
ÿ

lRt0,j´ku

|l|´a|l ` k ´ j|´a `
ÿ

l,l1‰0,l‰l1

|l|´a|l1|´a
ı

ă 8.

Next, we deal with the 2-dimensional case. We need to be more careful
in this case and we begin by computing }DejBkpϕq}L2

µa
. As in the one-

dimensional case, we have

ż

|DejBkpϕq|2dµa “ δj,k

´

4
ÿ

l‰0

Eµa r|ϕl|
4s `

ÿ

l‰0

Eµar|ϕl|
2sEµa r|ϕ´l|

2s

` 4
ÿ

l,l1‰0,l‰l1

Eµar|ϕl|
2sEµa r|ϕl1 |

2|s
¯

` 1tj‰ku

´

4
ÿ

lRt0,j´ku

Eµa r|ϕl`k´j|
2sEµa r|ϕl|

2s ` 21tj´k evenuEµa r|ϕpk´jq{2|4s

` 2
ÿ

2lRt0,j´ku

Eµar|ϕl`k´j |2sEµar|ϕ´l|
2s

¯

.
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Let

JNpj, kq “ δj,k

´

4
ÿ

l‰0

Eµar|ϕl|
4s `

ÿ

l‰0

Eµa r|ϕl|
2sEµar|ϕ´l|

2s
¯

` 1tj‰ku

´

4
ÿ

lRt0,j´ku

Eµa r|ϕl`k´j|
2sEµa r|ϕl|

2s ` 21tj´k evenuEµa r|ϕpk´jq{2|4s

` 2
ÿ

2lRt0,j´ku

Eµar|ϕl`k´j |2sEµa r|ϕ´l|
2s

¯

.

Using (7), we deduce that

Dej p: B :qkpϕq “ DejBkpϕq ´CNδj,k.

Therefore, since CN “ 2DN ,
ż

|DejBkpϕq|2dµa “ JN pj, kq ` δj,k
`

4D2
N ´ 2CN 2DN ` C2

N

˘

“ JN pj, kq.

Using (6) and (11) in Lemma 6.1, we deduce that

sup
N

ÿ

j,k

|k|2β

|j|2
JNpj, kq ă 8.

For more general integers p, we proceed recursively. Indeed, we have for-
mally (as previously, we use erroneously the independence of |DejBkpϕq|2

and |DejBkpϕq|2p, but the argument can be made rigorous)

Eµa

`

|DejBkpϕq|2p`2
˘

“ Eµa

`

|DejBkpϕq|2p|DejBkpϕq|2
˘

“ Eµa

`

|DejBkpϕq|2pJNpj, kq
˘

ď CEµa

`

|DejBkpϕq|2p
˘

.

This concludes the proof. �

Using the definition of the second derivatives and corresponding norms
presented in section 2, we have the following result:

Proposition 3.3. Let a “ 2, β ă 0; the second derivative of B belongs to
L
2p
µapHβ,H.S.pH1 bH1,Hβqq, for any integer p ě 1.

Proof. A straight-forward computation gives

}DêlDêmBpϕq}2
Hβ À

1

p|l||m|q2

ÿ

k

|k|2βp|ϕl`m´k|2 ` |ϕl´m`k|2q.

By definition of the Hilbert-Schmidt norm, this leads to

}∇2Bpϕq}2
H.S.pH1ˆH1,Hβq À

ÿ

l,m

1

p|l||m|q2

ÿ

k

|k|2βp|ϕl`m´k|2 ` |ϕl´m`k|2q.

Using once more (6), we deduce that

Eµa}∇2Bpϕq}2
H.S.pH1ˆH1,Hβq À

ÿ

l,m

1

p|l||m|q2

ÿ

k‰l`m

|k|2β
1

|l `m´ k|a
.
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This last term converges when β ă 0 (see (11) in Lemma 6.1). As previously,
the case for more general integers p can be made by induction. �

More generally, the following holds:

Proposition 3.4. For any s P N and any integer p ě 1, ∇s : B : belong to
L
p
µapHβ;H.S.pbsH1,Hβqq when a “ 2 and β ă 0.

4. The renormalised mass

We will consider level surfaces for the renormalised mass E, where

Epϕq “
ÿ

k

p|ϕk|2 ´ Zkq.

Let us recall that the mass is an invariant of the NLS flow. We choose
Zk such that E P L1

µa
, i.e., Zk “ c1|k|´a where cp was defined in (6). As

for B, this renormalisation is not needed in dimension 1 since the serie is
convergent. We recall that W8 “

Ş

r,pW
p
r pHβ,Rq.

Our goal in this section is to show that E and }∇E}´1
H.S.pHl,Rq

belong to

the space W8, as it was defined before, namely for a “ 2 and l “ 1 (let us
recall that the norm of this space depends on µa). As previously, our choice
of parameters are linked with the fact that we want to work on the abstract
Wiener space pHβ,H1, µ2q, β ă 0. We begin by estimating E.

Proposition 4.1. The mass E belongs to W8.

Proof. A straight-forward computation gives

ż

|Epϕq|2dµa

“

ż

ÿ

k

p|ϕk|2 ´ Zkq2dµa `
ÿ

k‰l

ż

|ϕk|2|ϕl|
2dµa ´ 2

ÿ

k‰l

ż

Zl|ϕk|2dµa `
ÿ

k‰l

ZkZl

“

ż

ÿ

k

|ϕk|4dµa ´ 2

ż

ÿ

k

Zk|ϕk|2dµa `
ÿ

k

Z2
k

`
ÿ

k‰l

ż

|ϕk|2|ϕl|
2dµa ´ 2

ÿ

k‰l

ż

Zl|ϕk|2dµa `
ÿ

k‰l

ZkZl

“
ÿ

k

c2|k|´2a ´ 2
ÿ

k

Zkc1|k|´a `
ÿ

k

Z2
k

`
ÿ

k‰l

c1|k|´ac1|l|´a ´ 2
ÿ

k‰l

Zlc1|k|´a `
ÿ

k‰l

ZkZl

“
ÿ

pc2|k|´2a ´ Z2
kq À |k|´2a.
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To deal with a general integer p ě 2, using the independence of the ϕkj , j “
1, ..., p and an induction argument, we have
ż

|Epϕq|pdµa “

ż

ÿ

k

p|ϕk|2 ´ Zkqpdµa `
ÿ

k1‰kj

ż

p|ϕk1 |2 ´ Zk1qΠkj p|ϕkj |2 ´ Zkjqdµa

“

ż

ÿ

k

p|ϕk|2 ´ Zkqpdµa `
ÿ

k1‰kj

ż

|ϕk1 |2Πkjp|ϕkj |2 ´ Zkj qdµa

´
ÿ

k1‰kj

ż

Zk1Πkjp|ϕkj |2 ´ Zkjqdµa

À
ÿ

k

|k|´ap `
ÿ

k1‰kj

ż

Zk1Πkjp|ϕkj |2 ´ Zkjqdµa

´
ÿ

k1‰kj

Πkj

ż

Zk1p|ϕkj |2 ´ Zkjqdµa

À
ÿ

k

|k|´ap.

Next, we have

∇Epϕqpekq “ 2Repϕkq.

Therefore, we deduce

}∇Epϕq}
1{m
L2m
µa

pH.S.pH1,Rqq
ď c

ÿ

k

`

Eµa

“

|k|´2m|ϕk|2m
‰˘1{m

ď cppq
ÿ

k

1

|k|a`2
ă 8.

Finally, we also have

}∇2Epϕq}
1{m
L2m
µ2

pH.S.pH1bH1,Rq
ď C

ÿ

k

|k|´4 ă 8.

�

We now turn to the estimate of }∇E}´1
H.S.pH1,Rq

.

Proposition 4.2. The random variable }∇E}´1
H.S.pH1,Rq

belongs to the space

W8.

Proof. By Chebycheff’s inequality, we have, for all t ą 0 and ε ą 0,

µat}∇Epϕq}2H.S.pH1,Rq ď εu ď etεEµa

“

e
´t}∇Epϕq}2

H.S.pH1,Rq
‰

ď Cetε
ź

k‰0

|k|a
ż 8

0

e´4t|k|´2r2´ |k|a

2
r2rdr

ď Cetε
ź

k‰0

1

1 ` 8t{|k|a`2
.
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On the other hand, we have, for some c ą 0,
ź

k‰0

´

1 `
8t

|k|a`2

¯

ě
ź

k‰0,|k|ďp8tq1{pa`2q

´

1 `
8t

|k|a`2

¯

ě 2p8tq
1

a`2

“ ect
1

a`2

.

Therefore, we deduce that for all ε ą 0,

µat}∇Epϕq}2H.S.pH1,Rq ď εu ď inf
t
etε´ct

1
a`2

“ e´cε
1

1´pa`2q
.

Thus, letting }∇Epϕq}2
H.S.pH1,Rq “ X and using the equality µap1{|X| ě

εq “ µap|X| ď 1{εq, we have

Eµa

´ 1

|X|

p¯

“

ż 8

0

pεp´1µa

´ 1

|X|
ě ε

¯

dε

ď

ż 8

0

pεp´1e´cε
1

pa`2q´1

dε ă 8

when 1 ă a ` 2 and, in particular, for a “ 2. �

5. The NLS equation and invariant measures

Following [4], if we consider the renormalised NLS equation and its corre-
sponding renormalised Hamiltonian, which is the limit in N of

HN puq “

ż

|∇u|2 `
1

2

ż

|u|4 ´ 2aN

ż

|u|2 ` a2N ,

with aN “ 2
ř

k:|k|ăN,k‰0
1

|k|2 . The corresponding Gibbs measure

dµpϕq “ lim
N
e´ 1

2

ş

|u|4´2aN
ş

|u|2`a2
Ndµ2pϕq

is invariant for the renormalised flow (4), and the measures e´HN pϕq Πdϕ

are invariant for the corresponding truncated equations. Moreover µ has a
Radon-Nikodym derivative w.r.t. µ2 which belongs to all Lp spaces (all these
statements were shown in [4]).

Therefore, by Theorem 2.1 and thanks to Propositions 4.1 and 4.2, we
can repeat the construction of the surface measures on level sets pVrq of the
mass E, starting from this weighted Wiener measure µ instead of µ2. Let
us denote by σr this surface measure on the level set of renormalised mass
equal to r.

In this section we prove the existence of a global solution of the renor-
malised cubic nonlinear Schrödinger equation in the two-dimensional torus
in a weak sense and living in the level sets of the renormalised mass. More
precisely, we have

Theorem 5.1. For each r such that ρprq “ dpE˚µq
dr

ą 0 there exists a proba-
bility space pΩ,F, P q and a random process uω P CpR, Vrq, ω P Ω, such that
for every t
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piq utpωq “ eitAu0pωq `

ż t

0

e´ipt´sqA : B :˚ puspωqqds P ´ a.s.

where : B :˚ is a redifinition of : B : as defined in Section 2.4. Moreover the
measure σr is invariant for the process, namely

piiq

ż

Ω

fputpωqqdP pωq “

ż

Vr

fdσr

for every cylindrical f functional and every t.

Proof. The proof is similar to the one of [8, Theorem 4.1] for the Euler
equation.

First notice that, given the estimates of all Sobolev norms of the field : B :

which were previously derived, one can consider a redefinition : B :˚ on each
level set Vr. By the definition of the surface measure, : B :˚ belongs also to
all Sobolev spaces with respect to this measure.

From the regularity of the finite dimensional approximations : B :n for
every n, we know that there exists a global solution vnt pϕq of the equation,
written here in its integral form,

vnt pϕq “ eitAϕ `

ż t

0

e´ipt´sqA : B :n pvns pϕqqds , ϕ P Hβ.

For every cylindrical functional f and every h P C8pRq with compact
support we have,

ż

R

hprqρprq

ż

Vr

ă pA´ : B :nqpϕq,∇fpϕq ąH1 dσrpϕqdr

“

ż

Hβ

ă hppEpϕqqpA´ : B :nqpϕq,∇fpϕq ąH1 dµpϕq

“ ´

ż

Hβ

rh1pEpϕqqpA´ : B :nq,∇E ąH1 pϕqsfpϕqdµpϕq

“ 0,

where the last equality is a consequence of the invariance of the mass and,
in particular,

ż

Hβ

ă pA´ : B :nq,∇phpEqfqq ąH1 pϕqdµpϕq “ 0.

This shows the invariance of the surface measure with respect to the flows
vnt .

Denote by Qk
n the law of rvnt sk in the space CpR`;Rq endowed with the

supremum norm, namely

Qk
npΓq “ σrptrvnpϕqsk P Γ, Γ Ă CpR`;Rquq

The index k stands here for component in the Hβ basis t 1
kβ
eku.
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On the space of probability measures over the real valued continuous path
space we consider the weak topology. We show that, for w P CpR`;Rq,

lim
RÑ8

sup
n
Qk

n

´

|wp0q| ą R
¯

“ 0,

and that for every R ą 0 and T ą 0

lim
δÑ0

sup
n
Qk

n

´

sup
0ďtďt1ďT,t1´tďδ

|wptq ´wpt1q| ě R
¯

“ 0.

For negative times the proof is analogous.
The first statement is simply due to the estimate

Qk
n

´

|wp0q| ą R
¯

ď
1

R2

ż

|wp0q|2dQk
n

“
1

R2

ż

|ϕk|2dσrpϕq,

where in the first inequality we used Chebycheff’s inequality. Concerning
the second one, we have

Qk
n

´

sup
0ďtďt1ďT,t1´tďδ

|wptq ´ wpt1q| ě R
¯

ď
1

R

ż

Vr

sup |rrvnt pϕq ´ vnt1 pϕqsk|dσrpϕq

ď
1

R
sup

´

ż

Vr

´

|reit
1Aϕ ´ eitAϕsk| `

ˇ

ˇ

ˇ

”

ż t

0

|pe´ipt´sqAq : B :n pvns pϕqqsds

´

ż t1

0

pe´ipt1´sqAq : B :n pvns pϕqq
ıkˇ

ˇ

ˇ

¯

dσrpϕq
¯

Using equalities d
dt
eitAϕ “ itAeitAϕ and

d

dt

ż t

0

pe´ipt´sqAq : B :n pvns pϕqqds

“ ´iAe´itA

ż t

0

eisA : B :n pvns pϕqqds` : B :n pvns pϕqq,
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we derive

Qk
n

´

sup
0ďtďt1ďT,t1´tďδ

|wptq ´ wpt1q| ě R
¯

ď
δ2

R2
cpk, T q

´

ż T

0

ż

r|eisAϕ|ks2dsdσrpϕq
¯

1

2

`
δ2

R2
cpk, T q

´

ż T

0

ż T

0

r|e´isAeirAϕ|ks2dsdrdσrpϕq
¯ 1

2

`
δ2

R2
cpk, T q

´

ż T

0

ż

|r: Bn : pϕqsk|2dtdσrpϕq
¯

1

2

ď
δcr

R2

ż

Vr

ż T

0

´

}ϕ}Hβ ` } : B :n pϕq}Hβ

¯

dsdσrpϕq,

where we have denoted cr a generic constant depending on r, k and T , and
the last step is a consequence of the invariance of the process with respect
to the surface measure.

The limit follows from the fact that, since the sequence t: B :nun, as well
as that of their gradients converges to : B : in all Lp

µ spaces, it also converges
(to : B :˚) in Lp

σr . Hence

Qk
n

´

sup
0ďtďt1ďT,t1´tďδ

|wptq ´ wpt1q| ě R
¯

ď
δ

R2
Tc

for some constant c, independent of n. We conclude that the sequence of
probability laws Qk

n is tight on CpR`;Rq, and therefore that we can extract a
subsequence converging weakly to a probability measure Q. By Skorohod’s
theorem there exists a probability space pΩ,F, P q and processes unt pωq “
ř

krunt pωqskek, utpωq with laws Qk
n and Qk resp., such that un¨ Ñ u¨ P -almost

surely.
We now prove (ii).
For every cylindrical functional f , we have

ż

fputpωqqdP pωq “ lim
n

ż

fpunt pωqqdP pωq

“ lim
n

ż

V r

fpvnt pϕqqdσrpϕq

“

ż

fdσr.

For the last equality we have used the invariance of the measure σr for the
flow vnt .
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Recalling that ρprq “
dpE ˚ µ2q

dr
ą 0, we have

ż

R`

ψprqρprq

ż

Vr

fpvnt pϕqqdσrpϕqdr “

ż

ψpEpϕqqfpvnt pϕqqdµpϕq

“

ż

Vr

ψpEpvn´tpϕqqfpϕqdµpϕq

“

ż

Vr

ψpEpϕqqfpϕqdµpϕq

“

ż

R`

ψprqρprq

ż

Vr

fpϕqdσrpϕqdr

for every smooth function ψ. In particular the process ut takes values in Vr.
It remains to show piq. For every k, we get for β ă 0

ż ż t

0

ˇ

ˇ

ˇ

”

e´ipt´sqA : B :n punt pωqq ´

ż t

0

e´ipt´sqA : B :˚ putpωqq
ıkˇ

ˇ

ˇ
dsdP pωq

ď

ż ż T

0

ˇ

ˇ

ˇ

”

e´ipt´sqA
´

: B :n punt q´ : B :˚ punt q
¯ıkˇ

ˇ

ˇ
dsdP

`

ż ż T

0

ˇ

ˇ

ˇ

”

e´ipt´sqA
´

: B :˚ punt q´ : B :˚ putq
¯ıkˇ

ˇ

ˇ
dsdP

ď cpkq
´

ż ż T

0

›

›

›

´

: B :n punt q´ : B :˚ punt q
¯›

›

›

Hβ
dsdP

`

ż ż T

0

›

›

›

´

: B :˚ punt q´ : B :˚ putq
¯›

›

›

Hβ
dsdP

¯

The first term converges to zero due to the invariance of the measure P and
the (L1) convergence of : Bn : to : B :˚. Concerning the second term, let
Λ Ă Hβ be a set of σr measure equal to zero such that : B :˚ is continuous
in Λc. Define

Λn “ tpt, ωq P r0, T s ˆ Ω : unt pt, ωq P Cu,

and

Λ8 “ tpt, ωq P r0, T s ˆ Ω : utpt, ωq P Cu.

We have,

ż T

0

ż

χΛpunt pωqqdP pωqdt “

ż T

0

ż

χΛpϕqdσrpϕqdt “ 0

i.e, the measure of Λn (and, analogously, of Λ), considering the Lebesgue
measure in the time coordinate, is equal to zero.

On the other hand, since un¨ converges to u¨ almost surely, consider a set
D Ă Ω such that P pDcq “ 0 where this convergence holds, in the space Hβ

and for every t P r0, T s. Then the measure of r0, T s ˆDc is zero.
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Uisng Egorov’s theorem, we conclude that, for pt, ωq in Λc
8

Ş

n Λ
c
n

Ş

pr0, tsˆ
Dcq, and β ă 0

ż ż T

0

›

›

›

´

: B :˚ punt q´ : B :˚ putq
¯›

›

›

Hβ
dsdP Ñ 0,

which concludes the proof. �

6. Appendix

In this appendix, we show a convergence result for series that were used
quite often in section 3.

Lemma 6.1. Let d “ 1, 2. For any β ă 0, it holds that

(11)
ÿ

0‰l,mPZ2

1

|l|2
1

|m|2

ÿ

kRt0,l`mu

|k|β

|l `m´ k|2
ă 8,

and

(12)
ÿ

k‰0,mRtk,k{2u

|k|β

|k ´m|4|k ´ 2m|2
ă 8.

Proof. It is immediate to see that the above series converge in dimension 1.
Let d “ 2. We first prove (11). Using a change of variable, the convergence

of the serie is equivalent to the one of

ÿ

0‰l,mPZ2

1

|l|2
1

|m|2

ÿ

kRt0,´pl`mqu

|k ` l `m|β

|k|2
.

Let λ P p0, 1q. We are going to split the sum in k into three parts.

‚ First, we take |k| ď p1 ´ λq|l `m|; this yields

ÿ

0‰kPZ2, |k|ďp1´λq|l`m|

|k ` l `m|β

|k|2
ď λβ|l`m|β

ÿ

1ďnďp1´λq|l`m|

2

n
ď Cλ|l`m|β{2.

‚ Then, we consider |k| ě p1 ` λq|l `m|. In this case, we get

ÿ

0‰kPZ2, |k|ěp1`λq|l`m|

|k ` l `m|β

|k|2
ď Cλ

ÿ

0‰kPZ2, |k|ěp1`λq|l`m|

|k|β´2

ď Cλ|l `m|β.

‚ Finally, when p1´ λq|l`m| ď |k| ď p1` λq|l`m|, i.e., |k| « |l`m|,
we have

ÿ

0‰kPZ2, |k|«|l`m|

|k ` l `m|β

|k|2
ď Cλ|l `m|β{2

ÿ

0‰kPZ2, |k|«|l`m|

|k|β{2´2

ď Cλ|l `m|β{2.



22 J.-B. CASTERAS, A. B. CRUZEIRO, AND A. MILLET

Therefore, we have to upper estimate

ÿ

0‰l,mPZ2,l`m‰0

1

|l|2
|l `m|β{2

|m|2
.

A similar argument implies that

ÿ

0‰l,mPZ2,l`m‰0

1

|l|2
|l `m|β{2

|m|2
ď C

ÿ

0‰lPZ2

|l|β{4

|l|2
ă 8,

which completes the proof of (11).
A change of variables implies that

ÿ

kRt0,m,2mu

|k|β

|k ´m|4|k ´ 2m|2
“

ÿ

kRt0,´m,mu

|k `m|β

|k|4|k ´m|2
.

A decomposition similar to the above one implies (12). �

References

[1] Hélène Airault and Paul Malliavin. Intégration géométrique sur l’espace de Wiener.
Bull. Sci. Math. (2), 112(1):3–52, 1988.

[2] Jean Bourgain. Fourier transform restriction phenomena for certain lattice subsets
and applications to nonlinear evolution equations. I. Schrödinger equations. Geom.
Funct. Anal., 3(2):107–156, 1993.

[3] Jean Bourgain. Periodic nonlinear Schrödinger equation and invariant measures.
Comm. Math. Phys., 166(1):1–26, 1994.

[4] Jean Bourgain. Invariant measures for the 2d-defocusing nonlinear Schrödinger equa-
tion. Comm. Math. Phys., 176(2):421–445, 1996.

[5] Justin T. Brereton. Invariant measure construction at a fixed mass. Nonlinearity,
32(2):496–558, 2019.

[6] Jean-Baptiste Casteras and Léonard Monsaingeon. Invariant measures and global
well-posedness for a fractional Schrödinger equation with Moser-Trudinger type non-
linearity. Stoch. Partial Differ. Equ. Anal. Comput., 12(1):416–465, 2024.

[7] Andreia Chapouto and Justin Forlano. Invariant measures for the periodic kdv and
mkdv equations using complete integrability. arXiv preprint arXiv:2305.14565, 2023.

[8] Fernanda Cipriano. The two-dimensional Euler equation: a statistical study. Comm.
Math. Phys., 201(1):139–154, 1999.

[9] Yu Deng, Andrea R. Nahmod, and Haitian Yue. Invariant Gibbs measures and global
strong solutions for nonlinear Schrödinger equations in dimension two. Ann. of Math.
(2), 200(2):399–486, 2024.

[10] Ludwig D. Faddeev and Leon A. Takhtajan. Hamiltonian methods in the theory of
solitons. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987. Trans-
lated from the Russian by A. G. Reyman [A. G. Rĕiman].
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