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Hybrid high-order methods for elasto-acoustic wave
propagation in the time domain

Romain Mottier†, Alexandre Ern‡, Rekha Khot§, Laurent Guillot¶

Abstract

We devise a Hybrid High-Order (HHO) method for the coupling between the acoustic and elastic
wave equations in the time domain. A first-order formulation in time is considered. The HHO
method can use equal-order and mixed-order settings, as well as O(1)- and O( 1

h )-stabilizations. An
energy-error estimate is established in the time-continuous case. A numerical spectral analysis is
performed, showing thatO(1)-stabilization is required to avoid excessive CFL limitations for explicit
time discretizations. Moreover, the spectral radius of the stiffness matrix is fairly independent of
the geometry of the mesh cells. For analytical solutions on general meshes, optimal convergence
rates of order (k + 1) are shown in both equal- and mixed-order settings using O(1)-stabilization,
whereas order (k + 2) is achieved in the mixed-order setting using O( 1

h )-stabilization. Test cases
with a Ricker wavelet as an initial condition showcase the relevance of the proposed method for the
simulation of elasto-acoustic wave propagation across media with contrasted material properties.

Mathematics Subjects Classification. 65M12, 65M60, 74J10, 74S05, 35L05.
Keywords. Hybrid high-order methods (HHO), Elasto-acoustic coupling, Wave equations

1 Introduction
The propagation of acoustic and elastic waves plays an important role in the modeling of various

physical phenomena in many applications, such as medical imaging and geophysical exploration. In
many of these applications, the interaction between solid and fluid domains plays a central role. The
main field of application that interests us in this paper is the propagation of waves through rocks,
water and air leading to the coupling of elastic and acoustic waves in several media with contrasted
material properties. Scenarios of interest range from relatively simple configurations, such as wave
propagation in layered media, to complex cases involving heterogeneous domains with intricate ge-
ometries. Capturing the wave propagation as well as the dynamics of wave transmission and reflection
at fluid-solid interfaces is essential to accurately predict the physical behavior of the phenomena un-
der study. Additionally, employing discretization schemes with moderate numerical dispersion and
dissipation is critical to the reliability of simulations.

These challenges motivate the development of advanced numerical methods that can address the
complexity of coupled wave problems in the time domain. Finite Differences (FD) are one of the
most widely used methods due to their conceptual simplicity and computational efficiency. However,
they have several limitations. In particular, FD methods meet with difficulties in complex geometries
and are subject to geometrical errors by commiting inaccuracies at interfaces [26], although geometric
mappings can enhance flexibility [2]. Moreover, FD methods are also subject to numerical dispersion,
which can be tempered by using high-order schemes. However, high-order FD schemes require large
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stencils which can hinder parallel scalability, and their explicit time discretization can be challenging
[22]. An alternative to high-order FD methods are high-order continuous finite elements (see [10]
for a review). These methods provide a natural way to handle non-planar complex geometries with
interfaces. However, their efficiency is hampered by implicit time-stepping due to a global non-diagonal
mass matrix, and the simulations can be polluted by spurious modes [20]. To make explicit time-
stepping possible, Spectral Element Methods (SEM) were introduced. These methods align quadrature
points with Lagrangian interpolation nodes that are Gauss–Lobatto–Legendre points, leading to a
diagonal mass matrix (mass lumping), without loss in accuracy. The main drawback of SEM is to rely
almost exclusively on quadrangular/hexahedral meshes with tensorization of quadrature nodes to be
very efficient, making the discretization of complicated geometries quite challenging.

To obtain more geometric flexibility, discontinuous Galerkin (dG) methods were introduced both in
first-order [17, 21] and second-order time formulations [19] of the wave equation (see [1] for the elasto-
acoustic coupled problem). In general, in dG schemes for the first-order order formulation in time,
stabilization acts as a dissipative mechanism, whereas it is possible to identify a discrete energy that
is conserved for the second-order time formulation. For an energy-conserving dG discretization of the
first-order formulation, see [5] where some continuity of the unknowns is enforced. The main drawback
of dG methods is their computational cost since they involve much more degrees of freedom than
continuous finite element methods. Hybridizable Discontinuous Galerkin (HDG) methods [9] introduce
an aditional unknown defined over the mesh skeleton and offer a reduction of the computational cost
by the use of static condensation. Moreover, in a coupling wave context, HDG methods weakly enforce
in a seemless way the transmission conditions at the interface [25].

Coupled elasto-acoustic wave propagation has also been adressed in the frequency domain. In
particular, mixed finite element formulations have been proposed in [18] using a dual-mixed formulation
in the solid region, and a standard primal formulation in the fluid region. In this context, the key
challenge lies in coupling the solid stress tensor with the Helmholtz equation governing the fluid
pressure. This is achieved by enforcing one of the transmission conditions weakly using a Lagrange
multiplier.

The present work focuses on the coupling between elastic and acoustic wave equations in the time
domain in the first-order formulation within the framework of hybrid high-order (HHO) methods
for space semi-discretization. HHO methods make use of polynomials of arbitrary order (k ≥ 1 for
elasticity, k ≥ 0 for diffusion) attached to the mesh faces and polynomials of order k′ ∈ {k, k + 1}
attached to the mesh cells [7, 13]. Initially developed for linear diffusion problems [12] and locking-
free linear elasticity [11], HHO methods offer several advantages, including the natural handling of
polyhedral and nonconforming meshes, local conservativity, and optimal convergence rates (order
(k+1) in the energy norm). Additionally, a static condensation procedure enables the local elimination
of the cell unknowns, enhancing computational efficiency. HHO methods rely on two locally defined
operators: a gradient reconstruction operator and a stabilization operator. The close connection
between HHO, HDG and Weak Galerkin (WG) methods has been established in [8]. HHO methods
have been extended to wave propagation in [4, 3] for both first- and second-order time formulations, see
also [16, 23] for further developments on explicit time schemes for the second-order in time formulation
of the wave equation. As HDG methods, a key advantage of HHO methods is their easy handling
of coupling conditions through face-based degrees of freedom, which enables a natural and efficient
treatment of interface conditions in multiphysics problems.

The present work brings several advances in the development and analysis of Hybrid High-Order
(HHO) methods for coupled elasto-acoustic wave propagation. Our first contribution is an energy-error
estimate in the space semi-discrete case. In particular, we leverage the fact that the coupling terms
exhibit an anti-symmetric, and thus non-dissipative, structure. We improve on the analysis in [4]
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since we treat coupled elasto-acoustic wave problems, and we simplify the error estimate by exploiting
tighter consistency properties of the method. Our second contribution is a spectral analysis of the
resulting algebraic formulation, that reveals a behavior of the spectral radius of the stiffness matrix as
min(η, 1/η) with η the scaling of the stabilization. Interestingly, this scaling is fairly independent of
the geometry of the mesh cells (triangular, quadrangular or polygonal). Thus, explicit time schemes
are recommended with O(1)-stabilization, whereas implicit time schemes can be combined with either
O(1)- or O( 1

h)-stabilization (see Remark 3.1 for the scaling of the stabilization). The third contribution
concerns optimal convergence rates for smooth solutions where we observe that O( 1

h)-stabilization
leads to improved rates in the energy norm (order (k+ 2) instead of (k+ 1)). The last contribution is
a more realistic study featuring interface, Rayleigh-type waves and complex transmission phenomena
where we perform a comparison of HHO solutions with semi-analytical solutions. Notice that our
discretization method differs from [25] since the primal variable in the fluid domain is the pressure
here, whereas it is the fluid velocity in [25]. Moreover, we allow for implicit and explicit schemes as well
as O(1)- and O( 1

h)-stabilizations, whereas [25] focuses on explicit time schemes and O(1)-stabilization.
The paper is organized as follows. In Section 2, we present the model problem for the elasto-acoustic

coupling as well as its weak formulation. In Section 3, we detail the HHO space semi-discretization.
In Section 4 we present the energy-error analysis in the time-continuous setting. In Section 5, the
algebraic realization of the space semi-discrete problem is discussed. Finally, numerical results are
presented in Section 6.

2 Model problem
This section introduces the domain configuration, and the coupling of the acoustic and elastic

wave equations. We use boldface (resp. blackboard) fonts for vectors (resp. tensors), as well as for
vector-valued (resp. tensor-valued) fields and spaces composed of such fields.

Let J := (0, Tf) be the time interval with the final time Tf > 0, and Ω be a polyhedral domain in
Rd, d ∈ {2, 3} (open, bounded, connected, Lipschitz subset of Rd). We consider a partition of Ω such
that Ω := Ωs ∪ Ωf into two disjoint, open, polyhedral subdomains Ωs and Ωf constituting the elastic
medium and the acoustic medium, respectively, sharing the polygonal interface Γ := ∂Ωs ∩ ∂Ωf. We
fix the unit normal vector nΓ to Γ as conventionally pointing from Ωs to Ωf.

Γ
nΓ

∂Ωs\Γ

Ωs
∂Ωf\Γ

Ωf

Fig. 1: Elastic domain Ωs, acoustic domain Ωf, and unit normal nΓ along the interface Γ

2.1 Strong formulation

Acoustic wave equation. The acoustic wave equation governs the scalar pressure field p [Pa] and
the velocity field m

[m
s
]
solving the following PDE system in J × Ωf:

ρf∂tm−∇p = 0, (2.1a)
1
κ
∂tp−∇·m = g, (2.1b)
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with the fluid density ρf
[

kg
m3

]
, the fluid bulk modulus κ [Pa], and the source term g

[
1
s

]
. The celerity

of the acoustic waves is cf
p :=

√
κ/ρf [m

s
]
. We assign the initial conditions

p(0) = p0 and m(0) = m0, (2.2)

with given data p0 andm0. For simplicity, we enforce homogeneous Dirichlet boundary conditions on
p on ∂Ωf\Γ.

Elastic wave equation. Let ∇sym := 1
2(∇ +∇†) be the symmetric gradient operator. The elastic

wave equation governs the (linearized) Cauchy stress tensor s [Pa] and the velocity field v
[m

s
]
solving

the following PDE system in J × Ωs:

C−1∂ts−∇symv = 0, (2.3a)
ρs∂tv −∇·s = f , (2.3b)

with the solid density ρs
[

kg
m3

]
and the source term f

[
Pa
m

]
. In the framework of isotropic elasticity,

the 4th-order Hooke tensor C [Pa] only depends on the Lamé parameters λ [Pa] and µ [Pa], and is such
that Cijkl := λδijδkl + µ(δikδjl + δilδjk), where the δ’s are Kronecker symbols. In this setting, there
are two wave speeds

[m
s
]
related to two types of body waves, far from material interfaces:

cs
p :=

√
(λ+ 2µ) /ρs for compressional (or P-) waves, (2.4a)

cs
s :=

√
µ/ρs for shear (or S-) waves. (2.4b)

We do not consider here the incompressible limit as λ
µ � 1, so that both wave speeds in (2.4) are of

similar magnitude. We assign the initial conditions

v(0) = v0 and s(0) = s0, (2.5)

with given data v0 and s0. For simplicity, we enforce homogeneous Dirichlet boundary conditions on
v on ∂Ωs\Γ.

Coupled problem. The interface conditions on J × Γ are

v·nΓ = m·nΓ, (2.6a)
s·nΓ = p nΓ, (2.6b)

where the first equation is a kinematic condition and the second equation is a balance of forces per
unit surface (namely, tractions) at the interface.

2.2 Weak formulation

We define the functional spaces

H1
0Γ(Ωf) := {p ∈ H1(Ωf) : p|∂Ωf\Γ = 0}, (2.7a)

H1
0Γ(Ωs) := {v ∈H1(Ωs) : v|∂Ωs\Γ = 0}, (2.7b)

taking into account the homogeneous Dirichlet boundary conditions. Focusing for simplicity on
a smooth solution in time, the coupled elasto-acoustic wave problem consists of finding (m, p) ∈
C1(J ;L2(Ωf)) × (C1(J ;L2(Ωf)) ∩ C0(J ;H1

0Γ(Ωf))) and (s,v) ∈ C1(J ;L2
sym(Ωs)) × (C1(J ;L2(Ωs)) ∩
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C0(J ;H1
0Γ(Ωs))) such that, for all (r, q) ∈ L2(Ωf)×H1

0Γ(Ωf), all (b,w) ∈ L2
sym(Ωs)×H1

0Γ(Ωs), and
all t ∈ J,

(∂tm(t), r)L2(ρf;Ωf) − (∇p(t), r)L2(Ωf) = 0, (2.8a)

(∂tp(t), q)L2( 1
κ

;Ωf) + (m(t),∇q)L2(Ωf) + (v(t)·nΓ, q)L2(Γ) = (g(t), q)L2(Ωf), (2.8b)

and

(∂ts(t),b)L2(C−1;Ωs) − (∇symv(t),b)L2(Ωs) = 0, (2.9a)
(∂tv(t),w)L2(ρs;Ωs) + (s(t),∇symw)L2(Ωs) − (p(t)nΓ,w)L2(Γ) = (f(t),w)L2(Ωs). (2.9b)

Notice that the coupling condition (2.6a) is enforced weakly in (2.8b), and the coupling condition
(2.6b) is enforced weakly in (2.9b).

2.3 Mechanical energy.

The total mechanical energy E(t) := Es(t)+Ef(t) of a wave propagating through an elasto-acoustic
medium is expressed as the sum of the mechanical energy in each medium involving the kinetic and
the potential energy as follows:

Ef(t) := 1
2‖m(t)‖2L2(ρf;Ωf) + 1

2‖p(t)‖
2
L2( 1

κ
;Ωf), Es(t) := 1

2‖v(t)‖2L2(ρs;Ωs) + 1
2‖s(t)‖

2
L2(C−1;Ωs).

The following result is well-known, but we present it for completeness.

Lemma 2.1 (Energy balance). The following energy balance holds: For all t ∈ J ,

E(t) = E(0) +
∫ t

0

{
(g(τ), p(τ))L2(Ωf) + (f(τ),v(τ))L2(Ωs)

}
dτ. (2.10)

Proof. Testing (2.8) with (m(t), p(t)) and (2.9) with (s(t),v(t)) gives

(∂tm(t),m(t))L2(ρf;Ωf) − (∇p(t),m(t))L2(Ωf) = 0, (2.11a)

(∂tp(t), p(t))L2( 1
κ

;Ωf) + (m(t),∇p(t))L2(Ωf) + (v(t)·nΓ, p(t))L2(Γ) = (g(t), p(t))L2(Ωf), (2.11b)

and

(∂ts(t), s(t))L2(C−1;Ωs) − (∇symv(t), s(t))L2(Ωs) = 0, (2.12a)
(∂tv(t),v(t))L2(ρs;Ωs) + (s(t),∇symv(t))L2(Ωs) − (p(t)nΓ,v(t))L2(Γ) = (f(t),v(t))L2(Ωs). (2.12b)

Summing (2.11a)-(2.11b) and (2.12a)-(2.12b), we get

d
dtE

f(t) = (g(t), p(t))L2(Ωf) − (v(t)·nΓ, p(t))L2(Γ),

d
dtE

s(t) = (f(t),v(t))L2(Ωs) + (p(t)nΓ,v(t))L2(Γ).

Summing the two equations and integrating over (0, t) for all t ∈ J proves the claim.

3 HHO space semi-discretization
This section presents the key ingredients of the HHO discretization, namely the discrete spaces

and the discrete operators leading to the space semi-discrete HHO formulation.
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3.1 Meshing and discrete spaces

Admissible mesh. Let T be a polyhedral mesh of Ω that fits the partition of Ω into Ωs and Ωf. For
simplicity, we assume that all the material properties are piecewise constant on T . We define the two
sub-meshes T s and T f which cover exactly Ωs and Ωf, respectively. The mesh faces are collected in the
set F which is split into F := F◦∪F ∂, where F◦ collects all the mesh interfaces (inside Ω, including on
Γ) and F ∂ collects all the mesh boundary faces on ∂Ω. With obvious notation, we further decompose
F◦ := F◦f ∪ F◦s ∪ FΓ and F ∂ := F ∂f ∪ F ∂s. Later on, we also use the notationMf := (T f,Ff) and
Ms := (T s,Fs) where Ff := F◦f∪F ∂f∪FΓ and Fs := F◦s∪F ∂s∪FΓ. A generic mesh cell is denoted
T ∈ T , its diameter hT , its unit outward normal nT , and the faces composing the boundary of T
are collected in the subset F∂T ⊂ F . We also set h̃T := hT

`Ω
, where the scaling by `Ω := diam(Ω) is

introduced for dimensional consistency.

Approximation spaces. In each subdomain, we consider a mixed formulation with one primal
variable (p and v) and one dual variable (m and s). The idea is to discretize the primal variables
using the HHO method and the dual variables using a classical dG approach. Let k ≥ 1 be the
polynomial degree. The dG variables are piecewise polynomials of order k, whereas the HHO variables
are composed of a pair with one cell component and one face component. The cell component is a
piecewise polynomial of order k′ ∈ {k, k + 1} and the face component is a piecewise polynomial of
order k ≥ 1. The HHO discretization is said to be of equal-order if k′ = k and of mixed-order if
k′ = k + 1.

vF

vT

pF

pT
sT vT

Elastic unknowns Acoustic unknowns

Fig. 2: Elasto-acoustic unknowns with a equal-order discretization (k′ = k = 1). Left panel: Primal variables
discretized using HHO. Right panel: Dual variables discretized using dG.

Let ` ≥ 0. We introduce the local polynomial spaces P`sym(T ), P `(T ) and P `(T ) (resp. P `(F ) and
P `(F )) as the restrictions to T (resp. F ) of symmetric tensor-, vector- and scalar-valued d-variate
polynomials of degree at most ` (resp. (d− 1)-variate polynomials of degree at most `).

Acoustic wave equation. The discrete dG and HHO spaces are

Mk(T f) := ×
T∈T f

P k(T ), P̂ k(Mf) := P k
′(T f)× P k(Ff), (3.1)

where P k′(T f) := ×
T∈T f

P k
′(T ) and P k(Ff) := ×

F∈Ff
P k(F ). The global and local generic elements in

P̂ k(Mf) are denoted by

p̂Mf := (pT f , pFf) ∈ P̂ k(Mf), p̂T := (pT , p∂T ) ∈ P̂ kT := P k
′(T )× P k(F∂T ) ∀T ∈ T f, (3.2)

where p∂T := (pF )F∈F∂T and P k(F∂T ) := ×
F∈F∂T

P k(F ). Moreover, to enforce the homogeneous Dirich-

let boundary condition on p, we consider the subspace

P̂ k0 (Mf) :=
{
p̂Mf ∈ P̂ k(Mf) | pF = 0, ∀F ∈ F ∂f

}
. (3.3)
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For all t ∈ J , we approximate the pressure p(t) by a HHO unknown p̂Mf(t) ∈ P̂ k0 (Mf) and the velocity
m(t) by a dG unknown mT f(t) ∈Mk(T f).

Elastic wave equation. The discrete dG and HHO spaces are

Sksym(T s) := ×
T∈T s

h

Pksym(T ), V̂ k(Ms) := V k′(T s)× V k(Fs), (3.4)

where V k′(T s) := ×
T∈T s

P k′(T ) and V k(Fs) := ×
F∈Fs

P k(F ). The global and local generic elements in

V̂ k(Ms) are denoted by

v̂Ms := (vT s ,vFs) ∈ V̂ k(Ms), v̂T := (vT ,v∂T ) ∈ V̂ k
T := P k′(T )× P k(F∂T ) ∀T ∈ T s, (3.5)

where v∂T := (vF )F∈F∂T and P k(F∂T ) := ×
F∈F∂T

P k(F ). Moreover, to enforce the homogeneous

Dirichlet boundary condition on v, we consider the subspace

V̂ k
0(Ms) :=

{
v̂Ms ∈ V̂ k(Ms) | vF = 0, ∀F ∈ F ∂s

}
. (3.6)

For all t ∈ J , we approximate the velocity v(t) by a HHO unknown v̂Ms(t) ∈ V̂ k
0(Ms) and the stress

tensor s(t) by a dG unknown sT s(t) ∈ Sksym(T s).

L2-orthogonal projections. Let Πk′
T (resp., Πk

F and Πk
∂T ) be the local L2(T )- (resp., L2(F )- and

L2(∂T )-) orthogonal projection onto P k′(T ) (resp., P k(F ) and P k(F∂T )). Let Πk′
T • (resp. Πk

F•) be
the global L2-orthogonal projections onto P k′(T •) (resp. P k(F•)) with • ∈ {f, s}. A similar notation
is used for vector- and tensor-valued fields.

3.2 HHO local operators

The HHO discretization is formulated locally using the following two key operators:

i) a local gradient reconstruction operator for the acoustic wave equation and a local symmetric
gradient reconstruction operator for the elastic wave equation;

ii) a stabilization operator that penalizes the difference between the trace of the cell unknowns and
the face unknowns for the HHO components on both subdomains.

The discrete problem is then assembled by summing the contributions of all the mesh cells.

Acoustic wave equation. We define the local gradient reconstruction operator gT : P̂ kT → P k(T )
such that, for all p̂T ∈ P̂ kT ,

(gT (p̂T ), r)L2(T ) = (∇pT , r)L2(T ) − (pT − p∂T , r·nT )L2(∂T ), ∀r ∈ P k(T ). (3.7)

Notice that gT (p̂T ) can be evaluated componentwise by inverting the mass matrix associated with a
basis of the scalar-valued polynomial space P k(T ).

We define the local stabilization operator S∂T : P̂ kT → P k(F∂T ) such that, for all p̂T ∈ P̂ kT ,

S∂T (p̂T ) := Πk
∂T (δ∂T (p̂T )) with δ∂T (p̂T ) := pT |∂T − p∂T . (3.8)

We define the global gradient reconstruction operator gT f : P̂ k(Mf) → Mk(T f) as gT f(p̂h)|T :=
gT (p̂T ) for all T ∈ T f and all p̂Mf ∈ P̂ k(Mf), and the global stabilization bilinear form sMf on
P̂ k(Mf)× P̂ k(Mf) as

sMf(p̂Mf , q̂Mf) :=
∑
T∈T f

τf
T (S∂T (p̂T ), S∂T (q̂T ))L2(∂T ), ∀p̂Mf , q̂Mf ∈ P̂ k(Mf), (3.9)
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where, for all T ∈ T f, the stabilization parameter τf
T > 0 is taken equal to (see also Remark 3.1 below)

τf
T := λfh̃−αT with λf := (ρfcf

p)−1 = cf
pκ
−1, α ∈ {0, 1}. (3.10)

Elastic wave equation. We define the local symmetric gradient reconstruction operator gsym
T :

V̂ k
T → Pksym(T ) such that, for all v̂T ∈ V̂ k

T ,

(gsym
T (v̂T ),b)L2(T ) = (∇symvT ,b)L2(T ) − (vT − v∂T ,b·nT )L2(∂T ), ∀b ∈ Pksym(T ). (3.11)

Notice that gsym
T (vT ) can be evaluated componentwise by inverting the mass matrix associated with

a basis of the scalar-valued polynomial space P k(T ).
We define the local stabilization operator S∂T : V̂ k

T → P k(F∂T ) such that, for all v̂T ∈ V̂ k
T ,

S∂T (v̂T ) := Πk
∂T (δ∂T (v̂T )) with δ∂T (v̂T ) := vT |∂T − v∂T . (3.12)

We define the global symmetric gradient reconstruction operator gsym
T s : V̂ k(Ms) → Sksym(T s) as

g
sym
T s (v̂Ms)|T := g

sym
T (v̂Ms) for all T ∈ T s and all v̂Ms ∈ V̂ k(Ms), and the global stabilization

bilinear form sMs on V̂ k(Ms)× V̂ k(Ms) as

sMs(v̂Ms , ŵMs) :=
∑
T∈T s

τ s
T (S∂T (v̂T ),S∂T (ŵT ))L2(∂T ), ∀v̂Ms , ŵMs ∈ V̂ k(Ms), (3.13)

where, for all T ∈ T s, the stabilization parameter τ s
T > 0 is taken equal to

τ s
T = λsh̃−αT with λs := ρscs, α ∈ {0, 1}, (3.14)

and cs can be any of the two wave speeds defined in (2.4).

Remark 3.1 (Stabilization parameter). Notice from (3.8) and (3.12) that the stabilization operators
considered in the paper are the same regardless of the discretization setting (equal- or mixed-order) and
correspond to plain least-squares stabilization in the equal-order setting. This choice is standard for
O(1)-stabilization (α = 0) in the first-order formulation of wave problems discretized using dG method
and was also considered recently in [15] in the context of HHO methods. However, O( 1

h)-stabilization
(α = 1) can be useful in certain situations (see Remark 4.4 and numerical results from Section 6 for
further discussion). Notice also that the scaling of λf in (3.10) and λs in (3.14) differs; this is actually
the physically consistent scaling and stems from the fact that the primal variables in both subdomains
have different units.

3.3 HHO discretization for the first-order coupling formulation

The space semi-discrete problem for the coupled elasto-acoustic wave problem reads as follows:
Find (mT f , p̂Mf) ∈ C1(J ;Mk(T f) × P̂ k0 (Mf)) and (sT s , v̂Ms) ∈ C1(J ;Sksym(T s) × V̂ k

0(Ms)) such
that, for all (rT f , q̂Mf) ∈Mk(T f)× P̂ k0 (Mf) and all (bT s , ŵMs) ∈ Sksym(T s)× V̂ k

0(Ms), and all t ∈ J ,

(∂tmT f(t), rT f)L2(ρf;Ωf) − (gT f(p̂Mf(t)), rT f)L2(Ωf) = 0, (3.15a)

(∂tpT f(t), qT f)L2( 1
κ

;Ωf) + (mT f(t), gT f(q̂Mf))L2(Ωf)

+ sMf(p̂Mf(t), q̂Mf) + (vFs(t)·nΓ, qFf)L2(Γ) = (g(t), qT f)L2(Ωf), (3.15b)

and

(∂tsT s(t),bT s)L2(C−1;Ωs) − (gsym
T s (v̂Ms(t)),bT s)L2(Ωs) = 0, (3.16a)

(∂tvT s(t),wT s)L2(ρs;Ωs) + (sT s(t),gsym
T s (ŵMs))L2(Ωs)

+ sMs(v̂Ms(t), ŵMs)− (pFf(t)nΓ,wFs)L2(Γ) = (f(t),wT s)L2(Ωs). (3.16b)
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The initial conditions for the discrete coupled problemmT f(0), p̂Mf(0), sT s(0), and v̂Ms(0) are further
discussed in Section 4.

We emphasize the seamless enforcement of the coupling conditions in (3.15b) and (3.16b) exploiting
the fact that face unknowns are readily available on Γ in the HHO setting. Moreover, the total discrete
mechanical energy over the elasto-acoustic domain Ω is defined as Eh(t) := Ef

h(t) + Es
h(t) with

Ef
h(t) := 1

2‖mT (t)‖2L2(ρf;Ωf) + 1
2‖pT (t)‖2

L2( 1
κ

;Ωf), Es
h(t) := 1

2‖vT (t)‖2L2(ρs;Ωs) + 1
2‖sT (t)‖2

L2(C−1;Ωs).

Lemma 3.1 (Semi-discrete energy balance). The following discrete energy balance holds: For all
t ∈ J ,

Eh(t) +
∫ t

0

{
sMf(p̂h(τ), p̂h(τ)) + sMs(v̂h(τ), v̂h(τ))

}
dτ =

Eh(0) +
∫ t

0

{
(g(τ), pT (τ))L2(Ωf) + (f(τ),vT (τ))L2(Ωs)

}
dτ . (3.17)

Proof. Similar to the proof of Lemma 2.1.

4 Error analysis
In this section, we prove an energy-error estimate for the space semi-discrete problem (3.15)-(3.16)

by using suitable interpolation operators. Here onwards, the inequality a ≤ Cb for positive numbers
a and b is abbreviated as a . b, where the value of C is independent of the mesh-size h, the material
parameters, the length scale `Ω, and the time scale Tf . The value of C can depend on the mesh
shape-regularity, the polynomial degree, the space dimension, and the ratio λ

µ .

4.1 Interpolation operators

Inspired from [15], we use, in both subdomains, the H+ interpolation operator from [14] to ap-
proximate the dG variable and the classical HHO interpolation operator (based on L2-orthogonal
projections) to approximate the HHO variable.

In the acoustic part, we employ the H+ interpolation operator Ih+
T : Hν(T )→ P k(T ), ν ∈ (1

2 , 1],
defined for all T ∈ T f as follows: We consider the L2-orthogonal decomposition

P k(T ) = ∇P k+1
* (T )⊕Zk(T ), (4.1)

where P k+1
* (T ) := {q ∈ P k+1(T ) : (q, 1)L2(T ) = 0} and Zk(T ) := ∇P k+1

* (T )⊥∩P k(T ) (orthogonalities
are understood in L2). Then, for all m ∈ Hν(T ), we define Ih+

T (m) ∈ P k(T ) from the following
conditions:

(Ih+
T (m)−m, r)L2(T ) = 0 ∀r ∈ Zk(T ), (4.2a)

(Ih+
T (m)−m,∇q)L2(T ) = (Πk

∂T (m·nT )−m·nT , q)L2(∂T ) ∀q ∈ P k+1
* (T ). (4.2b)

Notice that (4.2b) actually holds true for all q ∈ P k+1(T ). For all T ∈ T f, the interpolation operator
Ih+
T is well-defined and the following holds for all `m ∈ [ν, k + 1] (see [14, Prop. 2.1] for a proof):

‖Ih+
T (m)−m‖L2(T ) + h

1
2
T ‖I

h+
T (m)−m‖L2(∂T ) . h

`m
T |m|H`m (T ). (4.3)

The global interpolation operator Ih+
T f : Hν(Ωf)→ P k(T f) is defined as (Ih+

T f (m))|T := Ih+
T (m|T ) for

all T ∈ T f and all m ∈ Hν(Ωf). For the HHO variable, we employ the standard HHO interpolation
operator Îhho

Mf : H1
0Γ(Ωf)→ P̂ k0(Mf) defined, for all p ∈ H1

0Γ(Ωf), by

Îhho
Mf (p) := (Πk′

T f(p),Πk
Ff(p|Ff)) ∈ P̂ k0(Mf). (4.4)
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In the elastic part, we employ the H+ interpolation operator Ih+
T s : Hν

sym(Ωs) → Pksym(T s), ν ∈
(1

2 , 1], defined for all T ∈ T s as follows: We consider the L2-orthogonal decomposition

Pksym(T ) = ∇symP
k+1
* (T )⊕ Zksym(T ), (4.5)

where P k+1
* (T ) := [P k+1

∗ (T )]d := {q ∈ P k+1(T ) : (q, ei)L2(T ) = 0 ∀i ∈ {1, . . . , d}} with the canonical
basis (ei)i∈{1,...,d} of Rd, and Zksym(T ) := ∇symP

k+1
* (T )⊥ ∩ Pksym(T ). Then, for all s ∈ Hν

sym(Ωs), we
define Ih+

T (s) ∈ Pksym(T ) from the following conditions:

(Ih+
T (s)− s,b)L2(T ) = 0 ∀b ∈ Zksym(T ), (4.6a)

(Ih+
T (s)− s,∇symw)L2(T ) = (Πk

∂T (s·nT )− s·nT ,w)L2(∂T ) ∀w ∈ P k+1
* (T ). (4.6b)

For all T ∈ T s, the interpolation operator Ih+
T is well-defined and the following holds for all `s ∈

[ν, k + 1] (see [14, Prop. 3.1] for a proof):

‖Ih+
T (s)− s‖L2(T ) + h

1
2
T ‖I

h+
T (s)− s‖L2(∂T ) . h

`s
T |s|H`s (T ). (4.7)

The global interpolation operator Ih+
T s : Hν

sym(Ωs)→ Pksym(T s) is defined as (Ih+
T s (s))|T := Ih+

T (s|T ) for
all T ∈ T s and all s ∈ Hν

sym(Ωs). For the HHO variable, we employ the HHO interpolation operator
Îhho
Ms : H1

0Γ(Ωs)→ V̂ k
0(Ms) defined, for all v ∈H1

0Γ(Ωs), by

Îhho
Ms (v) := (Πk′

T s(v),Πk
Fs(v|Fs)) ∈ V̂ k

0(Ms). (4.8)

Now, we define some notation to be used for the error analysis in the next section. For all
p̂Mf ∈ P̂ k0(Mf) and all v̂Ms ∈ V̂ k

0(Ms), the HHO norms are (classically) defined as follows:

‖p̂Mf‖2hho,f :=
∑
T∈T f

λf
(
‖∇pT ‖2L2(T ) + h−1

T ‖p∂T − pT ‖
2
L2(∂T )

)
, (4.9)

and

‖v̂Ms‖2hho,s :=
∑
T∈T s

λs
(
‖∇symvT ‖2L2(T ) + h−1

T ‖v∂T − vT ‖
2
L2(∂T )

)
, (4.10)

where λf and λs are defined in (3.10) and (3.14), respectively. We set

|p̂Mf |2Sf := sMf(p̂Mf , p̂Mf) and |v̂Ms |2Ss := sMs(v̂Ms , v̂Ms). (4.11)

For linear functionals φMf ∈ (P̂ k0(Mf))′ and φMs ∈ (V̂ k
0(Ms))′, we define the following quantities:

‖φMf‖(hho,f)′ := sup
q̂Mf∈P̂k0(Mf)

|φMf(qMf)|
‖q̂Mf‖hho,f

, ‖φMs‖(hho,s)′ := sup
ŵMs∈V̂ k0(Ms)

|φMs(ŵMs)|
‖ŵMs‖hho,s

, (4.12a)

‖φMf‖(Sf)′ := sup
q̂Mf∈P̂k0(Mf)

|φMf(q̂Mf)|
|q̂Mf |Sf

, ‖φMs‖(Ss)′ := sup
ŵMs∈V̂ k0(Ms)

|φMs(ŵMs)|
|ŵMs |Ss

. (4.12b)

The seminorms in (4.12b) may be unbounded for general linear functionals φMf and φMs , but we
will see that they remain bounded for the consistency errors. For all (m, p) ∈ Hν(Ωf) × H1

0Γ(Ωf),
ν ∈ (1

2 , 1], we define the augmented seminorm

|(m, p)|2#,f :=
∑
T∈T f

{
h̃αT ‖B∂T (m)·nT ‖2L2( 1

λf ;∂T ) + hT h̃
−α
T ‖∇BT (p)‖2L2(λf;T )

}
, (4.13)
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with B∂T (m) := (m − Ih+
T (m))|∂T and BT (p) := p − Πk′

T (p) for all T ∈ T f. For all (s,v) ∈
Hν(Ωs)×H1

0Γ(Ωs), ν ∈ (1
2 , 1], we define the augmented seminorm

|(s,v)|2#,s :=
∑
T∈T s

{
h̃αT ‖B∂T (s)·nT ‖2L2( 1

λs ;∂T ) + hT h̃
−α
T ‖∇symBT (v)‖2

L2(λs;T )

}
, (4.14)

with B∂T (s) := (s− Ih+
T (s))|∂T and BT (v) := v −Πk′

T (v) for all T ∈ T s.
Finally, for all t ∈ (0, Tf ] and the time interval Jt := (0, t), we set the following notation:

‖q‖pLp(Jt;∗) :=
∫
Jt
‖q(τ)‖p∗ dτ for all p ∈ [1,∞), ‖q‖C0(Jt;∗) := sup

s∈Jt
‖q(s)‖∗, (4.15)

where ‖ · ‖∗ is a seminorm or a norm depending on the context.

4.2 Energy-error estimate

We are now ready to state and prove our main error estimate.

Theorem 4.1 (Energy-error estimate). Let (m, p) and (s,v) solve (2.8) and (2.9) with the initial
conditions (2.2) and (2.5), respectively, and assume that m ∈ C1(J ;Hν(Ωf)) and s ∈ C1(J ;Hν(Ωs)),
ν ∈ (1

2 , 1]. Let (mT f , p̂Mf) and (sT s , v̂Ms) solve (3.15) and (3.16) with the initial conditions p̂Mf(0) =
Îhho
Mf (p0),mT f(0) = Ih+

T f (m0), v̂Ms(0) = Îhho
Ms (v0), and sT s(0) = Ih+

T s (s0), respectively. The following
holds for all t ∈ (0, Tf ]:

‖m−mT f‖2
C0(Jt;L2(ρf;Ωf)) + ‖p− pT f‖2

C0(Jt;L2( 1
κ

;Ωf)) + ‖s− sT s‖2
C0(Jt;L2(C−1;Ωs))

+ ‖v − vT s‖2
C0(Jt;L2(ρs;Ωs))

. ‖m− Ih+
T f (m)‖2

C0(Jt;L2(ρf;Ωf)) + ‖∂tm− Ih+
T f (∂tm)‖2L1(Jt;L2(ρf;Ωf)) + ‖p−Πk

T f(p)‖2
C0(Jt;L2( 1

κ
;Ωf))

+ ‖s− Ih+
T s (s)‖2

C0(Jt;L2(C−1;Ωs)) + ‖∂ts− Ih+
T s (∂ts)‖2L1(Jt;L2(C−1;Ωs)) + ‖v −Πk

T s(v)‖2
C0(Jt;L2(ρs;Ωs))

+ ‖(m, p)‖2L2(Jt;#,f) + ‖(s,v)‖2L2(Jt;#,s). (4.16)

Proof. (1) Error equations. For all t ∈ J , we define the discrete errors as follows:

NT f(t) := mT f(t)− Ih+
T f (m(t)), NT s(t) := sT s(t)− Ih+

T s (s(t)), (4.17a)
êMf(t) := p̂Mf(t)− Îhho

Mf (p(t)), êMs(t) := v̂Ms(t)− Îhho
Ms (v(t)). (4.17b)

The first equation (3.15a) in the discrete problem leads, for all rT f ∈Mk(T f) and all t ∈ J , to

(∂tNT f(t), rT f)L2(ρf;Ωf) − (gT f(êMf(t)), rT f)L2(Ωf)

= −(Ih+
T f (∂tm(t)), rT f)L2(ρf;Ωf) + (gT f(Îhho

Mf (p(t))), rT f)L2(Ωf)

= (∂tm(t)− Ih+
T f (∂tm(t)), rT f)L2(ρf;Ωf), (4.18)

where we used that Ih+
T f (∂t•) = ∂tI

h+
T f (•), gT f(Îhho

h (p(t))) = Πk
T f(∇p(t)) = Πk

T f(ρf∂tm(t)) (the first
equality follows from the definition of gT f and the second from (2.1a)), and the L2-orthogonality of
Πk
T f . Analogously, using (3.16a), Ih+

T s (∂t•) = ∂tI
h+
T s (•) and the identity gsym

T s (Îhho
h (v(t)) = �kT s(∇symv(t))

= �kT s(C−1∂ts(t)), we have, for all bT s ∈ Sksym(T s) and all t ∈ J ,

(∂tNT s(t),bT s)L2(C−1;Ωs) − (gsym
T s (êMs(t)),bT s)L2(Ωs) = (∂ts(t)− Ih+

T s (∂ts(t)),bT s)L2(C−1;Ωs). (4.19)
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The second equation (3.15b) in the discrete problem and (2.1b) in the continuous problem show that,
for all q̂Mf ∈ P̂ k0(Mf) and all t ∈ J ,

(∂teT f(t), qT f)L2( 1
κ

;Ωf) + (NT f(t), gT f(q̂Mf))L2(Ωf) + sMf(êMf(t), q̂Mf) + (eFs(t)·nΓ, qFf)L2(Γ)

= ( 1
κ∂tp(t)−∇·m(t), qT f)L2(Ωf) − (∂tΠk′

T f(p(t)), qT f)L2( 1
κ

;Ωf) − (Ih+
T f (m(t)), gT f(q̂Mf))L2(Ωf)

− sMf(Îhho
Mf (p(t)), q̂Mf)− (Πk

Fs(v(t))·nΓ, qFf)L2(Γ)

=
∑
T∈T f

{
(∂t(p(t)−Πk′

T (p(t))), qT )L2( 1
κ

;Ωf) + (m(t)− Ih+
T (m(t)),∇qT )L2(T )

− (m(t)·nT , qT )L2(∂T ) + (Ih+
T (m(t))·nT , qT − q∂T )L2(∂T )

}
− sMf(Îhho

Mf (p(t)), q̂Mf)

− (Πk
Fs(v(t))·nΓ, qFf)L2(Γ)

=
∑
T∈T f

{
− (Πk

∂T (m(t)·nT ), qT )L2(∂T ) + (Ih+
T (m(t))·nT , qT − q∂T )L2(∂T )

}
− sf
Mf(Îhho

Mf (p(t)), q̂Mf)− (Πk
Fs(v(t))·nΓ, qFf)L2(Γ), (4.20)

with an integration by parts and the definition of gT f from (3.7) in the second step (since Ih+
T f (m(t)) ∈

P k(T f)), and the L2-orthogonality of Πk′
T and the definition (4.2b) of Ih+

T in the last step. Since
Πk
∂T (m(t)) and q∂T are single-valued and since qF = 0 for all F ∈ F ∂f

h , we have∑
T∈T f

(Πk
∂T (m(t)·nT ), q∂T )L2(∂T ) = −(Πk

Ff(m(t))·nΓ, qFf)L2(Γ) = −(Πk
Fs(v(t))·nΓ, qFf)L2(Γ),

where we also used Πk
∂T (m(t)·nT ) = Πk

∂T (m(t))·nT for all T ∈ T f and nT |∂T∩Γ = −nΓ, and the
coupling condition (2.6a). This in (4.20) and the observation that (Πk

∂T (m(t))− Ih+
T (m(t))|∂T )·nT ∈

P k(F∂T ) result in

(∂teT f(t), qT f)L2( 1
κ

;Ωf) + (NT f(t), gT f(q̂Mf))L2(Ωf) + sMf(êMf(t), q̂Mf) + (eFs(t)·nΓ, qFf)L2(Γ)

=
∑
T∈T f

((Πk
∂T (m(t))− Ih+

T (m(t)))·nT , q∂T − qT )L2(∂T ) − sMf(Îhho
Mf (p(t)), q̂Mf)

=
∑
T∈T f

((m(t)− Ih+
T (m(t)))·nT ,Πk

∂T (q∂T − qT ))L2(∂T ) − sMf(Îhho
Mf (p(t)), q̂Mf). (4.21)

Similarly, for the elastic problem, the second equation (3.16b) in the discrete problem and (2.3b) in
the continuous problem show that, for all ŵMs ∈ V̂ k

0(Ms) and all t ∈ J ,

(∂teT s(t),wT s)L2(ρs;Ωs) + (NT s(t),gsym
T s (ŵMs))L2(Ωs) + sMs(êMs(t), ŵMs)− (eFf(t)nΓ,wFs)L2(Γ)

= (ρs∂tv(t)−∇·s(t),wT s)L2(Ωs) − (∂tΠk′
T s(v(t)),wT s)L2(ρs;Ωs) − (Ih+

T s (s(t)),gsym
T s (ŵMs))L2(Ωs)

− sMs(Îhho
Ms (v(t)), ŵMs) + (Πk

Fs(p(t))nΓ,wFs)L2(Γ)

=
∑
T∈T s

{
(∂t(v(t)−Πk′

T (v(t))),wT s)L2(ρs;Ωs) + (s(t)− Ih+
T (s(t)),∇symwT )L2(T )

− (s(t)·nT ,wT )L2(∂T ) + (Ih+
T (s(t))·nT ,wT −w∂T )L2(∂T )

}
− sMs(Îhho

Ms (v(t)), ŵMs) + (Πk
Ff(p(t))nΓ,wFs)L2(Γ)

=
∑
T∈T f

{
− (Πk

∂T (s(t)·nT ),wT )L2(∂T ) + (Ih+
T (s(t))·nT ,wT −w∂T )L2(∂T )

}
− sMs(Îhho

Ms (v(t)), ŵMs) + (Πk
Ff(p(t))nΓ,wFs)L2(Γ), (4.22)

with an integration by parts and the definition of gsym
T s from (3.11) in the second step, and the L2-

orthogonality of Πk′
T and the definition (4.6b) of Ih+

T in the last step. Since �k∂T (s(t)) and w∂T are
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single-valued and since wF = 0 for all F ∈ F ∂s
h , we have∑

T∈T s
(Πk

∂T (s(t)·nT ),w∂T )L2(∂T ) = (�kFs(s(t))·nΓ,wFs)L2(Γ) = (Πk
Ff(p(t))nΓ,wFs)L2(Γ),

where we also used that Πk
∂T (s(t)·nT ) = �k∂T (s(t))·nT for all T ∈ T s and nT |∂T∩Γ = nΓ, and the

coupling condition (2.6b). This in (4.22) and the observation that (�k∂T (s(t) − �kT (s(t))|∂T )·nT ∈
P k(F∂T ) result in

(∂teT s(t),wT s)L2(ρs;Ωs) + (NT s(t),gsym
T s (ŵMs))L2(Ωs) + sMs(êMs(t), ŵMs)− (eFf(t)nΓ,wFs)L2(Γ)

=
∑
T∈T s

((�k∂T (s(t))− Ih+
T (s(t)))·nT ,w∂T −wT )L2(∂T ) − sMs(Îhho

Ms (v(t)), ŵMs)

=
∑
T∈T s

((s(t)− Ih+
T (s(t)))·nT , Ik∂T (w∂T −wT ))L2(∂T ) − sMs(Îhho

Ms (v(t)), ŵMs). (4.23)

The combination of (4.21) and (4.23) leads, for all q̂Mf ∈ P̂ k0(Mf) and all ŵMs ∈ V̂ k
0(Ms), to

(∂teT f(t), qT f)L2( 1
κ

;Ωf) + (NT f(t), gT f(q̂Mf))L2(Ωf) + sMf(êMf(t), q̂Mf) + (eFs(t)·nΓ, qFf)L2(Γ)

+ (∂teT s(t),wT s)L2(ρs;Ωs) + (NT s(t),gsym
T s (ŵMs))L2(Ωs) + sMs(êMs(t), ŵMs)− (eFf(t)nΓ,wFs)L2(Γ)

=: ψMf((m(t), p(t)); q̂Mf) + ψMs((s(t),v(t)); ŵMs), (4.24)

where the linear functionals ψMf((m(t), p(t)); ·) ∈ (P̂ k0(Mf))′ and ψMs((s(t),v(t)); ·) ∈ (V̂ k
0(Ms))′

denote the consistency errors such that

ψMf((m(t), p(t)); q̂Mf) :=
∑
T∈T f

((m(t)− Ih+
T (m(t)))·nT ,Πk

∂T (q∂T − qT ))L2(∂T )

− sMf(Îhho
Mf (p(t)), q̂Mf),

ψMs((s(t),v(t)); ŵMs) :=
∑
T∈T s

((s(t)− Ih+
T (s(t)))·nT ,Πk

∂T (w∂T −wT ))L2(∂T )

− sMs(Îhho
Ms (v(t)), ŵMs),

for all q̂Mf ∈ P̂ k0(Mf) and all ŵMs ∈ V̂ k
0(Ms).

(2) Stability. Choosing q̂Mf := êMf(t) and ŵMs := êMs(t) in the error equation (4.24) for all t ∈ J ,
and using (4.18) and (4.19) with rT f := NT f(t) and bT s := NT s(t), we obtain

1
2
d

dt

{
‖eT f(t)‖2

L2( 1
κ

;Ωf) + ‖eT s(t)‖2L2(ρs;Ωs) + ‖NT f(t)‖2L2(ρf;Ωf) + ‖NT s(t)‖2
L2(C−1;Ωs)

}
+ sMf(êMf(t), êMf(t)) + sMs(êMs(t), êMs(t)) = (∂tm(t)− Ih+

T f (∂tm(t)),NT f(t))L2(ρf;Ωf)

+ (∂ts(t)− Ih+
T s (∂ts(t)),NT s(t))L2(C−1;Ωs) + ψMf((m(t), p(t)); êMf(t)) + ψMs((s(t),v(t)); êMs(t)).

(4.25)

This is the critical step where the errors at the interface cancel, as do the interface terms in the energy
balance. Integrating from 0 to t, and noticing that eT f(0) = 0, NT f(0) = 0 = eT s(0), and NT s(0) = 0
owing to the initial conditions lead to

1
2
{
‖eT f(t)‖2

L2( 1
κ

;Ωf) + ‖eT s(t)‖2L2(ρs;Ωs) + ‖NT f(t)‖2L2(ρf;Ωf) + ‖NT s(t)‖2
L2(C−1;Ωs)

}
+ ‖êMf‖2L2(Jt;Sf) + ‖êMs‖2L2(Jt;Ss)

=
∫
Jt

{
(∂tm(τ)− Ih+

T f (∂tm(τ)),NT f(τ))L2(ρf;Ωf) + (∂ts(τ)− Ih+
T s (∂ts(τ)),NT s(τ))L2(C−1;Ωs)

+ ψMf((m(τ), p(τ)); êMf(τ)) + ψMs((s(τ),v(τ)); êMs(τ))
}

dτ .
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Hölder’s inequality in time for the first two terms on the right hand-side, the Cauchy-Schwarz inequality
in time for the last two terms, and Young’s inequality imply that

1
2
{
‖eT f(t)‖2

L2( 1
κ

;Ωf) + ‖eT s(t)‖2L2(ρs;Ωs) + ‖NT f(t)‖2L2(ρf;Ωf) + ‖NT s(t)‖2
L2(C−1;Ωs)

}
+ 3

4
{
‖êMf‖2L2(Jt;Sf) + ‖êMs‖2L2(Jt;Ss)

}
≤ ‖∂tm− Ih+

T f (∂tm)‖2L1(Jt;L2(ρf;Ωf))

+ ‖∂ts− Ih+
T s (∂ts)‖2L1(Jt;L2(C−1;Ωs)) + 1

4
{
‖NT f‖2

C0(Jt;L2(ρf;Ωf)) + ‖NT s‖2
C0(Jt;L2(C−1;Ωs))

}
+ ‖ψMf((m, p); ·)‖2L2(Jt;(Sf)′) + ‖ψMs((s,v); ·)‖2L2(Jt;(Ss)′).

(3) Bound on consistency errors. Rewriting the definition of ψMf leads to

ψMf((m(t), p(t)); q̂Mf) =
∑
T∈T f

((τf
T )−

1
2 (m(t)− Ih+

T (m(t)))·nT , (τf
T )

1
2 Πk

∂T (q∂T − qT ))L2(∂T )

− sMf(Îhho
Mf (p(t)), q̂Mf).

The Cauchy-Schwarz inequality and the definition (3.8) of S∂T imply that

|ψMf((m(t), p(t)); q̂Mf)|

.
{ ∑
T∈T f

(
h̃αT ‖B∂T (m(t))·nT ‖2L2( 1

λf ;∂T ) + sf
T (Îhho

T (p(t)), Îhho
T (p(t)))

)} 1
2
sMf(q̂Mf , q̂Mf)

1
2 .

Using the L2-stability of Πk
∂T , a multiplicative trace inequality, and the Poincaré inequality on T , we

infer that

sf
T (Îhho

T (p(t)), Îhho
T (p(t))) ≤ τf

T ‖p(t)−Πk′
T (p(t))‖2L2(∂T )

. τf
T (h−1

T ‖p(t)−Πk′
T (p(t))‖2L2(T ) + hT ‖∇(p(t)−Πk′

T (p(t)))‖2L2(T ))

. τf
ThT ‖∇(p(t)−Πk′

T (p(t)))‖2L2(T ) = hT h̃
−α
T ‖∇BT (p(t)))‖2L2(λf;T ),

where we also used the definition of τf
T from (3.10). Hence, we obtain ‖ψMf((m(t), p(t)); ·)‖(Sf)′ .

|(m(t), p(t))|#,f, and similarly, ‖ψMs((s(t),v(t)); ·)‖(Ss)′ . |(s(t),v(t))|#,s.
(4) Conclusion: Combining Step (2) and Step (3) gives

1
2
{
‖eT f(t)‖2

L2( 1
κ

;Ωf) + ‖eT s(t)‖2L2(ρs;Ωs) + ‖NT f(t)‖2L2(ρf;Ωf) + ‖NT s(t)‖2
L2(C−1;Ωs)

}
+ 3

4
{
‖êMf‖2L2(Jt;Sf) + ‖êMs‖2L2(Jt;Ss)

}
. ‖∂tm− Ih+

T f (∂tm)‖2L1(Jt;L2(ρf;Ωf))

+ ‖∂ts− Ih+
T s (∂ts)‖2L1(Jt;L2(C−1;Ωs)) + 1

4
{
‖NT f‖2

C0(Jt;L2(ρf;Ωf)) + ‖NT s‖2
C0(Jt;L2(C−1;Ωs))

}
+ ‖(m, p)‖2L2(Jt;#,f) + ‖(s,v)‖2L2(Jt;#,s).

Since the left-hand side evaluated at any t ∈ Jt is bounded by the right-hand side, we have

1
2
{
‖eT f‖2

C0(Jt;L2( 1
κ

;Ωf)) + ‖eT s‖2
C0(Jt;L2(ρs;Ωs))

}
+ 1

4
{
‖NT f‖2

C0(Jt;L2(ρf;Ωf)) + ‖NT s‖2
C0(Jt;L2(C−1;Ωs))

}
. ‖∂tm− Ih+

T f (∂tm)‖2L1(Jt;L2(ρf;Ωf)) + ‖∂ts− Ih+
T s (∂ts)‖2L1(Jt;L2(C−1;Ωs)) + ‖(m, p)‖2L2(Jt;#,f)

+ ‖(s,v)‖2L2(Jt;#,s),

where we dropped the positive stabilization terms on the left-hand side for simplicity. This and the
triangle inequality result in (4.1).
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Remark 4.1 (Gronwall’s lemma). Our proof of Theorem 4.1 avoids the need to invoke Gronwall’s
lemma. The key argument is the fact that the consistency errors are controlled by the stabilization
semi-norms of the discrete errors. This is the main reason for choosing H+ interpolation operators
instead of the usual L2-projections for dG variables as in [4].

Remark 4.2 (Convergence rates). If there are `1 ∈ {1, . . . , k + 1} and `2 ∈ {1, . . . , k′ + 1} such that
m ∈ C1(J ;H`1(Ωf)), p ∈ C0(J ;H`2(Ωf)) and s ∈ C1(J ;H`1(Ωs)),v ∈ C0(J ;H`2(Ωs)), we have

‖m−mT f‖C0(J ;L2(ρf;Ωf)) + ‖p− pT f‖C0(J ;L2( 1
κ

;Ωf)) + ‖s− sT s‖C0(J ;L2(C−1;Ωs))

+ ‖v − vT s‖C0(J ;L2(ρs;Ωs)) . O(h̃
α
2 h`1−

1
2 + h̃−

α
2 h`2−

1
2 ). (4.26)

In the case where `1 = k + 1 and `2 = k′ + 1, this gives O(hk+ 1
2 ) for O(1)-stabilization (i.e., α = 0 in

(3.10) and (3.14)), and O(hk+1 + hk
′) for O( 1

h)-stabilization (i.e., α = 1 in (3.10) and (3.14)), that
is, O(hk) for equal-order and O(hk+1) for mixed-order. Finally, notice from Step (4) of the proof of
Theorem 4.1 that we can also bound the stabilization semi-norms of the discrete errors as

‖p̂Mf‖L2(J ;Sf) + ‖v̂Ms‖L2(J ;Ss) . O(h̃
α
2 h`1−

1
2 + h̃−

α
2 h`2−

1
2 ). (4.27)

Moreover, as shown in [15], the above rates for α = 0 can be improved to O(hk+1) on simplices.

Remark 4.3 (Initial condition). For the dG variables, the initial conditions mT f(0) = Ih+
T f (m0) and

sT s(0) = Ih+
T s (s0) are chosen for simplicity. Instead, we can set the initial conditions to mT f(0) =

Πk
T f(m0) and sT s(0) = �kT s(s0) using the usual L2-projections, and this will only lead to the two

extra contributions ‖Ih+
T f (m0)−Πk

T f(m0)‖L2(ρf;Ωf) and ‖Ih+
T s (s0)−�kT s(s0)‖L2(ρs;Ωs) in the error esti-

mate. The triangle inequalities ‖Ih+
T f (m0)−Πk

T f(m0)‖L2(ρf;Ωf) ≤ ‖I
h+
T f (m0)−m0‖L2(ρf;Ωf) + ‖m0 −

Πk
T f(m0)‖L2(ρf;Ωf) and ‖I

h+
T s (s0)−�kT s(s0)‖L2(ρs;Ωs) ≤ ‖I

h+
T s (s0)− s0‖L2(ρs;Ωs) + ‖s0−�kT s(s0)‖L2(ρs;Ωs)

followed by interpolation estimates show that these additional terms converge optimally.

Remark 4.4 (Equal-order setting with HHO stabilization). For equal-order setting with the high-order
HHO stabilization, the stabilization operator in the acoustic domain is defined as

S∂T (p̂T ) := Πk
∂T (δ∂T (p̂T ) + ((I −Πk

T )RT (0, δ∂T (p̂T )))|∂T ) ∀p̂T ∈ P̂ kT , (4.28)

and in the elastic domain as

S∂T (v̂T ) := Πk
∂T (δ∂T (v̂T ) + ((I −Πk

T )RT (0, δ∂T (v̂T )))|∂T ) ∀v̂T ∈ V̂ k
T , (4.29)

using suitable reconstruction operators RT : P̂ kT → P k+1(T ) andRT : V̂ k
T → P k+1(T ) respectively (see,

e.g., [15]). These choices combined with O( 1
h)-stabilization improve the convergence rate to O(hk+1)

even on polyhedra in contrast to the stabilization operators (3.8) and (3.12). However, as described in
[15, Sec. 7.1], this choice of stabilization is generally suitable only for implicit time-stepping schemes.

Remark 4.5 (Comparison with [4]). The arguments in [4] for uncoupled acoustic or elastic waves are
based on the L2-orthogonal projection for the dual variable instead of the H+ interpolation operator
used herein. The analysis in [4] requires to bound the consistency errors ψMf((m(t), p(t)); ·) and
ψMs((s(t),v(t)); ·) by means of the HHO norm, instead of the stabilization seminorm as done in the
proof of Theorem 4.1. Both approaches (using either the L2 or the H+ interpolation operator for the
dual variable) lead to the same convergence rates. However, in the context of explicit time-schemes, the
analysis crucially hinges on bounding the consistency errors in terms of the stabilization seminorms
only, as highlighted in [15]. This is why we preferred to use the H+ interpolation operator in the
present work although it focuses on the time-continuous case.
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5 Algebraic realization of the semi-discrete problem
This section details the algebraic realization of the space semi-discrete system (3.15)-(3.16). For

the acoustic wave equation, we define the dimensions of the following polynomial spaces:

Nk′
T f := dim(Pk′(T f)), Nk

Ff := dim(Pk(Ff)), Mk
T f := dim(Mk(T f)), (5.1)

and denote the respective bases as

{ϕi}1≤i≤Nk′
T f
, {ψi}1≤i≤Nk

Ff
, {ζk}1≤k≤Mk

T f
. (5.2)

The basis {ζk}1≤k≤Mk
T f

is constructed as products of Cartesian basis vectors in Rd with scalar-valued

basis functions of Pk(T f). Let (PT f(t),PFf(t)) ∈ RNk′
T f × RNk

Ff and MT f(t) ∈ RMk
T f be the time-

dependent component vectors of (pT f(t), pFf(t)) ∈ P̂ k0 (Mf) and mT f(t) ∈ Mk(T f), respectively, in
these bases. Let Mρf

T fT f and M
1
κ
T fT f denote the mass matrices associated with the inner products

in L2(ρf; Ωf) and L2( 1
κ ; Ωf), respectively, using the above bases. Let GT f ∈ RMk

T f×Nk′
T f and GFf ∈

RMk
T f×Nk

Ff denote the two blocks of the gradient reconstruction matrix, so that

(gT (p̂Mf(t)), rT f)L2(Ωf) = (GT fPT f + GFfPFf)†RT f , (5.3)

for all rT f ∈ Mk(T f) with components RT f ∈ RMk
T f . Finally, let ΣT fT f ,ΣT fFf ,ΣFfT f ,ΣFfFf rep-

resent the four blocks of the matrix associated with the stabilization bilinear form sMf defined in
(3.9).

For the elastic wave equation, we define the dimensions of the following polynomial spaces:

Lk
′
T s := dim(V k′(T s)), LkFs := dim(V k(Fs)), Hk

T s := dim(Sksym(T s)), (5.4)

and denote the respective bases as

{φi}1≤i≤Lk′T s
, {θi}1≤i≤LkFs

, {Yk}1≤k≤Hk
T s
. (5.5)

The basis {Yk}1≤k≤Hk
T s

is naturally built as tensor products of basis vectors in Rd×d
sym and scalar-valued

basis functions in Pk(T s). Let (VT s(t),VFs(t)) ∈ RLk
′
T s ×RLkFs and ST s ∈ RHk

T s represent the time-
dependent component vectors of (vT s(t),vFs(t)) ∈ V̂ k

0(Ms) and sT s(t) ∈ Sksym(T s), respectively, in
these bases. LetMC−1

T sT s andMρs

T sT s denote the mass matrices for the inner products in L2(C−1; Ωs)
and L2(ρs; Ωs), respectively, in these bases. Let HT s ∈ RHk

T s×Lk
′
T s and HFs ∈ RHk

T s×LkFs denote the
two blocks of the symmetric gradient reconstruction matrix, so that

(gsym
T s (v̂Ms(t)),bT s)L2(Ωf) = (HT sVT s +HFsVFs)†BT s . (5.6)

for all bT s ∈ Sksym(T s) with components BT s ∈ RHk
T s . Finally, let ΣT sT s ,ΣT sFs ,ΣFsT s ,ΣFsFs denote

the four blocks of the matrix associated with the stabilization bilinear form sMs defined in (3.13).
Let CΓ be the matrix representing the coupling terms, so that

(vFs · nΓ, qFf)L2(Γ) = Q†FfCΓVFs . (5.7)

for all qFf ∈ Pk(Ff) with components QFf ∈ RNk
Ff and all vFs ∈ P k(Fs) with components VFs ∈

RLkFs . Notice that CΓ is block-diagonal with a nonzero block only for all F ∈ FΓ.
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Altogether, the algebraic realization of (3.15) and (3.16) can be formulated in the following way:
For all t ∈ J ,



Mρf

T fT f 0 0 0 0 0

0 M
1
κ
T fT f 0 0 0 0

0 0 0 0 0 0
0 0 0 MC−1

T sT s 0 0

0 0 0 0 Mρs

T sT s 0

0 0 0 0 0 0


d
dt



MT f

PT f

PFf

ST s

VT s

VFs


+



0 − GT f − GFf 0 0 0

G†T f ΣT fT f ΣT fFf 0 0 0

G†Ff ΣFfT f ΣFfFf 0 0 CΓ

0 0 0 0 −HT s −HFs

0 0 0 H†T ΣT sT s ΣT sFs

0 0 − C†Γ H†F ΣFsT s ΣFsFs





MT f

PT f

PFf

ST s

VT s

VFs


=



0

GT f

0

0

FT s

0


. (5.8)

Notice that, as shown in the discrete energy balance (3.17), the coupling between acoustic and
elastic waves produces no energy, resulting in antisymmetric coupling matrices in (5.8). For conve-
nience, we re-arrange the unknowns by grouping first the (elastic and acoustic) cell unknowns and
then the (elastic and acoustic) face unknowns. Then, (5.8) rewrites as



Mρf

T fT f 0 0 0 0 0

0 M
1
κ
T fT f 0 0 0 0

0 0 MC−1
T sT s 0 0 0

0 0 0 Mρs

T sT s 0 0
0 0 0 0 0 0
0 0 0 0 0 0


d
dt



MT f

PT f

ST s

VT s

PFf

VFs


+



0 −GT f 0 0 −GFf 0

G†T f ΣT fT f 0 0 ΣT fFf 0

0 0 0 −HT s 0 −HFs

0 0 H†T s ΣT sT s 0 ΣT sFs

G†Ff ΣFfT f 0 0 ΣFfFf CΓ

0 0 H†Fs ΣFsT s −C†Γ ΣFsFs





MT f

PT f

ST s

VT s

PFf

VFs


=



0

GT f

0

FT s

0

0


. (5.9)

This system can be rewritten in the following compact form:

MC−1
T T 0

0 0

 ∂tU +

KT T KT F
KFT KFF

U = F, (5.10)

where U is the vector of unknowns, the blocks with index T T corresponds to the 4 × 4 upper-left
submatrices in the mass and stiffness matrices, the block with index T F to the 4 × 2 upper-right
submatrices in the stiffness matrix (5.9), the block with index FT to the 2× 4 lower-left submatrices,
and the block with index FF to the 2 × 2 lower-right submatrices. Notice that KFF has a block-
diagonal structure.

6 Numerical results
In this section, we present 2D numerical results obtained using the HHO-dG discretizations of the

elasto-acoustic problem described above. In particular, we compare equal- and mixed-order settings
for the HHO variables and O(1)- and O( 1

h)-stabilizations. We analyze first the spectral properties
of the algebraic problem (5.10). Next, we focus on a test case with analytical solution, so as to
verify convergence rates. Finally, we study the case of a Ricker wavelet as an initial condition and we
compare our results to a semi-analytical solution.

The implementation is carried out in the open-source software Diskpp (available at https://
github.com/wareHHOuse/diskpp), which is described in [6].

In the following, to precisely specify the level of discretization for each test case, we introduce two
computational parameters: the spatial refinement level `, defined as h = 2−`, and the time refinement
level n, defined as ∆t = 0.1× 2−n. All the test cases are set up in space-time domains so that `Ω ≈ 1
and Tf ≈ 1.
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6.1 Spectral analysis

The goal here is to conduct a numerical spectral analysis of the space semi-discrete problem (5.10).
For that purpose, we consider the generalized eigenvalue problem associated with (5.10). We define
the Schur complement with respect to the face-face block of the stiffness matrix as

Kschur := KT T −KT F K−1
FF KFT . (6.1)

The corresponding eigenvalue problem is expressed as

K†schur M−1
T T Kschur X = γ MT T X, (6.2)

where X is the eigenvector and γ the eigenvalue. We define the spectral radius as the largest eigenvalue
from (6.2).

Our objective is to investigate the influence of the stabilization on the spectral radius in both equal-
and mixed-order settings. To this end, we consider O(1)-stabilizations, and we introduce additional
weights ηf and ηs scaling the stabilization bilinear forms. Specifically, we set

s̃Mf(p̂h, q̂h) := ηfsMf(p̂h, q̂h), s̃Ms(v̂h, ŵh) := ηssMs(v̂h, ŵh). (6.3)

First, in Figure 3, this analysis is conducted for three settings: pure acoustic with weight ηf, pure

Fig. 3: Spectral radius in the equal-Order and mixed-Order settings for the pure acoustic, pure linear elasticity,
and elasto-acoustic coupling cases with k ∈ {1:3}

elastic with weight ηs, and elasto-acoustic coupling with weight ηf = ηs = η. All the spectral radius
are normalized by the size of the mesh, evaluated as

√
#cells. The first observation is that the spectral

radius essentially behaves as max(η + c1,
1
η + c2) for some suitable constants c1 and c2. Therefore,

choosing an O( 1
h)-stabilization, which corresponds to selecting a high value for η, leads to a large

spectral radius. This is unfavorable if explicit time-stepping schemes are used as it tightens the CFL
restriction. Therefore, for an explicit time discretization, a stabilization of order O(1) is preferable.
The second observation is that, regardless of the chosen discretization (equal- or mixed-order), the
spectral radius in the purely elastic case is higher than in the purely acoustic case. This observation
is consistent with the fact that elastic waves propagate at higher velocities than acoustic waves.
Moreover, the behavior observed in the coupled elasto-acoustic case essentially aligns with that of the
purely elastic case. The third observation is that, in all cases, the spectral radius for the equal-order
setting is lower than the one for the mixed-order setting, indicating a potentially better CFL condition
for the equal-order scheme.
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According to the spectral analysis of the two pure cases, we can set the weights for the acoustic
and elastic stabilizations, ηf

? and ηs
?, as follows so as to minimize the spectral radius in each pure case:

ηf
? =

{
0.88,
0.80,

ηs
? =

{
1.54, equal-order,
1.38, mixed-order.

(6.4)

In the rest of the paper we keep these settings. Table 1 then reports the spectral radius in the coupled
elasto-acoustic case for equal- and mixed-order settings, k ∈ {1:3} and with weights prescribed as
ηf = 2wηf

? and ηs = 2wηs
? with w ∈ {−3:3} and ηf

? , ηs
? from (6.4).

k

η/η? 1/8 1/4 1/2 1 2 4 8

1 55.3 27.8 14.2 9.9 19.7 39.5 78.9
Equal-Order 2 114.8 57.8 29.5 19.5 38.3 76.3 152.5

3 185.2 93.2 47.7 29.6 57.3 113.9 227.3
1 94.2 48.3 26.3 16.5 20.7 41.0 81.7

Mixed-Order 2 195.0 99.3 53.0 31.8 33.2 64.7 128.7
3 314.3 159.6 84.3 50.0 51.3 99.4 197.4

Tab. 1: Spectral radius in the equal- and mixed-order settings for the elasto-acoustic coupling with reference
weights given by (6.4) and k ∈ {1:3}

Another interesting aspect is the influence of the mesh geometry on the spectral radius. Table 2
reports the spectral radius for polynomial degrees k ∈ {1:6} on simplicial, quadrilateral, and polygonal
meshes. The latter are generated using the software PolyMesher [24]. We can see that, for an equal-
order setting, the spectral radius on quadrangles is slightly better than that on simplices and polygons,
with the latter being slightly worse. However, in the mixed-order setting, quadrangles and simplices
appear to be roughly equivalent and at higher orders, simplices slightly outperform quadrangles in
terms of spectral radius. Polygons remain the worst case in the mixed-order setting, but the difference
is not that significant (about 15% increase).

Simplicial meshes 4 Quadragular meshes � Polygonal meshes 9
Equal-Order Mixed-Order Equal-Order Mixed-Order Equal-Order Mixed-Order

k = 1 11.6 17.6 9.9 16.5 10.5 20.1
k = 2 21.3 31.4 19.5 31.8 20.7 37.2
k = 3 33.4 47.8 29.6 50.0 35.2 59.4
k = 4 49.2 69.5 45.3 74.0 53.9 86.6
k = 5 68.0 93.7 61.5 100.6 76.6 118.9
k = 6 90.1 123.2 83.0 134.0 103.5 156.3

Tab. 2: Spectral radius for different cell geometries in equal- and mixed-order settings with k ∈ {1:6} and
optimal setting for ηf and ηs from (6.4)

6.2 Time discretization schemes

We consider both implicit and explicit time-stepping schemes. In the implicit case, we allow
for both O(1)- and O( 1

h)-stabilizations, and for simplicity we focus in the mixed-order setting since
the equal-order setting appears to be slightly more expensive in the static case [7]. We consider s-
stage Singly Diagonally Implicit Runge–Kutta (SDIRK) schemes of order (s+1) with s ∈ {2, 3}. The
Butcher tableaux are reported in Table 3. In the explicit case, owing to the CFL restriction, we only

19



consider O(1)-stabilization, but we include both equal- and mixed-order settings. We consider s-stage
Explicit Runge–Kutta (ERK) schemes of order s with s ∈ {2, 3, 4}. The Butcher tableaux are reported
in Table 4.

1
4

1
4 0

3
4

1
2

1
4

1
2

1
2

(a) SDIRK(2, 3)

θ θ 0 0
1
2

1
2 − θ θ 0

1− θ 2θ 1− 4θ θ

ξ 1− 2ξ ξ

(b) SDIRK(3,4)

Tab. 3: Butcher tableaux for the SDIRK(s, s+1) schemes. SDIRK(3,4) is obtained with θ := 1√
3 cos( π18 ) + 1

2 ,
ξ := 1

6(2θ−1)2 .

0 0 0
1
2

1
2 0
0 1

(a) ERK(2)

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

(b) ERK(3)

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

(c) ERK(4)

Tab. 4: Butcher tableaux for the ERK(s) schemes.

6.3 Convergence rates for smooth analytical solutions

In this section, we study the convergence rates on smooth analytical solutions. Both the acous-
tic and elastic media have the same density and similar wave speeds. Specifically, we consider the
simulation time Tf = 1 and

• Ωf := (0, 1) × (0, 1), with density ρf := 1, compressibility modulus κ := 1, and velocity of the
pressure waves cf

p := 1,

• Ωs := (−1, 0)× (0, 1), with density ρs := 1, and Lamé parameters so that cs
p :=

√
3 and cs := 1.

The analytical solution is expressed in terms of the potentials u (acoustic) and u := (ux, uy) (elastic)
so that

p := ∂tu m := ∇u in Ωf, (6.5a)
v := ∂tu C−1:s := ∇symu in Ωs. (6.5b)

The source terms, the (non)homogeneous Dirichlet boundary conditions, and the initial conditions
are defined according to the following choices for the potentials, which indeed satisfy the coupling
conditions (2.6a)-(2.6b):

1. Polynomial in space, so that the temporal error is the only error component:

u := (1− x)x2(1− y)y sin(
√

2πt) ux = uy := (1 + x)x2(1− y)y sin(
√

2πt); (6.6a)
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Fig. 4: Cartesian and polygonal meshes for ` = 2

2. Polynomial in time, so that the spatial error is the only error component:

u = ux = uy := x sin(πx) sin(πy)t2. (6.6b)

We consider two types of meshes: Cartesian and polygonal meshes. Some examples are shown
in Figure 4 for ` = 2, with the elastic subdomain mesh on the left side in red, and the acoustic
subdomain mesh on the right side in blue. In each subdomain, two types of unknowns contribute to
the mechanical energy: (i) the cell components of the HHO unknowns; (ii) the dG unknowns. Thus,
we set

‖pT f ,vT s‖2HHO := ‖pT f(t)‖2
L2( 1

κ
;Ωf) + ‖vT s(t)‖2L2(ρs;Ωs), (6.7a)

‖mT f , sT s‖2dG := ‖mT f(t)‖2L2(ρf;Ωf) + ‖sT s(t)‖2
L2(C−1;Ωs). (6.7b)

In what follows, we report these two contributions separately, since they can feature different conver-
gence rates.

We first consider convergence rates in time. For this purpose, we use the analytical solution
(6.6a). Figure 5 shows that, as expected, optimal convergence rates in time are reached in the mixed-
order setting and O( 1

h)-stabilization: order s for ERK(s) schemes and order (s+1) for SDIRK(s, s+1)
schemes. The same results are obtained in the equal-order setting, for O(1)-stabilization, or on
polyhedral meshes (results omitted for brevity).

Fig. 5: Errors as a function of the time step for the analytical solution (6.6a) with a mixed-order discretization,
k = 4, ` = 1, n ∈ {4, 5, 6, 7, 8, 9, 10} and O( 1

h )-stabilization. Left: SDIRK(s, s+1) with s ∈ {1, 2, 3}. Right:
ERK(s) with s ∈ {2, 3, 4}.

We consider now convergence rates in space on Cartesian meshes. For this purpose, we use the
analytical solution (6.6b). The left and central panels of Figure 6 present the errors (6.7b) as a function
of the mesh size for ERK schemes with O(1)-stabilization in both equal- and mixed-order settings.
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The right panel of Figure 6, reports errors (6.7b) as a function of the mesh size for SDIRK schemes in
mixed-order setting with O( 1

h)-stabilization are reported. For ERK schemes with O(1)-stabilization in
equal- and mixed-order settings, both HHO and dG unknowns exhibit the expected convergence rate
of order (k + 1) (with sometimes a slight suboptimality for the dG unknowns). In contrast, SDIRK
schemes with O( 1

h)-stabilization achieve improved convergence rates on the HHO unknowns which
now converge at order (k+ 2), whereas dG unknowns still converge at order (k+ 1). We still notice a
superconvergence phenomenon at lower polynomial orders for the dG unknowns.

Fig. 6: Errors (6.7b) as a function of the mesh-size (Cartesian meshes) for the analytical solution (6.6b). Left:
Equal-order with O(1)-stabilization. Center: Mixed-order with O(1)-stabilization. Right: Mixed-order with
O( 1

h )-stabilization. Computational parameters: n = 8, ` ∈ {2, 3, 4, 5}.

Finally, we evaluate spatial convergence rates on polyhedral meshes. Figure 7 presents the results
for ERK schemes in equal- and mixed-order settings with O(1)-stabilization and SDIRK schemes in
mixed-order setting with O( 1

h)-stabilization. The conclusions on polyhedral meshes corroborate those
on Cartesian meshes.

Fig. 7: Errors (6.7b) as a function of the mesh size (Polyhedral meshes) for the analytical solution (6.6b). Left:
Equal-order with O(1)-stabilization. Center: Mixed-order with O(1)-stabilization. Right: Mixed-order with
O( 1

h )-stabilization. Computational parameters: n = 8, ` ∈ {2, 3, 4, 5}.

6.4 Numerical study of Ricker wavelet as initial condition

This test case deals with the propagation of an elasto-acoustic wave through a heterogeneous
domain. Refering to Figure 8, letH be the height of the domain, He the height of the elastic subdomain
and L the length of both subdomains. We set Ωf := (0, L)× (0, H −He) and Ωs := (0, L)× (−He, 0).
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Two sensors Sf and Ss are positioned on a vertical line as in the Figure 8 so as to have one sensor in
each subdomain. For the acoustic sensor Sf, the acoustic pressure pT f is considered, and for the elastic
sensor Ss the x- and y-composents of the elastic velocity vT s are considered. Homogeneous Dirichlet
boundary conditions are enforced, the source terms are null, and the initial condition corresponds to
a velocity Ricker wavelet centered at the point (xc, yc) ∈ Ωf (in purple on Figure 8) given by the
following expression:

m0(x, y) := θ exp
(
− π2 r

2

λ2

)
(x− xc, y − yc)† (6.8)

with θ := 10
[

1
s

]
, λ := cf

p
fc

[m] with fc := 10
[

1
s

]
and r2 := (x − xc)2 + (y − yc)2. This initial condition

corresponds to a velocity Ricker wave centered at the point (xc, yc) ∈ Ω.

Ωf

Ωs

L

H

He

yΓ = 0

Sf

Ss

Fig. 8: Ricker wavelet test case

6.4.1 Academic setting

We first consider an academic case in which the acoustic and elastic media have the same density
and propagate S-waves at the same speed as compressional acoustic waves, i.e.,

ρf = ρs = 1, cs
p =
√

3, cf
p = cs

s = 1. (6.9)

As the material properties are similar, we consider two subdomains of the same dimension, with
L = H = 1, He = 0.5 and xc := 0, yc := 0.125 for the origin of the pulse in the acoustic subdomain.
The simulation time is set to Tf := 10.

The following results are obtained using the SDIRK(3, 4) time scheme with a mixed-order setting
andO(1)-stabilization. Figure 9 displays the two-dimensional pressure distribution in the acoustic sub-
domain and the Euclidian norm of the velocity in the elastic subdomain at times t ∈ {0, 0.25, 0.27, 0.32}.
We can see that the simulation propagates correctly the acoustic Ricker wavelet through the elasto-
acoustic interface. The difference in properties, intrinsic to the nature of the media, causes a small
reflection of the acoustic wave when it meets the interface. Moreover, we observe the transmission of
the compressional wave as a P-wave (with the larger celerity), as well as the creation of an S-wave in
the elastic part of the domain.

A comparison to a semi-analytical solution provided by the open source software Gar6more (https:
//gitlab.inria.fr/jdiaz/gar6more2d) is performed in Figure 10. For two-dimensional infinite or
semi-infinite domains, this code computes the analytical solution of elasto-acoustic waves propagating
in homogeneous or heterogeneous media. In Figure 10, we report the solution for times t ∈ [0, 0.25]
at the two sensors Sf := (−0.15, 0.1) and Ss := (−0.15,−0.1) with the material properties defined in
(6.9), for two rather coarse meshes: ` = 4 on the left column and ` = 5 on the right column. Figure 10
shows that, for a moderate property contrast, even on the rather coarse mesh corresponding to ` = 4,
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Fig. 9: Spatial distribution of the acoustic pressure (upper side) and the elastic velocity norm (lower side) at
times t ∈ {0, 0.25, 0.27, 0.32} predicted by SDIRK(3, 4) scheme with mixed-order setting, O( 1

h )-stabilization,
k = 1, ` = 7, and n = 9.

we can approximate the analytical solution with high accuracy by increasing the polynomial order.
Altogether, only the case k = 1 on the coarse mesh does not allow to obtain an accurate representation
of the solution.

Fig. 10: Ricker wavelet with homogeneous material properties (see (6.9)). Comparison of the solution over
time with the semi-analytical solution at sensors Sf (1st row), and Ss (2nd and 3rd rows) for n = 9 and ` = 4
(left column) and ` = 5 (right column).

24



6.4.2 Realistic (contrasted) setting

We now investigate a test case with a strong property contrast focusing on two cases corresponding
to granite and water (6.10a) and granite and air (6.10b):

ρs = 2.6ρf = 1.3, cs
p = 4cf

p = 2, cs
s = 2cf

p = 1, (6.10a)
ρs = 2200ρf = 800, cs

p = 17.5cf
p = 6.36, cs

s = 9cf
p = 3.27. (6.10b)

We report the solution for times t ∈ [0, 0.5] at the two sensors Sf := (−0.05, 0.1) and Ss :=
(−0.05,−0.1). Figure 11 reports the results for case (6.10a) and Figure 12 those for (6.10b) on
two meshes: ` = 5 on the left column and ` = 6 on the right column (this corresponds to one more
level of refinement than for the low-contrast case).

Fig. 11: Ricker wavelet with granite-water contrast (see (6.10a)). Comparison of the solution over time with
the semi-analytical solution at sensors Sf (1st row) and Ss (2nd and 3rd rows) for n = 9 and ` = 5 (left column)
and ` = 6 (right column).

The results reported in Figures 11 and 12 exhibit the same characteristics as in the previous case,
thus demonstrating that the present scheme effectively handles strong property contrasts by accurately
describing the solution (excluding the case k = 1 on the coarse mesh). Finally, as expected, the greater
the contrast, the larger the amplitude difference between the acoustic and elastic signals. Indeed, while
the signals in Figure 10 have similar amplitudes, Figure 11 and Figure 12 show that as the contrast

25



Fig. 12: Ricker wavelet with granite-air contrast (see (6.10b)). Comparison of the solution over time with the
semi-analytical solution at sensors Sf (1st row) and Ss (2nd and 3rd rows) for n = 9 and ` = 5 (left column)
and ` = 6 (right column).

increases, the signals in the receiving medium become weaker due to strong wave reflections at the
interface.

In Figures 13 and 14, we focus on the time evolution of the discrete energy of the global system. In
Figure 13, the left panel shows the energy repartition as a function of time for t ∈ [0, 10], polynomial
order k = 3 space refinement ` = 6, and time refinement n = 9. In the right panel, we study the
relative energy loss as a function of time for times t ∈ [0, 1], polynomial degrees k ∈ {1, 2, 3} and space
refinement ` ∈ {4, 5, 6}. In the left panel, we observed that, in the absence of contrast, the energy
initially concentrated in the acoustic subdomain is partially transferred to the elastic subdomain. On
longer time scales, energy oscillates with a moderate amplitude around an equal distribution between
the two subdomains. In the right panel, we can see that increasing the polynomial order and/or
the space refinement level significantly reduces energy dissipation. For all reasonable discretizations,
the energy dissipation stays below 1% for all t ∈ [0, 1]. In the left panel of Figure 14, we show the
energy repartition for the contrasted case (6.10a) with ` = 6 and k = 3. We observe that, owing to
the increase in property contrast, significantly less energy is transmitted from the acoustic medium
to the elastic medium, which is consistent with the decrease in signal amplitude observed in Figures
11 and 12. The same test cases were conducted with the initial pulse located in the elastic medium,
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and a similar distribution of the energy was observed between the emitting medium and the receiving
medium. For the sake of brevity, these results are not reported here.

Fig. 13: SDIRK(3, 4) scheme with n = 9. Left: Energy repartition as a function of the time for k = 3 and
` = 6. Right: Relative energy loss as function of the time for k ∈ {1, 2, 3} and ` ∈ {4, 5, 6}.

Fig. 14: Ricker wavelet for granite-water test case: Energy repartition as a function of the time predicted by
SDIRK(3, 4) scheme. Left: test case (6.10a), k = 3, n = 9 and ` = 6. Right: test case (6.11), k = 3, n = 8,
hx = 8.93 m and hy = 6.25 m.

To conclude, we perform the granite-water test case (6.10a) with scaled values for the material
properties and the geometry. We set

ρf := 1025 kg.m−3, cf
p := 1500 m.s−1,

ρs := 2690 kg.m−3, cs
p := 6000 m.s−1, cs

s := 3000 m.s−1,
(6.11)

as well as L := 5000 m, H := 3500 m, He := 2500 m for the dimensions of the domain and xc := 0 m,
yc := 500 m for the center of the pulse in the acoustic subdomain, and a simulation time Tf := 0.425 s.
Figure 15 displays the two-dimensional distributions of the pressure in the acoustic region and of the
velocity norm in the elastic region at times t ∈ {0.1275, 0.3825} predicted by the SDIRK(3, 4) scheme,
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with computational parameters k = 3 and n = 8. A quadrangular mesh is considered with hx = 8.93 m
and hy = 6.25 m. The computational domain has been chosen sufficiently large in order to avoid the
bouncing off the walls due to the homogeneous Dirichlet conditions and to allow the waves to develop.
We can see that the simulation captures well the penetration of the wave into the elastic domain. The
lateral conical wavefronts are accurately represented, along with the interface, Rayleigh-type waves,
which are characterized by the constructive interferences between P-waves and polarized S-waves at
the interface. The right panel of Figure 14 shows the energy repartition related to this test case.

Fig. 15: Ricker wavelet for granite-water test case (6.11): Spatial distribution of the acoustic pressure (upper
side) and the elastic velocity norm (lower side) at times at times t ∈ {0.1275, 0.3825} predicted by SDIRK(3, 4)
with mixed-order setting, O( 1

h )-stabilization, k = 3, n = 8, hx = 8.93 m and hy = 6.25 m.

In conclusion, all these results highlight the robustness of the proposed scheme in accurately
modeling wave propagation through media with significant density and wave velocity contrasts.
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