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Enhanced diffusion over a periodic trap by hydrodynamic coupling to an elastic mode
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In many physical systems, degrees of freedom are coupled wvia hydrodynamic forces, even in the
absence of Hamiltonian interactions. A particularly important and widespread example concerns
the transport of microscopic particles in fluids near deformable boundaries. In such a situation, the
influence of elastohydrodynamic couplings on Brownian motion remains to be understood. Unfor-
tunately, the temporal and spatial scales associated with the thermal fluctuations of usual surfaces
are often so small that their deformations are difficult to monitor experimentally, together with the
much slower and larger particle motion at stake. Here, we propose a minimal model describing the
hydrodynamic coupling of a colloidal particle to a fluctuating elastic mode, in presence of an external
periodic potential. We demonstrate that the late-time diffusion coefficient of the particle increases
with the compliance of the elastic mode. Remarkably, our results reveal that, and quantify how: i)
spontaneous microscopic transport in complex environnements can be affected by soft boundaries —
a situation with numerous practical implications in nanoscale and biological physics; ii) the effects
of fast and tiny surface deformations are imprinted over the long-term and large-distance colloidal
mobility — and are hence measurable in practice.

Brownian motion refers to the random movement of a
colloid at equilibrium, induced by its collisions with the
molecules of the surrounding fluid. It has played a foun-
dational role in modern statistical physics since its dis-
covery [1] and theoretical description [2, 8] over a century
ago. The celebrated experiments of Perrin on colloids in
a gravitational field [4] validated further the theoretical
description and confirmed the atomic nature of matter.
Extending the classical framework of Brownian motion in
bulk Newtonian fluids to more realistic systems, such as
particles diffusing in complex environnements, opens up
new challenges for nanoscale and biological physics. One
common route is to study Brownian motion in viscoelas-
tic fluids or intracellular media, as typically performed
through microrheology [5], which revealed the emergence
of anomalous diffusion [6]. Another source of complex-
ity lies in the introduction of topological constraints and
boundaries. For instance, a simple-yet-canonical situa-
tion where interfaces matter is the diffusion near rigid
walls, that has been extensively studied both theoreti-
cally and experimentally [7HI3]. Besides the practical
interest of such a configuration towards the sensing of
surface forces [I4], one of the key aspects lies perhaps in
the apparition of anisotropic and space-dependent mobil-
ities [15] due to the frictional boundary condition at the
walls. As a consequence, multiplicative noises emerge,
leading to non-Gaussian diffusion and the probability en-
hancement of rare events [16H20].

However, in most practical situations where molecules
or microorganisms diffuse near surfaces, the latter are
typically soft. Therefore, the dynamical properties of
Brownian particles near deformable boundaries must be
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FIG. 1. Schematic of the system. A test Brownian particle
(1) is trapped in a periodic energy potential of amplitude AU
and spatial period A. It is coupled via a hydrodynamic-like
interaction of constant damping coefficient 12 to a thermally-
fluctuating elastic mode, represented by another Brownian
particle (2) trapped in a harmonic trap of compliance (i.e.
inverse stiffness) x. Besides, both particles feel individual
hydrodynamic drag forces represented by their constant self-
drag coefficients 11 and 722, and are described within the
overdamped Langevin regime.

understood. Along this line of thought, a few studies,
mostly theoretical, have addressed the case of tracers
diffusing near soft surfaces. Examples include liquid in-
terfaces [21, 22], and fluctuating ones [23]. The case
of elastic interfaces was also addressed in the contexts
of contactless microrheology [24] and biological mem-
branes [25]. Nevertheless, these works focused on the
low-coupling regime, where the particles are distant or
point-like, and thus unable to generate rectified flows that
lead to surface deformation. Interestingly though, within
a purely deterministic context, near-contact elastohydro-
dynamic couplings have been studied in the past decades.
Examples include contactless colloidal-probe rheology of
soft substrates in normal mode [26] 27|, as well as the
emergence of lift forces at low Reynolds numbers [28] 29],
that were first revealed theoretically [30H34], and then
confirmed experimentally [35H39]. The leading-order cor-
rections induced by elasticity to the full mobility tensor
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near a rigid wall [7] were obtained for various geometries
and rheologies [40H42], and revealed a zoology of counter-
intuitive inertial-like solutions.

In view of the above state of the art, the arising
challenge is now to understand the influence of soft
boundaries on the spontaneous motion of nearby finite-
sized Brownian particles. Molecular-dynamics simula-
tions were performed in such a context [43]. Besides,
a recent experimental study indicated that soft colloids
diffusing near rigid walls feel transient, non-conservative
forces that could be related to an intricate combina-
tion of thermal fluctuations, soft boundaries and viscous
flows [44]. Finally, at a practical level, a natural question
to ask is wether or not the effects of fast and tiny sur-
face fluctuations can be observed over the long times and
large distances associated with colloidal diffusion. In this
Letter, we thus introduce a minimal, but generic, theo-
retical model in order to investigate Brownian elastohy-
drodynamic effects. Specifically, we combine the hydro-
dynamic coupling of a colloidal particle with an elastic
mode [45 46] to an external periodic trapping [47H50].
We solve the problem both analytically and numerically,
and demonstrate that the late-time diffusion coefficient
of the particle increases notably with the compliance of
the elastic mode.

The model. As depicted in Fig. |1} we consider an over-
damped system made of two coupled degrees of freedom:
i) a principal degree of freedom ¢ (t), corresponding to
the spatial position of a test colloid over time ¢, which
is free to explore space while being subject to a periodic
trapping potential ¢(q1); and ii) an auxiliary degree of
freedom g¢o(t), corresponding to an elastic mode, which
is harmonically confined with a potential energy ¢¢/(2x),
where £ is the compliance. Thus, the total energy of the
system is given by the Hamiltonian

o)+ 2 (1)

H(Ch» (J2) 2%

At thermal equilibrium, the probability density function
(PDF) of g1 and ¢o is given by the Gibbs-Boltzmann
distribution

exp [-BH (g1, ¢2)]
el (2)

Peog(q1,92) =

where Z is the normalising partition function, and where
B = 1/(kgT) with T the temperature and kg Boltz-
mann’s constant. The equilibrium statistics of ¢; and
g2 are independent due to the additivity of the Hamilto-
nian, which implies in particular that go does not affect
the equilibrium distribution of ¢;.

The system dynamics is described by the coupled over-
damped Langevin equations

d dq2 ’
g tneys =—¢'(q1) +m(t) , (3)
dq: dge q2
M2 g + Yo2— a K+Tl2()a (4)

where the constants 7,;, with ¢, j € {1, 2}, are the compo-
nents of the friction tensor -, which is related to the mo-
bility tensor u through p = v~ !; and where the functions
7;(t) are zero-mean Gaussian white noises, with a corre-
lation function (n;(t)n;(t")) = 2ksTo(t —t )%J, where (-)
is the ensemble average. This choice of noise correlation
is self-consistent with the equilibrium distribution of ¢
and g2 being given by Eq. .

Theoretical analysis. In the weakly-compliant limit
(k < 1), one can compute the late-time diffusion coeffi-
cient D*(k) of the colloid using a perturbation analysis at
O(k), together with an exact representation of the effec-
tive diffusion coefficient obtained via the Stokes-Einstein
relation, and a multiscale analysis [51} [52]. Doing so (see
details in SM [53]), we obtain

D*(k) = D*(0)(1+ ) , (5)
with
o = Bk ’712 fo dq; ¢’ (‘h) exp [Bé(q1)] ’ (6)
Yo [ dgyexp [Bo(qr)]
and
ey K T)\?
D'O)= 7 (7)
where
A
2o = [ dgiexp [£50(a)] ®)
0

Since o > 0, the hydrodynamic coupling of the colloid to
the elastic mode always increases the late-time diffusion
coefficient of the colloid. Moreover, the effect is larger at
larger compliance k. We also see that a non-flat periodic
potential ¢(q1) is required for the effect to exist, within
the assumptions of the model.

In the particular case of a sinusoidal potential, where

¢(q1) = AU sin(2mq1 /X), with AU the amplitude of the
potential, and A its spatial period, we have
a =4t 2 ’712 vIl( ) (9)
’711 Io(v)

with v = SAU, where I,, denotes the order-n modified
Bessel function of the first kind, and where we introduced
the dimensionless compliance

fikBT

€=—3 (10)

As such, the relative increase of the late-time diffusion co-
efficient is larger for smaller A. This is attributed to the
fact that for a smaller A the coupling to the elastic mode
increases the jump rate of the colloid between neighbour-
ing minima, instead of being averaged out as would be the
case at large A\. We also see that the relative increase of
the late-time diffusion coefficient depends linearly on the



function vl (v)/Io(v), which is a monotonically increas-
ing function of v. This means that the relative magnitude
of the effect increases with the depth of the trap — the ob-
vious counterpart being that larger times are then needed
to reach the late-time diffusive regime. Finally, the rel-
ative magnitude of the effect increases with the relative
magnitude y12/711 of the hydrodynamic coupling to the
elastic mode, as expected.

The multiscale analysis can also be employed in the
limit where € — oo, which corresponds to a very compli-
ant elastic mode. In this case, we also find (see details
in SM [53]) that the late-time diffusion coefficient is in-
creased relatively to the rigid-case value, and saturates

to a maximum value at large €, as
1
Oo(—) . (11
() - o

Such a plateau value can be notably higher than the
rigid-case value, indicating the potential strength of the
effect in practical systems relevant to soft matter and
biophysics. Besides, once again, we note that when the
periodic potential ¢(qy) is flat, the late-time diffusion co-
efficient is not modified by the hydrodynamic coupling to
the elastic mode.

Heuristic argument. In order to understand the
softness-induced late-time diffusivity enhancement from
a physical point of view, we now present a much simpler
heuristic argument giving the same result as the rigorous
analysis in the small-¢ limit (see details in SM [53]). The
intrinsic time scale 7 K722 of the stochastic process
g2(t) is assumed to be small with respect to all the other
time scales. In this limit, the effective zero-temperature
overdamped Langevin equation for ¢, (¢) is

kT 11 (pa1pio2 — piis)

D* ~
A2ZLZ_(ppoz — piy) + pis

dg
a4 = rela)d (@) . (12)
where we have introduced the dressed mobility
(1) = 1 (1)
Helq1) = Y11 1+ ’Q'lej)l(‘h)

The equilibrium marginal PDF in position ¢ is
Preq(q1) = (Z-)"texp[—B¢(q1)]. Therefore, assuming
that the time-dependent marginal PDF P;(q1,t) satisfies
an effective Fokker-Planck equation, the latter must have
the form

8P1 (q17 t) _
ot

ad
" oq

apl(qla t)

{ue(m) {IfBT o0

+d@n@.o) |
(14)
where the T-independent term on the right-hand side is
determined from the zero-temperature dynamics, while
the T-dependent term on the right-hand side is con-
structed to ensure convergence of P to Ppeq at infinite
time. Note that we have implicitly assumed here that the
dressed mobility p.(q1) does not exhibit any temperature
dependence.
The dressed diffusion coefficient is given by the Stokes-
Einstein relation, Do(q1) = kTie(q1), which differs
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FIG. 2. a) Typical trajectories ¢;(t) of the test particle (i = 1,
blue line) and the elastic mode (i = 2, orange line), simulated
by numerically solving Eqs. and . for ,un— 1.0, p12=
05u22—05 AU-lOA-lOn-lOXlO , At =1.0x
10~* , and kgT = 1.0. b) Late-time marginal PDF Preq for
the periodised position ¢*, given by g1 = ¢"mod(\), of the test
particle, obtained by binning 10? trajectories of 107 points.
The symbols are the results from the numerical simulations.
The solid blue line corresponds to the Boltzmann distribution

given in Eq. .

from the bare (or “microscopic”) diffusion coefficient
Dy, = kgT/y11 of the colloid. Interestingly, the spa-
tial dependence of the dressed diffusion coefficient im-
plies that the effective Langevin equation must have a
multiplicative noise, leading to a supplementary source
of non-Gaussian displacements [I4), 1620, 54] in addi-
tion to the trivial one induced by the trapping potential.

We now invoke the Lifson-Jackson formula [55], pro-
viding the late-time diffusion coefficient in a periodic po-
tential, which reads

)\2
- I [ dgrexp [~ Bo(ar)]

From this expression, we can recover Eqs. and @
We emphasize that the heuristic argument we presented
here is not rigorous. Nevertheless, it can also be ap-
plied to evaluate the effective diffusion coefficient of an
underdamped Brownian particle near the overdamped
limit (see details in SM [53]), for which we once again re-
cover the results obtained via rigorous multiscale analysis
[51, 52]. The same method also yields the first-order cor-
rection to the effective diffusion coefficient for a particle
carrying a dipole moment which interacts with a random
or periodic electric field when the dipole dynamics is as-
sumed to be much faster than the particle diffusion [56].

Numerical simulations. In order to verify the above
predictions, Eqgs. (3) and are numerically solved
for a sinusoidal trapping potential ¢(q;), using the
Euler-Maruyama scheme [57], through an optimised
Cython [58] code (see details in SM [53]). The initial
positions of the test particle and the elastic mode are
sampled from Eq. . Typical raw trajectories are shown
in Fig. [2h). We observe that the elastic mode go(t) fluc-
tuates around its equilibrium value (g2 = 0), within the
harmonic potential it is subject to, whereas the position
q1(t) of the test colloid fluctuates at short times in a min-
imum of the sinusoidal potential ¢(q;) before randomly
jumping from one minimum to the other by passing the

D™ ()

exp[Bo(q1)]
De (lh
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FIG. 3. Mean-squared displacements (gi). and (gi)o of
the test particle as functions of the time increment 7, for
k = 1.0 x 1073 (blue disks) and & = 0.0 (black crosses) re-
spectively, as computed from 102 trajectories of 107 points
each, for y11= 5.0, vi2= 22.0, 722 = 104.0, AU = 1.0, A =
1.0, At = 1.0x 1074, and kgT = 1.0. The symbols are the re-
sults from the numerical simulations. The dash-dotted black
line indicates 2D*(0)7, where D*(0) is the classical Lifson-
Jackson late-time diffusion coefficient [55]. The solid cyan
line indicates 2D (k)7, where D* (k) is the late-time diffusion
coefficient given by Eq. . The dashed pink line indicates
2Dm1, where Dy, = kgT'/~11 is the bare diffusion coefficient.
The characteristic times 7 = k22 and 7* = A\?/D*(k) are
indicated with the dark-grey and light-grey vertical dashed
lines, respectively.

potential barrier. From such trajectories, we can first
compute the late-time PDF in positions. As an exam-
ple, Fig. ) shows the equilibrium marginal PDF of the
periodised variable ¢*, defined by ¢; = ¢*mod(\), which
satisfies

exp[—B¢(q*)]

Pmeq *) = .
R

(16)

In order to probe the dynamical effects of the hydrody-
namic coupling of the trapped test particle to the elastic
mode, we now turn to the analysis of the mean-squared
displacement (MSD), defined as

(@) (1) = (gt +7) = a:()]*) (17)

where 7 is a time increment. As shown in Fig. [3] the
MSD of the test colloidal particle exhibits two distinct
diffusive regimes separated by a crossover region. The
short-time diffusive regime is characterized by the bare
diffusion coefficient Dy,. The late-time diffusive regime
is characterized by the late-time diffusion coefficient D*,
and is reached when the particle has diffused over many
periods of the trapping potential, i.e. when its MSD is
large compared to A\2. This sets a time scale 7* = \?/D*,
which must be exceeded to see the late-time diffusive
regime.

Finally, we focus on the late-time diffusive regime of
the simulated trajectories, and compute from the MSD

100 -
A 10
P E
Q L
< A
1072 —:= Eq.(5)
. Eq. (11)
i — Eq.(S65)
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FIG. 4. Relative increase AD*/D* = [D*(e) — D*(0)]/D*(0)
of the late-time diffusion coefficient D* of the test particle as
a function of the dimensionless compliance €, for pi1= 1.0,
Hi12= 0.5, H22 = 0.5, AU = 1.0, A= 1.0, and kJBT = 1.0. The
symbols are the results from the numerical simulations. The
dash-dotted blue line corresponds to the small-¢ prediction of
Eq. . The dash-dotted orange line corresponds to the large-
e prediction of Eq. . The solid black line corresponds to
the Kubo formula of Eq. (S65) (see details in SM [53]).

the relative excess in late-time diffusion coefficient, i.e.
AD*/D* = [D*(e) — D*(0)]/D*(0), as a function of e.
The results are shown in Fig. [4] for a given set of pa-
rameters. We observe that the numerical-simulation data
agree well with the small-e and large-¢ asymptotic predic-
tions of Egs. and , respectively. Furthermore, the
Kubo formula can be used to evaluate D* for any value
of € (see details in SM [53], and in particular Eq. (S65)).
We see that the numerical-simulation data agree at all €
values with the Kubo formula, and that the latter inter-
polates well the two asymptotic predictions.

In conclusion, we theoretically and numerically stud-
ied the Brownian motion of colloid-like particles near
elastic interfaces using minimal ingredients. We showed
that a Brownian particle trapped in a periodic potential
sees its late-time diffusivity dressed and significantly
enhanced by hydrodynamic coupling to a hidden elastic
mode. Despite being minimalist, our description reveals
generic, original and large effects, relevant for the trans-
port of colloidal particles near complex boundaries. In
particular, our results suggest the intriguing possibility
of understanding, and even tuning, the diffusivity of
colloids near deformable and patchy interfaces — with
key implications for biophysics and nanofluidics.

Data availability. All codes used in this study to
produce data are available through the online repository
https://github.com/EMetBrown-Lab/Lacherez2024_
Codes.
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