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Abstract

This study presents, for the first time, an environmental reconstruction of a sequence 

spanning nearly the entire Mediterranean Epipaleolithic (~22.0 to 11.9 ka cal. BP). 

The study is based on a well-dated, high-resolution pollen record recovered from the 

waterlogged archaeological site Jordan River Dureijat (JRD), located on the banks of 

Paleolake Hula. JRD’s continuous sequence enabled us to build a pollen-based 

paleoclimate model providing a solid background for the dramatic cultural changes 

that occurred in the region during this period. Taxonomic identification of the 

waterlogged wood assemblage collected from JRD was used to fine-tune the 

paleoenvironmental reconstruction. The chronological framework is based on 

radiocarbon dating and the typology of archaeological findings. The LGM (~22-19 ka 

cal. BP) was found to be the coldest period of the sequence, marked by a distinct 

decrease in the reconstructed January temperatures of up to 5°C lower than today, 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26



2

while mean annual precipitation was only slightly lower than the present-day average 

(~450 vs. 515 mm, respectively). The wettest and warmest period of the record was 

identified between ~14.9 to 13.0 ka cal. BP, with maximum values of 545 mm mean 

annual precipitation reached at ~14.5 ka cal. BP. This time interval is synchronized 

with the global warm and moist Bølling-Allerød interstadial as well as with the onset 

of the Natufian culture and the emergence of sedentism in the Levant. The Younger 

Dryas began around 12.9 ka cal. BP and was identified as an exceptional period by 

the JRD sequence with low temperatures and minimal climatic seasonality contrast: 

an increase in rain contribution during spring, summer, and autumn was documented 

concurrently with a significant decrease in winter precipitation. The detailed 

vegetation and climatological reconstruction presented in this study serves as 

backdrop to seminal events in human history: the transition from small nomadic 

groups of hunter-gatherers to the sedentary villages of the Natufian, eventually 

transitioning to the agricultural, complex communities of the Neolithic. 

Keywords

Palynology; Last Glacial Maximum; Younger Dryas; Eastern Mediterranean; paleoclimate 

modeling; Levantine Epipaleolithic; Natufian; waterlogged-wood; sedentism and agriculture

1. Introduction

The period between the Last Glacial Maximum (LGM; ~23-19 ka BP) and the 

beginning of the Holocene interglacial (~11.7 ka BP) was an era of dramatic climatic 

changes in the northern hemisphere. This time interval accompanied the transition 
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from the Last Glacial period to the Post-Glacial period, which was punctuated by 

short-term climatic phases (LGM, Heinrich Event 1, Bølling-Allerød, and the 

Younger Dryas). Yet, the actual impact of these global changes on the local 

Mediterranean southern Levant environment and climate (Figure 1) is under debate. 

Studies of Lake Lisan, the late Pleistocene precursor to the Dead Sea, demonstrated 

that a high lake stand occurred during the last glacial (Bartov et al., 2002, 2003, 2006, 

2007; Haase-Schramm et al., 2004; Torfstein and Enzel, 2017). It is argued that the 

existence of the larger Lake Lisan during the glacial period, compared to the 

Holocene's smaller Dead Sea, required significantly more rainfall (Zak, 1967; Begin 

et al., 1974; Bartov et al., 2002, 2003, 2006, 2007; Hazan et al., 2005; Kolodny et al., 

2005; Bookman et al., 2006; Enzel et al., 2008; Stein, 2014). Most speleothem records 

from the Mediterranean southern Levant (Soreq and Peqi'in caves) indicate 

contradictory, dry conditions during the last glacial period (Bar-Matthews et al., 1997, 

1999, 2003, 2017, 2019). 

Archaeologically, the time interval between the LGM and the Holocene is known in 

the Levant as the Epipaleolithic period and is characterized by significant cultural 

changes. It marks the shift from small nomadic groups of hunter-gatherers into larger 

and complex communities accompanied by reducing population mobility patterns and 

changing subsistence strategies, leading to the establishment of the sedentary 

agricultural communities of the Neolithic (Belfer-Cohen and Goring-Morris, 2013, 

2014; Bar-Yosef, 2014). The interrelationship between climate and culture is a key 

question in Levantine Epipaleolithic research. Correlation between these two sets of 

evidence has proven difficult to achieve (Wright, 1993; Goring-Morris and Belfer-

Cohen, 1997; Maher et al., 2011, 2012; Belfer-Cohen and Goring-Morris, 2013; 

Belmaker, 2017). The discussion is hampered by the scarcity of both continuous, 
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well-dated Levantine Epipaleolithic sequences documenting cultural changes, and 

environmental datasets that derive directly from Epipaleolithic sites. The paucity of 

past environmental information is mainly due to poor preservation of organic remains 

and is particularly true for the Early and Middle Epipaleolithic in the Mediterranean 

zone of the southern Levant.

In this study, we present a high-resolution, continuous fossil pollen record that was 

recovered from a sediment outcrop at the Epipaleolithic site of Jordan River Dureijat 

(JRD). JRD is located at the southern edge of the Hula Basin, on the shore of 

Paleolake Hula. Its archaeological sequence is dated from ~20 to 10 ka cal. BP 

(Sharon et al., 2020). Previous palynological studies from Paleolake Hula were 

analyzed at relatively low resolution and/or suffered from chronological uncertainties 

(Horowitz, 1971, 1979; Tsukada, cited in Bottema and van Zeist, 1981; Weinstein-

Evron, 1983; Baruch and Bottema, 1999; Meadows, 2005; Van-Zeist et al., 2009). 

Palynological records from nearby archaeological sites were retrieved from much 

shorter time spans of the Epipaleolithic (Weinstein-Evron et al., 2015) or from 

different periods (Aharonovich et al., 2014). Here we provide a well-dated, high-

resolution palynological record that encompasses all Levantine Epipaleolithic phases 

from which we have generated a quantitative reconstruction of the period’s climate 

changes. Additionally, we used taxonomic identification of JRD’s waterlogged wood 

assemblage to fine-tune our paleoclimate model. Currently, this is the only 

consecutive, regional wood record that covers the entire Epipaleolithic period. 

Previous dendroarchaeological studies from the Mediterranean southern Levant were 

limited to short time intervals within the Epipaleolithic. These include the wood and 

charcoal assemblage from the 23 ka cal. BP Ohalo II site located on the shore of the 

Sea of Galilee (Liphschitz and Nadel, 1997; Nadel and Werker, 1999) and the 
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Natufian wood-charcoal remains recovered from the El-Wad site on Mount Carmel 

(Lev-Yadun and Weinstein-Evron, 1994; Caracuta et al., 2016). Because many 

Epipaleolithic Levantine archaeological sites are small and ephemeral, they are 

characterized by relatively poor preservation of botanical remains, resulting in limited 

and inconsistent environmental information. In contrast, JRD not only includes an 

assemblage of waterlogged wood, it is also endowed with a well-preserved, high-

resolution fossil pollen record.

The pollen-based paleoclimate reconstruction presented in this study offers a 

significant contribution to two primary research questions: First, what were the 

climate conditions in the Mediterranean Levant during the end of the last glacial 

period, and second, did the dramatic climate changes during the end of the Pleistocene 

impact the cultural shift to sedentism and agriculture?. With regard to climate 

conditions, the climate reconstruction of seasonal changes of both precipitation and 

temperatures presented here contributes to unraveling the regional discrepancy 

between the observed lake level datasets and inferred amounts of annual precipitation 

derived from cave speleothem isotopes. 

2. Research Area

2.1 Location and geographical settings

The JRD archaeological site is situated in the Hula Valley, a northern section of the 

Levantine segment of the Syrian-African Rift system (also referred to as the northern 

Jordan Rift Valley). This narrow and elongated valley is a pull-apart basin (Schattner 

and Weinberger, 2008; Heimann et al., 2009). Until the mid-twentieth century, the 

shallow Lake Hula occupied the southern part of this small valley. The lake had a 
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surface area of some 14 km², bordered on the north by extensive swamp area (> 30 

km²; Figure 2; Dimentman et al., 1992). Large-scale drainage operations carried out 

during the 1950s drained most of the lake, leaving only a small nature reserve. 

Evidence from JRD indicates that during the end of the Pleistocene-early Holocene, 

Paleolake Hula extended more than 2 km south of its historically documented 

boundaries (Figure 2; Sharon et al., 2002).

The Hula Valley is bordered by the Naftali carbonate mountains of the Upper Galilee 

(700–900 meters above sea level; m asl) to the west, Mt. Hermon (up to 2,814 m asl) 

to the northeast, and the basaltic Golan Heights (ca. 1,000 m asl) to the east (Figure 

2). To the south, the basin is flanked by the Korasim basaltic block, damming the 

Hula Valley at its southern end. Lakes and swamps have occupied the southern half of 

the Hula Valley at least since the early Pleistocene, which, in combination with the 

continuous subsidence of the valley floor, has resulted in thick lacustrine, peat, and 

lignite deposits. The northern part of the valley is composed of alluvial soil deposits 

(Horowitz, 1979; Dimentman et al., 1992; Belitzky, 2002).

The largest stream in the area is the Jordan River. It flows south, feeding the Sea of 

Galilee, and continues through the Lower Jordan Valley where it finally outflows into 

the Dead Sea (Figure 1). At its outflow south from the Hula Basin, the Jordan River 

flows at the boundary of two tectonic plates, the Sinai sub-plate (a segment of the 

African plate) to the west, and the Arabian plate to the east. The sediment formations 

exposed at the river banks range in age from the Pliocene to Holocene (Horowitz, 

1973, 2001; Belitzky, 1987). The JRD site, located 60-70 m asl, was discovered 

during an archaeological survey preceding a massive drainage operation of the Jordan 

River in December 1999. The archaeological material-bearing horizons of JRD stretch 
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over 50 m on the east bank of the artificial Jordan River trench south of the outlet of 

the small Dureijat Stream (Sharon et al., 2002; Marder et al., 2015).

The Hula Valley and its surroundings are characterized by a typical Mediterranean 

climate. Rain falls almost exclusively during winter and spring, and summers are hot 

and dry. Temperature and precipitation vary considerably with altitude and latitude. 

The mean annual rainfall is 400–520 mm in the valley and above 600 mm in the 

mountain ranges bordering to the west and east (Figure 1b). Inter-annual variations in 

precipitation are mainly influenced by the strength of the Cyprus Low systems (Ziv et 

al., 2006). At Ayelet Hashahar, the nearest meteorological station west of JRD, mean 

temperatures in January and August are 11°C and 29°C, respectively. The mean 

annual temperature is 21°C and mean annual precipitation is 515 mm (Figure 3a; 

Israel Meteorological Service, 2020).

From the pattern of current wind direction and intensity (Figure 3b), it is suggested 

that the wind-borne pollen is embedded in the valley's deposits by the dominant winds 

from the northwest, together with a degree of contribution from the east, north and 

south, mainly during winters. The pollen grains are then spread throughout the valley 

by the most common local winds, the northern and southern winds, which change 

direction during the day (Weinstein-Evron, 1983; Israel Meteorological Service, 

2020). Pollen grains that are deposited by fluvial transportation originate primarily 

from the north, transported by the Jordan River and its tributaries. Some contribution 

is observed, however, from smaller streams, originating from the Golan Heights in the 

east and the Naftali ridge in the west (Weinstein-Evron, 1983; Aharonovich et al., 

2014).
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2.2 Vegetation

The region supports typical Mediterranean vegetation. Beyond the lake and 

marshland, the natural vegetation of the Hula Valley and the nearby lower slopes is 

the Quercus ithaburensis – Pistacia atlantica (Mount Tabor oak – Atlantic terebinth) 

woodland or park-forest (Zohary, 1973, 1982). The open terrain between the widely 

spaced trees is covered by herbaceous vegetation, while various shrubs such as Styrax 

officinalis (storax), Ziziphus lotus (wild jujube) and Ziziphus spina-christi (Christ's 

thorn jujube) also form part of the woodland vegetation. To the east of the Hula 

Basin, on the west-facing slopes of the Golan Heights, at elevations of above 500 m, 

the thermophilic deciduous Mount Tabor-oak woodland is replaced by woodland 

formations of evergreen Quercus calliprinos (Kermes oak). As elevation increases, on 

the northern Golan Heights and Mount Hermon, this evergreen oak is joined by the 

deciduous oak Quercus boissieri (Aleppo oak). To the west of the valley, at elevations 

above 400–500 m, the Mount Tabor-oak woodland zone is succeeded by a belt of 

Pistacia atlantica – Amygdalus korschinskii (Atlantic terebinth – wild almond) 

woodland (Zohary, 1973), which, in turn, above 700 m is replaced by Quercus 

calliprinos – Pistacia palaestina forest/maquis. Quercus boissieri is present on the 

highest summits of the Upper Galilee, alongside evergreen oak.

In the Hula Valley, on banks of permanent and intermittent water currents, various 

trees and shrubs are found including: Tamarix jordanis (Jordanian tamarisk), Populus 

euphratica (Euphrates poplar), Platanus orientalis (oriental plane), Salix acmophylla 

(brook willow), Salix alba (white willow), Ulmus minor (field elm) and Fraxinus 

syriaca (ash). The vegetation of the marshland north of the now drained Hula Lake is 

dominated by Cyperus papyrus – Polygonum acuminatum (=Persicaria acuminata) 

association accompanied by various other marsh plants such as Thelypteris palustris 
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(= Dryopteris thelypteris), Rorippa amphibian (great yellowcress), Galium elongatum 

(marsh bedstraw), and Lycopus europaeus (bugleweed) (Zohary, 1973; Dimentnan et 

al., 1992). Before the draining, a few other marsh-plant associations formed the outer 

belt of the swamp (Zohary, 1973, 1982). On the east and west, the lake was fringed by 

a marsh-vegetation belt consisting of riparian plants such as: Phragmites australis 

(common reed), Typha latifolia (bulrush), Scirpus lacustris (common club-rush), 

Sparganium erectum (simplestem bur-reed), Lythrum salicaria (purple loosestrife), 

Mentha longifolia (horse mint), and Cyperus longus (galingale). Water plants 

included a few Potamogeton (pondweed) species, Myriophyllum spicatum (spiked 

water-milfoil), Nuphar lutea (yellow water-lily), Nymphaea alba (white water rose), 

Ceratophyllum demersum (hornwort) and Ranunculus peltatus (= aquatilis, pond 

water-crowfoot; Van-Zeist et al., 2009). Currently, the natural landscape of the Hula 

Valley is heavily damaged due to millennia of overgrazing, tree clearance and 

agricultural activities (Palmisano et al., 2019: fig. 8). The natural vegetation is 

restricted to protected areas and to less accessible deep canyons and steep mountain 

slopes.

2.3  The archaeological site of Jordan River Dureijat (JRD)

For over 10,000 years, during the Epipaleolithic period, people repeatedly returned to 

the site of JRD on the shore of Paleolake Hula to fish, hunt, and exploit other aquatic 

resources (Sharon et al., 2020). The excavation exposed a thick sequence of sediments 

that accumulated within the fluctuating water levels of Paleolake Hula. The 

archaeological horizons were deposited within near-shore layers that were embedded 

during low water stands. These layers are separated by archaeologically sterile, fine 

silt layers, deposited during higher water stands of the lake. The stratigraphic 
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sequence and chronology were established in Area B, the primary site excavation 

area. The chronology was based on numerous radiocarbon dates obtained on wood-

charcoal remains (Sharon et al., 2020). The lowest excavated layer (Layer 5) dates to 

~20 ka cal. BP and is characterized by an Early Epipaleolithic lithic tradition. The 

lithics from Layer 4 ascribed to the Middle Epipaleolithic, i.e., the Geometric 

Kebaran tradition and date to 17.46-15.75 ka cal. BP. The three upper layers, 3c, 3b 

and 3a, belong to the Late Epipaleolithic Natufian culture (15-11.5 ka cal. BP) based 

on radiocarbon dates and on the presence of typical flint artifacts such as microlithic 

lunates (Grosman, 2018; Sharon et al., 2020).

The unique waterlogged conditions at the site captured an unusually well-preserved 

record of perishable plant remains attesting to both human activities and to the local 

environmental conditions along much of the Epipaleolithic (Sharon et al., 2020). The 

primary activity documented at the JRD archaeological horizons was fishing (Figure 

4; Pedergnana et al., in press) and utilization of additional aquatic resources such as 

mollusks, crabs, amphibians, turtles and, equally significant, aquatic and near-shore 

plants (Sharon et al., 2020). The importance of fishing is evident by the presence 

throughout the sequence of limestone cobbles that served as net sinkers, forming the 

largest collection of such tools in the Levant (Sharon et al., 2020). Fishbones are also 

abounded in all archaeological layers. In the Natufian layers, as many as 19 bone 

fishhooks were found, accompanied by small grooved pebbles used as line weights 

(Sharon et al., 2020; Pedergnana et al., in press). The presence of shell horizons 

(Sharon et al., 2020), the wealth of mollusk shells and of non-marine ostracod taxa 

(Björgvinsson, 2017), and the high number of valves (Valdimarsson, 2017), also point 

to the existence and exploitation of a shallow freshwater lake environment at JRD.
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3. Materials and Methods

3.1 Archaeological context and chronology

The eastern border of Area B (the primary archaeological excavation area; 33°1’19N / 

35°37’41E) is the type locality for the site’s full stratigraphic sequence. This outcrop 

forms the longest exposure of the site's sedimentology and yielded both palynological 

and 14C radiocarbon samples (Sharon et al., 2020). Several lines of evidence indicate 

that the sedimentation environment of the JRD archaeological horizons is a nearshore 

water stand (shallow lake environment). Hence, the horizons document fishing and 

aquatic resources utilization during short-term visits rather than a long-term 

permanent occupation. This reconstruction explains, for example, the absence of 

identified hearths at the site, coupled by a widespread distribution of charcoal remains 

throughout the layers. This is probably due to the flooding of small fire-places by 

rising lake water levels and spreading of charcoals on the surface. This reconstruction 

of wet depositional environment also explains the excellent preservation of pollen and 

wood remains, as well as other botanical remains (charcoal, seeds, fruits) in the site's 

waterlogged layers.

Even if the context of the archaeological remains is not that of a settlement (Figure 4), 

the stratigraphy and archaeological context of the finds are secure, due to the 

separation of the archaeological horizons by sterile layers of fine silt formed during 

high water lake stands. Hence, each assemblage has good chronological control. 

Furthermore, there is a clear chrono-cultural affinity between the various flint tools 

and the specific layers from which they originated (Sharon et al., 2020). This solid 

stratigraphy of cultural sequences enables correlation of specific pollen zones to 

specific cultural units and discussion of their interrelations (Figure 5). 
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The eight 14C radiocarbon samples used for the chronological age-depth model in the 

current study (Table 1) were selected from the available JRD dates (Sharon et al., 

2020: table 1). These samples were chosen due to their location in the eastern 

sediment outcrop, as well as for their reliability (dubious samples due to size or state 

of preservation were excluded). The aim was to achieve good chronological control 

and the highest possible accuracy. All the wood and charcoal remains submitted for 

14C radiocarbon dating were identified as terrestrial plants to avoid bias from the 

reservoir effect of the water body. When possible, young branches rather than old or 

unknown wood trunk sections were preferred for radiocarbon dating. 

The 14C samples were analyzed at the Poznań Radiocarbon Laboratory and at the Beta 

Analytic Laboratory. 14C ages were calibrated using the default calibration data set 

IntCal13 northern Hemisphere radiocarbon (Table 1). The age-depth model presented 

in Figure 6 was processed using the Bayesian Bacon 2.3.6 software package (Blaauw 

and Christen, 2011).

Table 1: 14C radiocarbon ages of wood remains used in the age-depth model. Both the 
wood and pollen samples were extracted from the same eastern sediment outcrop.

Lab. 
Number

Depth, 
above 
sea level 
(m)

Archaeological
layer

14C Age 
(cal. yrs 
BP)

Calibrated age 
range, 1σ (cal. 
yrs BP)

Calibrated age 
range, 2σ (cal. 
yrs BP)

Poz-94159 57.73 3-0 10,010 ± 60 11,391 – 11,620 11,269 – 11,744

Beta-457488 57.15 3b 11,490 ± 40 13,316 – 13,411 13,298 – 13,462

Poz-94158 57.03 3c 12,350 ± 60 14,181 – 14,475 14,102 – 14,617

Beta-457489 56.73 3c 13,320 ± 40 15,933 – 16,105 15,841 – 16,182

Poz-94160 56.58 4b 13,960 ± 80 16,839 – 17,081 16,657 – 17,142

Poz-100258 56.49 4c 14,433 ± 40 17,456 – 17,627 17,397 – 17,823

Poz-100321 55.98 5 16,612 ± 72 19,950 – 20,179 19,874 – 20,293

Poz-100295 55.40 6 16,867 ± 71 20,312 – 20,480 20,200 – 20,542
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3.2 Palynology

Fifty-four sediment samples were collected for palynological investigation from the 

JRD eastern sediment outcrop during the 2016 and 2017 excavation seasons (Figure 

5). Samples of 1-cm thickness were taken at 5-cm intervals along the 2.70-m long 

sequence from 55.33 to 58.03 m asl. In addition, a recent Jordan River mud surface 

sample was collected ca. 20 m east of the sediment outcrop to examine the 

relationship between the fossil pollen results and the modern pollen rain in the region. 

Pollen extraction procedure followed a physical-chemical treatment successfully 

employed in other Dead Sea Rift Valley lacustrine sediments (Langgut et al., 2014a). 

Samples were immersed in HCl to remove the calcium carbonates. In order to float 

the organic material, a density separation was carried out using a ZnBr2 solution (with 

a specific gravity of 1.95), together with 5 min of sonication. After sieving (150 μm 

mesh screen), the unstained residues were homogenized and mounted onto 

microscope slides using glycerin. Acetolysis was not carried out in order to enable the 

identification of any non-pollen palynomorph (NPP) such as algae (e.g., Langgut, 

2018). Pollen grains were identified under a light microscope at magnifications of 

200×, 400× and 1,000× (oil immersion), to the most detailed possible systematic 

taxonomic level. For pollen identification, a comparative reference collection of the 

Israeli pollen flora of Tel Aviv University (The Steinhardt Museum of Natural 

History) was used, in addition to pollen atlases (Horowitz and Baum, 1967; Reille, 

1995, 1998, 1999; Beug, 2004). At least 500 pollen grains were counted from each 

sample.

For the preparation of the palynological diagram (Figure 7), PolPal software was used 

(Walanus and Nalepka, 1999). The total sum of the palynological diagram is 

composed of Arboreal Pollen (AP, trees and large shrubs) and Non-Arboreal Pollen 
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(NAP). The latter includes herbaceous plants and dwarf shrubs of the upland 

vegetation. The proportions of all pollen taxa are expressed as percentages of this 

total pollen sum. Pollen taxa counted in less than five samples were not included in 

the pollen diagram (for a detailed palynological diagram that presents all identified 

taxa, see Figure A1). Cyperaceae, Sparganium, Typha, Phragmites type and various 

trees and shrubs that inhabit banks of permanent and intermittent streams such as 

Salix, Tamarix and Vitis were grouped together. This group was excluded from the 

basic sum (AP + NAP) but was calculated as ratios of the total sum. Aquatic plants 

and spores were not included in the total sum and are presented in the last section of 

the pollen diagram. This category also includes spores and the green algae 

Pediastrum (P. simplex type and P. boryanum type). The zonation of the pollen 

record is based primarily on changes in AP/NAP ratios, together with principal 

component analysis (PCA) and cluster analysis.

3.3  Waterlogged wood

The waterlogged, un-burned wood fragments exposed during the JRD excavation 

were recorded on-site using a Leica Total Station to indicate their exact location. All 

excavated sediments were collected from sub-squares, wet sieved in the Jordan River 

and sorted for wood remains. The remains were stored in plastic bags, covered with 

water and transferred to the Laboratory of Archaeobotany and Ancient Environments, 

Tel Aviv University, for identification, analysis and conservation. 

Wood remains were identified to the lowest possible taxonomic level. Each wood 

sample was cut and examined along three observational axes (transverse, radial 

longitudinal and tangential longitudinal) using a stereoscopic Carl Zeiss SteREO 

Discovery.V20 microscope with magnifications of up to 360× under oblique-angled 
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top-lighting. A Scanning Electron Microscope (SEM: Tescan VEGA 3) was used 

when higher magnifications were needed. The abundance, arrangement and size of the 

wood's anatomical structures (e.g., vessels, rays, fibers, annual growth rings), along 

with several other diagnostic characteristics of the eastern Mediterranean arboreal 

flora, were noted. Observations were compared with the modern reference collection 

of tissue structure of the southern Levant flora (The Steinhardt Museum of Natural 

History) and with literature on plant anatomy (Fahn et al., 1986; Wheeler et al., 1989; 

Schweingruber, 1990; Richter et al., 2004; Akkemik and Yaman, 2012; Crivellaro and 

Schweingruber, 2013).

3.4  Paleoclimate reconstruction

The pollen-based climate reconstruction enabled us to quantify monthly precipitation 

and temperature for the time span encompassed by the JRD fossil pollen record 

(Figure 8). The statistical approach used to infer the climate variables from pollen 

samples was designed to minimize two major, known palynological difficulties: (1) 

the potential lack of analogy between the fossil pollen assemblages and the modern 

ecosystems; and/or (2) the potential adaptation of species to different climatic ranges 

over time which may lead to a misuse of the modern climate to infer past climate 

variables (Cheddadi et al., 2016, 2017). The model applied in the current study 

hypothesizes that plant species may co-occur only if their climatic ranges intersect. 

The first step of the climate reconstruction was the assignment of the fossil pollen 

taxa to their most probable corresponding present-day plant species. In the second 

step, we computed the weighted median of the present-day climatic range of each 

assigned species (Figure A2). The reconstructed temperature and precipitation values 
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correspond to the weighted median value of the climatic ranges of the plant species 

that correspond to pollen taxa identified in a fossil sample. Pollen taxa abundances 

(percentages) within each fossil sample are used as normalized (between 0 and 1) 

weight for computing the weighted median climatic values.

The standard deviations were computed using a leave-one-out approach: For each 

fossil pollen sample, one taxon was removed and a median climatic value for the 

remaining taxa was computed. This computation was performed as many times as the 

number of taxa used in the climate reconstruction model. The standard deviation of 

each reconstructed climatic value corresponds to the median value of all leave-one-

out iterations.

The pollen-based climate reconstruction required modern plant species geographic 

distribution data as well as the dataset of their corresponding climatic ranges. The 

modern plant species distributions were georeferenced from the Atlas Florae 

Europaeae (Jalas and Suominen, 1973, 1979, 1980) and downloaded from the Global 

Biodiversity Information Facility (https://www.gbif.org). The modern climate dataset 

was obtained from the WORLDCLIM database (Hijmans et al., 2005). The 

temperature and precipitation range of each plant species was obtained by 

interpolating the present-day climate values onto the geographical species 

occurrences. The statistical approach code was written with R software (R Core 

Team, 2020) using the following packages: RMySQL (Ooms et al., 2019), Akima 

(Akima and Gebhardt, 2016) and stats (R Core Team, 2020).
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4. Results 

4.1 The palynological record

Pollen was preserved in most sections of the JRD sediment outcrop. The section of 

55.33-57.73 m asl provided 45 fertile pollen samples, whereas the nine samples from 

the upper 70 cm of the sequence (57.33-58.03 m asl) were pollen barren. In all fertile 

samples, a large variety of well preserved pollen types was identified. The full fossil 

pollen results are presented in Figure A1.

The chronological framework of the JRD pollen diagram is based on the age-depth 

model presented in Figure 6. It covers the time interval between ~22 and 12 ka cal. 

BP. The diagram was divided into six pollen zones based on changes in the AP/NAP 

ratios together with the cluster analysis and the PCA analysis results. The uppermost 

part of the JRD section, where pollen was not preserved, was marked as pollen zone 6 

(Figures 5 and 7). The following description of the diagram presents the observed 

pollen zones from bottom to top.

Pollen Zone 1 (55.40-56.58 m asl; ~21.6-17.3 ka cal. BP)

The lower part of the JRD sequence, corresponding to the later stages of the Last 

Glacial period and to the Early Epipaleolithic, is characterized by relatively low 

percentages of Mediterranean arboreal pollen (0-18.1%) and relatively high 

frequencies of Artemisia and chenopods (up to 21.4% and 28.6%, respectively). At 

~20.9 ka cal. BP, no arboreal pollen was documented. High values of riparian taxa 

were observed between ~19.5-20.5 ka cal. BP (the highest being 10.3%). Zone 1 was 

subdivided into two subzones, Zone 1a (~21.6-18.5 ka cal. BP) and Zone 1b (~18.5-

17.3 ka cal. BP). Subzone 1b is distinguished from subzone 1a by a decline in 
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Poaceae and an increase in Chenopodiaceae and Apiaceae, together with a slight 

decrease in the ratios of Quercus ithaburensis type and a total disappearance of 

Cedrus libani.

Pollen Zone 2 (56.58-56.85 m asl ~17.3-15.6 ka cal. BP)

This zone, archaeologically corresponding to the Middle Epipaleolithic Geometric 

Kebaran lithic assemblage, is marked by a rise in the ratios of the tree taxa, with a 

peak of 29.4% at ~15.9 ka cal. BP. Another significant feature is the regular 

appearance of Quercus calliprinos and Pisatacia sp. during this time interval. 

Artemisia, Poaceae, Chenopodiaceae and Apiaceae are present but in medium ratios. 

At the upper part of this zone, a slight drop in the ratios of the stream/marsh-bank 

vegetation was documented (0.3-3.1%).

Pollen Zone 3 (56.85-56.96 m asl ~15.6-15.0 ka cal. BP)

This short time interval, preceding the appearance of the Natufian culture at JRD, is 

characterized by a sharp decline of AP ratios (5.7-8.5%). While both oak types (Q. 

ithaburensis and Q. calliprinos) and Pinus are present in lower frequencies, the total 

disappearance of other tree taxa was documented. This zone also exhibits a profound 

increase in Artemisia values (15.4-20.3%) and the first appearance of the alga 

Pediastrum. The stream/marsh-bank vegetation was again characterized by relatively 

low values (3.0-4.3%).

Pollen Zone 4 (56.96-57.30 m asl ~14.9-13.0 ka cal. BP)

This zone is equivalent to the early stages of the Natufian culture at JRD. The most 

striking feature of zone 4 is the strong increase in the total tree pollen values, with 

maximum ratios documented at ~14.2-13.2 ka cal. BP (reaching up to 53.1%). This 

increase is almost entirely due to Quercus ithaburensis type with a maximum at 13.4 

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430



19

ka cal. BP of 32.1%. Almost at the same time, at ~14.2-13.1 ka cal. BP, Olea pollen 

shows a relatively high and constant presence (0.3-1.5%). The significant rise in the 

tree percentages is accompanied by a profound decline in the ratios of both Artemisia 

and Chenopodiaceae (0.7-8.1% and 7.7-13.1%, respectively). Poaceae and Apiaceae 

are present in medium ratios. 

Pollen Zone 5 (57.30-57.55 m asl ~13.0-12.0 ka cal. BP)

In this pollen zone, archaeologically documenting the Late Natufian at JRD, a drop in 

AP ratios was registered (9.3-28.2%). Both oak curves, evergreen and deciduous, 

declined, as well as the Pistacia and Olea curves. Asteraceae Asteroideae and 

Asteraceae Cichorioideae as well as Apiaceae values are relatively high. Artemisia 

and Chenopodiaceae are present in relatively low frequencies (not exceeding 2.6% 

and 16.2%, respectively). Asphodelus pollen is characterized by a constant 

appearance and relatively high percentages. Zone 5’s palynological assemblages are 

also typified by high ratios of the alga Pediastrum and relatively low percentages of 

aquatic plants. A slight increase in the group of riparian taxa was also observed (up to 

5.8%). 

Pollen Zone 6 (57.55-58.03 m asl ~11.9-11.0 ka cal. BP) 

This is equivalent to the uppermost archaeological layer at JRD, Layer 3-0 

(archaeologically, it seems that this layer was modified by later inhabitants, possibly 

of the Early Neolithic, as evident by the El-Khiam arrowheads and limestone axes; 

Sharon et al., 2020). Pollen was not preserved in this uppermost section (Figure 5), 

most probably due to oxidation when lake levels decreased, causing loss of the 

waterlogged conditions. 
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Recent sample

The recent river mud surface sample collected as a comparative control sample 

demonstrates that the arboreal pollen spectrum is dominated by the following taxa: 

Olea, Pinus, Cupressus type, and neophytic trees such as Eucalyptus spp. (Table A1). 

The presence of these tree taxa is most likely due to modern afforestation rather than 

representing the natural flora. The Hula Valley environment has been subject to 

thousands of years of human disturbances. Similar to other southern Levantine areas, 

the intensity of human interference increased dramatically in the last 100 years due to 

modern agriculture, forestry and development. Human interference completely 

transformed the vegetation of the Hula Basin into an artificial environment. Hence, 

the contribution of the recent pollen sample to the interpretation of the fossil pollen 

data is limited.

4.2 Waterlogged wood assemblage

The waterlogged wood assemblage analyzed in the current study is composed of 227 

fragments from all layers tested. Twenty-five different taxa were identified (Table 2 

and Figure 9). The assemblage can be subdivided into two groups: Trees and shrubs 

typical of the Mediterranean forest/maquis comprise 37.3% of the assemblage, while 

riparian trees and shrubs form the majority, comprising 59.6% of the samples. 

Undetectable taxa include only 3.1% of the assemblage. The first group is dominated 

by the two deciduous oaks species, Quercus boissieri and Q. ithaburensis. In the 

second group, the identified samples belong to various trees and shrubs common 

today on banks of permanent and intermittent water bodies and streams in the Hula 

Valley. The most abundant taxa among this group are Fraxinus syriaca, 

Salix/Populus and Monocots (mainly reeds).
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Table 2: Identified waterlogged wood remains recovered from the JRD 
archaeological site in absolute numbers and percentages

Category Taxon
Absolute
number

Percentages

M
ed

it
er

ra
ne

an
 w

oo
dl

an
d/

m
aq

ui
s

Quercus calliprinos (Kermes oak) 2 0.9
Quercus ithaburensis (Mount Tabor oak) 13 5.7
Quercus boissieri (Aleppo oak) 20 8.8
Quercus deciduous (unidentifiable deciduous oak) 20 8.8
Quercus sp. (unidentifiable oak) 8 3.5
Laurus nobilis (laural) 2 0.9
Platanus orientalis (oriental plane) 3 1.3
Pistacia sp. (terebinth) 1 0.4
Pistacia atlantica (Atlantic turpentine) 2 0.9
Ziziphus spina-christi (jujube) 2 0.9
Paliurus spina-christi (Jerusalem thorn) 2 0.9
Cercis siliquastrum (Judas tree) 2 0.9
Rhus coriaria (elm-leaved sumac) 1 0.4
Ononis natrix (yellow restharrow) 3 1.3
Viburnum tinus (laurustine) 2 0.9
Myrtus communis (true myrtle) 1 0.4
Rosa sp. (rosa) 1 0.4

R
ip

ar
ia

n 
tr

ee
s

Fraxinus syriaca (ash) 30 13.2
Salix/Populus (willow/poplar) 27 11.9
Tamarix parviflora (smallflower tamarisk) 7 3.1
Tamarix sp. (tamarisk unidentifiable) 14 6.2
Vitis vinifera (grapevine) 2 0.9
Arundo donax (giant reed) 7 3.1
Phragmites australis (common reed) 7 3.1
Monocots 41 18.1
Undetectable 7 3.1

Total 227 100.0

The potential of this wood assemblage to provide a robust ecological picture 

documenting changes in the Mediterranean woodland on a time trajectory is limited. 

This is due to the relatively small size of the assemblage (when subdivided according 

to stratigraphic location) and its high ratios of riparian taxa, as water bank vegetation 
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is less sensitive to climatic changes in the region (Melamed et al., 2011). However, 

the JRD wood assemblage was instrumental in refining the pollen results when wood 

identification was possible to a lower systematic level than the identification achieved 

by the pollen, as in the cases of Pistacia and the deciduous oak pollen type. Three 

Pistacia species are native to the southern Levant: P. palaestina, P. lentiscus and P. 

atlantica. Whereas Pistacia pollen cannot be distinguished from one another, the 

species can be easily identified based on the anatomical structure of the wood 

(Grundwag and Werker, 1976). Among the deciduous oak pollen type, the most 

abundant species in the studied area today are Q. ithaburensis, a thermophilic 

deciduous tree typical of low elevations and Q. boissieri, a deciduous oak species of 

the upper mountain zones of the Galilee, Golan Heights and Mount Hermon (Zohary, 

1973). However, as in the case of Pistacia species, the two deciduous oak species are 

palynologically indistinguishable. The results of the JRD wood assemblage presented 

in Table 2 indicate that P. atlantica grew at the vicinity of JRD and that Q. boissieri 

was more prevalent in the study region than Q. ithaburensis.

5. Discussion

5.1 Vegetation reconstruction at the Hula Basin

5.1.1 The Mediterranean woodland/maquis

The most dominant component of the arboreal pollen vegetation in and around the 

Hula Valley was the deciduous Quercus ithaburensis (Mount Tabor oak) pollen type 

(Figure 7). Some pollen grains of this type may have been of Q. boissieri (Aleppo 

oak), which is a deciduous oak species of the surrounding higher mountain zones, and 

some may have derived from the thermophilic deciduous Q. ithaburensis, typical of 
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lower elevations. Palynologically, these two deciduous oaks are indistinguishable and 

therefore appear in the pollen diagram as Q. ithaburensis pollen type. In the JRD 

wood assemblage, Q. boissieri was slightly more common than Q. ithaburensis 

(Table 2). In contrast to the pollen record, human agency was most likely involved in 

the accumulation of the archaeological wood assemblage – people collected wood as 

raw material for construction, firewood, and for preparing various wooden tools. 

Based on the assumption that the timber for everyday use was usually collected in the 

site vicinity (Deckers et al., 2007; Lev-Yadun, 2007), it can be argued that both 

deciduous oak species were growing around JRD. Hence, both contributed to the 

pollen rain over Paleolake Hula. The other two dominant taxa in the palynological 

record are the evergreen oak (Q. calliprinos) and Pistacia. Their occurrence with 

nearly identical trends throughout the pollen record reflects the expansion and 

reduction of the Mediterranean woodland/maquis. For example, the increasing values 

of their curves together with the rising values of Quercus ithaburensis pollen type at 

the beginning of pollen zone 2 (~17 ka cal. BP), point to a gradual expansion of the 

Mediterranean woodland/maquis in the environs of the Hula Valley. The presence of 

sclerophyllous trees such as evergreen oak and Pistacia, though in very low 

frequencies and inconsistent appearance during the LGM, suggests that the mountains 

near JRD (Upper Galilee; Figures 1 and 2) may have served as glacial plant refugia. 

The same phenomenon was observed in other Mediterranean pollen studies (Tzedakis 

et al., 2002; Carrión et al., 2003; Cheddadi and Khater, 2016). 

The pollen values of Pinus are relatively low throughout the JRD sequence, but its 

occurrence is almost constant except during two short phases: at ~21 ka cal. BP, and 

around ~13 ka cal. BP. These episodes may be related to the LGM and Younger 

Dryas cold climates. Pinus halepensis (Aleppo pine) is the only pine species native to 
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Israel and it is sensitive to frost (Pardos et al., 2003). Typically, it is a minor arboreal 

component of the Mediterranean maquis/forest (Zohary, 1973; Weinstein-Evron and 

Lev-Yadun, 2000), though some Pinus pollen grains may have originated from 

Lebanon where at present P. brutia (Turkish pine) is the predominant pine (Zohary, 

1973; Van Zeist and Bottema, 2009). Pinus pollen is usually over-represented in 

palynological assemblages, owing to its high production, efficient long-distance 

transport ability, and high resistance to degradation (Cheddadi and Rossignol-Strick, 

1995; Van Zeist et al., 2009). The total lack of waterlogged pine wood remains at 

JRD (Table 2) supports the hypothesis of long-distance transportation of Pinus pollen 

and/or its presence as a very minor component in the Mediterranean woodland/maquis 

in the area around the Hula Valley. 

Olive (Olea europaea) was always a minor component of the Levantine native 

Mediterranean maquis/forest (Langgut et al., 2019, and references therein). This 

observation is supported by the total absence of Olea remains in the JRD wood 

assemblage (Table 2). After its domestication during the early Chalcolithic, olive 

became the most dominant tree in wood-charcoal assemblages of the Mediterranean 

southern Levant Bronze and Iron Ages sites (e.g., Benzaquen et al., 2019). Olea is a 

predominantly wind-pollinated species that releases large amounts of pollen into the 

atmosphere and is usually well-represented in palynological spectra (Bottema and 

Sarpaki, 2003; Mercuri et al., 2013; Langgut et al., 2014b). Olea pollen appears in the 

JRD pollen sequence mainly at the time interval of 14.2-13.1 ka cal. BP. Olive does 

not grow in areas where winter temperatures fall below 3°C (Zohary, 1973); 

therefore, increasing Olea pollen levels signal warmer climate conditions in the 

region (Cheddadi and Rossignol-Strick, 1995; Aharonovich et al., 2014; Langgut et 

al., 2011, 2018). In contrast, Cedrus libani, only sporadically occurring in the JRD 
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pollen record, is usually an indicator of colder climate conditions, since it is restricted 

to cold and sunny high elevation slopes in the region (Weinstein-Evron, 1983; 

Cheddadi et al., 1991). Scattered cedar populations are still found today in the 

mountains of Lebanon, in the mountain ranges of southern Turkey and in 

northwestern Syria (Beals, 1965; Hajar et al., 2010), probably relics of a formerly 

extensive distribution. Indeed, no cedar wood remains were found at JRD nor at other 

Pleistocene sites in Israel. Beginning in the Mid-Holocene, the cedar of Lebanon was 

imported to ancient Israel as a prestigious tree (Lev-Yadun, 1992; Langgut and 

Gleason, 2020; Langgut et al., 2021).

The arboreal pollen and wood results demonstrate that the Mediterranean 

maquis/forest was always present in the region during the end of the Pleistocene, and 

was composed of the same components. Changes were, however, observed in taxa 

proportions in the different periods investigated, resembling shrinkage and expansion 

of the maquis/forest.

5.1.2 Open fields vegetation

The lower part of the JRD sequence (pollen zones 1-3) is characterized by high ratios 

of Artemisia and Chenopodiaceae pollen. In the southern Levant, Artemisia (in non-

hot-desert conditions) is considered the best palynological marker for dryer and colder 

climate conditions (Cheddadi and Rossignol-Strick, 1995; Langgut et al., 2011). 

Similarly, members of Chenopodiaceae family are found in the same environmental 

conditions since they are common constituents of Artemisia dwarf-shrub steppe. 

However, they can also thrive in saline habitats (Van-Zeist et al., 2009). 
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Pollen zone 4 (~14.9-13.0 ka cal. BP) is marked by a decrease in Artemisia and 

Chenopodiaceae values. This decline represents a profound shift in the vegetation 

cover of the Hula Basin, from extensive dwarf-shrub steppe (at pollen zones 1-3) to a 

restricted steppe cover and widening of the Mediterranean woodland/maquis. Pollen 

zone 5, which begins at ~13 ka cal. BP, corresponds to the Younger Dryas event 

(Andres et al., 2003). This zone is typified by an exceptional non-arboreal 

palynological spectrum. Artemisia frequencies show their lowest values anywhere 

along the sequence. Yet, unlike previous pollen zones, the Artemisia low percentages 

were accompanied by a significant rise of the following taxa: Asphodelus, Asteraceae 

Asteroideae type (aster-like), Asteraceae Cichorioideae type (dandelion-like) and 

Apiaceae. These ecosystem changes indicate a significant shift in the regional 

vegetation cover in the JRD area during the Younger Dryas. Assemblages of pollen 

zone 5 indicate a decline in Mediterranean arboreal pollen and an increase in the 

abundance of Mediterranean open field small shrubs and herb components. In 

contrast, in previous JRD pollen zones, a decrease in Mediterranean trees was 

accompanied by a rise in open field steppe environment components such as 

Artemisia and Chenopodiaceae. 

The occurrence of Cerealia pollen type is scattered throughout the JRD pollen record 

without a specific trend that can be attributed to environmental change and/or human 

interference. 

5.1.3 Marsh-bank vegetation and aquatic plants

Slightly higher pollen percentages of the marsh-bank vegetation group were 

documented for the lower part of the palynological diagram (~22.0-16.5 ka cal. BP), 
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covering pollen zone 1 and the lower section of zone 2. This may indicate that the 

edge of the lake was closer to the studied site. It is therefore suggested that slightly 

lower lake levels characterized Paleolake Hula from ~22.6-16.5 ka cal. BP. After 

~16.5 ka cal. BP, during the accumulation of the upper part of zone 2 and until the 

end of the diagram, a minor decrease in the percentages of the riparian plants was 

recorded, probably representing an increase in the lake level stands.

The pollen and the waterlogged wood assemblages from JRD enable characterization 

of the Paleolake Hula bank vegetation during site occupation. They provide direct 

evidence for the aquatic vegetation resources that were available to the Epipaleolithic 

fishers and gatherers. The marsh-bank palynological spectra include pollen of 

Phragmites type (reed), Cyperaceae, Typha (cattail), and Salix (willow), all 

ethnographically and experimentally known to be used in basketry and rope 

interweaving (Kristal, 2020). Water plants are highly reproductive and abundant and 

they are known to be used in the production of various fishing gear, including 

fishline, nets and traps (Salls, 1989; Nadel et al., 1994; Dounias et al., 2016). Other 

components of this group, such as Vitis (grape), have been used as food, while woody 

taxa such as Tamarix (tamarisk) may have been used as raw material for the 

preparation of wooden objects (Nadel and Werker, 1999; Nadel et al., 2006; Langgut 

et al., 2016). Various Poaceae plants (grasses) could have been used for bedding 

(Nadel et al., 2004). The JRD wood assemblage confirms the high riparian taxa 

diversity that was available to the site’s inhabitants, including ash, tamarisk, 

poplar/willow and grapevine, as well as Monocots such as giant reed (Table 2 and 

Figure 9). 

A significant observation emerging from the study of JRD palynomorphs is the first 

appearance of two types of freshwater alga, Pediastrum simplex type and P. 
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boryanum type. This alga appears at the upper segment of the JRD section, after 

~15.5 ka cal. BP. Typically, increasing percentages of these two algae taxa are 

indicative of warmer climate conditions and a nutrient-rich environment (Jankovská 

and Komárek, 2000, and references therein). The appearance of Pediastrum is almost 

parallel to the marked rise in Mediterranean arboreal pollen and a decrease in pollen 

of aquatic plants. Van Zeist et al. (2009), who identified the same phenomenon in a 

previous Paleolake Hula pollen investigation, suggested that the growth of 

Pediastrum was encouraged by a rise in the influx of organic material into the lake. It 

was proposed that increased density of upland vegetation cover resulted in more 

organic debris being washed into the lake, enriching the organic nutrients available in 

the water. The decline in aquatic pollen percentages is probably a result of the rise in 

lake levels. The lake became (locally) too deep for water plants to take root in the lake 

bottom (Van Zeist et al., 2009). The observation regarding the increase in lake levels 

since ~16.5 ka cal. BP based on the increase in pollen of riparian taxa is, therefore, 

corroborated by the declining pollen values of the aquatic taxa.

5.2 Climate reconstruction of the Mediterranean southern Levant: 

~22.0-11.9 ka cal. BP 

5.2.1 Last Glacial Maximum (LGM): ~22-19 ka cal. BP 

Our paleoclimate model indicates that the reconstructed annual precipitation exhibits 

no dramatic changes throughout the later part of the LGM represented in this study 

(~22-19 ka cal. BP) with an average of 450 mm (Figure 8c). However, mean January 

(Tjan), August (Taug) and annual (Tann) temperatures fluctuated greatly during this 

time interval (Figure 8a). Tjan ranged between 5.5°C and 10°C (present-day value is 

11°C). Both the Taug and the overall mean annual temperature were ca. 4°C lower 
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than today, which had a positive effect on the precipitation/evaporation ratio of the 

region. Previous regional studies confirm that during the LGM, temperatures in the 

Levant were cooler than at present; fluid inclusion δD from Soreq Cave speleothems 

yielded calculated annual average temperatures of ~7-9°C at the cave during the 

height of the LGM, 9-11°C cooler than today (McGarry et al., 2004). Annual average 

temperatures on the Mitzpe Shelagim summit of Mount Hermon (2,224 m asl) were 

below 0°C (Ayalon et al., 2013: table 3). Dryer and cooler conditions during the LGM 

are also evidenced by erosion in the Negev Desert (Goodfriend, 1987; Goodfriend and 

Magaritz, 1988). However, speleothem deposition at the northern Negev Desert at 

~23-13 ka signifies that the climate was not extremely arid; moisture was available 

from a Mediterranean source for the formation of these cave deposits (Vaks et al., 

2006). 

Slightly before the beginning of the JRD sequence, at ~27-23 ka BP, the reconstructed 

Lake Lisan reached its highest levels (Bartov et al., 2002, 2003, 2006, 2007; Haase-

Schramm et al., 2004; Hazan et al., 2005; Torfstein and Enzel, 2017). Our  

paleoclimate model (Figure 8) suggests that temperature was the critical climate 

variable influencing the lake level changes of the Jordan Rift Valley. While the 

reconstructed annual precipitation was only slightly below that of today (~450 mm vs. 

515 mm, respectively), annual mean temperatures were much lower during the end of 

the last glacial period. These low temperatures most probably reduced evaporation, 

resulting in high lake levels. This scenario is in line with south Levantine speleothems 

studies (Ayalon et al., 2013; Bar-Matthews et al., 2019 for a recent review) and 

climate model simulations (Stockhecke et al., 2016), but contradicts claims explaining 

high lake levels by an extensive increase in precipitation (Bartov et al., 2003; Enzel et 

al., 2008; Stein, 2014; Torfstein and Enzel, 2017). The vegetation patterns that 
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emerged from this study for the LGM indicate a reduction of the Mediterranean 

woodland/maquis and the prevalence of steppe vegetation, which translates into a 

reduction in the overall amounts of annual precipitation. The decrease in the total 

woodland density resulted in more surface runoff, which was then washed into the 

lakes of the Jordan Rift Valley. The JRD pollen-based vegetation reconstruction is 

confirmed by high-resolution well-dated palynological investigations from the nearby 

Birkat Ram (Golan Heights; Schiebel, 2013) and the Sea of Galilee (Miebach et al., 

2017, though this sedimentary sequence was dated slightly earlier, to ~28-22 ka BP). 

A palynological and environmental study of a northern Levantine core from Lake 

Yammoûneh in Lebanon also indicates that the LGM was one of the coldest periods 

during the last 250 ka BP (Develle et al., 2011). Eastern Mediterranean marine pollen 

records are also characterized by low values of Mediterranean arboreal pollen during 

the LGM, with almost no occurrence of frost-sensitive and summer-drought-adapted 

trees such as Olea and Pistacia, indicating that winter frost may have occurred 

(Cheddadi and Rossignol-Strick, 1995; Langgut et al., 2011). The total lack of 

speleothems growth at Mizpe Shelagim Cave during Marine Isotope 2 suggests 

permafrost conditions along the higher elevations of Mount Hermon (Ayalon et al., 

2013). The vegetation cover could have been shaped by effective moisture in the 

habitats, while additional precipitation was stored as snow on high mountains 

(Robinson et al., 2006). Rapid snowmelt in spring would have fed the Jordan Rift 

lakes but would have hardly affected the vegetation cover (Miebach et al., 2017). A 

palynological study from the Dead Sea reveals an expansion of the Artemisia steppe 

from 60 to 20 ka BP under a drier and cooler climate with an average of 3˚C lower 

during MIS 3 than today (Miebach et al., 2019; Richter et al., 2020). According to 

recent Dead Sea pollen studies (Chen and Litt, 2018; Miebach et al., 2019; Richter et 

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710



31

al., 2020), the decline in temperatures during glacial periods reduced evaporation, yet 

sufficient moisture was available in the Dead Sea region to support steppe vegetation. 

Thus, the Lisan Lake level rose without a corresponding increase in the annual 

amount of precipitation (Chen and Litt, 2018; Miebach et al., 2019; Richter et al., 

2020).

5.2.2: The post-glacial time interval: ~18.7-11.9 ka cal. BP

This time span began with a marked rise in temperatures (mean annual, winter and 

summer) of between 3-5°C from ~19 to ~17 ka cal. BP (Figure 8a). A similar pattern 

emerged from the reconstruction of average annual temperatures for Soreq Cave, 

based on speleothem fluid inclusion δD, with 7-9°C at ~19.2-18.9 ka increasing to 9-

12°C at ~18.9-18.6 ka (McGarry et al., 2004). The JRD paleoclimate model also 

indicates a slight increase in winter precipitation (Figure 8d) accompanied by a slight 

decrease for the three other seasons, indicating a rise in seasonality contrast (Figure 

8e-g). At ~16-15 ka cal. BP the model points to a decline in temperatures as well as a 

decrease in winter and spring precipitation (Figure 8d-e). This climatic shift to cooler 

and dryer climate conditions is most probably related to Heinrich Event 1. This short-

duration cooler and dryer episode was also identified in other southern Levantine 

paleoclimate records: 16.5 ka at Soreq Cave (Bar-Matthews et al., 1999) and 16 ± 1 

ka at Lake Lisan (Bartov et al., 2003).

The wettest and warmest time interval throughout the JRD sequence was identified 

between ~14.9 and 13.0 ka cal. BP. This period coincides with the global warm and 

moist Bølling-Allerød interstadial (=Greenland Interstadial 1, Lowe et al., 2008) 

(Figure 8a and d). This warm trend reached its maximum at ~14 ka cal. BP, with 

reconstructed January temperatures similar to today’s average (~11°C; Figure 8a). 
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The mean annual temperature values during the warm Bølling-Allerød interstadial 

remained ca. 2°C lower than today, which is consistent with the global temperature 

ice record (GRIP members, 1993), the Mediterranean Sea surface temperature (Cacho 

et al., 1999) and regional climate records (Cheddadi and Khater, 2016). 

Speleothem formation at Mizpe Shelagim beginning at ~15 ka (after a total lack of 

growth during the time interval of ~34-15 ka) was due to the melting of permafrost at 

the higher elevations of Mount Hermon, indicating the onset of a warm phase in the 

Levant (Ayalon et al., 2013). Based on the reconstructed seasonal precipitation from 

the JRD model, not only did winter precipitation increase, but also spring and autumn 

precipitation (Figure 8e-g). This multi-seasonal increase in precipitation likely 

resulted from multiple contributors, with autumn and winter moisture originating 

from the Mediterranean (Cyprus Low) and spring moisture from a southern source 

(Red Sea Low). 

Lake Lisan levels during the Bølling-Allerød were relatively high, suggesting an 

increase in precipitation to evaporation ratio in comparison to conditions during 

Heinrich Event 1 (Bartov et al., 2002). The Soreq Cave speleothem stable isotope data 

are also suggestive of an increase in temperatures and precipitation during this time 

interval (Bar-Matthews et al., 1997, 1999). The Bølling-Allerød period was also 

identified in the eastern Mediterranean marine pollen record based on a marked rise in 

Mediterranean arboreal pollen values (Langgut et al., 2011).

The onset of the Younger Dryas event is dated in the JRD sequence to ~12.9 ka cal. 

BP. At the uppermost part of the JRD record, pollen grains were not preserved (Pollen 

zone 6); hence, the end of the Younger Dryas is missing. The reconstructed 

paleoclimate conditions for this time interval are exceptional, as for the first time in 
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the JRD record, temperature and precipitation show opposite trends: While 

temperatures decreased, annual precipitation slightly increased (Figure 8a and 8c). A 

higher contribution of moisture derived from spring, summer and autumn rains, while 

winter precipitation decreased in comparison to the previous periods (Figure 8d-g). 

This reconstruction points to a reduced seasonal contrast during the Younger Dryas. 

Identical observations emerged from the study of fluorescent banding patterns of 

Soreq Cave speleothems, revealing that during Heinrich Event 1 and the Younger 

Dryas, the supply of drip water to Soreq Cave was more consistent year-round 

(Orland et al., 2012). Thus, a reduced gradient of seasonal precipitation, occasional 

snowfall, and vegetation cover differences may have all contributed to the isotope and 

fluorescent banding patterns observed for these two exceptionally short time intervals 

that led to less distinct wet and dry seasons (Orland et al., 2012). The decrease in the 

magnitude of difference in δ18O values between the wet and dry seasons in the 

Mediterranean Levant during the Younger Dryas is supported by an isotopic study of 

hunted gazelles (Hartman et al., 2016). Similar seasonality trends were also observed 

during the same time period from palynological records of the northern Levant 

(Cheddadi and Khater, 2016). These records show a lowering of winter precipitation 

over Lebanon during the Younger Dryas and a slight increase of summer 

precipitation, resulting in a more balanced contribution of moisture from the 

southwest and northwest Mediterranean basin during summer and winter (Cheddadi 

and Khater, 2016: figs 1 and 5). Today, the Mediterranean climate is characterized by 

a highly marked amplitude of precipitation between summer and winter, related to the 

dominant northwest storm tracks during winter. The cooler temperatures during the 

Younger Dryas reconstructed for the JRD record are corroborated by other isotope 
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studies available from the Mediterranean Levant (Orland et al., 2012; Hartman et al., 

2016).

 

The JRD reconstructed precipitation during the Younger Dryas is also intensively 

fluctuating, potentially pointing to climate instability (Figure 8c-f). Based on multiple 

Levantine paleoclimate datasets, Robinson et al. (2006) proposed that the Younger 

Dryas was cold in comparison to the Bølling-Allerød and the Holocene (Robinson et 

al., 2006: fig. 15C). The Younger Dryas was also depicted in other Levantine 

terrestrial and marine palynological records, based on the identification of steppe 

dominating plant taxa, primarily Artemisia and Chenopodiaceae (Kadosh et al., 2004; 

Langgut et al., 2011; Cheddadi and Khater, 2016). Unfortunately, the beginning of the 

Holocene is not recorded in the JRD pollen sequence. Other palynological records in 

the vicinity of JRD reveal increasing percentages of arboreal pollen accompanied by 

an abundance of frost-sensitive and summer-drought-adapted taxa such as Olea, 

Pistacia, and evergreen oaks during the early Holocene (Lake Hula: Van-Zeist et al., 

2009, based on their revised chronology; Sea of Galilee: Schiebel and Litt, 2018). 

Similar vegetation and environmental patterns were observed in the northern Levant 

during the Early Holocene (Develle et al., 2011; Gasse et al., 2015; Cheddadi and 

Khater, 2016).

5.3 Environmental preconditions to sedentism and the onset of 

agriculture 

The transition from small nomadic groups of hunter-gatherers, to the sedentary 

villages of the Natufian, followed by the agricultural communities of the 
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Neolithic period, is a seminal process in human history. This transition involved not 

only a shift to food production-based subsistence strategies, but also the creation of 

the complex societies of early civilizations. Yet, the exact location, reasons, and 

processes that led to this dramatic cultural change remain in dispute (e.g., Lev-Yadun 

et al., 2000; Fuller et al., 2011). The current study does not aim to resolve this debate; 

however, the long and well-dated stratigraphic sequence of JRD yielded a continuous, 

site-based palynological record covering the great majority of the Levantine 

Epipaleolithic. Our record is especially important due to the correlation achieved 

between the palynological and the paleoclimatic reconstruction with the cultural 

changes evident at JRD, based on well-defined archaeological horizons. This 

correlation enables identifying several unique environmental circumstances which 

characterized the Mediterranean southern Levant, forming the background for the 

dramatic shift toward sedentism and Neolithization (Table 3).

The paleoclimate reconstruction generated from the Epipaleolithic JRD sequence 

demonstrates that a significant climate shift to warmest and wettest conditions 

occurred during the time interval of ~14.9-13.0 ka cal. BP (Figure 8). This warm and 

humid interval was accompanied by a high seasonal contrast of precipitation. 

Significantly, the beginning of this phase is synchronous with the onset of the 

Natufian culture, characterized by reduced population mobility and sedentism in the 

Hula Valley and the entire southern Levant (Bar-Yosef and Belfer-Cohen, 1989, 

1992, 2016; Kaufman, 1992; Moore and Hillman, 1992; Grosman, 2003, 2018; Byrd, 

2005; Maher et al., 2011; Bar-Yosef and Valla, 2013; Yeshurun et al., 2014). The data 

indicate that the Early Natufian documented by archaeological finds emerged during a 

time of favorable climatic conditions and abundant resource availability. Such 
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conditions may have augmented the capability of the first sedentary communities to 

face the environmental and subsistence challenges that surely accompanied early 

sedentism and population increase (Belfer-Cohen and Bar-Yosef, 2000; Boyd, 2006).

The JRD Younger Dryas pollen assemblages differ from all other pollen spectra 

observed during the glacial/interglacial time intervals (Figure 7; Table 3). They are 

characterized by high frequencies of Mediterranean open field vegetation. This flora 

may appear unrelated to steppe semi-arid vegetation as demonstrated for previous 

drier and colder periods in the same sequence. The occurrence of herb plants such as 

Cirsium, Achillea and Epilobium (Figures 7 and A2) is interpreted by their favorable 

conditions including both a decrease in winter temperature and an increase in water 

availability during the summer. This herbaceous landscape enabled us to quantify the 

significant seasonal changes during the Younger Dryas event (Figure 8). The pollen 

record shows an increase in annual plants. This may have enriched the plant-gathering 

opportunities of the inhabitants of the Mediterranean Levant. The proliferation of 

herbs, and specifically of annuals, may have paved the way to the emergence of 

agriculture in the Near East, since all seven Neolithic founder crops are annuals. 

Munro (2003), based on the archaeozoological record of the southern Levant, also 

sees the Younger Dryas as forcing Late Natufian (~12.9-11.6 cal. BP) populations to 

cope with the changing climate and environment by shifting to a wide spectrum diet. 

In parallel, Belfer-Cohen and Bar-Yosef (2000) noted that the Late Natufian hunter-

gather communities are characterized by increasing population mobility patterns.

The exceptional climatic and environmental conditions during the Younger Dryas 

event are evidenced by its vegetation change and the lowest climatic seasonal contrast 

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857



37

reconstructed for the JRD sequence. The primary expression of this observation is an 

increase in rains during spring, summer and autumn, together with a significant 

reduction in winter precipitation (Figure 8c-f). In contrast, at the beginning of the 

Holocene, the regional climate was typical Mediterranean, of stronger seasonality 

than today, with mild winters and hyper-arid summers (Orland et al., 2012; Cheddadi 

and Khater, 2016). The early Holocene seasonal stress of long, hot dry summers 

probably increased the need for food storage by sedentary communities. We suggest 

that the significant vegetation and climate changes at the late Pleistocene-Holocene 

boundary contributed to the development of agriculture-based subsistence (Table 3). 

Admittedly, similar environmental changes also occurred during earlier phases of the 

Pleistocene. Yet, the climate changes that occurred during the Pleistocene-Holocene 

boundary were, for the first time, accompanied by sedentism, complex social 

organization, food storage and curating technologies for harvesting and processing of 

wild plants. Sickles (Groman-Yaroslavski et al., 2016; Maeda et al., 2016), grinding 

stones (Weiss et al., 2008; Marder et al., 2013; Rosenberg, 2013) and pounding tools 

(Nadel and Rosenberg, 2010; Marder et al., 2013; Rosenberg and Nadel, 2014), as 

well as storage facilities (Liu et al., 2018), are all well documented in the Levantine 

Epipaleolithic. 

This study suggests that the confluence of separate natural events and cultural 

developments promoted the emergence of agriculture in the Mediterranean Levant. 

The sudden, exceptional Younger Dryas climate induced a major vegetation change, 

which was followed by a severe seasonality during the Early Holocene and related 

changes in vegetation cover. Together with the shrinking of the Jordan Valley lakes, 

these conditions presented new subsistence challenges to the sedentary communities 
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of the Mediterranean Levant. A similar synergic scenario was suggested three decades 

ago by McCorriston and Hole (1991). Yet, their proposal lacks a solid paleo-

vegetation dataset and detailed paleoclimate model as presented in this study. 

McCorriston and Hole (1991) claimed that the convergence of several cultural and 

environmental factors, each forming a piece of the puzzle, generated the 

Neolithization process. They list a series of social, ideological, cultural, technological, 

climatological and environmental preconditions that must have existed before 

Natufian groups could cross the threshold to agriculture-based subsistence. Hence, 

agricultural economy developed because the right people were in the right place, at 

the right time, with the “right” annuals. Although local changes in vegetation cover 

and climate including seasonality played a central role in the origins of agriculture, 

they were not the sole cause and occurred during earlier periods of the Pleistocene.

Table 3: Summary of the primary JRD sequence vegetation and environmental 
patterns 
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framework

Vegetation cover Climate reconstruction Correlation
with northern 
Hemisphere 
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Socio-cultural entity in 
the Mediterranean 
Levant*
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Pollen Zone 6
~11.9-11.0 ka

No pollen (~11.7-11.0 ka). Other 
Levantine pollen records indicate 

High precipitation with a 
dominance of winter rains 

Beginning of 
Early 

Neolithic
(from ~ 11.6/11.5 ka) 
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cal. BP a great expansion of the 
Mediterranean woodland/maquis 
from about 11.5 ka, with an 
abundance of frost-sensitive and 
summer-drought-adapted trees 
such as Olea, Pistacia, and 
evergreen oaks (Cheddadi and 
Khater, 2016)

No pollen (~11.9-11.0 ka)

from ca. 11.5 ka. Severe 
seasonality with hot and 
long dry summers (based 
on the paleoclimate model 
of Cheddadi and Khater, 
2016)

Holocene 
climate 
optimum
(from ~ 
11.6/11.5 ka)

End of the 
Younger 
Dryas

Final Natufian 

Natufian
(~ 15-11.6 ka)

Early Natufian

Pollen Zone 5
~13.0-11.9 ka
cal. BP

Mediterranean open field 
vegetation

Low temperatures. A 
decrease in winter 
precipitation and an 
increase in spring, summer 
and autumn rains.
Very low seasonal 
amplitude

Younger 
Dryas (12.9-
11.7 ka)

Pollen Zone 4
~14.9-13.0 ka
cal. BP

The greatest cover of the 
Mediterranean woodland/maquis. 
The decrease in riparian taxa and 
aquatic plants together with the 
appearance of the algae 
Pediastrum point to an increase 
in the lake levels

The wettest and warmest 
time span with a decrease 
in seasonality contrast

Bølling-
Allerød
(14.7-12.9 ka)

M
id

dl
e

E
pi

pa
le

ol
it

hi
c

Pollen Zone 3
~15.6-15.0 ka
cal. BP

A great expansion of dwarf-shrub 
steppe vegetation

Low temperatures. A 
decline in annual 
precipitation with an 
increasing contribution of 
summer rains. Reduced 
seasonality

Most 
probably 
related to 
Heinrich 
Event 1

Geometric
Kebaran
(~ 18.5-15 ka)

Pollen Zone 2
~17.3-15.6 ka
cal. BP

A profound increase in arboreal 
cover dominated by evergreen 
oaks, deciduous oaks and 
Pistacia, forming a woodland or 
park-forest

Stable, annual temperatures 
with a decrease in winter 
precipitation. Significant 
seasonality contrast

Last 
Deglaciation

Pollen Zone 1b
~18.6-17.3 ka
cal. BP

The region is still intensively 
covered by dwarf-shrub steppe 
vegetation

A marked temperature 
increase (ca. 4°C)
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Pollen Zone 1
~21.6-18.6 ka
cal. BP

The Mediterranean 
woodland/maquis
is very limited. Abundance of 
dwarf-shrub steppe vegetation

Low and fluctuating annual 
temperature (up to 5°C 
lower than today) and 
slightly lower annual 
precipitation (<60 mm than 
today) with some 
contribution of summer 
rains 

LGM
~23-19 ka

Mazraqan/Kebaran/Early 
Epipaleolithic
(~ 22.0-18.5 ka)

*Socio-cultural entities chronology after Goring-Morris and Belfer-Cohen, 2017; Grosman, 2018 
(years in ka cal. BP).

6. Summary and Conclusions

Paleoenvironmental records derived from Epipaleolithic sites are rather scarce in the Levantine 

region, mainly due to poor preservation of organic remains. This is particularly true for the 

Early and Middle Epipaleolithic periods. In this regard, the JRD waterlogged record collected 

from the shores of Paleolake Hula is a new and valuable contribution to the understanding of 

past environmental changes in the Mediterranean Levant. The JRD record is a well-dated, high-

resolution, continuous fossil pollen sequence that, together with well-identified wood 

assemblages, enabled us to reconstruct environmental changes in the studied area between 22.0 

and 11.9 ka cal. BP. Quantitative climate reconstruction demonstrates that during this time 

interval, the mean annual temperature was lower than today (in the range of 14.5-19°C vs. 21°C 

on average today). During most of the period, the mean annual precipitation was slightly lower 

than today (average 450 mm vs. 515 mm today). However, from ~15 ka cal. BP, mean annual 

precipitation increased (reaching maximum values of 545 mm at 14.5 ka cal. BP). Our climate 

model of seasonal changes for both temperatures and precipitation enabled us to reconstruct in 

detail the climatic conditions of the region, providing the environmental background for the 

dramatic socio-cultural human shifts that occurred at this time interval. 

1. During the Early Epipaleolithic period, corresponding to the LGM, a limited 

Mediterranean woodland/maquis with a lush dwarf shrub steppe vegetation 

covered the area around Paleolake Hula. Our paleoclimate model points to low 
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temperatures, reaching the lowest values of the sequence at 20.5 and 19.5 ka cal. 

BP, with reconstructed January temperatures 5°C lower than today. Average 

annual precipitation was only slightly lower than today, with some summer 

precipitation.

2. After the LGM, at ~19-17.5 ka cal. BP, dwarf shrub-steppe vegetation continued 

to dominate the region. The mean annual temperature remained relatively low 

and a slight increase in precipitation associated with an additional contribution of 

summer rainfall was inferred. By ~17.5 ka cal. BP, a well-developed 

Mediterranean woodland probably already existed in the area. The reconstructed 

climate points to a significant increase in temperature and winter precipitation 

with increased seasonality.

3. The greatest cover of the Mediterranean woodland/maquis was identified at the 

beginning of the Late Epipaleolithic period. The paleoclimate reconstruction of 

the time interval ~14.9 to 12.9 ka cal. BP demonstrates a striking climatic shift to 

the warmest and wettest conditions in the Epipaleolithic JRD sequence. These are 

likely correlated with the warm and humid Bølling-Allerød interstadial as well as 

with the onset and duration of the Natufian culture in the Levant. The humid and 

warm climate certainly helped the early settlers overcome the many challenges of 

sedentism. The palynological evidence also points to an increase in the lake 

levels stands. 

4. Two cold, short-term climate events were identified. The first is dated to ~16-15 

ka cal. BP and may be related to the cold and dry Heinrich Event 1. The second 

episode began at ~12.9 ka cal. BP and corresponds to the Younger Dryas. The 

JRD sequence ends at ~11.9 ka cal. BP and probably lacks the last phase of the 

Younger Dryas (~11.9-11.7 ka cal. BP). Our paleoclimate model indicates that 

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944



42

this period was characterized by unique climatic conditions, with the least 

contrast of climatic seasonality. There was an increase in precipitation 

contribution during spring, summer and fall, along with a significant decrease in 

winter precipitation. The reconstructed vegetation suggests the presence of 

Mediterranean open field vegetation, probably rich with annuals. We therefore 

suggest that the extensive herbaceous landscape probably increased the 

opportunities for plant gathering, specifically of annuals, paving the way towards 

agriculture. In the following period, the early Holocene, as well as at present, the 

region is characterized by seasonal stress, with long, hot dry summers. 

5. We propose that the significant vegetation and climate changes at the late 

Pleistocene-Holocene boundary contributed to the development of agriculturally-

based subsistence communities in the Mediterranean Levant. Undoubtedly, 

environmental changes similar to those of the Younger Dryas/Early Holocene 

transition occurred previously during earlier phases of the Pleistocene. But, for 

the first time, these climatic changes were accompanied by sedentism, more 

complex social organization, and technologies for harvesting and for food 

storage. 
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Figure captions

Figure 1: a). Distribution of vegetation zones in the southern Levant; M = 

Mediterranean zone (Garrigue, maquis, woodland); IT = Irano-Turanian zone 

(steppeland); SA = Saharo-Arabian zone (desert); S = Sudanian zone (penetration 

territory) (after Zohary, 1973, 1982; Danin and Plitmann, 1987); b). Map of the 

southern Levant indicating mean annual precipitation in mm (Srebro and Soffer, 

2011); c). The position of the southern Levant.

Figure 2: Location of Jordan River Dureijat (JRD) archaeological site (modified after 

Van-Zeist and Bottema, 2009: fig. 1).

Figure 3: a). Ayelet Hashahar weather station data (under 5 km from JRD). Average 

monthly temperature and precipitation for the period of 2010-2020. Red bars 

represent seasonal average. Data downloaded from Israel Meteorological Service 

(2020); b). Normalized wind roses (m/s) for Jan 2015-Dec 2016, and seasonal for 

Dec-Feb (2014-2017; DJF) and Jun-Aug (2015-2016; JJA) (taken from Rice, 2018: 

fig. 2.5). 

Figure 4: 1. JRD bone fish hooks; 2. JRD small grooved pebbles (line weights); 3. 

JRD stone tools by layers and cultural affinity: a. Early Neolithic; b. Natufian; c. 

Geometric Kebaran; d. Early Epipaleolithic
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Figure 5: Archaeological layers, cultural affiliation, radiocarbon chronology (with 

calibrated dates) and pollen zones of the Jordan River Dureijat (JRD) sequence (after 

Sharon et al., 2020: fig. 4a).

Figure 6: Age-depth model for the Jordan River Dureijat (JRD) sedimentological 

outcrop using the Bayesian Bacon software from the R package rbacon v2.3.9.1 

(Blaauw and Christen, 2011).

Figure 7: Simplified pollen diagram of the Jordan River Dureijat (JRD) sequence. A 

10-fold exaggeration is used to show changes in low taxa percentages. Chronology is 

based on the age-depth model established in this study.

*At zone 6 pollen was not preserved.

Figure 8: Jordan River Dureijat (JRD) paleoclimate model. a). average temperature 

(°C): mean January (Tjan), mean annual (Tann) and mean August (Taug); b). d18O of 

Soreq Cave; c). Annual precipitation (mm); d). Winter precipitation (December-

February); e). Spring precipitation (March-May); f). Summer precipitation (June-

August); g) Autumn precipitation (September-November); Red bars represent recent 

geographical settings.

Figure 9: SEM Images of wood sections of taxa identified at Jordan River Dureijat 

(JRD). a: Quercus ithaburensis, transverse section, 50x, scale 300 μm; b: Quercus sp. 

(calliprinos?), transverse, 30x, scale 500 μm; c: monocot (Arundo donax?), 

transverse, 137x, scale 300 μm; d: monocot (Phragmites australis?), transverse, 246x, 
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scale 100 μm; e: Tamarix sp., transverse, 40x, scale 500 μm; f: Fraxinus syriaca, 

transverse, 181x, scale 100 μm; g: Cercis siliquastrum, transverse, 40x, scale 500 μm; 

h: Salix/Populus, transverse, 50x, scale 400 μm; i: Pistacia atlantica, transverse, 

110x, scale 200 μm; j: Vitis vinifera, transverse, 105x, scale 400 μm; k: Ziziphus 

spina-christi, transverse, 137x, scale 300 μm; l: Rhus coriaria, transverse, 173x, scale 

200 μm; m: Laurus nobilis, transverse, 60x, scale 200 μm. Note that due to 

preservation conditions, not all identified taxa were able to be imaged satisfactorily; 

in other cases, only certain parts of the examined samples were able to be 

photographed. Images a, b, e, g, h, i, and m were taken using a stereoscopic Carl Zeiss 

SteREO Discovery.V20 microscope. Images c, d, f, j, k, and l were taken using a 

Tescan VEGA3 LMH scanning electron microscope. 

Table captions

Table 1: 14C radiocarbon ages of wood remains used in the age-depth model. Both the 

wood and pollen samples were extracted from the same eastern sediment outcrop.

Table 2: Identified waterlogged wood remains recovered from the JRD 

archaeological site in absolute numbers and percentages.

Table 3: A summary of the primary JRD sequence vegetation and environmental 

patterns.
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Appendices

Figure A1: A detailed palynological diagram for the JRD sequence.

Figure A2: Median values of all 26 taxa used for the JRD climate reconstruction

Table A1: Pollen results of JRD recent pollen sample collected from the Jordan River 

surface sediments, ca. 20 meters west of the studied sediment outcrop. 
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