
HAL Id: hal-04934289
https://hal.science/hal-04934289v1

Preprint submitted on 7 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imporved S-variable results applied to the analysis of
time-varying uncertain systems

Sara Callegari, Dimitri Peaucelle, Frédéric Gouaisbaut, Yoshio Ebihara,
Masayuki Sato

To cite this version:
Sara Callegari, Dimitri Peaucelle, Frédéric Gouaisbaut, Yoshio Ebihara, Masayuki Sato. Imporved
S-variable results applied to the analysis of time-varying uncertain systems. 2025. �hal-04934289�

https://hal.science/hal-04934289v1
https://hal.archives-ouvertes.fr


Imporved S-variable results applied to
the analysis of time-varying uncertain systems

Sarah Callegari1, Dimitri Peaucelle1, Frédéric Gouaisbaut1, Yoshio Ebihara2, Masayuki Sato3

1 LAAS-CNRS, Univ. Toulouse, CNRS, Toulouse, France
2 Kyushu University, Japan 3 Kumamoto University, Japan

February 7, 2025

Abstract

Finite horizon performance analysis is addressed for time-varying uncertain linear systems. Results apply to
state-space systems with matrices rational in both time and a scalar uncertainty. Performances include stability and
L2 induced gain like criteria over a given time interval and extend to usual stability and L2 induced norm as the
upper bound goes to infinity. Results are formalized in terms of linear matrix inequalities by applying the S-variable
approach. Two improvements to this approach are proposed to reduce conservatism and deal with positive unbounded
indeterminates such as time. Descriptor modeling is adopted and a lifting based methodology allows to build tractable
results aiming at decreasing conservatism. Keywords: Robustness, LMIs, time varying-system, S-variables

1 Introduction

To address robustness with respect to parametric uncertainties the core issue usually boils down to proving that some
function of indeterminates is negative (or positive) for all indeterminates constrained to lie in given bounded or un-
bounded sets. Solutions to these core problems rely on (a) modeling tools to manipulate the intricate functions of
indeterminates and (b) relaxations that, often with some conservatism, reformulate the problem into a search for vari-
ables (certificates) that serve as solutions to numerically tractable optimization problems. [16] provides an overview
of most of these relaxations leading to semi-definite programming (SDP) problems formalized as Linear Matrix In-
equalities (LMIs). In this paper we consider an alternative approach which relies on differential-algebraic (descriptor)
representations for the modeling and on the S-variable approach for SDP relaxation.

Descriptor modeling which combines differential and algebraic equations is a very flexible tool for modeling but
also raises many specific questions for the existence and analysis of solutions, see [7] for the relevant literature. In the
paper we consider a subclass of these descriptor models where existence and unicity of solutions is guaranteed by the
fact that the models are built from ordinary state-space differential equations, but their flexibility is used to transform
complicated rational dependent formulas into affine equations in the indeterminates. The approach is inspired by [2,
20] and offers an alternative to Linear-Fractional Transform (LFT) modeling [3, 5]. As illustrated in [12] it is a lossless
alternative and provides models of smaller or equal dimensions. Size reduction occurs,in part, when considering multi-
affine descriptor models inspired by [9], but as shown in [11] size reduction also leads to an increased conservatism of
the relaxations. In the present paper we propose to slightly enlarge the size of the descriptor representations to separate
indeterminates in independent rows. It does not augment the size of models compared to LFTs but provides even less
conservative results than the previous affine non-decoupled modeling.

The S-variable approach [4] is applied for SDP relaxation. As demonstrated in [14] it is an alternative to the
Sum-of-Squares approach [10, 8, 17]. We do not claim it to be better or even different in terms of the resulting SDPs,
but we believe it brings some simplicity in the mathematical manipulations. In most of literature on S-variables the
relaxations are built for indeterminates lying in convex bounded sets such as polytopes. In [14] we also considered
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the case of indeterminates in the whole real axis. In the present paper we propose a new result for indeterminates
constrained to be positive.

These descriptor modeling and S-variable relaxation tools are classically applied to systems with parametric un-
certainties [4] but they are also applicable to non-linear systems [2, 20, 13] and time delay systems [6]. In the present
paper they are applied for the first time to time-varying linear systems. This goes beyond the case of parameter-varying
systems as in [15] where the time-varying feature lies in bounded parameters with bounded derivatives. In our case we
exploit directly the time-dependency of the coefficients assumed rational in time t and prove finite-horizon quadratic
properties as in [18]. In that last paper the modeling tool is LFT based and SDP relaxations rely on sum-of-squares.
We propose here a descriptor modeling and S-variable relaxation variant.

The outline of the paper is as follows. A first section is dedicated to reminding some essentials of the S-variable
approach and presents the two proposed enhancements concerning less conservative relaxations thanks to row decou-
pling of indeterminates and treatment of positive unbounded indeterminates. Section III is then dedicated to descriptor
modeling of time-varying uncertain systems and includes a new time and uncertainty dependent lifting. Section IV
provides the central result for the analysis of these time-varying systems in both the finite or infinite horizon case.
Section V gives some illustrative academic examples. A final section concludes the paper and outlines some future
perspectives.

Notation: Rm×p denotes the set of m × p real matrices. In stands for the identity matrix of size n. 0m,p is the
zero matrix with m rows and p columns. When the size can be deduced from the context the subscripts are avoided.
AT is the transpose of the matrix A. {A}H stands for the symmetric (Hermitian) matrix {A}H = A + AT . For
a matrix M ∈ Rm×p of rank r, M⊥ ∈ Rp×(p−r) stands for the matrix of maximal rank such that MM⊥ = 0, i.e.
M⊥ spans the null space of M . A† stands for the Moore-Penrose of A. For full-column rank matrices A†A = I .
M(⪰) ≻ N is the matrix inequality stating that M −N is symmetric positive (semi-)definite. A matrix inequality of
the type N(X) ⪰ 0 is said to be a linear matrix inequality (LMI for short), if N(X) is affine in the decision variables
X . Decision variables are highlighted using the blue color. Uncertainties δ are denoted in red color. In this paper only
scalar real bounded δ ∈ [δ δ] and positive real unbounded δ ∈ [0 ∞[ are considered. Solutions η of an uncertainty
dependent constraint M(δ)η = 0 are denoted in red color as they are δ-dependent.

2 S-variables

In this section we recall a result from the S-variable approach described in details in [4]. The result provides conser-
vative LMI formulations to prove robust properties of the following type:

ηTΥ(δ)η ≤ 0 , ∀
{

M(δ)η = 0
δ ∈ ∆

(1)

that is, a quadratic form defined by Υ(δ) is negative for all vectors in the null space of the linear application M(δ) and
the properties hold for all parameters δ in a given set ∆.

For this paper we shall consider the case of two scalar independent incertain parameters δ = (δ1, δ2). δ2 is
assumed to be bounded δ2 ∈ [δ2 δ2], while two cases are assumed for δ1: positive real δ1 ∈ [0 ∞[ and positive
bounded δ1 ∈ [0 δ1]. Cases with more than two uncertainties and other bounded/unbounded cases can be derived by
easy extensions, at the expense of an increased complexity in notations.

Υ(δ1, δ2) is assumed to be a multi-affine matrix of the two scalar independent parameters δ1, δ2. M(δ1, δ2) is
assumed to have the following structure

M(δ1, δ2) =

 M0

M1(δ1)
M2(δ2)


where M1(δ1) = N01 + δ1N11 and M2(δ2) = N02 + δ2N12 are affine matrices of each parameter respectively. If
there are no parameter independent rows then M0 is an empty matrix and M⊥

0 = I .
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Lemma 1 If there exists four matrices S1, S1, S2, S2 such that the following four LMIs hold

M⊥T
0 Υ(0, δ2)M

⊥
0 + {(S1M1(0) + S2M2(δ2))M

⊥
0 }H ⪯ 0

M⊥T
0 Υ(δ1, δ2)M

⊥
0 + {(S1M1(δ1) + S2M2(δ2))M

⊥
0 }H ⪯ 0

M⊥T
0 Υ(0, δ2)M

⊥
0 + {(S1M1(0) + S2M2(δ2))M

⊥
0 }H ⪯ 0

M⊥T
0 Υ(δ1, δ2)M

⊥
0 + {(S1M1(δ1) + S2M2(δ2))M

⊥
0 }H ⪯ 0

(2)

then the robust constraint (1) holds for all δ1 ∈ [0 δ1] and all δ2 ∈ [δ2 δ2].

Proof Let S2(δ1) = (1 − δ1
δ1
)S2 + δ1

δ1
S2. It satisfies S2(0) = S2 and S2(δ1) = S2. By convexity of LMI

conditions and since all matrices involved in the sum are affine in δ1, the two first inequalities in (2) imply for all
δ1 ∈ [0 δ1]:

M⊥T
0 Υ(δ1, δ2)M

⊥
0

+{(S1M1(δ1) + S2(δ1)M2(δ2))M
⊥
0 }H ⪯ 0.

(3)

For the same reason, the last two inequalities in (2) imply

M⊥T
0 Υ(δ1, δ2)M

⊥
0

+{(S1M1(δ1) + S2(δ1)M2(δ2))M
⊥
0 }H ⪯ 0.

(4)

Let S1(δ2) be affine in δ2 such that S1(δ2) = S1 and S1(δ2) = S1. By convexity of LMIs and since all matrices
involved in the sum are affine in δ2, the inequalities (3) and (4) imply that

M⊥T
0 Υ(δ1, δ2)M

⊥
0

+{(S1(δ2)M1(δ1) + S2(δ1)M2(δ2))M
⊥
0 }H ⪯ 0

(5)

for all parameters δ1 ∈ [0 δ1] and all δ2 ∈ [δ2 δ2]. As M⊥
0 is full column rank: M⊥T

0 M⊥†T
0 = I . It implies for

S̃1(δ2) = M⊥†T
0 S1(δ2) and S̃2(δ1) = M⊥†T

0 S2(δ1)

M⊥T
0

(
Υ(δ1, δ2)

+{S̃1(δ2)M1(δ1) + S̃2(δ1)M2(δ2)}H

)
M⊥

0 ⪯ 0

By definition of M⊥
0 , this inequality reads as

ηT
(
Υ(δ1, δ2) + {S1(δ2)M1(δ1) + S2(δ1)M2(δ2)}H

)
η ≤ 0

for all vectors in the null space of M0. As η is additionally constrained to lie in the null spaces of M1(δ1) and M2(δ2),
that is for all M(δ1, δ2)η = 0, one gets ηTΥ(δ1, δ2)η ≤ 0. ■

Compared to existing literature on S-variables, the lemma has the following characteristics:

• It borrows from [4] the strategy of exploiting the case when M contains parameter independent rows, these
rows do not need not generate S variables thus keeping the LMIs of reasonable dimensions. If not exploiting
this feature (proved to be lossless in [4]), the inequality (5) would read as

Υ(δ1, δ2)+

{S0(δ1, δ2)M0 + S̃1(δ2)M1(δ1) + S̃2(δ1)M2(δ2)}H ⪯ 0

with many more decisions variables needed to define the three S-variables and with LMIs of larger size.

• It exploits, which is at our knowledge new, the assumption on the parameter-dependent rows of M to be func-
tions of independent parameters. It allows to build parameter-dependent S variables, thus reducing the conser-
vatism of the conditions. In classical S-variable approach the terms S1(δ2)M1(δ1) + S2(δ1)M2(δ2) would be

written as
[
S1 S2

] [ M1(δ1)
M2(δ2)

]
.

The new result allows to consider parameter-dependent S-variables.
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Lemma 2 If there exists five matrices D ⪰ 0, D ⪰ 0, G = −GT , G = −GT , S2 such that the following two LMIs
hold

M⊥T
0 Υ(δ2)M

⊥
0 + {(S1N01 + S2M2(δ2))M

⊥
0 }H ⪯ 0

M⊥T
0 Υ(δ2)M

⊥
0 + {(S1N01 + S2M2(δ2))M

⊥
0 }H ⪯ 0

(6)

where S1 = M⊥T
0 NT

11(G−D) and S1 = M⊥T
0 NT

11(G−D), then the robust constraint (1) holds for all δ1 ∈ [0 ∞[
and all δ2 ∈ [δ2 δ2].

Proof First, notice that the unbounded case assumes that the Υ(δ2) matrix is independent of δ1. Second, recall
that N01 = M1(δ1)− δ1N11. With this in mind one gets

{S1N01M
⊥
0 }H

= {S1M1(δ1)M
⊥
0 }H − {M⊥T

0 NT
11(G−D)(δ1N11)M

⊥
0 }H

Because of the choice of matrices D ⪰ 0, G = −GT the last term is such that

{M⊥T
0 NT

11(G−D)(δ1N11M
⊥
0 )}H

= M⊥T
0 NT

11{(G−D)δ1}H N11M
⊥
0

= −2δ1M
⊥T
0 NT

11DN11M
⊥
0 ⪯ 0

for all positive δ1 ≥ 0. Hence the equations (6) imply

M⊥T
0 Υ(δ2)M

⊥
0 + {(S1M1(δ1) + S2M2(δ2))M

⊥
0 }H ⪯ 0

M⊥T
0 Υ(δ2)M

⊥
0 + {(S1M1(δ1) + S2M2(δ2))M

⊥
0 }H ⪯ 0

hold for all δ1 ∈ [0∞[. The remaining of the proof follows the same lines as for lemma 1. ■

Compared to existing literature on S-variables, the lemma is new. It provides a S-variable method to deal with
unbounded positive uncertainties. It generalizes the result from [14] that considered the case of unbounded real
parameters δ1 ∈ R.

3 Time-varying uncertain systems

The S-variable approach as recalled in the previous section is applied for the analysis of time-varying uncertain systems
ẋ = A(t, δ)x+B(t, δ)w where t is time and δ is a scalar constant uncertain parameter. The matrix A(t, δ) is assumed
to be rational of the two parameters t and δ. The system admits an equivalent affine representation:

M↑(t, δ)η↑ =

 M↑0
M↑1(t)
M↑2(δ)

 η↑

=

 M↑01 M↑02 M↑03
M↑11(t) M↑12(t) M↑13(t)
M↑21(δ) M↑22(δ) M↑23(δ)

 π↑
ẋ
x

 = 0

(7)

where π↑ =
(
πT wT

)T
contains the inputs w and some expanding vector π allowing to transform the rational

representation ẋ = A(t, δ)x + B(t, δ)w into the algebraic-differential affine descriptor model M↑(t, δ)η↑ = 0. The
transformation is always possible for example by using the LFT representation as an intermediate step as shown in
[11]. The representation is not unique. We assume it is well posed: π↑ and ẋ are uniquely defined for given M↑(t, δ),
x and w.

For the analysis of this system, we shall also consider a lifted state xL = L(t, δ)x where L(t, δ) is a tall matrix
rational in the parameters t and δ. For the same reason as upper, this rationally-dependent definition of xL admits a
descriptor affine representation

ML(t, δ)ηL =

 ML0

ML1(t)
ML2(δ)

 ηL

=

 ML01 ML02 ML03

ML11(t) ML12(t) ML13(t)
ML21(δ) ML22(δ) ML23(δ)

 πL

xL

x

 = 0

(8)
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and the derivative of the lifted state satisfies

ML(t, δ)η̇L + ṀLηL = 0 (9)

where ṀL is by construction a constant matrix. Combining the last three equations provides a descriptor representation
of the lifted dynamics:

M̂↑(t, δ)η̂↑ =

 M̂↑0
M̂↑1(t)

M̂↑2(δ)

 π̂↑
˙̂x
x̂

 = 0 (10)

where π̂↑ =
(
π̇T
L πT

L πT
↑

)T
, x̂ =

(
xT
L xT

)T
and the matrices defining M̂↑ have the following structure (t

and δ dependence of the M1i and M2i sub-matrices are omitted for space saving reasons):

M̂↑0 =

 0 0 M↑01 0 M↑02 0 M↑03
0 ML01 0 0 0 ML02 ML03

ML01 0 0 ML02 ML03 0 0



M̂↑1(t) =

 0 0 M↑11 0 M↑12 0 M↑13
0 ML11 0 0 0 ML12 ML13

ML11 ṀL11 0 ML12 ML13 ṀL12 ṀL13


M̂↑2(δ) =

 0 0 M↑21 0 M↑22 0 M↑23
0 ML21 0 0 0 ML22 ML23

ML21 0 0 ML22 ML23 0 0


The solutions of the time-varying system are functions of the initial conditions x(0) and the properties may be

studied in terms of constraints on the final condition x(T ). We shall assume that these initial/final conditions are
constrained by some affine descriptor form

M·(δ)η· =

[
M·0

M·2(δ)

]
η·

=

[
M·01 M·02 M·03

M·21(δ) M·22(δ) M·23(δ)

] π·
x(0)
x(T )

 = 0
(11)

If no constraints are formulated M· = M·0 is an empty matrix such that M⊥
·0 = I . The lifted dynamics are therefore

constrained by descriptor boundary constraints

M̂·(δ)η̂· =

[
M̂·0

M̂·2(δ)

] π̂·
x̂(0)
x̂(T )

 = 0 (12)

where π̂· =
(
πT
L (0) πT

L (T ) πT
·

)T
and the matrices have the following structure M̂·0 =

[
M̂·01 M̂·02 M̂·03

]
where

M̂·01 =


0 0 M·01

ML01 0 0
ML11(0) 0 0

0 ML01 0
0 ML11(T ) 0


M̂·02 = M̂·03 =

0 M·02
ML02 ML03

ML12(0) ML13(0)
0 0
0 0




0 M·03
0 0
0 0

ML02 ML03

ML12(T ) ML13(T )


and M̂·2(δ) =  0 0 M·21 0 M·22 0 M·23

ML21 0 0 ML22 ML23 0 0
0 ML21 0 0 0 ML22 ML23

 .
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Notice that the lifting procedure has no influence neither on the dynamics and nor on the boundary constraints of
the original system. The lifted state xL is driven by x but there is no influence of xL on x. A property, such as stability,
proved for the lifted system would hence be inherited by the original system.

4 Finite horizon integral quadratic performances

The aim is to prove finite-horizon integral quadratic performances defined by

⟨η↑|Ψ↑η↑⟩+ η∗· Ψ·η· ≤ 0 (13)

where the notation defines a finite-horizon integral

⟨η↑|Ψ↑η↑⟩ =
T∫

0

η∗↑(t)Ψ↑(t)η↑(t)dt.

Examples of such performances are

• Bounded final state / bounded initial state (also called finite-time stability in [1])

Ψ↑ = 0 , Ψ· =

 0 0 0
0 −αI 0
0 0 I


For this choice the performance reads as ∥x(T )∥2 ≤ α∥x(0)∥2 where ∥x(0)∥ stands for the euclidian norm of
the initial conditions.

• Bounded induced L2 norm

Ψ↑ =


0 0 0 0
0 −αI 0 0
0 0 0 0
0 0 0 CTC

 , Ψ· = 0

For this choice the performance reads as ∥z∥2 ≤ α∥w∥2 where ∥w∥2 = ⟨w|w⟩ is the finite-horizon L2 norm
of the input w and ∥z∥2 = ⟨z|z⟩ is the L2 norm of the output z = Cx. Such performance is usually studied
assuming zero initial conditions (modeled as a constraint on the vector η· at t = 0).

• Bounded L2 norm of the output / bounded initial conditions:

Ψ↑ =

 0 0 0
0 0 0
0 0 CTC

 , Ψ· =

 0 0 0
0 −αI 0
0 0 0


With this choice the performance is ∥z∥2 ≤ α∥x(0)∥2.

Many other combinations of performances combining initial, final conditions as well as L2 norms can be readily
derived from these examples.

Remark that, the performance trivially reads as follows for the lifted system〈
η̂↑|Ψ̂↑η̂↑

〉
+ η̂∗· Ψ̂·η̂· ≤ 0 (14)

where the Ψ̂ matrices are obtained from Ψ by adding rows and columns of zeros.
The following result is formalized for the lifted system but applies readily to the original system when removing theˆ
notation.
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Define the following matrices which are functions of a time and uncertainty dependent symmetric matrix P̂ (t, δ):

Θ̂↑(t, δ) =

 0 0 0

0 0 P̂

0 P̂
˙̂
P

 , Θ̂·(δ) =

 0 0 0

0 P̂ (0, δ) 0

0 0 −P̂ (T, δ)

 .

Theorem 1 If there exists P̂ (t, δ) such that the following two robust conditions hold

η̂T↑ (Ψ̂↑ + Θ̂↑(t, δ))η̂↑ ≤ 0 , ∀

 M̂↑(t, δ)η̂↑ = 0
t ∈ [0 T ]

δ ∈ [δ δ]

(15)

η̂T· (Ψ̂· + Θ̂·(δ))η̂· ≤ 0 , ∀
{

M̂·(δ)η̂· = 0

δ ∈ [δ δ]
(16)

then the performance (13) holds along the trajectories of the system described by (7) and (11).

Proof of Theorem 1
First let us prove the performance (14) holds for the lifted system defined by (10) and (12). Let V = x̂T P̂ x̂. It is such
that 〈

η̂↑|Θ̂↑η̂↑

〉
=

T∫
0

V̇ dt = −η̂T· Θ̂·η̂·

therefore one has 〈
η̂↑|(Ψ̂↑ + Θ̂↑)η̂↑

〉
+ η̂T· (Ψ̂· + Θ̂·)η̂· =

〈
η̂↑|Ψ̂↑η̂↑

〉
+ η̂T· Ψ̂·η̂·

As conditions (15), (16) hold, the two terms of the sum in the left hand side of this inequality are negative along the
trajectories of the lifted system. Thus proving that the performance (14) holds subject to (10) and (12).
Now, consider the original system. First, notice that

V = xTPx where P =

[
L
I

]T
P̂

[
L
I

]
; and denoting

Θ↑(t, δ) =

 0 0 0
0 0 P

0 P Ṗ

 , Θ·(δ) =

 0 0 0
0 P (0, δ) 0
0 0 −P (T, δ)

 ,

simple manipulations give that (15) reads also as

ηT↑ (Ψ↑ +Θ↑(t, δ))η↑ ≤ 0 , ∀


M↑(t, δ)η↑ = 0
t ∈ [0 T ]

δ ∈ [δ δ]
(17)

and (16) reads also as

ηT· (Ψ· +Θ·(δ))η· ≤ 0 , ∀
{

M·(δ)η· = 0

δ ∈ [δ δ]
(18)

i.e. the same conditions but for the original system and with a matrix P that is quadratic in the lifting L. This proves
the performance for the original system by the following the same lines as above. ■

The robust conditions of the Theorem 1 are exactly in the form of conditions in Section 2 with Υ = Ψ+Θ. When
T is bounded, choosing P̂ to be multi-affine in t and δ, the robust conditions of Theorem 1 can be proved feasible
using LMIs from Lemma 1. When T = ∞, choosing P̂ to be independent of t and affine in δ, the robust conditions of
Theorem 1 can be proved feasible using LMIs from Lemma 2. These two lemmas allow hence to solve conditions of
Theorem 1 for the case of affine dependence of P̂ . The LMIs are conservative since the two lemmas are conservative.

Yet, let us remind that even if P̂ is a constant matrix, P is a rationally time and uncertainty dependent matrix.
By lifting, the approach allows to build LMI conditions where the Lyapunov-like matrix P for the original system is
rationally dependent in both t and δ. The choice of a basis in which to express P is equivalent to the choice of the
lifting L. The conditions of Theorem 1 applied to the original system with rationally dependent P defined by some
basis function is equivalent to searching for constant P̂ for the lifted system where L contains these basis functions.

7



5 Examples

5.1 LTI systems - stability

For a smooth start, consider an LTI system ẋ = Ax. Adopting the notations of the paper the system is modeled by

M↑ = M↑0 =
[
I −A

]
for which M⊥

↑0 =

[
A
I

]
. The performance to be achieved is bounded final state for

bounded initial state. No constraints is set on these final and initial states, M· = M·0 is empty and M⊥
·0 = I . The

LMIs of Lemma 1 applied to conditions of Theorem 1 with a constant P = P̂ read as:[
A
I

]T [
0 P
P 0

] [
A
I

]
= ATP + PA ⪯ 0[

−αI + P 0
0 I − P

]
⪯ 0 ⇒ I ⪯ P ⪯ αI

which is fully coherent with Lyapunov theory.

5.2 LTI systems - L2 induced norm

Consider now an LTI system with inputs ẋ = Ax + Bw. Adopting the notations of the paper the system is modeled

by M↑ = M↑0 =
[
−B I −A

]
for which M⊥

↑0 =

 0 I
A B
I 0

. The performance to be achieved is in terms of

induced L2 norm for zero initial conditions defined by M· = M·0 =
[
I 0

]
for which M⊥

·0 =

[
0
I

]
. The LMIs of

Lemma 1 applied to conditions of Theorem 1 with a constant P = P̂ read as: 0 I
A B
I 0

T  0 0 0
0 0 P
0 P CTC

 0 I
A B
I 0


=

[
ATP + PA+ CTC PB

BTP −αI

]
⪯ 0

[
0
I

]T [
P 0
0 −P

] [
0
I

]
= −P ⪯ 0

which is fully coherent with the H∞ norm LMIs.

5.3 Infinite horizon

Consider the following example from [19]

ẋ =

[
0 1

−k0 −c(t)

]
x = A(t)x

which is proved to be stable if c(t) > 0 and ċ(t) < 2k0. We consider the case c(t) = 1 + 1
t+1 and k0 = 2 which

satisfies these conditions. The model (7) reads as

M↑ =

 0 −1 0 0 1
−1 0 −1 −2 −1

−t− 1 0 0 0 1

 .

for the choice of expanding signal π↑ =
[
0 1

t+1

]
x. The performance to be achieved is bounded final state for

bounded initial state for all final times T (i.e. stability) with a value α = 22. No constraint is set on these final and
initial states, M· = M·0 is empty and M⊥

·0 = I . The LMIs of Lemma 2 applied to conditions of Theorem 1 with a
constant P = P̂ are found feasible. Stability is hence indeed proved.
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5.4 Finite horizon

Consider the following academic example

ẋ =

[
1− t 1
δ t− 2

]
x = A(t, δ)x

with δ ∈ [ δ − 0.01 ]. Bounded final state / bounded initial state performance is considered ∥x(T )∥2 ≤ α∥x(0)∥2
with α = 22. The matrix A(0,−0.01) is not Hurwitz stable, neither is A(t,−0.01) for t ≥ 2. It is hence expected that
only finite-horizon performances can be achieved. Meanwhile, A(t,−0.01) is Hurwitz stable for some frozen values
of t in [ 1 2 ] which indicates that after a diverging behavior at times close to zero, the trajectories may temporarily
be converging to zero after T = 1. The bounded final state / bounded initial property is hence expected to be non
monotone in T .

The model (7) is given by

M↑ =

 0 −1 0 1− t 1
1 0 −1 0 t− 2
−1 0 0 δ 0

 .

The system is from the start affine in both t and δ. The expanding signal π↑ =
[
δ 0

]
x is used to achieve decoupling

of the time and uncertainty dependent rows in M↑. As M↑0 and M· = M·0 are empty, M⊥
↑0 = I and M⊥

·0 = I .

For fixed value of T the finite-horizon conditions are tested with respect to different liftings. By bisection we seek
for the lowest value δ such that the bounded final state / bounded initial state performance is attested robustly for all
δ ∈ [δ 0]. The liftings are

• Lifting=0, is the case without lifting

• Lifting=1, is for L = tI

• Lifting=2, is for L =
[
tI t2I

]T
• Lifting=3, is for L =

[
tI 1

t+1I
]T

• Lifting=4, is for L =
[
tI 1

t+1I t2I
]T

Notice that case 2 includes case 1 and is therefore expected to produce less conservative results. Case 3 includes case
1 and is hence also expected to be less conservative. Case 4 includes both case 2 and 3 and is hence expected to be the
less conservative of all.

Results are plotted in Figure 1 and indeed show all the expected properties. Without lifting (case 0) the LMI
conditions are feasible only up to T = 0.35. Case 1 not only reduces conservatism by proving properties for smaller
values of δ but also gives feasible LMIs up to T = 0.65. Futher liftings do not reduce conservatism for values of
T ≤ 0.8. For finals times T ≥ 0.8 the conservatism reduction is seen by the gap between the curves. It also reads in
the fact that for case 2 the LMIs become unfeasible after T = 3.55, for case 3 this occurs at T = 3.7 and case 4 gives
feasible LMIs up to T = 4s.

Figures 2 and 3 plot the state trajectories for two choices of T and δ. The plot in Figure 2 is for δ = −19, the
trajectories starting on the unit circle are indeed all inside the disc of radius 2 at the final time T = 1.8 (bold stars)
although the property was temporarily violated. The proof that the property holds is obtained by Lifting=4 conditions
(stared point in Figure 1.

The plot in Figure 3 is for δ = −0.01, the trajectories starting on the unit circle are indeed all inside the disc of
radius 2 up to the final time T = 4 (bold stars). For final times T slightly greater than 4s some trajectories exit the
disc of radius 2 thus indicating that the conservatims of lifting case 4 is close to exactness.
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Figure 1: Minimal value of δ versus the final time T

Figure 2: Trajectories for δ = −19 and final time T = 1.8

6 Conclusions

The paper shows that the S-variable approach is also well suited to solve finite and infinite horizon performance
problems for time-varying systems. A system lifting strategy allows to build sequences of semi-definite programs and
results are tested on illustrative academic examples. Future work will study whether the series of lifted conditions can
form hierarchies with decreasing conservatism with hopefully a proof of exactness at finite order of the lifting. Duality
of SDPs is expected to contribute to this topic and at least provide worst case configurations. More involved examples
shall be considered as well to test further the results.
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