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Abstract
National Forest Inventories (NFIs) are large-scale surveys that typically employ low sampling
intensity, sufficient for national-level estimations. However, this low sampling intensity can
make it difficult to produce reliable estimates for specific domains of interest under a design-
based approach due to limited sample sizes. NFIs use models (model-assisted or model-based
approaches) for small area estimation to make estimations in the domain of interest with min-
imal or no sample. However the reduced sample size can also be challenging for fitting models.
Increasing the sampling intensity would represent resolve these issues. In this paper, we propose
solutions to complement an existing NFI sample in order to improve estimation. We compare
several sampling designs of intensification. This intensification poses the issue of integrating two
dependent and non-overlapping samples with varying sampling intensities: the regular NFI sam-
ple and the intensified sample. We provide estimators of totals and ratios, and associated variance
estimators for the domain of interest and the entire territory using a conditional approach. Our
results show that intensification reduces the variance for an estimation at the level of both the
domain of interest and the whole territory, that the choice of sampling designs considered has a
limited impact on the estimation of the outcome.

Keywords: two-phase sampling, domain of interest, conditional approach, intensified sample, national
forest inventory, ratio estimation
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1 Introduction
National Forest Inventories (NFIs) are large-scale surveys that produce statistics on a great vari-
ety of forest resource attributes, including growing stock volume, forest area, biodiversity, and
deadwood volume (Tomppo, 2004; Kangas and Maltamo, 2006). To collect the data in the space,
sampling grids are used to distribute the samples regularly across the territory, ensuring a spatial
balance. NFIs primarily use design-based approaches on this sampling grid, relying on sampling
designs for their estimations, which ensures the unbiasedness of the estimations. Sometimes, NFIs
improve their estimations using auxiliary information through multi-phase sampling. Two-phase
sampling (Neyman, 1934) is commonly used for efficiency: the first phase gathers auxiliary informa-
tion (e.g., forest/non-forest classification) through photo-interpretation or satellite data, and the
second phase involves field surveys (Opsomer et al, 2007; Tomppo et al, 2010), accommodating the
dynamic nature of forest locations. Moreover, the auxiliary data can be used either for stratification
at the second phase (Duong et al, 2024) or for post-stratification (Scott et al, 2005).

Under the sampling grid, NFIs typically have low sampling intensity, for example, one unit per 4
km2 in the Danish NFI (Tomppo et al, 2010, chapter 9), or one unit per km2 in the Spanish NFI
(Tomppo et al, 2010, chapter 34). This intensity is sufficient to produce accurate national-level
estimates (Guldin, 2021), often extendable to regions. However, the limited sampling intensity poses
challenges in using design-based estimation for restricted domains of interest (DOIs), which range
from large areas like provinces to small forest districts (Mauro et al, 2016; Hill, 2018; McRoberts,
2006) with minimal to no samples (Goerndt et al, 2013; Fabrizi and Żądło, 2018). While NFIs
optimize sampling for national to regional needs, local estimates are subject to a large variability
when sample sizes drop below critical levels, leading to unreliable design-based estimators.

Obtaining accurate DOI estimates for forest management or protected areas is challenging because
of the limited number of observations (Breidenbach and Astrup, 2012), requiring advanced method-
ologies like SAE. SAE is used by NFIs using models (model-assisted or model-based estimation).
Models generated by integrating NFI data with remote sensing (RS) (e.g., Landsat, ALS, LiDAR)
have been effective in estimating wood volume and canopy height in several districts in Norway
and Switzerland (Breidenbach and Astrup, 2012; Astrup et al, 2019; Breidenbach et al, 2020). For
model-assisted estimation, NFI data and auxiliary data are taken from within the DOIs (Särndal
et al, 1992; McConville et al, 2020). An example is post-stratification, which has been a key strategy
for forest inventory estimation in the U.S. for decades (Bechtold and Patterson, 2005). The model-
assisted estimators are approximately unbiased (Magnussen et al, 2014; Magnussen, 2015; Costa
Saenz de San Pedro et al, 2003) for large sample sizes (McRoberts, 2010; Magnussen et al, 2014;
Breidenbach et al, 2016). Meanwhile, for model-based estimation, the auxiliary data are mainly
taken from outside the DOIs to "borrow strength" (Mauro et al, 2016; Rao and Molina, 2015;
Goerndt et al, 2013; Fabrizi and Żądło, 2018; Best et al, 2019; Dettmann et al, 2022) to estimate
variables with sparse or even no observations inside the DOI itself. Model-based techniques, despite
potential biases (Georgakis, 2019), achieve high accuracy when well-fitted (Magnussen et al, 2014).
However, even though using remote-sensed data improves DOI spatial resolution in both cases, it
remains inherently biased (Ståhl et al, 2024) and supposes the availability of a sufficiently large
sample size within the DOI to improve the model fitting (Hill et al, 2018a), avoiding overfitting
(Hastie et al, 2005), and minimizing extrapolation errors (White et al, 2017; Renaud et al, 2022).
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To solve the problem of insufficient sample size in the DOI, increasing local sampling intensity
remains an efficient way to produce estimations for many variables within a DOI (Fuller, 1999),
regardless of the estimation method. Some attributes, such as biodiversity characteristics, are
indeed often measurable on the ground only, or not well captured from RS, making it challenging
to model and predict. For example, RS has a limited ability to penetrate vegetation canopies by
using satellites (Amani et al, 2019; Sirin et al, 2018). The saturation of the model was discovered in
certain forest types, like young stands or forest transitions (Sagar et al, 2022) despite a huge amount
of available auxiliary data. This indicates the necessity of extensive field data to train the model
effectively. In particular, increasing the sampling intensity would enable design-based approaches,
which are the preferred approaches in NFIs due to their unbiasedness and ability to support the
additivity of estimations. However, increasing local intensity creates challenges in defining design
weights when combining two different samples resulting from two samplings: the regular NFI sample
and the locally intensified sample. This is because intensification is an unplanned event that hap-
pens after NFI sampling; it can only be added at the second phase of the NFI’s two-phase sampling
design. This makes the computation harder. Two techniques, single-count (Horvitz-Thompson) and
multiple-count (Hansen-Hurwitz) estimators, have been applied to independent samples (Grafström
et al, 2019; Prentius et al, 2021). However, the intensification within a domain examined in this
paper may result in the situation of non-overlapping and non-independent samples.

NFIs also require ratio estimates, e.g., species proportion in mixed forests (Dirnberger and Sterba,
2014) or volume by forest type (McRoberts, 2008), which remain under-explored in complex designs.
This article contributes by: (1) proposing a local intensification approach for two-phase NFI designs
to enhance estimations; (2) offering a method to combine dependent and non-overlapping samples
with defined design weights; and (3) developing total and ratio estimators, along with variance
estimators, and evaluating how intensified samples improve overall territory-level accuracy. Different
methods can be used to increase sampling intensity within an NFI grid-based design; however, to our
best knowledge, this has received little attention. This article includes a comparison to determine
which method performs better than the others.

2 Grid-based two-phase sampling approach in NFIs

2.1 Selection of the NFI sample
We outline the two-phase sampling approach commonly used in NFIs using grid-based sampling
((Stevens Jr, 1997; Duong et al, 2024), which ensures a spatially balanced distribution of the
sample over the territory studied (Stevens Jr and Olsen, 2004; Kermorvant et al, 2019). The NFI
first-phase sample (NFI-P1 sample) can be selected by systematic aligned sampling (Opsomer et al,
2007; Gschwantner et al, 2010) or unaligned sampling (Cochran, 1977; McRoberts et al, 2015), or
by means of two-stage sampling (Duong et al, 2024).

The NFI-P1 sample of points, denoted as Sa, of size na is selected from the territory T with area
AT using any form of grid-based sampling, as illustrated in Figure 1. Photo-interpretation is then
used to classify each unit of Sa according to its vegetation type (forest/non-forest) thus forming
post-strata.
The NFI second-phase sample (NFI-P2 sample), denoted as S1b, is subsampled from Sa using two-
phase systematic sampling as outlined by Opsomer et al (2007), which applies a constant sampling
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Fig. 1: The illustration of the NFI-P1 sample in the territory.

Lecture note: The large square represents the territory T , and the orange dots represent the NFI-P1 sample Sa in the
territory.

rate of f1b and ensures regular sample distribution over the territory (see Figure 2a). Duong et al
(2024) described this sampling design as spatially systematic sampling, and extended it to obtain a
sample with varying sampling intensities for the French NFI. Since most NFIs use this design with
a constant sampling rate, we refer to it as NFI design in this study. Although this article simplifies
the second-phase selection using a constant sampling intensity across the territory, the sample size
n1b of S1b is seen as random.

2.2 Selection of the intensified sample
In the following, D represents the DOI (pink zone in Figure 2b) for which it is hypothesized that
the surface area AD is known. This situation is the most probable given that the delineation of
this DOI will be made from geographical information, for instance management maps or cadastral
data. D represents the area outside the DOI. Intensification increases the second-phase sampling
intensity within D through taking an additional sample.
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(a) (b)

Fig. 2: The illustration of the first-phase classification, and the NFI-P2 sample selection

Lecture note: The NFI-P1 sample is classified into forest (the green zone in a) and non-forest. The triangles represent the NFI-P2 sample S1b. The pink
zone in (b) represents the DOI D. The red points and the black triangles represent the NFI-P1 sample and the NFI-P2 sample which belongs to the DOI.

Figure 3 illustrates the notation used. In both Sa and S1b, the points are categorized as being
inside or outside D according to their geographical location. Let Sa

D and S1b
D denote the sub-samples

within D, with random sample sizes na
D and n1b

D , respectively. The size will vary according to the
sampling design and will vary from one drawing to the other. Meanwhile, S1b

D
denotes the sub-

samples outside D, with random size n1b
D

.

In D, let Sa
D\S1b

D denote the portion of Sa
D not selected in S1b

D , with size na,1b
D = na

D − n1b
D . Intensifi-

cation selects a new sample S2b
D from this subset using a sampling rate f

2b|a,1b
D . Figure 4 shows the

intensified selection using various designs: simple random sampling without replacement (SRSwor,
a), systematic sampling (SYS, b), Poisson sampling (c), and NFI design (d, e).

In D, two samples with different sampling intensities, S1b
D and S2b

D , are combined to form the union
sample Sb

D with size nb
D = n1b

D + n2b
D . The global second-phase sample (global P2 sample) Sb in T

includes two samples, Sb
D within D and S1b

D
outside D. The global P2 sample size is nb = nb

D + n1b
D

.
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Fig. 3: The scheme to illustrate the notation of the populations with their area (in the parentheses)
and the samples with their sample size (in the parentheses).

3 Estimation and variance estimation for population totals
The Weight Share Method (WSM) was presented by Chauvet et al (2023) and Bouriaud et al
(2024) to formalize the relationship between trees and points, transforming tree-related variables
into local variables defined at the point level, thereby simplifying the estimation of tree variables to
point-value estimation.

For a local variable y defined for any point in T , we are interested in estimating the total value τy
for T and τDy for D where, respectively

τy =

∫
T
y(x)dx,

τDy =

∫
D
y(x)dx.

Under the design-based approach, to account for the sampling mechanism, estimators incorporate
inclusion probabilities in finite populations (McConville et al, 2020), extended to inclusion density
functions for continuous populations (Cordy, 1993). By selecting Sa via grid-based sampling, all
points in T have the same inclusion density in Sa

πa(x) =
na

AT
for x ∈ T .

In survey statistics, the design weight, derived as the inverse of a unit’s inclusion probability (or
density for continuous populations), reflects the probability of selecting that particular unit for the
sample and represents the population units represented by this unit in a finite population, or the
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area in a continuous population (Prentius et al, 2021; Dettmann et al, 2022). For a point x ∈ Sa,
the design weight is

da(x) =
1

πa(x)
=

AT

na
for x ∈ Sa.

Using only the first-phase sample, the Horvitz-Thompson (HT) estimator based on the first-phase
sample for τy is

τ̂ay =
∑
x∈Sa

da(x)× y(x) =
AT

na

∑
x∈Sa

y(x).

However, the post-stratification divides the selected points into two post-strata: D and D. While na

is fixed, the post-strata sizes na
D and na

D
are random. According to Rao (1985), inferences should be

conditional on observed sample sizes if the population distribution is known and the sample sizes
are random. Therefore, we provide total and variance estimators for D and T conditionally on the
observed sample sizes.

3.1 Estimation without intensification
In absence of the intensification sample, the estimation for T is based on S1b only. The grid-based
sampling results in equal inclusion densities for all the points of S1b in T . The random sample size
n1b has an expected value E(n1b) = na × f1b. Conditionally on n1b, the inclusion density function
and design weights are

π1b|n1b

(x) =
n1b

AT
for x ∈ T ,

d1b|n
1b

(x) =
AT

n1b
for x ∈ S1b.

The HT estimator based on the second-phase sample for τy is

τ̂1by =
∑

x∈S1b

d1b|n
1b

(x)× y(x) =
AT

n1b

∑
x∈S1b

y(x). (1)

The total estimator τ̂1by in (1) is conditionally design-unbiased since

E
(
τ̂1by

∣∣n1b
)
= τy. (2)

Appendix A proves equation (2).

Standard variance estimators require positive joint inclusion density function to be unbiased, a
condition which systematic approaches like grid-based sampling do not satisfy since the grid-based
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sampling precludes the spatial superposition of units in the space. However, as noted by Mandallaz
(2007, p.53-54), forest inventories often assimilate points on systematic grids as resulting from a
uniform sampling, leading to the approximating variance under SYS by the variance under SRS
(Särndal et al, 1992; Wolter, 2007; Westfall et al, 2018; Duong et al, 2024). This implies that
assumptions of randomness for variance estimation are required to obtain the variance estimators.

To obtain the variance estimator of τ̂1by , two assumptions are required. Firstly, knowing that Sa is
obtained by the NFI strategy, it is considered as being selected by uniform sampling of size na from
T . Secondly, conditionally on n1b, knowing that S1b is obtained using the NFI strategy, it is treated
as if it had been selected by SRSwor from Sa with a size n1b. Under these assumptions, S1b can be
seen as selected through a uniform sampling of size n1b from T , conditionally on n1b. Therefore, the
conditional unbiased variance estimator is given by

V̂
(
τ̂1by

)
=

(AT )
2

n1b
s2y,1b,

with s2y,1b =
1

n1b − 1

∑
x∈S1b

{
y(x)− 1

n1b

∑
x′∈S1b

y(x′)

}2

.

Estimating within D can be challenging with a limited sample size in S1b
D , but can be improved by

the intensification presented in Section 3.2. Table 1 presents the formulas for the total estimators and
their corresponding variance estimators used in the DOI and the entire territory with and without
intensification. The formulas for the DOI without intensification, which do not require detail, can
be found in this table. The process for acquiring these formulas parallels those outlined previously
for the entire territory.

3.2 Estimation with intensification
In D, intensification increases the DOI sample size with the union sample Sb

D. The units in Sb
D have

varying sampling intensities based on their origin. However, all points in D have the same inclusion
density in Sb

D (see Appendix B), leading the conditional inclusion density function and design weights
by conditioning on nb

D

π
b|nb

D

D (x) =
nb
D

AD
for x ∈ D.

d
b|nb

D

D (x) =
AD

nb
D

for x ∈ Sb
D.

The conditional unbiased HT estimator is

τ̂ bDy =
AD

nb
D

∑
x∈Sb

D

y(x). (3)
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To obtain a variance estimator of τ̂ bDy, the two assumptions listed above are required but must be
applied specifically to the samples within the DOI, as the target population has been changed. Note
that the second assumption assumes Sb

D selected by SRSwor of size nb
D from Sa

D conditionally, even
though it consists of two samples. This assumption neglects the differences in point features (from
different samples, taken by different sampling designs, with different sampling intensities) inside the
union sample, resulting in a straightforward method to calculate the variance estimator. Based on
these assumptions, Sb

D is seen as selected by uniform sampling of size nb
D from D, conditionally on

nb
D, resulting in the conditional unbiased variance estimator

V̂
(
τ̂ bDy

)
=

(AD)
2

nb
D

s2yD,b, (4)

with s2yD,b =
1

nb
D − 1

∑
x∈Sb

D

y(x)− 1

nb
D

∑
x′∈Sb

D

y(x′)


2

. (5)

With intensification, we provide an alternative solution for estimating in T using the sample Sb,
which consists of Sb

D within D and S1b
D

within D. The conditional inclusion density function and
design weights are determined for each post-stratum (D and D), conditionally on nb

D and n1b
D

,

πb|nb
D,n1b

D (x) =


nb
D

AD
if x ∈ D,

n1b
D

AT −AD
if x ∈ D,

for x ∈ T ,

db|n
b
D,n1b

D (x) =


AD

nb
D

if x ∈ Sb
D,

AT −AD

n1b
D

if x ∈ Sb
D
.

The conditional unbiased estimator for τy is then obtained according to the post-strata D and D

τ̂ by =
AD

nb
D

∑
x∈Sb

D

y(x) +
AT −AD

n1b
D

∑
x∈S1b

D

y(x). (6)

Conditionally on nb
D and n1b

D
and under our assumptions, Sb may be seen as selected by stratified

uniform sampling from T , which would be stratified according to D and D. An unbiased variance
estimator is also obtained based on the post-strata D and D

V̂
(
τ̂ by
)
=

(AD)2

nb
D

s2yD,b +
(AT −AD)2

n1b
D

s2
yD,1b

, (7)

with s2yD,b is presented in formula (5),
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and s2
yD,1b

=
1

n1b
D

− 1

∑
x∈S1b

D

y(x)− 1

n1b
D

∑
x′∈S1b

D

y(x′)


2

.

Intensification Total estimator Variance estimator
Domain of interest

No τ̂1bDy = AD

n1b
D

∑
x∈S1b

D
y(x) V̂

(
τ̂1bDy

)
=

(AD)2

n1b
D

s2yD,1b

Sample: S1b
D with s2yD,1b = 1

n1b
D −1

∑
x∈S1b

D

{
y(x)− 1

n1b
D

∑
x′∈S1b

D
y(x′)

}2

Yes τ̂bDy = AD

nb
D

∑
x∈Sb

D
y(x) V̂

(
τ̂bDy

)
=

(AD)2

nb
D

s2yD,b

Sample: Sb
D with s2yD,b = 1

nb
D−1

∑
x∈Sb

D

{
y(x)− 1

nb
D

∑
x′∈Sb

D
y(x′)

}2

Territory

No τ̂1by = AT

n1b

∑
x∈S1b y(x) V̂

(
τ̂1by

)
=

(AT )2

n1b
s2y,1b

Sample: S1b with s2y,1b = 1
n1b−1

∑
x∈S1b

{
y(x)− 1

n1b

∑
x′∈S1b y(x′)

}2

Yes τ̂by =
AD

nb
D

∑
x∈Sb

D
y(x) V̂

(
τ̂by

)
=

(AD)2

nb
D

s2yD,b +
(AT−AD)2

n1b
D

s2
yD,1b

Sample: Sb +
AT −AD

n1b
D

∑
x∈S1b

D
y(x) with s2yD,b = 1

nb
D−1

∑
x∈Sb

D

{
y(x)− 1

nb
D

∑
x′∈Sb

D
y(x′)

}2

and s2
yD,1b

= 1
n1b
D

−1

∑
x∈S1b

D

{
y(x)− 1

n1b
D

∑
x′∈S1b

D
y(x′)

}2

Table 1: The total estimators and their variance estimators used to estimate in the domain
of interest and the entire territory with and without the intensification.

4 Estimation and variance estimation for population ratios
This section focuses on estimating the ratio of two unknown population totals for both D and T ,
respectively

RD =
τDz

τDy
with τDz =

∫
D
z(x)dx,

R =
τz
τy

with τz =

∫
T
z(x)dx.

Table 2 summarizes the formulas for the ratio estimators and their corresponding variance estimators
used in the DOI and the entire territory with and without intensification. In this section, we present
the ratio estimators for the case of combining two samples, i.e. intensification case, for the DOI and
the entire territory. The formulas without intensification can be obtained similarly, and they can be
found in Table 2.
With intensification, the substitution estimator of RD is

12



R̂b
D =

τ̂ bDz

τ̂ bDy

,

While the ratio estimators R̂b
D is biased for RD though composed of two unbiased components

(Särndal et al 1992, Chapter 5, p.163), the bias is negligible in large samples. Therefore, R̂b
D is

approximately unbiased for RD under large sample size.
Since R̂b

D is a nonlinear estimator of RD, its exact variance and variance estimator are difficult
to obtain. Särndal et al (1992) suggested to use the Taylor linearization technique to estimate its
variance, and we apply this method to derive the variance estimator. Let define lbD(x) as

lbD(x) =
1

τ̂ bDy

{
z(x)− R̂b

D × y(x)
}
.

Conditionally on nb
D, the linearized variance estimator for R̂b

D is

V̂
(
R̂b

D

)
=

(AD)2

nb
D

s2lD,b,

where

s2lD,b =
1

nb
D − 1

∑
x∈Sb

D

lbD(x)− 1

nb
D

∑
x′∈Sb

D

lbD(x′)


2

.

For T , the substitution estimator of R is

R̂b =
τ̂ bz
τ̂ by

where τ̂ bz is obtained from (6) by replacing y(x) with z(x). The linearized variable is

ub(x) =
1

τ̂ by

{
z(x)− R̂b × y(x)

}
.

The linearized variance estimator for R̂b can be obtained according to the post-strata D and D,
similar to the total estimation. The linearized variance estimator is

V̂
(
R̂b

)
=

(AD)2

nb
D

s2uD,b +
(AT −AD)2

n1b
D

s2
uD,1b

13



where

s2uD,b =
1

nb
D − 1

∑
x∈Sb

D

ub(x)− 1

nb
D

∑
x′∈Sb

D

ub(x′)


2

,

s2
uD,1b

=
1

n1b
D

− 1

∑
x∈S1b

D

ub(x)− 1

n1b
D

∑
x′∈S1b

D

ub(x′)


2

.

Intensification Ratio estimator Variance estimator
Domain of interest

No R̂1b
D =

τ̂1bDz

τ̂1bDy

V̂
(
R̂1b

D

)
=

(AD)2

n1b
D

s2lD,1b

Sample: S1b
D with s2lD,1b = 1

n1b
D −1

∑
x∈S1b

D

{
l1bD (x)− 1

n1b
D

∑
x′∈S1b

D
l1bD (x′)

}2

and l1bD (x) =
1

τ̂1bDy

{
z(x)− R̂1b

D × y(x)
}

Yes R̂b
D =

τ̂bDz

τ̂bDy

V̂
(
R̂b

D

)
=

(AD)2

nb
D

s2lD,b

Sample: Sb
D with s2lD,b = 1

nb
D−1

∑
x∈Sb

D

{
lbD(x)− 1

nb
D

∑
x′∈Sb

D
lbD(x′)

}2

and lbD(x) =
1

τ̂bDy

{
z(x)− R̂b

D × y(x)
}

Territory

No R̂1b =
τ̂1bz

τ̂1by

V̂
(
R̂1b

)
=

(AT )2

n1b s2l,1b

Sample: S1b with s2l,1b = 1
n1b−1

∑
x∈S1b

{
u1b(x)− 1

n1b

∑
x′∈S1b u1b(x′)

}2

and u1b(x) =
1

τ̂1by

{
z(x)− R̂1b × y(x)

}
Yes R̂b =

τ̂bz
τ̂by

V̂
(
R̂b

)
=

(AD)2

nb
D

s2uD,b +
(AT−AD)2

n1b
D

s2
uD,1b

Sample: Sb with s2uD,b = 1
nb
D−1

∑
x∈Sb

D

{
ub(x)− 1

nb
D

∑
x′∈Sb

D
ub(x′)

}2

with s2
uD,1b

= 1
n1b
D

−1

∑
x∈S1b

D

{
ub(x)− 1

n1b
D

∑
x′∈S1b

D
ub(x′)

}2

and ub(x) =
1

τ̂by

{
z(x)− R̂b × y(x)

}
Table 2: The ratio estimators and their variance estimators used to estimate in the
domain of interest and the entire territory with and without the intensification.
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5 Simulation study

5.1 Simulation set-up
A simulation dataset from Duong et al (2023) is used to illustrate numerically the formulas in Sections
3 and 4. The territory T is a 100 km2 square. The forest zone is located within T (see Figure 2a).
The population contains N = 631 714 trees with features including species, height, breast height
diameter, and volume. The DOI of area AD ≈ 45.46 km2 is located inside the forest zone (see Figure
2b). We aim to estimate the total wood volume and the ratio of Abies alba volume within D and T .

5.2 Sampling design and estimators applied in the simulation study
The NFI sample was based on a two-phase design (see Section 2.1) with two-stage sampling in the
first phase, as described by Duong et al (2024). The sample Sa of na = 1000 points was selected
from T , and S1b was drawn with f1b = 1/16 from Sa.

In D, we investigated four sampling designs from the subset Sa
D\S1b

D to obtain S2b
D : SRSwor, SYS

(by listing the points in ascending coordinate order), Poisson sampling (Särndal et al 1992, Chapter
3), and NFI design. Within each design, S2b

D was selected with f
2b|a,1b
D = 1/4. Meanwhile, SRswor

selected S2b
D of size n2b

D , ensuring constant union sample size nb
D during iterations and consistent

intensified fraction across all four sampling procedures.

The sampling design from which we produce the variance estimators under two assumptions - the
uniform sampling at the first phase and SRSwor at the second phase - is referred to as the benchmark
strategy. If the benchmark strategy is exactly implemented, the variance estimators should be unbi-
ased. Therefore, we simulated the benchmark strategy to verify variance estimation assumptions
in Sections 3 and 4. Uniform sampling from T is used to sample Sa, with na = 1000. S1b is then
selected through SRSwor from Sa, with n1b = 62 (see Table 3). Finally, S2b

D is selected by SRSwor
from Sa

D\S1b
D , ensuring the union sample Sb

D has the same size as other strategies (see Table 3).

Phase 1 Phase 2 Intensification
Sa na na

D S1b n1b n1b
D

n1b
D S2b

D n2b
D nb

D nb

SRSwor 106.56 135 169.06
(1.84) (2.14)

SYS 106.54 134.98 169.04
NFI 1000 454.60 NFI 62.50 34.06 28.44 (1.05) (1.79) (1.38)

(3.68) (0.81) (2.14) (1.84) Poisson 106.47 134.91 168.97
(9.01) (9.12) (9.05)

NFI 106.54 134.98 169.04
(12.51) (12.59) (12.54)

Uniform 1000 454.43 SRSwor 62 33.83 28.18 SRSwor 106.83 135 168.83
(15.75) (3.91) (3.91) (3.91) (3.91)

Table 3: The Monte Carlo mean and standard deviation (in parentheses) of the sample size
of the NFI-P1 sample, the NFI-P2 sample, the intensified sample, and the union samples in
the DOI and the whole territory over 50 000 iterations.
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The WSM (Chauvet et al, 2023; Bouriaud et al, 2024; Duong et al, 2024) is applied to convert the
volume of trees into the selected points through a virtual circle centering on those points to connect
the trees and the defined locations. We compared the total, ratio, and variance estimations for D
and T with and without intensification. Formulas applied in this simulation study are described in
Sections 3 and 4, and summarized in Tables 1 and 2.

5.3 Results from the simulation study
The sampling and estimation steps were repeated M = 50 000 times, with conditional Monte Carlo
(MC) computation detailed in Appendix C. Let RBMC(θ̂) and VMC(θ̂) denote the MC relative
bias and variance of an estimator θ̂ for a parameter θ. Table 3 presents the MC results for the
sample sizes, with standard deviation in parentheses. Table 3 indicates that the sampling designs
have approximately the same expected sample sizes, though some variability was observed in the
effective sample sizes, particularly in Poisson sampling and the NFI design.

Table 4 presents the simulation results for total estimation. The first lines for each main strategy
(without intensification) are based only on the NFI-P2 sample. As expected, the Horvitz-Thompson
estimator remains approximately unbiased across all scenarios. For D, intensification reduces
variance by about five times, with the NFI design for intensification showing the smallest vari-
ance (2.71 × 108), demonstrating high efficiency. Variance estimation is nearly unbiased for the
benchmark strategies, as expected, but shows moderate positive bias (11 − 12%) for others and
strong positive bias (37%) for the NFI design for intensification. These findings highlight that the
intensification is highly effective for DOI estimation. For T , similar trends are observed; however,
the variance only decreases by 25% with intensification. This is linked to the fact that the DOI
represents a large share of the territory’s area in the setup (around 45%). Variance estimation
remains approximately unbiased for the benchmark, as expected, but exhibits significant positive
bias (36%− 40%) for other strategies. Overall, the proposed variance estimators generally perform
well, but show substantial positive bias with the NFI design for intensification.

Strategy Domain of interest Territory
Sa S1b S2b

D RBMC(τ̂Dy) VMC(τ̂Dy) RBMC{V̂ (τ̂Dy)} RBMC(τ̂y) VMC(τ̂y) RBMC{V̂ (τ̂y)}
(%) (×108) (%) (%) (×108) (%)

NFI NFI 0.23 16.04 9.36 -0.33 40.53 36.17
SRSwor 0.39 3.28 12.23 -0.38 29.80 36.64

SYS 0.52 3.30 12.00 -0.33 29.11 39.91
Poisson 0.45 3.32 11.43 -0.36 29.91 36.21

NFI 0.49 2.71 37.79 -0.34 29.00 40.57
Uniform SRSwor 0.46 17.93 0.37 -0.31 55.12 0.43

SRSwor 0.56 3.67 0.47 -0.28 41.04 -0.15

Table 4: Monte Carlo relative bias and Monte Carlo variance for the total estimation and variances estimation
in the DOI and the entire territory under 50 000 iteration.

Table 5 presents the ratio estimation results. As expected, the Horvitz-Thompson estimators are
nearly unbiased across all strategies. These results show that the intensification effectively reduces
variance, the NFI strategy being the most efficient one, consistent with total estimation results.
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However, variance estimators for benchmark strategies are negatively biased, resulting in underes-
timating the variance, as noted in the Remark of Särndal et al (1992, p.176). For D, the variance
estimator is negatively biased by 16% for the NFI design without intensification. However, it
becomes nearly unbiased with SRSwor, SYS, or Poisson sampling for intensification, and exhibits
a slight positive bias (7%) with the NFI design for intensification. Under the benchmark strategy
without intensification, the variance estimator is negatively biased, which is expected for the ratio
estimator; however, the bias is large (−15%). This large bias may be due to the limited sample size
of 28 units presented in Table 3. With intensification, the complementary sample with a sample size
of more than 100 units, the bias in the variance estimator is then significantly reduced to −3%. For
T , the variance estimators are slightly negatively biased (the absolute values are less than 10%),
indicating good performance of the proposed variance estimators.

Strategy Domain of interest Territory
Sa S1b S2b

D RBMC(R̂b
D) VMC(R̂b

D) RBMC{V̂ (R̂b
D)} RBMC(R̂b) VMC(R̂b) RBMC{V̂ (R̂b)}

(%) (×10−3) (%) (%) (×10−3) (%)
NFI NFI -0.76 14.74 -15.83 -0.20 5.69 -6.11

SRSwor -0.24 3.00 -1.02 -0.16 4.05 -5.18
SYS -0.30 2.94 0.83 -0.18 4.01 -4.34

Poisson -0.29 2.97 0.52 -0.18 4.03 -4.78
NFI -0.22 2.81 6.86 -0.15 3.99 -3.69

Uniform SRSwor -0.76 14.84 -14.93 -0.31 5.75 -5.89
SRSwor -0.08 3.07 -3.23 -0.24 4.13 -6.05

Table 5: Monte Carlo relative bias and Monte Carlo variance for the ratio estimation and variances estimation
in the DOI and the entire territory under 50 000 iterations.

6 Discussion
Other NFIs use different methods to obtain precise estimates for the DOI. For example, as noted
by Böckmann et al (1998), some German federal states, like Lower Saxony, have established a
regional Forest District Inventory (FDI), with higher sampling densities compared to the NFI, to
support regional forest management. However, such FDIs are costly, and with budget and resource
constraints, more cost-efficient inventory methods are needed (von Lüpke et al, 2012; von Lüpke,
2013; Hill et al, 2018b). FDIs are typically planned actions at the very beginning of the NFI cycle
and are carried out as a part of a stratified sampling technique within a population divided into
regions. The French NFI also modulates the spatial intensity of sampling spatially and temporally
(Bouriaud et al, 2023). In contrast to FDIs, intensification occurs as an unplanned response to
unpredictable events and unforeseen requirements in forest management and is decided to be con-
ducted during the NFI cycle. This process typically takes place after the NFI sampling and is not a
part of the initial NFI sampling strategy. In this article, therefore, we propose a solution within the
NFI framework to address local needs. However, similar to FDIs, intensification must be evaluated
in light of budget limitations, optimizing sample sizes to fit budget constraints.

Intensification in NFIs was previously explored by Hansen et al (2000), who proposed measuring
the plots in previous years and incorporating them into the Annual Forest Inventory System (AFIS)
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plots to improve the estimate precision. However, they identified the estimation challenges associated
with unequal sampling probabilities, joint selection probabilities, and complexities of the intensified
sample to be incorporated into the estimation procedure. Our study concentrated on sampling new
plots, which had not been previously sampled in prior years. However, re-measuring existing plots
is also a viable intensification strategy, as these plots are already identified and mapped due to
the concept of permanent and semi-permanent plots in NFIs (Tomppo et al, 2010). Our formula
is applicable in this context, as Hansen et al (2000)’s sampling meets the non-overlapping sample
criterion. We also addressed all aforementioned issues by providing total and ratio estimators with
their variance estimators under a conditional approach. By proving that all points in the continuous
population have the same inclusion density in the sample, despite having different sampling inten-
sities, the design weights for a point in that sample can be more easily calculated, conditionally on
the sample size.

Blackard and Patterson (2014) presented various intensification methods that have been imple-
mented in many states in the USA within the Forest Inventory and Analysis (FIA) framework,
known as FIA plot intensification. Their intensification is based on the hexagon grid. Sub-regions
are created for each FIA second-phase hexagon cell, and new plots are randomly assigned within
those sub-regions. In our study, the intensified sample is a partially new sample, meaning that it
was part of the NFI first-phase sampling but was not included in the NFI second-phase sampling. In
contrast, the intensified plots by the FIA are totally new and have never been selected before, not
even in the FIA first-phase sample. Blackard and Patterson (2014) do not disclose the estimation
procedure, as if the intensified plots was not used for the estimation. Despite the differences in the
way the intensified sample is made in our study as compared to the one made within FIA, the
intensified plots and existing FIA base plots may be regarded as non-overlapping since they are all
derived from the continuous population. Consequently, the formula in our work is applicable in this
context, as long as all plots in both the FIA base sample and the intensified sample have the same
inclusion density in the union sample. Furthermore, the existing FIA base plot and intensified plots
may be located in the same hexagon cell, resulting in the selection of multiple points within each
cell. Duong et al (2024) provided an estimation technique for this situation (i.e. multiple points
sampled within a cell), which could enable the use of the intensified plots by the FIA for estimation.

As mentioned in the Introduction, models are utilized for an estimation within the DOI, with
notable applications in NFIs, such as the Norwegian (Breidenbach and Astrup, 2012), Finnish
(Tomppo, 2006), and Swiss (Magnussen et al, 2014) NFIs. Any estimation method, including the
model-assisted and model-based ones, can benefit from intensification since it offers an increase
in quantity and quality of field plot data and auxiliary information for calibration and validation
(Fassnacht et al, 2024). In this article, we have presented and discussed intensification within the
design-based approach; yet, an intensified sample can be useful for improving the estimation using
other methods, such as the model-assisted or model-based approaches. The use of an intensified
sample in the DOI to improve the prediction models can be an interesting topic in SAE. However,
auxiliary data is limited in providing the information for some attributes. For instance, the DOIs
could be defined based on biodiversity criteria, such as the need to preserve or protect a specific
forest type. This would require extensive biodiversity data, which is difficult to obtain from RS.
Therefore, increasing the availability of RS data is not helpful in this situation. The design-based
method in our study is capable of addressing all situations where RS is inadaptable. A comparison
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between the model approach with limited sample sizes and intensification with increased sampling
units for estimating the population total and ratio presents a potential topic for future research.

This paper references the conditional approach, often used with random sample sizes (Holt and
Smith, 1979; Rao, 1985; Hidiroglou and Särndal, 1985; Gregoire et al, 2016). Rao (1985) introduced
a design-based estimator for the small domains using post-stratification adjustment under the
conditional approach; however, it exhibits conditional bias. Hidiroglou and Särndal (1985) proposed
a modified regression estimator (MRE), conditionally unbiased as long as the domain sample size
is not smaller than its expected value. While Rao (1985) noted challenges in obtaining conditional
inference for complex designs, our article demonstrates the methodology for deriving an unbiased
conditional design-based estimator in all situations. Although we can derive unbiased estimators
without any assumptions, variance estimation requires simplifying assumptions, which usually lead
to a conservative variance estimator. Previous studies, Holt and Smith (1979) and Cochran (1953,
p.136), indicated that the conditional variance of the post-stratified mean following SRS is strictly
less than the unconditional variance. Gregoire et al (2016) illustrated that obtaining variance under
the conditional approach is simpler to handle than the unconditional approach since the post-
stratification following SRS functions similarly to stratified random sampling when conditioned on
the post-strata sample sizes. Moreover, the conditional approach is fairer than the unconditional
one since it makes use of the actual sample size obtained during the sampling process. Since the
classification of points inside/outside of the DOI happens after the regular NFI sampling, creating
two post-strata within and outside the DOI, our research is an extension of Gregoire et al (2016) to
continuous populations, offering simpler and reduced variance estimation in more complex sampling
designs. Moreover, combining two samples with different sampling intensities in the context of NFIs
has been previously studied by Westfall et al (2018) to use the urban and NFI data for rural-urban
assessments. However, they considered the situation of two independent samples, specifically urban
and NFI samples, which differ from our context.

We demonstrated that the intensified sample can be utilized for the territory-level estimation; how-
ever, the variance gain depends on the DOI’s proportion of the total territory and the intensified
sample size. The effectiveness of the intensified sample on the territory estimation depends mostly
on the proportion of the territory covered by the DOI. In our simulation, the large domain area
allows us to take a sufficient sample size that can reduce variance moderately for the entire territory
(Tables 4 and 5). However, in smaller domains, the intensified sample may not be sufficient to lower
the variance for the territory estimation. The near unbiasedness in the variance estimation for the
ratio estimator with SRSwor, SYS, and Poisson sampling for intensification in Table 5 may depend
on the simulation set-up and the intensified sample size, as illustrated by the simulation results.
Further research of different DOI areas and different intensified samples with different sample sizes
could explore how the DOI area and the intensified sample affect the entire territory estimation.

Intensification based on the first phase of an existing NFI sample is feasible through various sam-
pling designs. Our findings show that, among the sampling designs considered in the simulation
study, the choice of a sampling design has a limited impact on the estimation of the outcome
that we considered in the simulation study, with sample size remaining comparable across designs.
However, the choice of suitable designs for intensification depends on factors like the attributes of
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interest, the type of forest, the required geographical balance, or particular constraints on the sam-
ple size. For example, the NFI design for intensification is the most effective technique for achieving
spatial balance and reducing variance under the simulation set-up. On the other hand, SRSwor for
intensification in our simulation study may be useful since employing a fixed sample size, which
could be preferred in practice to aid in decision-making concerning the constrained sample size.
No design can be deemed the best, giving users the flexibility to select their preferred method.
Moreover, intensification can be applied within any particular framework to obtain the NFI sample.

The sample size of the intensified sample in our simulation may not be applicable in real-world sce-
narios, where two main constraints affect the size: the minimum number of points needed for optimal
precision and the maximum number allowed within budget limits. For the first constraint, Cochran
(1953) and Yamane (1973) proposed a formula for determining sample size based on the desired
degree of precision. Under the second constraint, models linking cost and sample size are needed.
The sample size is then bounded and may not achieve the desired one due to significant budget con-
straints. In some cases, budget constraints prevent additional samples, requiring a consistent sample
size across the territory. In this situation, a possibility is to decrease the number of sampling units
outside the DOI to maintain the overall budget while increasing units within the DOI. However, this
approach may reduce efficiency in estimating across the entire territory. In this paper, the sampling
strategy to increase the DOI sample size and the estimates provided are themselves important find-
ings of our research. Although our article does not focus on optimization, achieving optimal sample
sizes within precision and budget limits can be an interesting perspective for further studies.

7 Conclusion
This paper uses intensification to increase the local sample size and produce a design-based esti-
mation for the DOI and the entire territory. Regardless of the intensified method, we compute the
design weights of all the units to combine samples under the conditional approach. Our findings show
that the proposed total and ratio estimators, along with their corresponding variance estimators, are
effective in estimating within the DOI and across the entire territory. Our results indicate that the
sampling designs considered in the simulation study to obtain the intensified sample perform quite
similarly, offering the users the flexibility in choosing a preferred design. Some methods have better
control of the sample size than others; however, their expected sample sizes are approximately the
same.
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APPENDIX

Appendix A Proof of formula (2)
We need the following additional assumptions:

H1: For any first-phase sample sa, we have

P(x ∈ S1b|Sa = sa, n1b) =
n1b

na
.

H2: Sa and n1b are independent.

Assumption (H1) states that the second-phase sample, conditioned on Sa and on the sample size
n1b, is performed with equal inclusion probabilities. Since conditionally on Sa only, S1b is selected
with equal inclusion probabilities, this seems a reasonable assumption which should be respected
with most second-phase sampling designs. Assumption (H2) states that n1b does not depend on the
first-phase sample Sa, which seems reasonable too.

Under these two assumptions, we have

E
(
τ̂1by

∣∣Sa, n1b
)
=

AT

n1b

∑
x∈Sa

y(x)× P
(
x ∈ S1b

∣∣Sa, n1b
)︸ ︷︷ ︸

n1b

na from assumption (H1)

=
AT

na

∑
x∈Sa

y(x).

Then

E
(
τ̂1by

∣∣n1b
)
= E

{
E
(
τ̂1by

∣∣Sa, n1b
)∣∣n1b

}
= E

{
AT

na

∑
x∈Sa

y(x)

∣∣∣∣∣n1b

}

= E

{
AT

na

∑
x∈Sa

y(x)

}
from assumption (H2)

= τy.
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Appendix B Proof of all the points in D having the same
inclusion density in Sb

D

The inclusion probability in Sb
D, conditionally on Sa

D, is denoted as

π
b|a
D (x) = Pr(x ∈ Sb

D|Sa
D) for x ∈ Sa

D.

Due to the negative coordination between S1b
D and S2b

D , we have

π
b|a
D (x) = Pr(x ∈ S1b

D ∪ S2b
D |Sa

D)

= Pr(x ∈ S1b
D |Sa

D) + Pr(x ∈ S2b
D |Sa

D)

= π
1b|a
D (x) + π

2b|a
D (x)

The design weight, conditionally on Sa
D, is denoted as

d
b|a
D (x) =

1

π
b|a
D (x)

for x ∈ Sb
D. (B1)

The design weight in (B1) is used to obtain the conditional design-unbiased estimator for the total
value of the NFI-P1 sample Sa

D in D. To get the design weight for obtaining the total estimator of
the DOI D, we compute as

dbD(x) = daD(x)× d
b|a
D (x) for x ∈ Sb

D.

The inclusion density function of all points x ∈ D is then obtained by

πb
D(x) =

1

dbD(x)
for x ∈ D.

Therefore, all the points in D have the same inclusion density in Sb
D.

Appendix C Monte Carlo computation
The sampling and estimation steps are repeated M = 50 000 times. Given that the estimators and
variance estimators are studied based on conditioning, both the Monte Carlo (MC) expectation
and variance are computed conditionally. The simulations are organized into groups based on the
combination of possible values of the sample sizes on which we condition. For each group g = 1, . . . , G,
the MC expectation and variance of an estimator θ̂ for a parameter θ are defined as

EMC,g(θ̂) =
1

Mg

Mg∑
m=1

θ̂m,
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VMC,g(θ̂) =
1

Mg − 1

Mg∑
m=1

θ̂m − 1

Mg

Mg∑
m′=1

θ̂m′


2

where Mg is the number of iterations in group g and θ̂m is the value taken by the estimator for the
m−th sample. The overall Conditional MC expectation and variance are computed as

EMC(θ̂) =

∑G
g=1 MgEMC,g(θ̂)∑G

g=1 Mg

,

VMC(θ̂) =

∑G
g=1 MgVMC,g(θ̂)∑G

g=1 Mg

, (C1)

and the MC percent relative bias is

RBMC(θ̂) = 100× EMC(θ̂)− θ

θ
.

For example, the groups g correspond to the given combination of the sample sizes na
D and nb

D when
computing the MC expectation and variance for the estimators τ̂Dy and variance estimators V̂ (τ̂Dy)
defined in equations (3) and (4) in D. Meanwhile, the groups g will depend on the combination of
na
D, nb

D, and nb
D

when computing for the estimators τ̂y and variance estimators V̂ (τ̂y) defined in
equations (6) and (7) in T .

For the total estimators τ̂Dy and τ̂y, the MC percent relative bias is computed with the true values
θ = τDy and θ = τy, respectively. Meanwhile, for the variance estimators V̂ (τ̂Dy) and V̂ (τ̂y), the MC
percent relative bias is computed with the replacement of the unknown true variances θ = V (τ̂Dy)
and θ = V (τ̂y) by the Conditional MC variance in the formula (C1). The same approach is applied
for the ratio estimators and their variance estimators.
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