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Abstract. Particle-particle correlation functions in ionic systems control many
of their macroscopic properties. In this work, we use stochastic density functional
theory to compute these correlations, and then we analyze their long-range
behavior. In particular, we study the system’s response to a rapid change
(quench) in the external electric field. We show that the correlation functions relax
diffusively toward the non-equilibrium stationary state and that in a stationary
state, they present a universal conical shape. This shape distinguishes this
system from systems with short-range interactions, where the correlations have
a parabolic shape. We relate this temporal evolution of the correlations to the
algebraic relaxation of the total charge current reported previously.

charged fluids, driven diffusive systems, fluctuating hydrodynamics,

transport properties, correlations.
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1. Introduction

In many-particle systems with pair interactions, the transport properties, such as
viscosity or conductivity, are related to the pair correlation in non-equilibrium
steady states. The conductivity of electrolytes, for instance, has been explored with
this approach in the early works of Debye and Hiickel [1] and later Onsager [2].
There, the correlations between the ions when the electrolyte is submitted to
an external electric field give rise to a negative correction to the Nernst-Einstein
conductivity [2, 3]. Following the same approach, Onsager and Fuoss computed the
effect of the interactions between ions on the viscosity of electrolytes [4]. Apart from
electrolytes, the viscosity of a suspension of hard spheres has been deduced from the
particle correlations [5]. In all these examples, the difficulty lies in calculating the pair
correlations; deducing the transport properties from them is straightforward.

Stochastic Density Functional Theory (SDFT), or Dean-Kawasaki equation [6, 7],
has recently emerged as a systematic tool to compute the correlations in systems with
pair interactions under the Debye-Hiickel, or Random Phase, approximation [8]. This
framework has been used to generalize the Onsager and Kim results to arbitrary
spatial dimensions [9], compute the viscosity of a soft suspension [10] and account
for the finite ion size in the viscosity of an electrolyte [11]. It has also allowed
to compute the thermal Casimir interaction between plates containing Brownian
charges out of equilibrium [12, 13] or between dielectric slabs confining a driven
electrolyte [14, 15]. SDFT has also been coupled with fluctuacting hydrodynamies,
providing a stochastic field theory for the ionic densities and the flow, to account
for hydrodynamic interactions between the particles [16, 17]. This approach has led
to advancements such as accounting for finite ion size using modified interaction
kernels, yielding better quantitative predictions of the conductivity at high ionic
concentrations [18, 19, 20].

Stochastic Density Functional Theory has thus been widely used to compute the
pair correlations in electrolytes and deduce macroscopic transport coefficients from
them. The correlations themselves, hovewer, have received far less attention. At
equilibrium and under the Debye-Hiickel approximation, the correlations between ions
in an electrolyte take a Yukawa form and decay exponentially. On the contrary it was
noted that they were long-ranged out of equilibrium [14]. This situation is reminiscent
of driven binary mixtures with short-range interactions, with an overdamped or an
active dynamics, which also display algebraic correlations with a universal parabolic
shape [21, 22]. This raises the question of the shape of the correlations in a driven
electrolyte, and in particular of the effect of the long-ranged electrostatic interactions.

Moreover, an algebraic relaxation of the current in an electrolyte following a
sudden switching on of the external field has been found recently [23]. Conversely, it
has been found that the current relaxes exponentially following the sudden switching
off of the external field. This peculiar behavior extends the question of the shape of the
correlations: what is the shape of the correlations in the transient regime separating
equilibrium and a non-equilibrium steady state (NESS)? How does the shape of the
correlations explain the algebraic or exponential relaxation of the electric current?

In this work, we use SDFT with hydrodynamic interactions [9, 17] to investigate
the dynamics of ionic correlations in a bulk electrolyte following a sudden change in
the external field. We first analyze the stationary correlations in NESS and show
that, at large distances, the correlations adopt a conical shape, which corresponds
to an anisotropic Poisson equation. We then address the transient dynamics of the
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correlations as the system evolves from equilibrium to NESS and back, and find that
an anisotropic diffusion equation governs their evolution. This diffusive scaling of the
correlations explains the algebraic relaxation of the macroscopic current observed when
going from equilibrium to NESS [23], and its exponential relaxation from NESS to
equilibrium.

The outline of this article is as follows. In section 2, we present the model system
and derive general expressions for the ionic correlations; the expressions are later
reduced to the binary symmetric electrolyte case. In section 3, we analyze the large
distance behavior of the correlations in the NESS and derive a universal shape for
them. In section 4, we expand the analysis to the temporal response of the correlations
to a quench in the driving field at large distances. In section 5, we reexamine the
problem at the level of the density and charge fluctuations to explain the algebraic
temporal relaxation of the charge current.

2. Model

We model an electrolyte as a system of charged Brownian particles of different
species [9, 14, 16, 18]. The particles move in a homogeneous three-dimensional solution
and are subjected to a uniform external electric field with a time-dependent amplitude
E(t) = E(t)é,, where &, is the unit vector along the x axis. The particles interact
via the electrostatic potential and are advected by the flow in the solution, which
is generated by the forces transmitted by the particles on the solvent. We denote
Po the average density of the particles of the species «, K, their mobility, and gz,
their charge, with ¢ being the elementary charge. We assume that the system is
electroneutral, Y  zopa = 0.

We describe the evolution of the density field p,(x,t) of the species « using
Stochastic Density Functional Theory [7, 9] with hydrodynamic interactions [16, 17].
The density fields are defined as pq (x,t) = >, §(X;(t)—x), where X;(t) is the position
variable of the particle i in the species «, and the dynamics of p, is given by

ja = UPn — Tﬂavpa + K/apozfoc + V HoszaCou (2)
where u(x,t) is the velocity field of the solution, T is the temperature (we set the

Boltzmann constant to kg = 1) and f,(x,t) is the force acting on the particles of the
species . The noise term ¢(x,t) is a Gaussian white noise with the correlation

(Cal, t)Ca(a' 1)) = 20050 (x — 2')d(t — 1'). (3)
We use the It6 convention for the multiplicative noise in equation (2) and throughout
this article [7, 24].
The force on the particles of the species « is the sum of the force exerted by the
external field and the force due to pair interactions

fa = ZaqE - Z VVaﬁ * P3, (4)
B
where V,5(2) = ¢*2425/(4mer) is the electrostatic interaction, with r = |z|, ¢ the

dielectric permittivity of the solvent, and * the convolution operator.
We assume that the fluid velocity field u(x,t) satisfies the fluctuating Stokes
equation for incompressible fluids [25] (section 3.2)

V-u=0 (5)
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NVPu—Vp=—Y pafa—V1IV-(v+v"), (6)
(0%

where v(z,t) is a Gaussian noise tensor field with correlation function
(ij(z, g (2, 1)) = 60 (x — x')6(t — t'). (7)

In particular, we are interested in the evolution of the density-density correlation
function (p.(x,t)ps(x’,t')) when the electric field is suddenly switched on (E(t) =
EyH (t), where H(t) is the Heaviside function), or off (E(t) = EqH(—t)). In the first
case, the system goes from equilibrium with £ = 0 to NESS with F = Ey; in the
second case, it relaxes from NESS to equilibrium.

Moreover, we analyze the total charge current J = quil za(Jo). Using
the electroneutrality of the system and after discarding terms of third order in the
fluctuations, one finds [23]

J=0oF — Zqzakaa/dw VVops(x)Cop(x) +Zq22azﬁE/dw O(x)Caplx). (8)
o, a,B

The correction to the bare current, oo E, with og = ¢> D a 22 Koo is the sum
of two contributions. The first term involves the electrostatic potential Vg, and is
referred to as the electrostatic correction. The second term is called the hydrodynamic
correction and it involves the Oseen tensor O and the external field E. It.

For completeness we repeat here the approach developed in Ref. [9, 23]. The
SDFT model presented can be reduced, under the linearization of the field equations,
to the following equation for the density fluctuations n, = p, — po. In Fourier space,
the dynamics of n,, takes the form
Mo = —KaTk’fia — ikaqza B - kito — Kapak® Y Vagits + v/kaTpaik - Ca. (9)

B
Equation (9) allows to formulate an equation for (7, (k,t)7s(k',t)) = (27)%6(k +

k')Cop(k,t), the density-density correlation functions

C =2TR — RAC — CA*R, (10)
where Rop(k) = dappakak? and
T ZaqFE - K ~

We can solve equation (10) exactly for an external field quench since it is a set of
linear ODEs with constant coefficients in the interval [0, t].

To further explore the general formulas presented here, we focus on the specific
case of binary symmetric electrolytes. An ionic solution classified as such is one in
which there are only two species of particles with opposite charges and the same
mobility. This simplification is of interest for two main reasons. First, many
ionic solutions in practical use are very close to binary symmetric solutions [26].
Secondly, this simplification allows us to manipulate analytically and derive simple
form expressions that still capture the system’s global behavior.

A binary symmetric electrolyte, where both species have the same mobility and
charge satisfy « = {+,—}, 2z = —2_ =1, po = p, and Kk, = k. We nondimensionalize
equation (10) by setting C' = pé and k = s/A\p where Ap = /Te/(2¢2p) is the Debye
length. Then we rescale time by the Debye time tp = A3 /(kT), t = tpT. We rewrite
the external field to separate the magnitude from the time dependence E(t) = Eyg(t)
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and introduce the dimensionless field f = gApEy/T. The rescaled correlation coz(T)
follows

¢ =252 — wé — &, (12)

ZaZp

where we have introduced the matrix wag(s) = dap (82 + izasz) + =5

3. Correlations in electrolyte systems — Long range behavior at NESS

In this section, we analyze the structure of the correlations between different ions at
scales larger than the Debye length. The correlation elements in Fourier space for
binary symmetric electrolytes can be calculated using equation (12). In the stationary
state case, as shown in [9], the equation reduces to a set of algebraic equations to

which the solution is

82

2(1+287) (s + 54 + f253)

1+432+4s4+4f25ﬁ 1+25272ifs||
X 14252 +2ifs)  1+4s° +4s* + 4f2s7

é(s) =

(13)

In figure 1 one can see the NESS correlation elements in real space for different
values of the dimensionless field, obtained from the numerical Fourier inversion of
equation (13). A clear conical structure with respect to the field direction is visible
for both ¢4y and ¢_,. The head angle of the cone decreases with the electric field,
but does not reach /2 as the field goes to zero. Differences between ¢y and c_, are
manifested only around the origin at distances comparable with Ap.

3.1. Discontinuity at small wave number

Examining é(s), we see that there is a discontinuity at the origin, since the limit is
different upon approaching the origin from the direction perpendicular or parallel to
the electric field

) 1
Cap (51 =0:51) = 50 Cap (51,50 =0)

_ 1

The fact that the Fourier transform of the correlation function is not continuous at
the origin usually indicates an algebraic decay in real space. To determine the long-
range properties of the correlation function, we can separate this discontinuity from
the full expression. By doing so, we are left with a term called the singular part Cging,
which encompasses the discontinuity and accounts for the long-range behavior in real
space, and the rest, namely ¢ — Cging, Which is more regular at the origin and hence, its
contribution decays faster in real space. Note that the singular part is defined up to
a regular function. We can extract the discontinuity from equation (13) by discarding
higher powers of s, and s for the numerator and the denominator separately. In this
way, we find the singular part, which is identical for all correlation elements

82

2 <82 +f28ﬁ).

One can verify that subtracting this term from the correlation elements regularizes
the behavior at the origin, and the regularized term goes to 0 in the s — 0 limit.

(14)

(15)

Csing =
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Figure 1. The correlation function in the non-equilibrium stationary state for
different values of the normalized external field f. Panels (a,b,c) are the anion-
cation correlation c_4, and panels (d,e,f) are the equal charge correlation caq.
One can observe that far from the origin, a cone develops and that at vanishing
fields, the angle of the cone reaches a finite value, as predicted in equation (19).
Surprisingly, the long-range shape of any ion-ion correlation function is the same.
In dashed black line is the prediction of equation (19).

Therefore, the inverse Fourier transform of the singular part dominates the behavior
of the correlation elements at long distances in real space. We can invert the Fourier
transform of the singular part and express it in terms of the Green function of the
Poisson equation G

1
Csing = — ————F——
TET 9 m /11 £

where & = {a:” /AV1+ f2x J_}. This expression can be evaluated in d dimensions to
get

2 d—3 d
Csing = _zhirfm (f2 + ]-) > T <§> 9d (mx_J—> i

d
T/ x

V3G (2). (16)

y*?—(d—1)

ith = , 17
with guls) = = (17)
where I is the gamma function. For d = 3, it reduces to
f? T . y> -2
e = — ——— vat 2= th = 18
Csing Sﬂ_x'ﬁ gs + f {E” W1 g3(y) (y2 N 1)5/2 ( )

The expression in equation (17) has several interesting features. First, the argument
of the function g4 contains the ratio between the x| and x coordinates. This implies
a conical shape around the x| axis, which is observed in figure 1. This is an intrinsic
difference from systems with short-range interactions, where the correlations have a
parabolic shape [21, 22]. Second, the angle of the cone does not approach 7, as one
might expect, when the field is decreased towards zero. Instead, it settles at an angle,
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Figure 2. The rescaled correlation function C,g |:1:H |3 f~2 along slices of constant
x| values. This allows us to compare it to the scaling function gz. The dotted
lines correspond to f = 1 while the solid lines correspond to f = 5. We can see
in solid black the evaluation of equation (18).

unlike, for example, the Mach cone. From equation (17), we can see that the angle ©
of the cone where the value of the correlation function is 0 is given by

d—1
_ -1
("')d = s ( d—'—f2> . (].9)
The expression in equation (19) shows that the angle of the cone in any dimensions

converges to sin” (\/1 - 1/d> as the field goes to 0 (figure 1). In other words,

at large distances, the first non-zero term of the correlation in powers of f is not
spherically symmetric. Finally, the structure of the correlation in equation (17) shows
a self-similar shape for each cut along the x| axis. In fact, by stretching this scaling

function g4 by the factor y/1 + f2, we find a universal shape for any cut and external
field. The function g3 is presented together with a numerical inversion of the Fourier
transform of the correlation element in figure 2.

We remark that the correlation shape at large scales is similar in structure to
the electric potential generated by a simple quadrupole moment charge configuration
(equally spaced collinear charges of +¢, —2¢, +¢q along ) where f? is analogous to
the magnitude of the quadrupole moment tensor. This similarity suggests a relation
to the picture of the ionic cloud deformation proposed in the works of Onsager [3, 27].

4. Time dependent correlations

Now that we have characterized the correlations in the NESS, we investigate the
temporal evolution of the correlations between the short-ranged correlations at
equilibrium and the algebraic correlations in the NESS. The focus remains on lengths
that are large compared to the Debye length and times that are large compared to the
Debye time.
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4.1. Switching on of the external field

Equation (12) can be solved exactly for an immediate switching on of the electric field,
namely, E(t) = EoH (t) to give

Ciy = J:ABCAT [B2 cosh (\/E7‘> + BVAsinh (\/ET) —4C's ] + ﬁ - % +1,
(20)

Cy_ = ;ZBCA [Bffusmh (\/>7') (B —2ifsu) + Bfucosh (ﬂr) (A —2iBfsu)

. 1 zfsu

we have introduced the variables u = s)/s, A = 1452, B=1+2s%C = f2u?+s2+1
and A = 1 — 4f2s%uy%2.  The other terms are deduced with ¢__ = é&,, and
¢_y = ¢4 _. At long times, the dominant, time-dependent term in equations (20)
and (21) corresponds to the smallest eigenvalue of equation (12), B — v/A. We can
read it in the expressions in equations (20) and (21)

~ f2u2ef'r(Bf\/Z) 1

~ I B VAl e -, 22
S 4ACA B+ VA] + 230 B (22)
) f2u26*7(3"/z) ‘ . 1 ifsu
R 7 Te [\/A(B 2ifsu) + (A= 2iBfsu)| + 55— S (23)

These correlation terms can be approximated in the long-range regime, which
translates to s — 0 in non-dimensionalized Fourier space. Again, we find that the
behavior of all the correlation terms is the same

232 2
Cop ~ B A I CE VAR S : (24)
2 <S2 + zsﬁ) 2 (52 + 23ﬁ>

One sees that when 7 — 0, the correlation is 1/2. This is the Yukawa correlation found
in equilibrium: Seen at large distances, it is a delta function at the origin, which gives
a constant in Fourier space. When 7 — oo one recovers the NESS result from the
previous section. We can identify the exponential as the solution to the diffusion
equation in Fourier space, which means that the transition between these two states
follows diffusive dynamics. The term f 282‘ enhances the diffusion in the direction of
the driving field. The correlation spreads like a nonisotropic diffusion process with
diffusion constants T in the perpendicular directions and xT(1 + f2) in the field
direction.
We can invert the time-dependent term back to real space to get

f2
f2 82 Fd/271 (?) (25)
8md/27d/2 (1 4 £2)3/2 0%} zd=2 ’

clx,7)=—

where I'g/_; is the (upper) incomplete gamma function of d/2 — 1 and z =

{w ZL 5. This shape of the correlation can be written as

NG

1 1 2
o(z,7) = 8md/2 7d/2 (1 _1_];2)3/2(1) (;) : (26)
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Figure 3. Sketch of the length scales at play and the functional dependence
of the density-density correlation function on the distance from the origin. The
behavior in the upper row (magenta) corresponds to the spatial relaxation of
the correlation function from equilibrium to NESS (switching on). The behavior
in the lower row (green) corresponds to the spatial relaxation of the correlation
function from NESS to equilibrium (switching off).

The function @ is anisotropic in space and its asymptotic behavior is given by

d—1)12 — 2\ ,2

o(y)=2(f2+1)"”°r (d) (@-Dyj-(+/ Z?ﬁ ~ id when y — 0, (27)
(yﬁ + (1+f2)yi)2
2 2 4 (14 f2) 2

O(y) = y|2—|—(1y—||—fQ)yieXp (—yl 8((1 +f2)) yL) ~ exp (—yg) when y — oco. (28)

The argument of ® in equation (26) presents diffusive scaling between the spatial
and temporal coordinates. This indicates that the observation length should be
compared to the length /7. At a given time, the NESS correlations are observed
below the length +/Txt while an exponential decay of the correlations in space is
observed beyond it (figure 3). In figure 4, one can see the different regimes in rescaled
and absolute axes at different times.

4.2. Switching off of the external field

A similar procedure can be applied for the switch-off of the field. Equation (12) can
be solved exactly for an immediate switching off of the electric field, to give

; L e T nh(r) + cosh(r)] (29)
Ctp = —=— — ————=|Bsinh(r
T 7947 T24BC b
6+_ _ _f252U2672AT B f2u2e—252fr B Z.fS”UﬂiBT N L, (30)
2ABC 2BC BC 2A
At large times, the dominant terms of each correlation element are
1 f2u267252'r
C++ =~ 2y 2 21 12,2) (31)
2(1+s%)  2(1+2s2)(1+ 5%+ f2u?)
1 2,2 ,—2sT
ffuce (32)

Cy_ = — .
T 21452 2(14282) (1 + 52 + f2u?)
These correlation terms can be approximated in the long-range regime, which
translates to s — 0 in non-dimensionalized Fourier space. Again, we find that the
behavior of all the correlation terms is the same
. 1 f28ﬁ6—2527'
et Y TS T T, o\ (33)
s—=0 2(82+f28ﬁ>
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Figure 4. A time series of the correlation element c_ after a sudden switching
on of the external field. In the upper row, c—4 along real axes. In the lower row,
the rescaled correlation function c¢_;73/2 along rescaled axes. The figure has
been evaluated for f = 1. Near the center, one can see the conical shape found
in the NESS. Away from the center, we find the exponentially small equilibrium
value. In the rightmost panels, the angle predicted by equation (19) was added,
allowing us to appreciate the different behavior regimes visually.

N 1_ fzsﬁe*QSQT
s—02 2<32+f25ﬁ)

One sees that when 7 — 0, the correlation is the NESS solution at large distances
(equation (15)). When 7 — oo, the equilibrium value of 1/2 is recovered (See figure 5).
In real space, the dynamics are given by convolution between the NESS solution at a
large scale and the diffusion equation fundamental solution, which can be written as

c(x,AT)— r m(})

2 (2m)* 7d/2
il Wéﬁe*iémdﬁ. The diffusive nature, manifested in the scaling of
]

C— (34)

(35)

with ¥(x)

the dynamics, is also preserved in this case.

Figure 5 presents the relaxation of c_, after a switching off of the external field.
At a given time, the equilibrium correlation function, of the spherically symmetric
Yukawa form, is observed below the length /Tt while the NESS conical correlation
with an algebraic decay in space is observed beyond it.

5. Mesoscopic density fields and conductivity

The diffusive dynamics of the correlation suggest a relation to the algebraic relaxation
of the charge current reported in [23]. To establish this relation, we start by
normalizing the expression in equation (8) to get the dimensionless total charge current

J() _ g(t) + ﬁ)l\%vel(ﬂ f)+9(7)

AT 36
s (36)

Ts
E’Yhyd (T7 f) )
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Figure 5. A time series of the correlation element c_ after a sudden switching
off of the external field. In the upper row, c_ along real axes. In the lower row,
the rescaled correlation function c_+7'3/ 2 along rescaled axes. The figure has
been evaluated for f = 1. Away from the center, one can see the conical shape
found in the NESS. Near the center, we find the exponentially small equilibrium
values.

where ry = (67nr) ! is the hydrodynamic radius of the charged particles and g(7) =
E(7)/Ey is the temporal dependence of the external electric field. The electrostatic
and hydrodynamic corrections e and Ynya in equation (36) read, respectively

~35 3f/ S”zZza [Cap (8T, f) — bapl s (37)

() = o5 [ ds; ( - —) 3 0z [an(s,7, ) = Gas] . (39)

Examining the integrals in equations (37) and (38), we can see that the results for
the correlation elements found in section 4 are not sufficient to describe the dynamics
of the charge current corrections: All the correlation elements are equal and cancel in
the sums. Hence, some finer details of the correlation elements are needed.

For a binary symmetric electrolyte, the summation terms in the integrals in
equations (37) and (38) suggest defining new field variables, the number density
U = n4 + n— and the charge A = ny — fi_. With these variables the correction
terms can be written as

’7e1(7-7 f) = _ﬁ /dS%iéUA(S,T, f)7 (39)

’Yel(T f

a(r ) = o5 [ ds —( S”) éan(s, 7). (40)

In the following, we examine the dynamics and correlation of U and A to
understand the temporal relaxation of the total charge current.
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5.1. Mesoscopic equations

Similarly to [28], we start by considering equation (9) for the density of the species
« in Fourier space. For the particular case of binary symmetric electrolytes, we can
write the equations for the number density and charge fields

U = —kTk*U — ikgE - kA +V2xv, (41)
. 2
A = —kTk*A — ikgE - kU — QHﬁ%A + V2. (42)

When F is set to 0, the two equations decouple, equation (41) describes (noisy)
diffusion, and equation (42) describes a (noisy) diffusion in the presence of screening,
which flattens even the slow modes of the fluctuations after a Debye time.

Applying a field couples the equations; in particular, this coupling gives rise
to a charge fluctuation that persists beyond the Debye time. To address the
asymptotic long-distance behavior of a system, it is often helpful to simplify the
analysis by identifying specific regimes where particular physical processes dominate
the dynamics. In the context of charge fluctuations, for example, it is known that the
behavior is strongly influenced by the Debye screening mechanism at short length and
time scales. However, when longer lengths and time scales are considered, it is often
possible to approximate the charge fluctuations with a quasi-stationary solution that
captures the dominant features of the system.

Following this logic, we examine the behavior of equations (41) and (42) at long
times compared to tp, which allows us to neglect the temporal derivative and at large
lengths compared to Ap, which allows to neglect the diffusive and noise terms. In this
regime, equation (42) simplifies to

2
2@%A = —ikgE - kU. (43)

Note that the noise term is also of higher order in Ap. Now we can use
equations (41) and (43) to write a closed equation for U

U =—xT (k2 + f%ﬁ) U +V2xu. (44)

We can write an equivalent version of equation (10) that is valid only for large
distances compared to the Debye length. Similarly, we have (U(k,t)U(K',t)) =
(2m)45(k + k") Cyy (k,t), where Cyy (k,t) is the Fourier transform of the correlation
function in real space. Cyy satisfies a diffusion equation with a source term

Covlk,t) = —2kT <k2 + kaﬁ) Cuu (k, t) + 4xTpk>. (45)
Nondimensionlizing the equation in the same way done in section 2 gives
cuu(s, 1) =—2 (32 + f2sﬁ) cov (s, 7) + 4s%, (46)

we recall that cyy = Zaﬁ Cap With the initial condition Cy,(s,0) = % It is easy to
see that equation (24) gives the solution to this equation. At this stage, we can gain
some insight into the relaxation rates of the conductivity corrections that we found in
[23].
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5.2. Relaxation rates of the currents

When we swich off the external field, the system transitions from NESS to equilibrium.
Examining equations (41) and (42) we see that when the field E is set to 0, the
equations decouple and fluctuations in A decay quickly over a time scale tp. This leads
to a rapid decay of the correlation function between U and A and the autocorrelation
of A. This is the origin of the exponential decay of the total electric current upon
switching off the external field.

To understand the second transition, from equilibrium to NESS, we see that with
equation (43) one can express cya and caa with the solution to equation (46). The
time-dependent parts of cya and caa are

2Zf353 2 2 2
Seun(s,7) = ————de 2 (+%0) (47)
s?+ f 5]
2f484 2, £2.2
dean(s,T) = 27326727—(5 +254). (48)
2+ f 5]

Now we can compute the relaxation terms of the currents in equations (37) and (38)
3(£2+1)" sinh ' (f) — 4f3 — 3f 1
96/23/2 f3 (f2 + 1)3/2 3/27
1 5+6f% . 15+11f2 | 1
é T, f)= sinh — , (50
’Yhyd( f) 16\/% f3 (f) f2\/m 73/2 ( )

consistent with the results reported in [23] for the algebraic relaxation rate and
prefactor dependence on the external field. In other words, the correlation terms
respect a diffusive scaling, and due to the fact that the interaction kernels O ~ V ~ 9—12
has a long range algebraic structure, the total charge current relax algebraiclly towards
its value in the NESS.

This effect is reminiscent of the long time tails effect seen in hydrodynamic systems
[8]. The long-time tails phenomenon involves the inertia of the fluid, which is absent
in our model.

er(T, f) = (49)

6. Conclusion

In this work, we have characterized the behavior of the particle-particle correlation
functions in the long-range regime, in the non-equilibrium stationary state (NESS),
and in the transient regime as the system approaches NESS. At NESS, the density-
density correlation functions are anisotropic and decay algebraically with distance.
These properties persist even in the weak-field limit. The correlations exhibit a self-
similar universal form for cuts along the axis parallel to the external field x. This
self-similar structure is conical along the x) axis. This distinguishes ionic systems
from systems with short-range interactions. In both types of systems (short-range and
long-range interactions), particle-particle correlations are short-range at equilibrium
and long-range at NESS. However, the correlation spatial structure is conical and not
parabolic. Moreover, we examined the relaxation of the correlation functions from
equilibrium to NESS. It is characterized by a diffusive length scale v/ Txt. At short
distances compared with vTkt, the NESS correlation function is found. For larger
distances, the correlations are exponentially decaying. Lastly, we approximated the
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equations for the ionic fluctuation fields to explain the relaxations of the total charge
currents towards equilibrium and non-equilibrium stationary state.

Recently, the temporal correlations of the fluctuations of number and charge
densities have been investigated at equilibrium using SDFT [29]. It has been found
that the number correlations decay with time as ¢~3/2, which was attributed to the
diffusion of the ions. That the same algebraic decay was found for these correlations
and the relaxation of the electric current following a sudden switching on of the
electric field [23] raises the question of a possible relation between the two phenomena.
However, the algebraic relaxation of the current and the conical correlations in the
NESS appear only beyond linear response, so that they cannot be directly connected
to equilibrium fluctuations.
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