
HAL Id: hal-04933542
https://hal.science/hal-04933542v1

Preprint submitted on 6 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TAYLORS: A fasT, scAlable Yet Lightweight prOtocol
for Resilient Synchronization of WSN

Benoît Perroux, Jérôme Ermont, Katia Jaffrès-Runser

To cite this version:
Benoît Perroux, Jérôme Ermont, Katia Jaffrès-Runser. TAYLORS: A fasT, scAlable Yet Lightweight
prOtocol for Resilient Synchronization of WSN. 2025. �hal-04933542�

https://hal.science/hal-04933542v1
https://hal.archives-ouvertes.fr

TAYLORS: A fasT, scAlable Yet Lightweight
prOtocol for Resilient Synchronization of WSN

Benoı̂t PERROUX
IRIT, Université de Toulouse,

CNRS, Toulouse INP, UT3, Alliantech
Toulouse, France

benoit.perroux@irit.fr

Jérôme ERMONT
IRIT, Université de Toulouse,
CNRS, Toulouse INP, UT3

Toulouse, France
jerome.ermont@irit.fr

Katia JAFFRÈS-RUNSER
IRIT, Université de Toulouse,
CNRS, Toulouse INP, UT3

Toulouse, France
katia.jaffres-runser@irit.fr

Abstract—As of today, wireless sensor networks (WSNs) are
regularly deployed to monitor physical phenomena. This is made
possible by the collection of time-stamped data building on
synchronized sensor clocks. Some applications benefit from a
temporary deployment of the network. This is for instance the
case for acoustics calibration of a concert hall using connected
microphones. In this case, the clock synchronization protocol
must converge fast and in a bounded time. In this paper,
we propose TAYLORS, a distributed and thus robust synchro-
nization protocol for WSN that offers a fast bounded conver-
gence and that keeps a stable clock even in dynamic settings.
TAYLORS combines both max-consensus at initialization and
average-consensus over the long term. This work provides as
well a novel mathematical model to derive a worst-case bound
on convergence that is leveraged to motivate the design of
TAYLORS. Experimental results show that the proposed solution
is simple, fast and suitable for very basic micro-controllers.

Index Terms—WSN, synchronization, distributed consensus.

I. INTRODUCTION

The deployment versatility of wireless sensor networks
(WSN) has paved the way for rolling out various monitoring
applications in the last decade in various sectors (industry,
health, agriculture, etc.). Monitoring relies on the collection
of time series of multi-variate data. As such, a core WSN
service is data timestamping which generally relies on the
time synchronization of sensor’s oscillators. A large palette of
synchronization protocols has been developed throughout the
years, tailored for various application contexts and leveraging
different wireless technologies. Main design objectives encom-
pass synchronization accuracy, energy consumption, scalabil-
ity and robustness to topology changes or message losses.

This paper focuses on adding the objective of fast and
bounded deployment time of the synchronization service. This
is motivated by industrial scenarios where the WSN is rolled-
out for a short duration (in the order of hours) and requires
an on-the-spot and autonomous organization of the network
to collect data. This is for instance useful for the acoustic
calibration of a concert hall using a network of microphones
or for the temporary measurement of vibrations of a vehicle or
an airplane structure. The point is to provide an upper bound
on the time the synchronization service needs to achieve the
desired synchronization accuracy and to start data collection.

In a nutshell, two typical designs of synchronization proto-
cols exist: hierarchical or distributed ones. Hierarchical proto-

cols use an active tree topology to distribute a global clock in-
formation that nodes use to compensate for their offset and/or
their skew. They can be seen as the wireless counterpart of
wired protocols such as NTP [1]. For WSN, typical protocols
are TPSN [2] or PulseSync [3]. Hierarchical protocols offer
high accuracy and fast diffusion of synchronization data once
the tree is built. However, in a dynamic network, with nodes
regularly joining or leaving the network due to mobility or
perhaps evolving wireless connectivity, robustness issues arise
that necessitate more advanced topology control mechanisms.

The distributed design of wireless synchronization proto-
cols, on the other side, offers inherent resilience to connectivity
changes and avoids the single point of failure of hierarchi-
cal protocols. Indeed, distributed protocols execute the same
message-passing algorithm with the aim of converging to a
common clock through consensus. No node is of such impor-
tance that its departure or move causes large perturbations.
However, the drawback of distributed consensus protocols
is the time needed to reach an initial agreement that might
be long and non-predictable for certain topologies. If such
limitations can be overlooked, an on-the-spot deployment of
a robust distributed monitoring service becomes possible.

In this work, we focus on the large-scale deployment of
very small sensor nodes in a space such as a hangar or a
vast concert hall: up to a hundred nodes are deployed with
no prior assumption on the topology. These nodes, equipped
with sensors such as microphones, have to timestamp their
measurements. The target environment is dynamic: channel
condition varies rapidly due to the presence of spectators for
instance. Considering the large scale deployment and the need
for robustness, using a distributed synchronization protocol is
essential. This protocol has to offer a bounded and preferably
fast convergence time (in the order of minutes), using basic
algorithmic operations that lightweight sensors can perform.

This paper presents two contributions: i) the mathematical
derivation of a bound on the convergence time of classical
distributed synchronization protocol based on average con-
sensus and ii) a novel protocol, TAYLORS, that combines a
unique fast converging max consensus initialization step with
a long-term robust average consensus synchronization. Note
that the consensus protocols we consider are asynchronous.
In the remainder of this paper, we review main distributed

consensus synchronization protocols in Section II. Before
leveraging Perron-Frobenius random matrix-theory to derive
an upper bound on the convergence time of one of the simplest
asynchronous average consensus protocol in Section IV, we il-
lustrate the difficulty of calculating such a bound in Section III.
Section V presents TAYLORS, that offers a small deterministic
convergence time while still being simple, robust and stable.
Finally, Section VI concludes this work.

II. DISTRIBUTED SYNCHRONIZATION PROTOCOLS

A. Related works

Several distributed synchronization protocols have been pro-
posed in the past decade. While each one of them has its own
particularities, from great simplicity to fast convergence or
increased long-term stability, they all share some key features.
First, they offer robustness since they are highly adaptive to
topology modifications and message losses. Second, they only
leverage local information to reach a global clock consensus
shared by all the nodes. Third, the absolute value of the final
clock has little importance, important is the global agreement.

In [4], the authors propose a simple and lightweight proto-
col, SISP. This protocol is designed for the smallest wireless
sensors with little memory, it performs a basic asynchronous
average consensus from clock values periodically broadcast
by each node. A detailed description of SISP is given in Sec-
tion II-B. The ATS [5] synchronization protocol improves this
average consensus mechanism by adding a fully distributed
drift compensation. This allows for a more stable clock and
thus less frequent clock broadcasts, with the drawback of a
more complex algorithm in terms of computation and memory
footprint. In [6], the authors build on the performance of
the ATS algorithm to propose a multi-hop version named
MACTS. With the observation that the more connected the
topology, the faster the convergence, they make the nodes fast-
relay the messages, creating virtual links. This mechanism is
only used in transitory state, as it reduces to a simple ATS
mechanism when the convergence is detected. Later, MTS
[7] protocol opts to use a max consensus algorithm instead
of an average consensus like previous ones: nodes converge
towards the clock speed and offset of the fastest-running one.
Convergence is definitely faster with max consensus since a
unique flooding of clock values in a mesh topology is enough.
However, keeping this approach for long-term synchronization
is risky since arrival of a fast-running node induces an abrupt
consensus clock variation which is detrimental to the correct
timestamping of data. The TSMA [8] mitigates this issue by
using both a max-consensus approach similar to MTS to the
drift compensation, and an average-consensus approach like
SISP to the offset correction. But convergence speed of offset
compensation is then similar to SISP or ATS.

More complex solutions exist that build on gradient descent
(GTSP [9]) or control theory (TSMPID [10]), or simply
provide pure syntonization (RFA [11]). They are thus out
of the scope of this work. Next, we detail SISP to illustrate
how a basic average consensus algorithm works and leverage
it to derive an appropriate mathematical model to bound

its convergence time. SISP is as well expanded to derive
TAYLORS thanks to its simplicity and capacity of reaching
tens of micro-second accuracy [12].

B. The SISP protocol
The SImple Synchronization Protocol (SISP) was intro-

duced in [4]. Each node calls algorithm Algorithm 1 regularly.

Algorithm 1 SISP Procedure, called regularly
1: LCLK ← LCLK + 1
2: SCLK ← SCLK + 1
3: if LCLK mod T == 0 then
4: broadcast(SCLK)
5: else if msgReceived(RCLK) then
6: SCLK ← (SCLK +RCLK)/2
7: end if

Two software counters, acting as clocks, are used in the
algorithm, the Local Clock (LCLK) and the Shared Clock
(SCLK). While the former is intrinsic to each node and tracks
the time since system startup, the latter aims at reaching a
common value among all nodes of the network. After system
startup, the sisp() procedure is called repeatedly using
native system interruptions triggered at the same pace for all
nodes of the network. Each node broadcasts its current value of
SCLK with a predefined period T . Upon reception of a SYNC
message (SYNC), the node computes the average between
its own SCLK and the received value, called the Received
Clock (RCLK). By successively averaging the clock values
from neighboring nodes, the network reaches consensus.

Note that there is no assumption on the start time of
sisp() calls: the network is asynchronous. Moreover, simple
sensors constrain clocks to be defined as integers.

III. PROBLEM STATEMENT

This section presents, using experiments and simulations,
the observations our mathematical model has to capture in
order to derive a bound on the convergence time of SISP.

A clock tick is the duration between two increments of
the SCLK. It is, by construction, the maximum provable
synchronization accuracy. A synchronization round is defined
as the period T , where each node sends one and only one
SYNC. Experiments are conducted in the FIT IoT-LAB testbed
[13] using an implementation of SISP on Qorvo DWM1001
Ultra-Wide Band (UWB) boards. In our implementation, a
clock tick is set to 10ms and T = 100, corresponding to
a round of 1s. Simulations are conducted with a simple in-
house simulator representing the evolution of the shared clock
of nodes at the end of each round. In both experiments and
simulation, the local clock counters LCLK are initialised with
non-zero values at system start. An experiment is reproduced
30 times with the same initial LCLK values. The variability
observed in our results stems from the asynchronicity of the
global network coming from the asynchronous start time of
each node. The convergence is observed once the increment
of the SCLK is equal to a constant value two consecutive
rounds in a row.

a) Impact of network topology: A wireless network
topology has a strong impact on the performance of syn-
chronization protocols in general. The more connected, the
faster the diffusion of clock information is. Using experiments,
we illustrate the convergence speed of SISP on two extreme
topologies: i) a full mesh topology, and ii) a line topology.
For each topology, we test a 5 and a 10-node network. We
observe the following:

• Impact of topology: convergence of full mesh is faster
than line topology. For 5 nodes, mesh convergence lasts
2.5±0.21 rounds while line topology lasts 21.1±11.7.

• Impact of network size: the average convergence reduces
from 2.5±0.21 to 2.1±0.25 rounds for the mesh topol-
ogy. On the contrary, for the line topology, convergence
grows exponentially: average is going from 21.1±11.7
to 127.7± 46.8, with minimum (resp. maximum) values
going from 21 (resp. 58) to 49 (resp. 211) rounds.
b) Impact of the emission sequence: The asynchronous

initialization of the protocol induces a randomization of the
sequence of SYNC message emissions in a round. As such,
at each network restart, a new emission sequence SYNC mes-
sages is observed. Figure 1 shows how the emission sequence
impacts convergence on a 4-node line topology considering
two different emission sequences. Convergence time is greatly
impacted: it almost doubles from 13 to 24 rounds, and SCLK
differ with value 6200 (left) or 6500 (right) after 25 rounds.

As a conclusion, the mathematical model of the convergence
has to capture the impact of topology and emission sequence.

IV. CONVERGENCE STUDY OF SISP

A. Related Works

Several synchronization protocols of Section II are pre-
sented alongside convergence in finite time proofs, with a
common assumption being the need for the network to be
connected for at least an arbitrarily long but finite duration [5].
However, in the context of an on-the-spot deployment of sen-
sor nodes, we require a bound on the convergence time to plan
the start time of data collection. Studying convergence time
of general distributed consensus algorithms builds around two

Fig. 1. Impact of two emission sequences for a 4-node line topology. Node
i communicates only with nodes i− 1 and i+1. On the left, convergence is
reached after 24 rounds, while on the right it takes 13 rounds.

main methods: Lyapunov-based theory and Perron-Frobenius
theorem in stochastic matrix theory.

Lyapunov-based methods are widely used to prove the
stability and asymptotic convergence or divergence rate of
dynamical systems. They leverage the Laplacian of a graph to
characterize information flow, and depending on the algebraic
connectivity of the graph, deduce the convergence rate [14].
The rate computed offers a loose bound on convergence time,
but doesn’t capture well the impact of fine-grained parameters
such as emission sequence of messages for instance.

Perron-Frobenius theorem applied to stochastic power ma-
trix theory can be leveraged to extract convergence properties
of Markov chains [15]. The method revolves around the
definition of a stochastic matrix representing the transition
between successive states of a system [16], [17]. The Perron-
Frobenius theorem links the second-largest eigenvalue of this
transition matrix to the convergence rate of the system. The
smaller this eigenvalue is, the faster the convergence. Among
the protocols cited in Section II, only TSMPID [10] leverages
stochastic matrix theory to prove convergence in finite time.

In this paper, we show that it is possible to express the
impact of an emission sequence in a stochastic transition
matrix representing the evolution of the shared clocks counters
in an arbitrary topology. Using the second largest eigenvalue,
we can compare the convergence speed of emission sequences
and extract the worst-case emission sequence. Then, its con-
vergence time can be calculated by simulation.

B. Stochastic Model

For a given node νi, at time t, Li(t) is the local clock
(LCLK) and Si(t) its vision of the shared clock (SCLK). The
vector S(t) lists SCLK for all nodes at time t. For each node
νi, its drift αi is such as Li(t+τ) = Li(t)+αiτ . The vector #»α
lists all the individual drifts. In the absence of drift #»α = 1. We
suppose #»α constant for the duration of the experiment even
though drift typically varies over time due to factors such as
aging or temperature. Furthermore, we assume a constant and
thus negligible communication delay, and no message losses.
In order to study the asynchronous evolution of S(t) with SISP
protocol, we model an asynchronous instance of SISP as a
synchronous protocol where the emission sequence within the
round is fixed. It is the case where clock drifts are constant. In
each round, numbered with k > 0, each node emits a SYNC
once following a fixed sequence. Next, we express S(tk+1) as
a function of S(tk) to exhibit a stochastic transition matrix.

SYNC(S1(tk + τ1))

SYNC(S2(tk + τ1 + τ2))

NODE 1 NODE 2

S1(tk) S2(tk)

S1(tk + τ1) S2(tk + τ1)

S1(tk + τ1 + τ2)
= S1(tk+1)

S2(tk + τ1 + τ2)
= S2(tk+1)

Fig. 2. Synchronization round of SISP with 2 nodes.

1) Example with 2 nodes: Fig. 2 depicts the evolution of
the SCLK of 2 nodes in a round starting from S(tk). We have:

S1(tk + τ1) = S1(tk) + α1τ1 (1)

When node 2 receives the SYNC of 1, S2 is:

S2(tk + τ1) = [S1(tk) + α1τ1) + (S2(tk) + α2τ1)]/2

=
S1(tk) + S2(tk)

2
+

α1 + α2

2
τ1

(2)

Once node 2 has sent a SYNC, the round ends with S2:

S2(tk+1) = S2(tk + τ1) + α2τ2

=
S1(tk) + S2(tk)

2
+

α1 + α2

2
τ1 + α2τ2

(3)

and S1:

S1(tk+1) = S1(tk + τ1 + τ2)

= ((S1(tk + τ1) + α1τ2) + (S2(tk+1)))/2

=
3S1(tk) + S2(tk)

4
+

3α1 + α2

4
τ1 +

α1 + α2

2
τ2
(4)

The evolution of clocks can be expressed in a matrix form:

S(tk+1)=

3/4 1/4
1/2 1/2

S(tk)+

3/4 1/4
1/2 1/2

 #»ατ1+

1/2 1/2
0 1

 #»ατ2

(5)
2) Generalization: We define the matrices Ei correspond-

ing to the effect of the emission of a message by node νi on
the clocks in the network.

Ei = (ein,p
)1≤n≤N,1≤p≤N (6)

with ein,p
=

1 if νn /∈ N (νi) & p = n

0.5 if νn ∈ N (νi) & (p = n || p = i)

0 otherwise

and N (νi) the set of neighbors of node νi. These matrices
express that any node that does not receive the SYNC message,
including the emitter itself, will keep its clock value, while a
node receiving the SYNC will compute the average between
the received value and its own clock. With this notation, we
represent the vector S after the emission of a node as:

S(tk + τi) = Ei · (S(tk) + τi
#»α) (7)

By iterating in a round composed of a given emission sequence
by two nodes a then b, we have:

S(tk+1) = Eb (Ea · (S(tk) + τa
#»α) + τb

#»α)

= EbEa · S(tk) + [EbEa · τa + Eb · τb] · #»α
(8)

We define Pa,b as:

Pa,b = Eb · Ea (9)

Finally, we can express the values of SCLK at round k + 1
with regard to the values at the previous round:

S(tk+1) = Pσ · S(tk) +

 N∑
i=1

τσi

i∏
j=N

Eσj

 · #»α (10)

with σ = {σ1, ...σN} the ordered set corresponding to the
emission sequence. By applying (10) to the example pre-
viously presented, we again find the result shown in (5).
Furthermore, with the second term of the sum not depending
on k, we pose:

δ =

 N∑
i=1

τσi

i∏
j=N

Eσj

 · #»α (11)

and rewrite (10) as:

S(tk+1) = P · S(tk) + δ (12)

We finally express the values of the Shared Clock of each
node at round k as a function of their initial values:

S(tk) = P k · S(t0) +
k−1∑
i=0

P iδ (13)

C. No drift case

If drift is neglect, #»α = 1 and δ is:

δ =

 N∑
i=1

τσi

i∏
j=N

Eσj

 ·1 =

N∑
i=1

τσi ·1 = (tk+1− tk) ·1

(14)
Following this, we can rewrite (13) as:

S(tk) = P k · S(t0) + (tk − t0) · 1 (15)

Extensive simulations comparing our model with and with-
out drifts show that drifts have a negligible impact on conver-
gence time compared the other parameters such as topology
and emission sequence. It mostly impacts the consensus clock
value. Thus, next results are given without drifts.

D. Convergence analysis

From the previously defined stochastic model, we first
observe that P is a product of several stochastic matrices Ei,
and is thus stochastic as well. If the matrix is irreducible,
Perron-Frobenius theorem states that P k converges towards a
stationary distribution noted ΠP at a rate depending on the
second-largest eigenvalue of the transition matrix P , noted
λ2. Irreducibility of P is obtained with Theorem 1. As we
focus on connected topologies without packet loss, the premise
Theorem 1 is always verified here. As such, ∃kconv\∀n ≥
kconv, P

n = ΠP . For n ≥ kconv , we can rewrite (13) at
round n as:

S(tn) = ΠP · S(t0) +
kconv−1∑

i=0

P iδ + (n− kconv)ΠP · δ (16)

Finally, we have:

S(tn+1)− S(tn) = ΠP · δ = cste ∗ 1 (17)

The difference between the clocks at each round stays constant
over time, and convergence is reached.

Theorem 1. If the graph of the network is connected, the
matrix P is irreducible.

Fig. 3. Relationship between λ2 and the convergence
time for a 10-node linear network.

Fig. 4. Convergence of SISP for line and full-mesh
topologies. Initial clocks are in {0, 10 000} ticks.

Fig. 5. Distribution of convergence time
for 6, 8 and 10-node linear networks.

Proof. Let the graph G(V,E) representing the network be
connected. Suppose P reducible. By definition, if P is re-
ducible it can be conjugated into a upper triangular block form
by a permutation Q:

QPQ−1 =

(
A B
0 D

)
i.e. ∃ I ⊂ {0, 1, ..., N − 1} such as ∀i ∈ I, ∀j /∈ I, Pi,j = 0.

G(V,E) is connected so ∀i ∈ I, ∀j /∈ I there is a path
containing two nodes i′ ∈ I and j′ /∈ I such as {i′, j′} ∈ E.
By the definition of Ei in (6), ei′

i′,j′
= 0.5. By generalizing

the definition of Ei, we have Ei = (Mi +
1
2I) with Mi

nonnegative.

Pi′,j′ = (Eα...Ei′ ...Eω)i′,j′

=

((
Mα +

1

2
I

)
...Ei′ ...

(
Mω +

1

2
I

))
i′,j′

≥
(
1

2
I

)N−1

ei′
i′,j′

=
1

2N
> 0

It contradicts the fact that P is reducible, so P is irreducible.

E. Worst-case convergence time

Fig. 3 plots the relation between the second eigenvalue λ2

of P and the rate of convergence. Points represent emission se-
quences of a 10-node linear topology obtained by enumerating
them for all orders, computing λ2 and deriving convergence
time by simulation. Numerical results confirm the relation
between λ2 and convergence speed. Thus, since computing λ2

of a sequence is done with linear time complexity, it is possible
for all orders to get the best and worst-case emission sequence
for an arbitrary topology. Worst and best-case convergence
times for an arbitrary network of N nodes are shown in
Fig. 4. Worst-case is computed for the line topology and
best-case for the full-mesh topology according to [12] with
1
N log2[maxi,j(Si(0)− Sj(0))].

In the line topology, the difference between best and worst-
case is reduced in small networks, but as N grows, the worst-
case increases exponentially, reaching a million rounds for a
line of 32 nodes. Setting the time before data collection to

this worst-case convergence time is clearly not reasonable.
As shown in the distribution of convergence times given in
Fig. 5, the worst-case is relatively rare. But still, rolling out
SISP or ATS without improving the protocol convergence
speed algorithmically provides worst-case bounds that are not
practical. In the following, we propose TAYLORS whose
initialisation stage provides a convergence bound in O(N).

V. TAYLORS

TAYLORS is based on SISP and keeps its main characteris-
tics (simplicity, robustness and accuracy). The proposed design
improves the initial convergence to allow for fast and bounded
on-the-spot deployment as well as the long-term stability by
better adapting to the dynamicity of the environment.

A. Fast consensus

The first modification of SISP aims at bounding the initial
convergence stage by changing average-consensus with max-
consensus whose convergence speed is in the order of the
network diameter (i.e. the largest path between any two nodes
in the network). But different from MTS [7] and TSMA [8],
TAYLORS switches from max- to average-consensus once
consensus is reached in order to offer a long-term stable shared
clock. Indeed, as pointed out in [10] and confirmed in our
simulations, max-consensus induces more aggressive clock
jumps and instability than average-consensus when sensors
have really different clock drifts.

B. Stability awareness

Once synchronization is reached, a distributed protocol
is left vulnerable to the arrival of non-synchronized nodes
whose local clock is likely to shift the shared clock back
or forth. To avoid this situation, we introduce a stability
indicator in TAYLORS. This stability indicator, common in
distributed consensus algorithms[8], is a way for a given node
to assess if it has reached consensus with its neighbors or not.
TAYLORS uses a bit flag to stay as lightweight as possible.
Any new node arriving checks the flag and participates in the
consensus if and only if the flag is not set. This flag can also
be leveraged to detect the end of the initial convergence and
start data collection. The flowchart is given in Fig. 6.

LCLK%T==0

isSync == RisSync

|RCLK-SCLK| ≤ sispThresh|RCLK-SCLK| > sispThresh

isSync == 1
&&

RisSync == 0

isSync == 0
&&

RisSync == 1

START
Broadcast SCLK
{SCLK, isSync} SCAN

onMessage
{RCLK,RisSync}

Regular message

Average consensus
SCLK+RCLK

2

Check “isSync”

Max Consensus
max(SCLK,RCLK)

End message treatment

Ignore Obsolete SCLK
SCLK = RCLK

Fig. 6. TAYLORS flowchart. Original SISP states are colored in gray.

TABLE I
MEAN CONVERGENCE TIME OF SISP AND TAYLORS (ROUNDS)

SISP TAYLORS

Mesh 5 nodes 2.5 1.5
10 nodes 2.1 1.34

Line 5 nodes 21.1 2.4
10 nodes 121.7 6.1

C. Experimental results

We compare the performances of TAYLORS with SISP
for both line and full-mesh topologies with the setup of
Section III. Results of Tab. I only compare convergence times
since final accuracy is, by construction, the same for both
protocols. While results for the full mesh topology offer a
small betterment, it is in the context of a line topology that
the results are really visible. A line composed of 10 nodes
converges on average 20 times faster with TAYLORS than
with SISP. This is in line with the exponential decrease of
convergence speed between SISP and TAYLORS. We checked
as well that TAYLORS improves long-term stability. In the
case of two originally independent clusters joining in a single
network, the reconfiguration time of the synchronization is in
the same order of magnitude than an initial convergence of
the new large network. Our algorithm proposes a flooding of
the largest shared clock among the two clusters into the other,
with a reconfiguration time yet again bounded linearly by the
diameter of the clusters.

VI. CONCLUSION & FUTURE WORKS

In this paper, we tackle the problem of deploying a
lightweight synchronization protocol for large-scale sensor
networks in a bounded and possibly fast time. Building on
related works, we derive first a stochastic model of the con-
vergence of local clocks to a shared clock to extract a precise
bound on the convergence of average-consensus protocols.
Our analysis shows that worst-case average-consensus bounds
are too large to be leveraged practically. Thus, we propose
TAYLORS, a protocol which combines the benefits of max

consensus at initialization and average consensus over the
long term to offer a fast initial synchronization, long-term
stability and a fast reconfiguration when two independent
clusters join in a single network. Future works will enhance
the convergence analysis method to account for the presence of
non-deterministic communication delays and packet loss using
additive and multiplicative disturbances [5] and by assimilating
packet loss to a switching topology [5], [14]. Another issue we
plan to tackle is related to the implementation of the protocol
on small micro-controllers which can only use integer com-
putations. Rounding errors then lead to non-linearity and adds
complexity. Further work can consider the method proposed
by [18] to tackle this issue.

REFERENCES

[1] J. Martin, J. Burbank, W. Kasch, and P. D. L. Mills, “Network Time
Protocol Version 4: Protocol and Algorithms Specification,” RFC 5905,
Jun. 2010.

[2] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in IEEE SenSys, 2003, pp. 138–149.

[3] C. Lenzen, P. Sommer, and R. Wattenhofer, “PulseSync: An Efficient
and Scalable Clock Synchronization Protocol,” IEEE/ACM Trans. Netw.,
vol. 23, no. 3, pp. 717–727, 2015.

[4] A. van den Bossche, T. Val, and R. Dalce, “SISP: A lightweight
synchronization protocol for Wireless Sensor Networks,” in ETFA2011,
2011, pp. 1–4.

[5] L. Schenato and F. Fiorentin, “Average TimeSynch: A consensus-
based protocol for clock synchronization in wireless sensor networks,”
Automatica, vol. 47, no. 9, pp. 1878–1886, 2011.

[6] F. Shi, X. Tuo, L. Ran, Z. Ren, and S. X. Yang, “Fast Convergence
Time Synchronization in Wireless Sensor Networks Based on Average
Consensus,” IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1120–1129,
2020.

[7] J. He, P. Cheng, L. Shi, J. Chen, and Y. Sun, “Time Synchronization in
WSNs: A Maximum-Value-Based Consensus Approach,” IEEE Trans.
Autom. Control, vol. 59, no. 3, pp. 660–675, 2014.

[8] Z. Dengchang, A. Zhulin, and X. Yongjun, “Time Synchronization in
Wireless Sensor Networks Using Max and Average Consensus Protocol,”
International Journal of Distributed Sensor Networks, vol. 9, no. 3, p.
192128, Mar. 2013.

[9] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in
wireless sensor networks,” in IEEE IPSN, Apr. 2009, p. 37–48.

[10] Y. C. Koo, M. N. Mahyuddin, and M. N. A. Wahab, “Novel Control
Theoretic Consensus-Based Time Synchronization Algorithm for WSN
in Industrial Applications: Convergence Analysis and Performance Char-
acterization,” IEEE Sensors J., vol. 23, no. 4, p. 4159–4175, Feb. 2023.

[11] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal, “Firefly-
inspired sensor network synchronicity with realistic radio effects,” in
SenSys ’05, New York, NY, USA, Nov. 2005, p. 142–153.

[12] O. Hotescu, K. Jaffrès-Runser, A. van den Bossche, and T. Val, “Syn-
chronizing Tiny Sensors with SISP: A Convergence Study,” in ACM
MSWIM, 2017, pp. 279–287.

[13] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “FIT IoT-LAB: A Large Scale Open Experimental IoT
Testbed,” in IEEE WF-IoT, Milan, Italy, Dec. 2015.

[14] R. Saber and R. Murray, “Consensus protocols for networks of dynamic
agents,” in American Control Conference., vol. 2, 2003, pp. 951–956.

[15] E. Seneta, Non-negative matrices and Markov chains. Springer Science,
2006.

[16] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, p. 988–1001, Jun. 2003.

[17] D. Deplano, M. Franceschelli, and A. Giua, “A nonlinear Per-
ron–Frobenius approach for stability and consensus of discrete-time
multi-agent systems,” Automatica, vol. 118, p. 109025, Aug. 2020.

[18] Y. Mocquard, B. Sericola, F. Robin, and E. Anceaume, “Stochastic
Analysis of Average Based Distributed Algorithms,” Journal of Applied
Probability, vol. 58, no. 2, p. 394, Jun. 2021.

	Introduction
	Distributed synchronization protocols
	Related works
	The SISP protocol

	Problem statement
	Convergence study of SISP
	Related Works
	Stochastic Model
	Example with 2 nodes
	Generalization

	No drift case
	Convergence analysis
	Worst-case convergence time

	TAYLORS
	Fast consensus
	Stability awareness
	Experimental results

	Conclusion & Future works
	References

