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Abstract

In vaccine trials with long-term participant follow-up, it is of great importance to identify surro-
gate markers that accurately infer long-term immune responses. These markers offer practical advan-
tages such as providing early, indirect evidence of vaccine efficacy, and can accelerate vaccine devel-
opment while identifying potential biomarkers. High-throughput technologies like RNA-sequencing
have emerged as promising tools for understanding complex biological systems and informing new
treatment strategies. However, these data are high-dimensional, presenting unique statistical chal-
lenges for existing surrogate marker identification methods. We introduce Rank-based Identifica-
tion of high-dimensional SurrogatE Markers (RISE), a novel approach designed for small sample,
high-dimensional settings typical in modern vaccine experiments. RISE employs a non-parametric
univariate test to screen variables for promising candidates, followed by surrogate evaluation on in-
dependent data. Our simulation studies demonstrate RISE’s desirable properties, including type one
error rate control and empirical power under various conditions. Applying RISE to a clinical trial
for inactivated influenza vaccination, we sought to identify genes whose post-vaccination expression
could serve as a surrogate for the induced immune response. This analysis revealed a signature of
genes whose combined expression at 1 day post-injection appears to be a reasonable surrogate for
the neutralising antibody titres at 28 days after vaccination. Pathways related to innate antiviral
signalling and interferon stimulation were strongly represented in this derived surrogate, providing
a clear immunological interpretation.
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1 Introduction

The goal of a randomised clinical trial is typically to evaluate the efficacy of a treatment on a primary
outcome. However, measuring this primary outcome can be time-consuming, costly, impractical, or
unethical. Consequently, there is significant interest in identifying and validating surrogate markers that
can accurately infer the treatment effect on the primary outcome without its direct observation [1].

The identification of surrogate markers is especially important in the context of vaccine clinical
trials. In public health emergencies, such as the COVID-19 pandemic, validated surrogates enable
accelerated vaccine development by providing evidence for candidate vaccine selection in early stage
trials [2]. Furthermore, surrogate markers may allow for validation of new-generation vaccines where
an efficacy trial would not be ethical, such as when a successful vaccine already exists, or when efficacy
trials are not feasible in the absence of disease outbreak [3].

High-throughput technologies have emerged as promising candidates to better inform effective vaccine
design [4]. A prime example is transcriptomic data, which describe gene expression – a dynamic process
through which fixed information encoded in DNA is transformed into proteins which then in turn shape
phenotypes. The gene expression response to vaccination is highly upstream, with changes observed in
the first days following vaccination and mainly capturing innate responses [5]. Traditional immunological
outcomes, however, such as antigen-specific antibody titres or T-cell responses, are fully established over
weeks and months [6]. Therefore, a subset of genes whose expression serves as a surrogate for a vaccine’s
immunogenicity would have significant utility. For example, they could be invaluable in adaptive clinical
trials that rely on rapidly measurable endpoints [7]. Additionally, studies have previously demonstrated
that early gene expression measurements can predict individual immune responses to vaccination [8, 9,
10]. However, whether these gene expression markers (either individually or in combination) could serve
as reliable surrogates for the vaccine response remains to be seen.

The statistical methods for evaluating surrogate markers have significantly evolved and improved
over the past four decades. Prentice’s landmark paper defined a surrogate marker as one that ensures
that any test of the treatment’s effect on the surrogate is also a valid test of its effect on the primary
endpoint [11]. In the spirit of this definition, many papers have focused on developing methodologies
to evaluate the proportion of the treatment effect on the primary outcome explained by the treatment
effect on a surrogate marker (PTE) [12, 13, 14, 15, 16]. A surrogate may be validated for practical use
if it captures some large, clinically relevant proportion of the treatment effect on the primary outcome.
However, available methods typically require model specification; when the true model is unknown, the
conclusions made about the surrogates may be invalid [13, 14, 15, 16, 13, 17, 18, 19]. In addition, such
methods that require parametric assumptions are hard to verify in a small sample size setting. Moreover,
the few non-parametric alternatives that are available rely on kernel smoothing, which performs poorly
without a large sample [16, 20]. Thus, currently available methods are generally not well-equipped for the
small sample size setting. Finally, surrogate evaluation is complicated in the multiple surrogate setting,
especially when the dimension of the candidate surrogates is high. Some existing methods allow for the
evaluation of the overall strength of a collection of candidate surrogates, for example by estimating their
overall PTE, but do not offer a way to screen high-dimensional surrogates to identify a subset of markers
which capture a large proportion of the treatment’s effect on the response [20, 21, 22].

These limitations make existing methodology difficult to apply in practice to vaccine trials, where
the model relating the primary outcome to the surrogates is complex and unknown, the sample size is
typically small, and the candidate surrogates may be high-dimensional. Motivated by the application
to vaccine development, we extend a recent approach by Parast et al. (2024) [22], which is a fully non-
parametric rank-based approach, to the multiple marker setting. We propose Rank-based Identification
of high-dimensional SurrogatE markers (RISE) – a two step approach, which first screens a set of high-
dimensional variables, and then evaluates their overall strength as a surrogate. We apply this approach
to a clinical trial for seasonal inactivated influenza vaccination, seeking to identify and evaluate potential
gene expression surrogate markers of the vaccine immunogenicity.

2 Methods

2.1 Notation

Let n denote the total sample size, which is assumed to be small. Let Y denote the primary outcome,
A ∈ {1, 0} denote a binary vaccine indicator (e.g., vaccine or placebo), and S = (S1, . . . , Sp) denote a
set of candidate surrogates, where we may have p >> n. Without loss of generality, we assume higher
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values of Y and Sj are “better”, with j ∈ {1, . . . , p}. We adopt counterfactual notations, where each
individual has a set of potential outcomes

[
Y 1, Y 0,S1,S0

]
. Here, Y a and Sa represent the values of the

primary outcome and surrogate markers, respectively, if the treatment had been, potentially counter to
fact, set to A = a. The observed data consist of n1 independent, identically distributed (i.i.d.) copies of
Y 1,S1 for individuals in the treatment group and n0 i.i.d. copies of Y 0,S0 for individuals in the control
group, with n = n0 + n1.

2.2 Existing Rank-based Approach for a Single Surrogate

We first summarise a recently proposed approach by Parast et al. (2024) to evaluate a single surrogate
in the small sample setting [22]. Motivated by Prentice’s definition of a surrogate, this approach aims
to identify a single surrogate Sj as valid if a test for a treatment effect based on the surrogate is a valid
test for the treatment effect based on the primary outcome. Let

UY = P(Y 1 > Y 0) +
1

2
P(Y 1 = Y 0)

USj = P(S1
j > S0

j ) +
1

2
P(S1

j = S0
j ),

where UY is simply a measure of the treatment effect on Y , and UY ∈ (0.5, 1] indicates a positive
treatment effect on Y , UY ∈ [0, 0.5) indicates a negative effect on Y , and UY = 0.5 indicates no effect.
Similarly, USj

quantifies the treatment effect on Sj . The general idea behind this approach is that the
closer UY and USj

are to each other, the more Sj captures the treatment effect on Y and thus, is a
stronger candidate surrogate marker for Y . The strength of the surrogate is quantified by the difference

δj = UY − USj

such that the closer δj is to 0, the stronger Sj is as a surrogate for Y . One could then consider Sj to
be a valid surrogate if δj is bounded by some pre-specified upper bound ϵ. This is formalised through a
non-inferiority test:

H0 : δj ≥ ϵ versus H1 : δj < ϵ (1)

where failure to reject H0 reflects a poor surrogate, and rejection of H0 reflects a valid surrogate. The
quantities UY and USj

can be estimated as

ÛY = (n1n0)
−1

n1∑
i=1

n0∑
k=1

G(Yi1, Yk0) and ÛSj
= (n1n0)

−1

n1∑
i=1

n0∑
k=1

G(Sji1, Sjk0)

where

G(A,B) =


1, if A > B
1
2 , if A = B

0, if B < A

and Yia and Sjia denote the observed values of the primary response and jth surrogate for individuals i

such that Ai = a. Here, ÛY is simply the rank-based Mann-Whitney U-statistic examining the difference
in Y between the two groups and similarly for ÛSj

, where E(ÛY ) = UY and E(ÛSj
) = USj

[23].

Then, for a given Sj , one can calculate δ̂j = ÛY − ÛSj . A closed-form expression for the standard

deviation of δ̂j , denoted σ̂δj , is given in Parast et al. (2024) [22] and is based on theory for correlated
U-statistics [24]. Let Φ−1(.) denote the inverse cumulative distribution function of the standard normal
distribution N (0, 1). Then, given a nominal significance level α, a one sided confidence interval for δj
can be obtained as [

−1, δ̂j +Φ−1(1− α)σ̂δj

]
.

It can be shown that δ̂j ∼ N(δj , σ̂δj ), and thus, taking the boundary of the null hypothesis in (1),

δj = ϵ, the p-value for testing H0 can be calculated as pj = P
(
Z < δ̂j

)
where Z ∼ N

(
ϵ, σ̂δj

)
. A p-value

pj < α therefore corresponds exactly to the case where the upper confidence interval of δ̂j is less than ϵ.
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Of course, the choice of ϵ is subject to debate. One could choose a fixed low value of ϵ a priori
based on context or clinical guidance, but in the absence of prior knowledge, one can instead choose ϵ
adaptively. Specifically, if the estimated treatment effect is ÛY , the significance level α and the desired
power to detect a treatment effect based upon the candidate surrogate Sj is (1−β), one may select ϵ as:

ϵ = max
{
0, ûY − u∗

α,β

}
, (2)

where

u∗
α,β =

1

2
−
√

n0 + n1 + 1

12n0n1

[
Φ−1(β)− Φ−1(1− α)

]
.

The motivation behind this approach is that u∗
α,β (obtained with some algebra) is the value of USj

where we would have exactly (1− β) power to detect a treatment effect on Sj . Defining ϵ as shown in
(2) implies that we are willing to consider Sj as a surrogate for Y even if it is not as “good” as Y in
terms of capturing the treatment effect, as long as it has a certain minimum power which we specify.
That is, our threshold is ûY − u∗

α,β and is determined by our desired power.

Overview of RISE
Our proposed approach comprises two steps. In the first, we apply the aforementioned rank-based
procedure to each candidate surrogate Sj to screen S for the most promising candidates. In the second
step, we evaluate the strength of the identified set of surrogates. To avoid overfitting, we use sample
splitting to separate our full data into screening and evaluation sets, such that each step uses distinct
data [25].

Step 1 - Rank-Based Screening
Given a significance level α and desired power (1 − β), we apply the previously detailed rank-based

procedure to each surrogate Sj in the screening dataset, resulting in a point estimate δ̂j , its standard
deviation σ̂δj , associated confidence interval and p-value. To control the excessive false discovery rate
(FDR) among our identified candidate surrogates resulting from the high number of statistical tests, we
perform a multiple testing correction on the p-values [26]. The subset of candidate surrogates, which we
call S, can then be selected as those whose adjusted p-values fall below α.

Step 2 - Evaluating Strength of Surrogate
In the second step, we propose to evaluate the strength of the set S by first reducing the dimension of
S to a single marker through a weighted sum

γ̂S =
∑
j∈S

∣∣∣δ̂j∣∣∣−1

S̄j

where S̄j is Sj standardised to have mean 0 and standard deviation 1, and the weights are the inverse of
the estimated δj , such that stronger surrogates contribute more to the combined marker. We take the
absolute value of the weights to avoid negative contributions where the treatment effect on the surrogate
is slightly stronger than that on the primary outcome. Then, the rank-based procedure for a single
surrogate is applied with γ̂S in the evaluation dataset. If the p-value falls below α, we conclude that γ̂S
is a useful surrogate for Y .

2.3 Simulation Study Setup

We conducted a simulation study to evaluate the performance of our proposed two-step procedure under
varying conditions and data-generating processes. The datasets were generated with P = 500 variables,
a nominal significance level of α = 0.05, and results summarised over Nsim = 500 simulations. Two
primary scenarios were considered, each designed to assess different aspects of performance. In Scenario
1, no valid surrogates were generated. This setup allowed us to evaluate the false positive rate (FPR)
– the proportion of false positives among all negatives. In Scenario 2, 10% of the surrogates were valid,
enabling the empirical assessment of the false discovery proportion (FDP) – the proportion of false
positives among all claimed positives – and the statistical power, defined as the proportion of positives
found significant.
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Definition of Valid Surrogates
By construction, the non-inferiority margin determines whether a variable is classified as a valid or invalid
surrogate under our framework. Specifically, any Sj where USj

< UY − ϵ is deemed invalid; otherwise, it
is considered valid. The true values of UY and USj

, denoted U∗
Y and U∗

Sj
, can be derived analytically or

through the asymptotic properties of U-statistics.
For our proposed procedure, invalid surrogates were generated as perfectly useless surrogates with

ÛSj
= 0.5, and ϵ was fixed at ÛY − 0.5. This setup allowed us to examine the p-value distribution at the

boundary of the non-inferiority test and investigate how increasing the strength of surrogates beyond
this boundary affects the test statistical power. It should be noted that, in practice, this choice of ϵ is
unlikely to be useful for identifying surrogates that explain a substantial portion of the treatment effect
on Y .

Data-Generating Processes
Let pinvalid and pvalid denote the numbers of invalid and valid surrogates, respectively. In Scenario 1, all
500 variables were invalid surrogates (pinvalid = 500 and pvalid = 0). In Scenario 2, 10% of the variables
were valid surrogates (pinvalid = 450 and pvalid = 50). We considered two different data-generating
processes (DGPs).

DGP 1: Multivariate Normal – All variables were generated from multivariate normal distri-
butions. The responses followed Ya ∼ N (µya , σya), with µy1 = 3, µy0 = 0, and σya = 1. This setup
resulted in a theoretical U∗

Y = 0.985, representing a strong treatment effect on Y . Invalid surrogates
were generated as Sj,a ∼ Npinvalid

(M ,Σinvalid), where M = (m1, ...,mpinvalid
)T , mj ∼ U(0.5, 2.5), and

Σinvalid = diag(σ1, ..., σpinvalid
), with σj ∼ U(0.5, 2). Valid surrogates were generated by perturbing the

true responses: Sj,a = ya+Npvalid(0,Σvalid), where Σvalid = diag(σvalid). The strength of surrogates was
controlled by σvalid, with larger values indicating weaker surrogates. Where the impact of multicollinear-
ity was of interest, a constant σcorr was added to the off-diagonal elements of Σinvalid and σcorr ∗ σvalid

to the off-diagonal elements of Σvalid.
DGP 2: Complex Surrogate-Response Relationships – To introduce more complex invalid

surrogate generation and surrogate-response relationships, responses were generated as in DGP 1, while
invalid surrogates were sampled from exponential distributions: Sj,a ∼ Exp(λj), with λj ∼ U(0.5, 2.5).
Valid surrogates were derived by perturbing a transformed response: Sj,a = f(ya) + Npvalid

(0,Σvalid),
where f(x) = x3, and Σvalid was as defined earlier in DGP 1.

Evaluation Stage
In the second stage of our testing procedure, some subset of markers Sj ∈ S are combined to form a
single marker γ̂S . This combination may consist of both true positives and false positives, in proportions
ρvalid and ρinvalid, respectively. Although type I error and statistical power can be clearly defined in the
case where we have either none or all false positives (ρvalid ∈ {0, 1}), it is less straightforward when the
components of γ̂S are mixed (ρvalid ∈ (0, 1)). Therefore, we opt to set |S| = 20 and simply examine
the distributions of p-values under varying ρinvalid. Throughout, valid surrogates were generated with
average strength ÛSj

= 0.9.

3 Results

3.1 Simulation Results

Step 1 - Screening
We first examined the properties of the test under data generation process 1. In Scenario 1, where no
valid surrogates were present, we examined the false positive rate (FPR) across various sample sizes in
the uncorrelated setting. The empirical FPR remained close to the nominal level of 0.05 for sample
sizes greater than 30, indicating a lower practical limit for the sample size and demonstrating that
the procedure performs well even with small sample sizes (Figure 1). We then assessed the impact
of correlation on the FPR for a fixed sample size of n = 50. In the absence of correlation, the FPR
remained close to the nominal value with minimal variance across simulations. However, as correlation
increased, the mean FPR decreased below the nominal value of 5% but its variance grew, with the highest
correlation levels leading to a handful of extreme outliers (Figure 2). In Scenario 2, where there was 10%
of valid surrogates, we evaluated the empirical FDP and empirical power (or true positive rate) across

varying surrogate strength values (ÛS = 0.55, 0.60, ..., 0.95, UY ) and sample sizes (n = 30, 50, 100) in the
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uncorrelated setting. As expected, empirical power increased to nearly 1, while empirical FDR decreased
to its minimum value as the average surrogate strength increased (Figure 3). When examining the impact

of correlation in Scenario 2 for a fixed sample size of n = 50 and average surrogate strength of ÛS = 0.9,
we found that the FDP decreased on average, but became more variable at higher correlation levels.
However, empirical power appeared to be largely unaffected by correlation (Supporting Information
Figure S1). We also assessed the effect of three multiple testing correction methods: Benjamini-Hochberg
(B-H), Bonferroni, and Benjamini-Yekutieli (B-Y) [27, 28, 29]. As expected, all three of the procedures
controlled the FDR well and resulted in satisfactory power at high surrogate strengths (Supporting
Information Figure S2). The Bonferroni and B-Y procedures were found to offer stricter control of the
FDR compared to the B-H procedure, which provided more balance between controlling the expected
FDR and maintaining the power to detect true signals.

We next examined the properties of the test under the more complex data generation process 2.
Overall, the properties of the test remained similar to those observed under DGP 1, with the only
notable difference being in the observed FPR, which was more stable across different levels of inter-
predictor correlation (Supporting Information Figures S3, S4, S5).

Step 2 - Evaluation
In the evaluation stage, we examined the distribution of p-values as a function of the FDP in γ̂S . For
both data generation processes, When the FDP was low (≤ 0.2), the null hypothesis was always rejected
(indicating that γ̂S was a strong surrogate). In contrast, the null hypothesis was never rejected when
the FDP was too high (≥ 0.6). When γ̂S contained a balanced mixture of false and true positives
(0.3 < ρinvalid ≤ 0.5), the null hypothesis was mostly not rejected, but p-values exhibited higher variance
(Figure 4, Supporting Information Figure S6). This is desirable behaviour, as we have shown the false
discovery proportion to be low in our setup subject to the 3 multiple testing corrections tested (Supporting
Information Figure S2), which will lead to rejection of the null hypothesis for γ̂S . In addition, in the
event of an elevated false discovery proportion, the null hypothesis is unlikely to be rejected.

3.2 Application to Influenza Vaccination Data

We applied RISE to publicly available gene expression and immune response data to identify and evaluate
potential surrogate markers of the immune response to the trivalent inactivated influenza vaccine (TIV).
These data are available from the ImmPort platform [30] (immport.org) under study accession number
SDY1276 (entited time series of global gene expression after trivalent influenza vaccination in humans).
TIV is a seasonal flu vaccine containing inactivated forms of three influenza virus strains, designed to
stimulate immune protection without causing infection [31]. We applied RISE to a study examining
the response of young, healthy adult volunteers to the 2008-2009 TIV formulation, which is designed to
protect against two strains of influenza A and one strain of influenza B. Due to the previously reported
variability in response to influenza vaccination at both the immune and transcriptomic levels based on
sex [32, 33], we further subsetted the data to include only female subjects.

In the absence of a true placebo group, we considered the control group to be the baseline measure-
ments of the primary response and surrogate marker candidates taken just prior to vaccination. For this
illustration, the primary outcome was defined as the mean strain-specific neutralising antibody titres,
measured at baseline for the control samples and at day 28 post-vaccination for the treated samples.
Gene expression in whole blood cells was assessed using microarray technology. Candidate surrogate
markers were defined as gene expression measurements, taken at baseline for the control samples and at
day 1 post-vaccination for the treated samples.

The dataset comprised observations on 106 unique individuals, where three lacked a gene expression
measurement at day 1 post-vaccination. Therefore, the final data consisted of 209 observations, including
106 control samples and 103 treated samples. The samples were randomly assigned into screening and
evaluation datasets at a ratio of 85:15 respectively. The significance level was held at α = 0.05, and the
desired power in the screening stage was fixed at 0.90. The Bonferroni procedure was used to correct the
resulting p-values. The estimated value of UY was 0.95, reflecting a strong neutralising antibody response
to TIV, and corresponding to a non-inferiority threshold of ϵ = 0.31. Among the 10, 086 genes in the
expression data, 235 had an adjusted p-value below 0.05. For illustration and brevity, we display the top
20 of these 235 genes sorted by adjusted p-value in Table 1, along with the estimates for UY −USj

= δj ,
corresponding confidence intervals, standard deviations σδj , and both raw and adjusted p-values. The
full list of genes can be found in Supporting Information Table S1.
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In the evaluation phase, the identified set of 235 genes from Step 1 of RISE were combined using
a standardised weighted sum to form a single predictor, denoted γS . In the evaluation dataset, the
estimated value of UY was 0.99, corresponding to ϵ = 0.15 for a desired 0.90 powered test based on
γS . The value of δ was found to be −0.0063 (95% C.I. [−1, 0.015]), with a standard deviation of 0.013,
yielding a p-value of 2e − 32. The negative value of δ reflects the fact that the point estimate of the
treatment effect on the gene expression is slightly stronger than that on the antibody response. These
results suggest that the constructed γS is a reasonable surrogate for the neutralising antibody response
to the 2008-2009 TIV amongst females. This is further illustrated in Figure 5, which plots the ranks of
the true response against γS , showing strong positive correlation between the antibody ranks and the
new surrogate ranks (Spearman rank correlation coefficient ρ = 0.79).

In our application, the non-inferiority threshold for screening was substantial, even at a desired power
of 0.90, resulting in a high number of significant genes. This outcome is unsurprising given the large effect
size of the primary outcome and the larger sample size. To control for multiple testing, we applied the
Bonferroni correction, the strictest method considered, which consequently yielded a more parsimonious
gene signature. We additionally conducted a sensitivity analysis to evaluate the robustness of the results
to the value of ϵ (Supporting Information Table S2). Indeed, choosing a stricter non-inferiority margin
results in more parsimonious signatures which are equally strong surrogates as those constructed with
more predictors. For example, the top four genes alone produce an equally strong γS surrogate as that
with 235 genes. These results likely reflect the high degree of shared information between genes in the
same biological pathways. Indeed, the biological functions of the 235 genes were examined using DAVID
bioinformatics to identify ontological terms which were significantly over-represented in the list. This
revealed a significant proportion of these genes to be related to innate antiviral processes, providing a
clear immunological interpretation of the signature (Table 2); we discuss this further in the Discussion.

In conclusion, we identified a subset of genes whose early post-vaccination expression may serve as a
promising surrogate for the mid-term immunogenicity of an inactivated influenza vaccine in healthy adult
females. This provides a basis for further validation and illustrates RISE’s practicality as a framework
for exploring surrogate markers in clinical studies with high-dimensional candidate markers.

4 Discussion

Surrogate markers can provide significant advantages in the conduct of randomised clinical trials, par-
ticularly those evaluating vaccine immunogenicity. High-dimensional molecular markers are promising
candidates for surrogates in this context due to their biological relevance and practical utility. How-
ever, existing methods for identifying and validating surrogate markers typically break down in high-
dimensional contexts, necessitate large sample sizes, or rely on restrictive parametric assumptions. In this
study, we introduced RISE – a novel two-step method for identifying and evaluating high-dimensional
surrogate markers, applied in the context of a vaccine clinical trial.

Our approach builds upon existing rank-based methodologies by adapting them for high-dimensional
settings through a combination of univariate testing and dimension reduction, followed by evaluation
using independent data. RISE effectively addresses several key challenges associated with evaluating high-
dimensional molecular surrogates, such as the large number of candidate surrogates, limited sample sizes,
and the need for false discovery rate control. The initial screening step utilises a non-parametric, rank-
based univariate test to evaluate whether each variable performs at least as well as the primary outcome
in demonstrating a treatment effect up to some small margin. As discussed in the study introducing the
rank-based approach for single surrogate markers [22], this method offers several advantages that are
particularly relevant in high-dimensional vaccine trials. First, the test enables robust and valid inference
even in small sample scenarios, where assumptions like linearity and normality are difficult to verify.
Second, being rank-based, the test is invariant to data transformations and robust to outliers, which is
crucial in high-dimensional data often subjected to various transformations prior to analysis. Finally,
by comparing entire rank distributions rather than relying on summary statistics like the mean, this
method provides a more comprehensive assessment of surrogate strength. The evaluation step in RISE
then uses a weighted combination of the screened predictors to form a synthetic biomarker.

Our simulation studies illustrate the favourable properties of RISE’s screening process. We demon-
strated that the test procedure is valid and well-calibrated, although caution is required for very small
samples or when inter-predictor correlations are high, as the false positive rate may slightly deviate from
the nominal level. Additionally, we explored how surrogate strength and sample size influence empirical
power and false positive rates. The test exhibited high power to detect true positives and minimised false
positives when surrogates were strong, even with small sample sizes. This is encouraging, as in practice,
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we are primarily concerned with identifying the strongest surrogates. These findings also emphasise the
importance of multiple testing corrections in order to control the elevated false positive rate in situations
with a low proportion of true positives amongst high-dimensional predictors.

In applying RISE to a vaccine trial, our objective was to identify early gene expression markers that
could serve as surrogates for the neutralising antibody response following immunisation with a seasonal
trivalent inactivated influenza vaccine (TIV). A signature of 235 genes was identified, with day 1 post-
injection expression appearing to function individually as effective surrogates in the screening data subset.
A standardised, weighted combination of these 235 genes was then evaluated on independent data as
a viable candidate to replace the day 28 neutralising antibody response. The biological functions of
these genes were explored using DAVID [34], a bioinformatics tool that summarises biological functions
associated with a gene group by identifying over-represented terms compared to those expected by
random sampling of the same number of genes. This analysis revealed that many genes in the signature
were linked to antiviral defence and innate immunity pathways (Table 2). In particular, numerous genes
in the list are known to regulate or be stimulated by interferons, a family of proteins that interfere
with viral infections, making these genes sensitive indicators of innate immune activation. Genes in this
signature related to the interferon response include interferon-induced genes (IFI6, IFI16, IFI35, IFI44,
IFI44L, IFIT1, IFIT2, IFIT3, IFIT5), the STAT family (STAT1, STAT2), interferon regulatory factors
(IRF1, IRF2, IRF7, IRF9), the OAS family (OAS1, OAS2, OAS3, OASL), MX proteins (MX1, MX2),
viral sensors (DDX58, IFIH1), and other interferon-stimulated genes (ISG20, GBP1, GBP2, BST2,
RSAD2, XAF1, TRIM21, TRIM22, TRIM5). Further work is required to determine whether activation
of these pathways can robustly predict the neutralising antibody response at both the trial and individual
levels, across individuals with varying instrinsic characteristics and different formulations of TIV.

While this study represents a significant advancement in non-parametric methods for identifying high-
dimensional surrogate markers, several limitations must be acknowledged. The first is the dependence on
the inferiority margin ϵ for selecting surrogate markers during screening. While we propose a data-driven
approach linking ϵ to the significance level and desired power, ϵ itself remains ad hoc and challenging to
interpret compared to commonly used measures in surrogate analysis such at the proportion of treatment
effect explained or relative effect. Although the value of ϵ should not be chosen post-hoc based on the
resulting evaluation metrics, we recommend conducting sensitivity analyses to evaluate how different
ϵ values influence overall conclusions. Additionally, the method of combining candidate markers into
a single surrogate warrants further consideration. We propose a weighted, standardised sum of the
markers that pass the screening stage, with weights proportional to their strength as surrogates. While
this approach is intuitive, one may argue that the resulting surrogate is artificial and/or has limited
biological interpretation.

Although the rank-based approach offers many advantages, a notable disadvantage is that it requires
a continuous outcome. In many contexts, the primary outcome may be binary (for example, protected
against disease or not), in which case, RISE cannot be used to assess possible surrogates. Indeed, the
choice of outcome in our data application was the neutralising antibody levels, a continuous marker whose
quantity and duration has been used itself as a surrogate marker to study the efficacy of TIV. This results
in the identification of markers which are, in reality, surrogates of a surrogate. While this approach is
pragmatic in the absence of clinical endpoints, it introduces limitations, including a potentially weaker
or indirect relationship with the ultimate outcome of interest, and the risk of identifying markers that
lack generalisability or biological relevance to true disease protection. It is also crucial to emphasise that
the markers identified by RISE are statistical surrogates rather than mechanistic ones, meaning they are
associated with both the vaccine and its induced neutralising antibody response, but may not necessarily
directly reflect the underlying biological mechanisms [35]. This distinction is vital in the context of gene
expression studies, where complex co-expression patterns and regulation cycles may lead to variables
associated with an intervention and its outcome, but which are not directly involved in the mechanism.

Finally, RISE’s univariate screening does not account for gene-gene interactions, which are critical for
fully understanding the relationship between vaccine-induced gene expression patterns and the resulting
immune response. It is well established that genes do not function in isolation but as components of
biological pathways [36]. Focusing on these pathways instead of individual genes may yield greater
biological insight and robustness against individual and experimental variability. In addition, gene
expression responses may demonstrate temporal heterogeneity between individuals. Therefore, directions
for future development to improve the robustness of the RISE methodology include extension to account
for pathway-level trends as well as the consideration of more complex experimental designs, such as
repeated or longitudinal measurements of the high-dimensional surrogate candidates.
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Equipement Prioritaire de Recherche Santé Numérique (PEPR SN) project SMATCH (ref: 22-PESN-
0003), and INRIA’s DESTRIER associate team, within the program Inria@SiliconValley (ref: DRI-
01221). The authors thank the Human Immunology Project Consortium for providing the ImmPort
platform for open-access immunology data. We also acknowledge the investigators who contributed data
for study SDY1276, supported by the NIAID Program Research Project Grant (Parent R01) and the
Viral Respiratory Pathogens Research Unit (VRPRU)-266030039. The authors benefited from the Rank-
Based Identification of Surrogates in Small Ebola Studies (RISE) Symposium, organized by LP and BPH
at the University of Texas at Austin, USA. This event was supported by the Dr. Cecile DeWitt-Morette
France-UT Endowed Excellence Fund, which promotes scholarly collaborations between UT Austin and
institutions in France. The authors disclose that generative AI tools were used to refine the phrasing of
certain sections of the manuscript.

References

[1] Robin Christensen, Oriana Ciani, Anthony M. Manyara, and Rod S. Taylor. Surrogate endpoints:
a key concept in clinical epidemiology. Journal of Clinical Epidemiology, 167:111242, March 2024.

[2] Peter B. Gilbert, Youyi Fong, Nima S. Hejazi, Avi Kenny, Ying Huang, Marco Carone, David
Benkeser, and Dean Follmann. Four statistical frameworks for assessing an immune correlate of
protection (surrogate endpoint) from a randomized, controlled, vaccine efficacy trial. Vaccine,
42(9):2181–2190, April 2024.

[3] Stanley A. Plotkin. Correlates of protection induced by vaccination. Clinical and Vaccine Immunol-
ogy, 17(7):1055–1065, July 2010.

[4] January Weiner, Stefan H.E. Kaufmann, and Jeroen Maertzdorf. High-throughput data analysis
and data integration for vaccine trials. Vaccine, 33(40):5249–5255, September 2015.

[5] Jue Hou, Shuhui Wang, Manxue Jia, Dan Li, Ying Liu, Zhengpeng Li, Hong Zhu, Huifang Xu,
Meiping Sun, Li Lu, Zhinan Zhou, Hong Peng, Qichen Zhang, Shihong Fu, Guodong Liang, Lena
Yao, Xuesong Yu, Lindsay N. Carpp, Yunda Huang, Julie McElrath, Steve Self, and Yiming Shao.
A systems vaccinology approach reveals temporal transcriptomic changes of immune responses to
the yellow fever 17d vaccine. The Journal of Immunology, 199(4):1476–1489, August 2017.

[6] David Furman and Mark M. Davis. New approaches to understanding the immune response to
vaccination and infection. Vaccine, 33(40):5271–5281, September 2015.

[7] Mengya Liu, Qing Li, Jianchang Lin, Yunzhi Lin, and Elaine Hoffman. Innovative trial designs and
analyses for vaccine clinical development. Contemporary Clinical Trials, 100:106225, January 2021.

[8] Troy D Querec, Rama S Akondy, Eva K Lee, Weiping Cao, Helder I Nakaya, Dirk Teuwen, Ali Pirani,
Kim Gernert, Jiusheng Deng, Bruz Marzolf, Kathleen Kennedy, Haiyan Wu, Soumaya Bennouna,
Herold Oluoch, Joseph Miller, Ricardo Z Vencio, Mark Mulligan, Alan Aderem, Rafi Ahmed, and
Bali Pulendran. Systems biology approach predicts immunogenicity of the yellow fever vaccine in
humans. Nature Immunology, 10(1):116–125, November 2008.

[9] Dmitri Kazmin, Helder I. Nakaya, Eva K. Lee, Matthew J. Johnson, Robbert van der Most,
Robert A. van den Berg, W. Ripley Ballou, Erik Jongert, Ulrike Wille-Reece, Christian Ocken-
house, Alan Aderem, Daniel E. Zak, Jerald Sadoff, Jenny Hendriks, Jens Wrammert, Rafi Ahmed,
and Bali Pulendran. Systems analysis of protective immune responses to rts,s malaria vaccination
in humans. Proceedings of the National Academy of Sciences, 114(9):2425–2430, February 2017.

[10] Helder I Nakaya, Jens Wrammert, Eva K Lee, Luigi Racioppi, Stephanie Marie-Kunze, W Nicholas
Haining, Anthony R Means, Sudhir P Kasturi, Nooruddin Khan, Gui-Mei Li, Megan McCausland,
Vibhu Kanchan, Kenneth E Kokko, Shuzhao Li, Rivka Elbein, Aneesh K Mehta, Alan Aderem,
Kanta Subbarao, Rafi Ahmed, and Bali Pulendran. Systems biology of vaccination for seasonal
influenza in humans. Nature Immunology, 12(8):786–795, July 2011.

9



[11] Ross L. Prentice. Surrogate endpoints in clinical trials: Definition and operational criteria. Statistics
in Medicine, 8(4):431–440, April 1989.

[12] Laurence S. Freedman, Barry I. Graubard, and Arthur Schatzkin. Statistical validation of interme-
diate endpoints for chronic diseases. Statistics in Medicine, 11(2):167–178, January 1992.

[13] D. Y. LIN, T. R. FLEMING, and V. DE GRUTTOLA. Estimating the proportion of treatment
effect explained by a surrogate marker. Statistics in Medicine, 16(13):1515–1527, July 1997.

[14] Yue Wang and Jeremy M. G. Taylor. A measure of the proportion of treatment effect explained by
a surrogate marker. Biometrics, 58(4):803–812, December 2002.

[15] Zhengqing Li, Michael P. Meredith, and Mohammad S. Hoseyni. A method to assess the proportion
of treatment effect explained by a surrogate endpoint. Statistics in Medicine, 20(21):3175–3188,
October 2001.

[16] Layla Parast, Mary M. McDermott, and Lu Tian. Robust estimation of the proportion of treat-
ment effect explained by surrogate marker information. Statistics in Medicine, 35(10):1637–1653,
December 2015.

[17] Emily K. Roberts, Michael R. Elliott, and Jeremy M. G. Taylor. Surrogacy validation for time-to-
event outcomes with illness-death frailty models. Biometrical Journal, 66(1), September 2023.

[18] M. Buyse, G. Molenberghs, T. Burzykowski, D. Renard, and H. Geys. The validation of surrogate
endpoints in meta-analyses of randomized experiments. Biostatistics, 1(1):49–67, March 2000.

[19] Geert Molenberghs, Marc Buyse, Helena Geys, Didier Renard, Tomasz Burzykowski, and Ariel
Alonso. Statistical challenges in the evaluation of surrogate endpoints in randomized trials. Con-
trolled Clinical Trials, 23(6):607–625, December 2002.

[20] Denis Agniel and Layla Parast. Evaluation of longitudinal surrogate markers. Biometrics, 77(2):477–
489, June 2020.

[21] Ruixuan Rachel Zhou, Sihai Dave Zhao, and Layla Parast. Estimation of the proportion of treatment
effect explained by a high-dimensional surrogate. Statistics in Medicine, 41(12):2227–2246, February
2022.

[22] Layla Parast, Tianxi Cai, and Lu Tian. A rank-based approach to evaluate a surrogate marker in
a small sample setting. Biometrics, 80(1), January 2024.

[23] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 18(1):50–60, March 1947.

[24] Elizabeth R. DeLong, David M. DeLong, and Daniel L. Clarke-Pearson. Comparing the areas
under two or more correlated receiver operating characteristic curves: A nonparametric approach.
Biometrics, 44(3):837, September 1988.

[25] Tali M. Ball, Lindsay M. Squeglia, Susan F. Tapert, and Martin P. Paulus. Double dipping in
machine learning: Problems and solutions. Biological Psychiatry: Cognitive Neuroscience and Neu-
roimaging, 5(3):261–263, March 2020.

[26] Ralf Bender and Stefan Lange. Adjusting for multiple testing—when and how? Journal of Clinical
Epidemiology, 54(4):343–349, April 2001.

[27] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 57(1):289–300, January 1995.

[28] Olive Jean Dunn. Multiple comparisons among means. Journal of the American Statistical Associ-
ation, 56(293):52–64, March 1961.

[29] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing
under dependency. The Annals of Statistics, 29(4), August 2001.

10



[30] Sanchita Bhattacharya, Patrick Dunn, Cristel G. Thomas, Barry Smith, Henry Schaefer, Jieming
Chen, Zicheng Hu, Kelly A. Zalocusky, Ravi D. Shankar, Shai S. Shen-Orr, Elizabeth Thomson,
Jeffrey Wiser, and Atul J. Butte. Immport, toward repurposing of open access immunological assay
data for translational and clinical research. Scientific Data, 5(1), February 2018.

[31] Sook-San Wong and Richard J. Webby. Traditional and new influenza vaccines. Clinical Microbiology
Reviews, 26(3):476–492, July 2013.

[32] David Furman, Boris P. Hejblum, Noah Simon, Vladimir Jojic, Cornelia L. Dekker, Rodolphe
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Table 1: Screening results from the data application - top 20 genes by adjusted p-values.

Gene δ (95% C.I.) σδ Unadjusted p-value Bonferroni Adjusted p-value

PSME1 -0.037 (-1, -0.011) 0.016 6.3e-109 6.4e-105
NPC2 -0.035 (-1, -0.009) 0.016 1.2e-108 1.2e-104
VAMP5 -0.03 (-1, -0.004) 0.016 7.3e-102 7.4e-98
MYOF -0.023 (-1, 0.005) 0.017 9.5e-91 9.6e-87
WARS1 -0.026 (-1, 0.002) 0.017 6.4e-88 6.4e-84
UBE2L6 -0.026 (-1, 0.005) 0.018 8.4e-76 8.4e-72
SERPING1 -0.022 (-1, 0.009) 0.019 1.8e-70 1.8e-66
SCO2 -0.017 (-1, 0.015) 0.019 9.7e-68 9.8e-64
STAT1 -0.019 (-1, 0.013) 0.019 1.0e-66 1.0e-62
IFI35 -0.018 (-1, 0.015) 0.020 1.4e-62 1.4e-58
STAT2 -0.016 (-1, 0.018) 0.020 6.3e-60 6.3e-56
GBP1 -0.011 (-1, 0.023) 0.020 2.6e-57 2.6e-53
RHBDF2 -0.008 (-1, 0.027) 0.021 1.6e-52 1.6e-48
GBP2 -0.004 (-1, 0.032) 0.022 2.0e-49 2.0e-45
TYMP -0.004 (-1, 0.032) 0.022 7.3e-48 7.4e-44
IRF7 -0.003 (-1, 0.033) 0.022 1.7e-47 1.7e-43
XAF1 0.003 (-1, 0.04) 0.022 4.2e-45 4.3e-41
ADAP2 0.009 (-1, 0.045) 0.022 3.7e-44 3.8e-40
ATF5 0.008 (-1, 0.045) 0.023 7.4e-42 7.4e-38
SP140 0.004 (-1, 0.042) 0.023 2.4e-41 2.5e-37

Table 2: Functional annotation of 235 significant genes using DAVID.

Term Number of genes B-H Adjusted p-value

KW-0051-Antiviral defense 37 3.1e-33
GO:0051607-defense response to virus 43 5.6e-31
KW-0391-Immunity 59 1.1e-27
KW-0399-Innate immunity 45 4.2e-22
GO:0045071-negative regulation of viral genome
replication

20 2.1e-19

GO:0045087-innate immune response 43 5.7e-18
GO:0009615-response to virus 24 2.3e-15
hsa05164:Influenza A 23 1.0e-10
GO:0034341-response to type II interferon 11 1.9e-09
hsa04621:NOD-like receptor signaling pathway 22 8.9e-10
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Figure 1: Data generation process 1, scenario 1: boxplots of observed false positive rates against different
sample sizes in the uncorrelated setting. The nominal significance level α = 0.05 is plotted as a dashed
red line.
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Figure 2: Data generation process 1, scenario 1: violin plots of observed false positive rates against
different levels of correlation across 500 simulations for a fixed sample size of n = 50. Increasing the σcorr

parameter increases the inter-predictor correlation. The nominal significance level α = 0.05 is plotted as
a dashed red line.
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Figure 3: Data generation process 1, scenario 2: empirical power (left) and false discovery proportion
(right) prior to multiple testing corrections as a function of average surrogate strength (ŪS) for three
different sample sizes.
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Figure 4: Data generation process 1: the distributions of the p-values in the evaluation step are examined
as a function of the false discovery proportion which make up γ̂S , which consists of a combination of
20 predictors. The sample size is n = 50 and the valid surrogate strength is ÛSj

= 0.9. The nominal
significance level α = 0.05 is plotted as a dashed red line. Desired power for the new surrogate was fixed
at 80%.
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combination surrogate marker in the evaluation dataset. The Spearman rank correlation coefficient is
0.79, indicating strong positive correlation.
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Supporting Information: Rank-Based Identification of High-dimensional
Surrogate Markers: Application to Vaccinology
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Figure S1: Data generation process 1, scenario 2: violin plots of empirical power (left) and false discovery
proportion (right) prior to multiple testing corrections for a fixed sample size n = 50 and average
surrogate strength ŪS = 0.9 for different values of inter-predictor correlation.
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Figure S2: Data generation process 1, scenario 2: Empirical power (left) and false discovery proportion
(right) prior to multiple testing corrections as a function of average surrogate strength for different
multiple testing corrections (Benjamini-Hochberg, Bonferroni, Benjamini-Yekutieli, Unadjusted) for a
fixed sample size n = 50.
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Figure S3: Data generation process 2, scenario 1: boxplots of observed false positive rates against
different sample sizes in the uncorrelated setting. The nominal significance level α = 0.05 is plotted as
a dashed red line.
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Figure S4: Data generation process 2, scenario 1: violin plots of observed false positive rates against
different levels of correlation prior to multiple testing corrections across 500 simulations for a fixed sample
size of n = 50. The nominal significance level α = 0.05 is plotted as a dashed red line.
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Figure S5: Data generation process 2, scenario 2: empirical power (left) and false discovery proportion
(right) prior to multiple testing corrections as a function of average surrogate strength for three different
sample sizes.
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Figure S6: Data generation process 2: The distributions of the p-values in the evaluation step are exam-
ined as a function of the false discovery proportion which make up γ̂S , which consists of a combination
of 20 predictors. The sample size is n = 50 and the valid surrogate strength is ÛSj

= 0.9. The nominal
significance level α = 0.05 is plotted as a dashed red line. Desired power for the new surrogate was fixed
at 80%.
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Figure S7: Data generation process 1: distribution of raw p-values under the null hypothesis. The
sample size is n = 50, the predictors were generated without correlation, and the histogram represents
the results across 1000 simulations.
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Figure S8: A visual method to select markers to pass the screening stage. The x-axis is the negative log of
the δ values, where 0.05 is added to avoid taking the log of 0, and the y-axis is the negative log of the raw
p-value. Markers with a stronger surrogate strength appear towards the top-right of the plot. One could
select markers without relying on a p-value threshold by choosing those which are most separated from
the rest. In this example, the top 16 genes are labelled as they visually separate themselves. Evaluating
the combined surrogacy of these genes gives δ95%C.I. = −0.01(−1, 0.009) corresponding to p = 2.1e−40.
Points in red are the 235 genes which were selected according to the adjusted p-value threshold of 0.05.
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Table S1: Screening results from the data application - all genes with adjusted
p-values less than 0.05.

Gene δ (95% C.I.) σδ Unadjusted p-value B-H Adjusted p-value

PSME1 -0.037 (-1, -0.011) 0.016 6.3e-109 6.4e-105
NPC2 -0.035 (-1, -0.009) 0.016 1.2e-108 1.2e-104
VAMP5 -0.03 (-1, -0.004) 0.016 7.3e-102 7.4e-98
MYOF -0.023 (-1, 0.005) 0.017 9.5e-91 9.6e-87
WARS1 -0.026 (-1, 0.002) 0.017 6.4e-88 6.4e-84
UBE2L6 -0.026 (-1, 0.005) 0.018 8.4e-76 8.4e-72
SERPING1 -0.022 (-1, 0.009) 0.019 1.8e-70 1.8e-66
SCO2 -0.017 (-1, 0.015) 0.019 9.7e-68 9.8e-64
STAT1 -0.019 (-1, 0.013) 0.019 1.0e-66 1.0e-62
IFI35 -0.018 (-1, 0.015) 0.020 1.4e-62 1.4e-58
STAT2 -0.016 (-1, 0.018) 0.020 6.3e-60 6.3e-56
GBP1 -0.011 (-1, 0.023) 0.020 2.6e-57 2.6e-53
RHBDF2 -0.008 (-1, 0.027) 0.021 1.6e-52 1.6e-48
GBP2 -0.004 (-1, 0.032) 0.022 2.0e-49 2.0e-45
TYMP -0.004 (-1, 0.032) 0.022 7.3e-48 7.4e-44
IRF7 -0.003 (-1, 0.033) 0.022 1.7e-47 1.7e-43
XAF1 0.003 (-1, 0.04) 0.022 4.2e-45 4.3e-41
ADAP2 0.009 (-1, 0.045) 0.022 3.7e-44 3.8e-40
ATF5 0.008 (-1, 0.045) 0.023 7.4e-42 7.4e-38
SP140 0.004 (-1, 0.042) 0.023 2.4e-41 2.5e-37
MAFB 0.005 (-1, 0.043) 0.023 1.3e-40 1.3e-36
P2RY14 0.012 (-1, 0.05) 0.023 2.1e-39 2.1e-35
RBCK1 0.012 (-1, 0.051) 0.023 1.2e-38 1.2e-34
EPB41L3 0.015 (-1, 0.054) 0.023 4.4e-38 4.4e-34
TLR7 0.019 (-1, 0.057) 0.023 5.4e-38 5.5e-34
GCH1 0.015 (-1, 0.054) 0.023 7.8e-38 7.8e-34
OAS1 0.011 (-1, 0.05) 0.024 1.3e-37 1.3e-33
PSMB10 0.011 (-1, 0.05) 0.024 4.1e-37 4.1e-33
ATF3 0.019 (-1, 0.057) 0.023 1.5e-36 1.5e-32
PSTPIP2 0.018 (-1, 0.058) 0.024 2.8e-35 2.8e-31
PSMB9 0.026 (-1, 0.065) 0.024 2.1e-34 2.1e-30
SORT1 0.022 (-1, 0.062) 0.024 7.3e-34 7.4e-30
CNDP2 0.025 (-1, 0.064) 0.024 9.1e-34 9.2e-30
TRAFD1 0.014 (-1, 0.054) 0.025 1.1e-33 1.1e-29
LHFPL2 0.015 (-1, 0.056) 0.025 1.5e-33 1.5e-29
TRIM22 0.015 (-1, 0.057) 0.025 3.6e-33 3.7e-29
SCARB2 0.022 (-1, 0.062) 0.025 7.6e-33 7.7e-29
IFITM3 0.031 (-1, 0.071) 0.024 5.9e-32 5.9e-28
IRF9 0.018 (-1, 0.06) 0.025 9.4e-32 9.5e-28
GADD45B 0.028 (-1, 0.068) 0.025 1.2e-31 1.2e-27
SRBD1 0.034 (-1, 0.074) 0.024 6.4e-31 6.5e-27
IFIH1 0.028 (-1, 0.069) 0.025 2.2e-30 2.2e-26
CEACAM1 0.022 (-1, 0.064) 0.026 2.7e-30 2.7e-26
OAS3 0.028 (-1, 0.069) 0.025 3.2e-30 3.2e-26
DDX58 0.026 (-1, 0.068) 0.026 1.2e-29 1.3e-25
ISG20 0.027 (-1, 0.069) 0.026 1.8e-29 1.8e-25
BST2 0.025 (-1, 0.067) 0.026 1.8e-29 1.8e-25
IFIT3 0.029 (-1, 0.071) 0.026 4.5e-29 4.6e-25
TCN2 0.037 (-1, 0.079) 0.025 1.4e-28 1.4e-24
RTP4 0.028 (-1, 0.071) 0.026 2.0e-28 2.0e-24
MT2A 0.029 (-1, 0.072) 0.026 5.4e-28 5.4e-24
TRIM21 0.033 (-1, 0.075) 0.026 6.7e-28 6.7e-24
SAMD4A 0.027 (-1, 0.071) 0.026 1.6e-27 1.7e-23
SLC6A12 0.042 (-1, 0.083) 0.025 1.8e-27 1.8e-23
ETV7 0.037 (-1, 0.08) 0.026 3.8e-27 3.8e-23
STX11 0.034 (-1, 0.077) 0.026 5.1e-27 5.2e-23
IFI44L 0.033 (-1, 0.076) 0.026 7.6e-27 7.6e-23
OAS2 0.034 (-1, 0.077) 0.027 2.8e-26 2.8e-22
IL15 0.04 (-1, 0.083) 0.026 5.4e-26 5.5e-22
OASL 0.035 (-1, 0.078) 0.027 5.6e-26 5.6e-22
P2RX7 0.038 (-1, 0.083) 0.027 5.4e-25 5.4e-21
DHRS9 0.037 (-1, 0.081) 0.027 8.7e-25 8.7e-21
OGFR 0.045 (-1, 0.089) 0.026 1.2e-24 1.2e-20
IFITM1 0.043 (-1, 0.087) 0.027 2.2e-24 2.2e-20
DENND1A 0.036 (-1, 0.081) 0.027 2.7e-24 2.7e-20
NUCB1 0.044 (-1, 0.088) 0.027 3.2e-24 3.3e-20
HERC5 0.042 (-1, 0.087) 0.027 1.1e-23 1.1e-19
PARP12 0.041 (-1, 0.087) 0.027 2.0e-23 2.0e-19
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PSMB3 0.05 (-1, 0.093) 0.027 2.4e-23 2.5e-19
PLSCR1 0.046 (-1, 0.09) 0.027 2.8e-23 2.8e-19
IRF1 0.037 (-1, 0.083) 0.028 2.9e-23 3.0e-19
SRC 0.05 (-1, 0.094) 0.027 7.7e-23 7.8e-19
CXCL10 0.047 (-1, 0.092) 0.027 9.8e-23 9.9e-19
RSAD2 0.047 (-1, 0.092) 0.027 1.1e-22 1.1e-18
PLEKHO1 0.047 (-1, 0.093) 0.028 2.8e-22 2.8e-18
FAM111A 0.054 (-1, 0.099) 0.027 3.8e-22 3.9e-18
MTMR11 0.056 (-1, 0.101) 0.027 1.0e-21 1.0e-17
TFIP11 0.052 (-1, 0.098) 0.028 5.0e-21 5.0e-17
SQOR 0.056 (-1, 0.102) 0.028 6.9e-21 7.0e-17
TDRD7 0.054 (-1, 0.101) 0.028 3.1e-20 3.1e-16
DHX58 0.056 (-1, 0.103) 0.028 7.3e-20 7.4e-16
MX1 0.059 (-1, 0.106) 0.029 2.6e-19 2.6e-15
DDX60 0.063 (-1, 0.109) 0.028 5.0e-19 5.0e-15
SNTB1 0.064 (-1, 0.111) 0.028 6.8e-19 6.8e-15
TRIM5 0.053 (-1, 0.102) 0.030 8.2e-19 8.3e-15
TNFAIP2 0.067 (-1, 0.114) 0.028 1.1e-18 1.1e-14
MICB 0.063 (-1, 0.11) 0.029 2.5e-18 2.5e-14
IFIT2 0.064 (-1, 0.111) 0.029 2.5e-18 2.6e-14
SP110 0.059 (-1, 0.107) 0.030 3.4e-18 3.4e-14
ATOX1 0.072 (-1, 0.118) 0.028 5.6e-18 5.7e-14
GNS 0.065 (-1, 0.112) 0.029 6.2e-18 6.3e-14
AIM2 0.073 (-1, 0.119) 0.028 7.2e-18 7.2e-14
ADAR 0.063 (-1, 0.111) 0.030 1.1e-17 1.1e-13
ASCL2 0.064 (-1, 0.112) 0.030 1.7e-17 1.7e-13
IFI6 0.069 (-1, 0.116) 0.029 1.9e-17 1.9e-13
AFF1 0.065 (-1, 0.114) 0.030 1.9e-17 1.9e-13
MRPL44 0.07 (-1, 0.117) 0.029 2.4e-17 2.5e-13
MSRB2 0.071 (-1, 0.119) 0.029 3.1e-17 3.1e-13
CALCOCO2 0.066 (-1, 0.115) 0.030 3.7e-17 3.7e-13
SLC2A6 0.069 (-1, 0.117) 0.029 3.9e-17 4.0e-13
LILRB4 0.069 (-1, 0.117) 0.029 4.5e-17 4.6e-13
PLAAT4 0.065 (-1, 0.114) 0.030 4.8e-17 4.9e-13
RIPK2 0.068 (-1, 0.117) 0.030 6.6e-17 6.7e-13
DUSP3 0.074 (-1, 0.122) 0.029 7.1e-17 7.2e-13
HLA DMB 0.07 (-1, 0.119) 0.030 8.9e-17 8.9e-13
PSMB2 0.073 (-1, 0.121) 0.030 2.2e-16 2.2e-12
TBC1D2B 0.072 (-1, 0.121) 0.030 2.4e-16 2.4e-12
APOL6 0.062 (-1, 0.113) 0.031 3.3e-16 3.3e-12
GSDMD 0.066 (-1, 0.117) 0.031 5.9e-16 5.9e-12
C1QB 0.072 (-1, 0.121) 0.030 6.2e-16 6.2e-12
SLAMF8 0.073 (-1, 0.123) 0.030 1.0e-15 1.0e-11
TNFAIP6 0.083 (-1, 0.131) 0.029 2.0e-15 2.0e-11
KYNU 0.081 (-1, 0.13) 0.030 2.6e-15 2.6e-11
APOL2 0.085 (-1, 0.133) 0.029 2.6e-15 2.6e-11
CYBB 0.079 (-1, 0.129) 0.030 2.8e-15 2.8e-11
PHF11 0.075 (-1, 0.125) 0.031 4.2e-15 4.2e-11
DRAP1 0.078 (-1, 0.128) 0.031 7.1e-15 7.1e-11
IFI44 0.078 (-1, 0.128) 0.031 8.3e-15 8.4e-11
BCAS2 0.083 (-1, 0.133) 0.030 8.9e-15 9.0e-11
TMEM140 0.077 (-1, 0.128) 0.031 9.7e-15 9.8e-11
ACOT9 0.082 (-1, 0.132) 0.030 9.8e-15 9.9e-11
ANKFY1 0.075 (-1, 0.126) 0.031 9.9e-15 1.0e-10
EIF2AK2 0.077 (-1, 0.128) 0.031 1.3e-14 1.3e-10
PLAUR 0.084 (-1, 0.133) 0.030 1.4e-14 1.4e-10
IL12RB1 0.078 (-1, 0.129) 0.031 1.9e-14 1.9e-10
TNF 0.085 (-1, 0.134) 0.030 2.1e-14 2.2e-10
TENT5A 0.082 (-1, 0.133) 0.031 3.8e-14 3.8e-10
DUSP5 0.077 (-1, 0.129) 0.032 4.3e-14 4.3e-10
HLA DPA1 0.087 (-1, 0.137) 0.030 4.4e-14 4.4e-10
PLAGL2 0.09 (-1, 0.14) 0.030 7.7e-14 7.7e-10
PSMB8 0.081 (-1, 0.133) 0.032 9.7e-14 9.8e-10
PARP3 0.087 (-1, 0.138) 0.031 1.5e-13 1.6e-09
CTRL 0.086 (-1, 0.138) 0.032 3.5e-13 3.5e-09
HLA DRA 0.09 (-1, 0.141) 0.031 3.7e-13 3.7e-09
RNF114 0.088 (-1, 0.14) 0.032 4.9e-13 5.0e-09
ALDH1A1 0.087 (-1, 0.14) 0.032 5.9e-13 5.9e-09
ETV6 0.096 (-1, 0.147) 0.031 1.2e-12 1.2e-08
FCN1 0.093 (-1, 0.145) 0.032 1.3e-12 1.3e-08
LAMP3 0.095 (-1, 0.147) 0.031 1.7e-12 1.8e-08
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TOR1B 0.093 (-1, 0.145) 0.032 2.3e-12 2.3e-08
CDC42EP2 0.092 (-1, 0.145) 0.032 2.6e-12 2.7e-08
MICU1 0.101 (-1, 0.151) 0.031 3.0e-12 3.0e-08
IFI16 0.093 (-1, 0.146) 0.033 5.7e-12 5.7e-08
TAPBP 0.096 (-1, 0.148) 0.032 5.9e-12 5.9e-08
AKR1A1 0.095 (-1, 0.148) 0.032 6.0e-12 6.0e-08
IFIT5 0.098 (-1, 0.15) 0.032 8.4e-12 8.4e-08
DMXL2 0.098 (-1, 0.151) 0.032 1.1e-11 1.1e-07
DRAM1 0.104 (-1, 0.156) 0.032 1.4e-11 1.4e-07
LGALS3BP 0.1 (-1, 0.153) 0.032 1.5e-11 1.5e-07
MX2 0.101 (-1, 0.153) 0.032 1.6e-11 1.6e-07
SOCS1 0.096 (-1, 0.15) 0.033 2.1e-11 2.1e-07
SLC27A3 0.095 (-1, 0.15) 0.034 3.7e-11 3.7e-07
KREMEN2 0.107 (-1, 0.16) 0.032 5.6e-11 5.7e-07
GAS6 0.108 (-1, 0.161) 0.032 8.0e-11 8.0e-07
CUL1 0.103 (-1, 0.157) 0.033 9.8e-11 9.9e-07
UNC93B1 0.105 (-1, 0.159) 0.033 1.4e-10 1.4e-06
ARSB 0.109 (-1, 0.162) 0.032 1.4e-10 1.4e-06
CARS2 0.11 (-1, 0.163) 0.032 1.7e-10 1.7e-06
IRF2 0.109 (-1, 0.163) 0.033 2.5e-10 2.5e-06
REC8 0.102 (-1, 0.158) 0.034 3.3e-10 3.3e-06
BLVRA 0.108 (-1, 0.163) 0.033 4.2e-10 4.3e-06
VAMP3 0.115 (-1, 0.169) 0.033 5.4e-10 5.4e-06
TIMM10 0.105 (-1, 0.161) 0.034 5.4e-10 5.5e-06
HEBP1 0.107 (-1, 0.163) 0.034 6.8e-10 6.8e-06
NFKBIE 0.113 (-1, 0.168) 0.033 1.0e-09 1.0e-05
TAPBPL 0.11 (-1, 0.166) 0.034 1.0e-09 1.0e-05
CIITA 0.108 (-1, 0.165) 0.034 1.1e-09 1.1e-05
SPATS2L 0.117 (-1, 0.171) 0.033 1.1e-09 1.1e-05
PANK2 0.118 (-1, 0.172) 0.033 1.1e-09 1.1e-05
GSTK1 0.112 (-1, 0.168) 0.034 1.4e-09 1.4e-05
LY6E 0.11 (-1, 0.167) 0.034 1.6e-09 1.7e-05
CTSL 0.117 (-1, 0.172) 0.033 1.9e-09 1.9e-05
PML 0.114 (-1, 0.17) 0.034 1.9e-09 1.9e-05
IFIT1 0.117 (-1, 0.172) 0.034 2.8e-09 2.8e-05
HLA DMA 0.112 (-1, 0.17) 0.035 3.3e-09 3.3e-05
ATP1B3 0.12 (-1, 0.175) 0.034 3.8e-09 3.8e-05
EIF4E2 0.124 (-1, 0.178) 0.033 4.0e-09 4.0e-05
APOBEC3G 0.125 (-1, 0.179) 0.033 4.1e-09 4.2e-05
APOBEC3F 0.124 (-1, 0.178) 0.033 5.4e-09 5.4e-05
PLEK 0.124 (-1, 0.179) 0.033 6.4e-09 6.4e-05
PSENEN 0.131 (-1, 0.184) 0.032 6.8e-09 6.8e-05
ILK 0.125 (-1, 0.18) 0.033 8.0e-09 8.1e-05
KARS1 0.125 (-1, 0.18) 0.033 8.8e-09 8.9e-05
TNFSF10 0.125 (-1, 0.181) 0.034 1.2e-08 1.2e-04
TICAM1 0.126 (-1, 0.182) 0.034 1.4e-08 1.4e-04
KCNMB1 0.12 (-1, 0.177) 0.035 1.6e-08 1.6e-04
CD300A 0.122 (-1, 0.179) 0.035 1.8e-08 1.9e-04
CASP5 0.13 (-1, 0.186) 0.034 2.7e-08 2.8e-04
DECR1 0.134 (-1, 0.189) 0.033 3.2e-08 3.2e-04
SELL 0.132 (-1, 0.188) 0.034 4.0e-08 4.0e-04
RERE 0.127 (-1, 0.184) 0.035 4.0e-08 4.1e-04
FIG4 0.124 (-1, 0.182) 0.035 4.2e-08 4.2e-04
PEA15 0.128 (-1, 0.185) 0.035 4.9e-08 4.9e-04
TM9SF1 0.13 (-1, 0.187) 0.035 5.4e-08 5.5e-04
KCNJ2 0.132 (-1, 0.189) 0.035 7.5e-08 7.5e-04
RELB 0.141 (-1, 0.196) 0.033 1.1e-07 1.1e-03
PSMA5 0.139 (-1, 0.195) 0.034 1.2e-07 1.2e-03
CD300C 0.139 (-1, 0.195) 0.034 1.2e-07 1.3e-03
NAGK 0.135 (-1, 0.192) 0.035 1.4e-07 1.4e-03
CASZ1 0.133 (-1, 0.191) 0.035 1.4e-07 1.4e-03
AGPAT3 0.139 (-1, 0.195) 0.034 1.7e-07 1.7e-03
PDK3 0.138 (-1, 0.195) 0.035 1.9e-07 1.9e-03
NOD2 0.14 (-1, 0.196) 0.034 2.1e-07 2.2e-03
BTN3A3 0.133 (-1, 0.192) 0.036 2.2e-07 2.2e-03
CASP1 0.14 (-1, 0.197) 0.035 2.5e-07 2.5e-03
SECTM1 0.142 (-1, 0.198) 0.034 2.6e-07 2.6e-03
ELF4 0.132 (-1, 0.192) 0.036 2.8e-07 2.9e-03
TRIM26 0.134 (-1, 0.194) 0.036 3.2e-07 3.2e-03
MARCO 0.138 (-1, 0.196) 0.035 3.4e-07 3.4e-03
DHDDS 0.138 (-1, 0.196) 0.036 3.6e-07 3.6e-03
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PSEN2 0.145 (-1, 0.201) 0.034 3.9e-07 3.9e-03
LMO2 0.147 (-1, 0.203) 0.034 4.3e-07 4.3e-03
FGL2 0.145 (-1, 0.202) 0.035 5.4e-07 5.5e-03
BTN3A1 0.143 (-1, 0.201) 0.035 5.5e-07 5.5e-03
CD40 0.143 (-1, 0.201) 0.035 6.0e-07 6.0e-03
TYROBP 0.148 (-1, 0.205) 0.035 1.0e-06 1.0e-02
ALDH2 0.147 (-1, 0.205) 0.035 1.1e-06 1.1e-02
TNS3 0.146 (-1, 0.204) 0.036 1.1e-06 1.1e-02
SP100 0.144 (-1, 0.204) 0.036 1.3e-06 1.4e-02
SLC7A7 0.15 (-1, 0.207) 0.035 1.4e-06 1.4e-02
SMARCD3 0.147 (-1, 0.205) 0.036 1.5e-06 1.5e-02
DPYSL2 0.148 (-1, 0.207) 0.036 1.7e-06 1.7e-02
NFKBIB 0.145 (-1, 0.205) 0.036 1.7e-06 1.7e-02
TMEM51 0.151 (-1, 0.209) 0.035 1.9e-06 1.9e-02
SLC25A22 0.146 (-1, 0.205) 0.036 1.9e-06 1.9e-02
SLC20A1 0.151 (-1, 0.209) 0.035 1.9e-06 2.0e-02
GSTO1 0.149 (-1, 0.208) 0.036 2.2e-06 2.2e-02
EMILIN2 0.154 (-1, 0.212) 0.036 3.6e-06 3.6e-02
CTSS 0.152 (-1, 0.212) 0.036 3.9e-06 3.9e-02
ANXA5 0.153 (-1, 0.212) 0.036 4.0e-06 4.1e-02
ASGR1 0.156 (-1, 0.214) 0.035 4.1e-06 4.1e-02
FAR2 0.157 (-1, 0.214) 0.035 4.1e-06 4.2e-02
GNA15 0.148 (-1, 0.209) 0.037 4.3e-06 4.3e-02
FFAR2 0.15 (-1, 0.211) 0.037 4.4e-06 4.5e-02
SHTN1 0.154 (-1, 0.213) 0.036 4.5e-06 4.5e-02

Table S2: Sensitivity analysis evaluating the effect of varying the non-inferiority margin ϵ, where values
closer to 0 result in fewer candidate surrogates to combine for the evaluation stage. The evaluation
metric for the combined marker, δγS , its standard deviation, and its p-value corresponding to a test
based on a desired power of 90% are given in the table.

ϵ (screening) No. of genes in γS δγS (95% C.I.) σδγS
p-value

0.05 4 -0.01 (-1, 0.009) 0.012 2.1e-40
0.10 16 -0.01 (-1, 0.009) 0.012 2.1e-40
0.15 55 -0.006 (-1, 0.015) 0.013 2.0e-32
0.20 104 -0.006 (-1, 0.015) 0.013 2.0e-32
0.25 154 -0.006 (-1, 0.015) 0.013 2.0e-32
0.30 215 -0.006 (-1, 0.015) 0.013 2.0e-32
0.35 302 -0.006 (-1, 0.015) 0.013 2.0e-32
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