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In the past, two families of statistical mechanics approaches have been applied to the two-
dimensional Euler equations. The first one is formulated in Fourier space and considers the
Galerkin truncated dynamics. The other one is formulated in physical space and considers
either point-vortices or coarse-grained vorticity. We show that in a Galerkin truncated
system both methods describe a part of the flow. A condensate can be identified assuming
that it can be characterized by an unspecified functional relation between the vorticity and
the stream-function. It is shown, a posteriori, that this function is a hyperbolic sine relation,
as predicted by point-vortex statistical mechanics. The energy spectrum associated with
the condensate is well described by an exponential function and the tails of the probability
density function of the vorticity are following a power law. Analytical arguments to explain
these observations are proposed. After removing the condensate, the remaining field can
be described by Fourier-statistical mechanics.

I. INTRODUCTION

An impressive feature of two-dimensional tur-
bulence is its tendency to self-organize, forming
large scale structures1. These structures are ob-
served in freely decaying two-dimensional tur-
bulent flows2, but they also survive in the pres-
ence of forcing3 and in thin layer turbulence
(e.g.4–6). In the presence of forcing, the for-
mation of condensates at the largest size of the
domain can be associated with the inverse en-
ergy cascade7. For freely decaying turbulence,
this explanation is somewhat more tenuous.
A heuristic explanation of the tendency to

self-organize in freely evolving two-dimensional
flow was given by Onsager in 19498, who sug-
gested applying statistical mechanics to a point-
vortex system, introduced by Helmholtz9, and
predicted that point vortices, under certain con-
straints, should have the tendency to clump to-
gether, forming large clusters of like-signed vor-
tices.
An alternative statistical mechanics approach

in turbulence to predict the most probable state

consists in considering, instead of vortices in
physical space, the dynamics of modes, after
a convenient decomposition7. The most com-
mon decomposition in turbulence research is
the Fourier-decomposition, and once a flow-field
is decomposed onto a large, but finite num-
ber of modes, the statistically most probable
state can be determined by maximizing a well-
chosen Boltzmann entropy, accounting for phys-
ical constraints, such as energy conservation.

These two approaches (vorticity based ver-
sus Fourier-mode based) rely on two different
finite-dimensional approximations and only par-
tially describe the full system, albeit in a com-
plementary way. Indeed, as we shall discuss,
the structure-based statistical mechanics corre-
sponds to a system of finitely many point vor-
tices where no truncation is applied on the num-
ber of modes. In contrast, in Fourier-statistical
mechanics a truncation is imposed and ergodic-
ity is assumed. Ergodicity means, in this case,
that all positions in phase space are visited with
an equal probability. In the presence of long-
living structures, it seems that ergodicity is vi-
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olated. In fact, our numerical results, also sup-
ported by previous numerical experiments10,11,
suggest that in fact a superposition of the two
equilibria predicted from both statistical ap-
proaches is present. This coexistence was in-
vestigated previously in the more general case
of long-range interacting systems with varying
interaction range12. In that study the vio-
lent relaxation towards a space-filling structure
was studied in a more general system of which
the Euler equations are a special case. In the
present article we reproduce certain of their re-
sults and further investigate the 2D Euler case.
In particular, we determine the shape of the
spectral energy density of the condensate and
the probability density function (PDF) of its
vorticity. We explain, by analytical reasoning
why these quantities have this shape.
In the next section, we will briefly recall some

major results of both statistical mechanics ap-
proaches. Subsequently, in Sec. III, we will show
numerical experiments where both statistical
mechanics approaches fail, but with an appro-
priate decomposition of the flow, each method
allows us to explain parts of the observations.
In Sec. IV, we argue, as a consequence of the
functional relation between the stream function
and the vorticity, that the condensate energy
spectrum in the freely decaying case can be ex-
pected to have exponential decay with respect
to wavenumber and that its associated vorticity
is described by a PDF with powerlaw tails.
In Sec. V, before concluding, we propose to

describe the phenomenology of the system on
the level of the Fourier spectra.

II. TWO RESULTS OF STATISTICAL
MECHANICS APPLIED TO

TWO-DIMENSIONAL TURBULENCE

The equations we study here are the 2D Euler
equations describing an incompressible inviscid
fluid flow,

∂tu+ (u · ∇)u = −∇p, (1a)

∇ · u = 0. (1b)

with u the velocity and p the pressure. We re-
strict this study to flows in a periodic box. Let
ω = ∇ × u be the vorticity field and define ψ
to be the stream function given by −∆ψ = ω
where ∆ denotes the Laplacian operator. We
have that u = ∇ × ψe3, where e3 is the unit
vector normal to the plane. Then, taking the
curl of (1) we can write the vorticity equation:

∂tω + {ω, ψ} = 0, (2)

where the Poisson bracket is given by

{ω, ψ} =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
= ((∇× ψe3) · ∇)ω.

(3)
We will briefly review two analytical predictions
that were obtained by applying statistical me-
chanics to the above equations. We will first
discuss the statistical mechanics of a truncated
set of Fourier modes. After that, we recall an
important result associated with point-vortex
statistical mechanics.

In the following, we will distinguish the
wavenumber spectrum of the kinetic energy
E(k) from the kinetic energy E by the
wavenumber argument k. Similarly, we distin-
guish the enstrophy spectrum W (k) from the
enstrophy W .

A. Fourier Statistical Mechanics

For three-dimensional Euler-turbulence, sta-
tistical mechanics on a truncated set of Fourier-
modes yields, if the only constraint of the sys-
tem is energy conservation, an equipartition of
energy between all the modes. This means
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that, statistically, every Fourier mode contains
the same amount of energy. This result was
first predicted by Lee13 who observed that the
Fourier-transformed truncated Euler equations
satisfy a Liouville-theorem.
Let us now consider the two-dimensional case

of the Euler equations, governed by the weak
form,

(∂tω + {ω, ψ}, ϕ)L2 = 0 for all ϕ ∈ VK , (4)

where VK is the space of test functions ϕ consist-
ing of all Fourier modes with wavevectors below
a truncation frequency K. By construction, the
finite-dimensional system conserves total circu-
lation, enstrophy and energy. However, Casimir
conservation (integrals of functions of the vor-
ticity other than total circulation and enstro-
phy) is lost, indicating divergence from the full
system as the true solution starts to populate
wavenumbers higher than K.
In his seminal paper on two-dimensional tur-

bulence, Kraichnan7 applied statistical mechan-
ics to the system (4), and predicted that the
equilibrium energy spectrum should behave as

E(k) =
2πk

α+ βk2
. (5)

The parameters α and β can be determined
by considering the conservation of energy and
enstrophy of the system (see for instance14

for analytical expressions relating α and β to
E,W, k0, kmax). For further details on this pre-
diction, we refer to the review2 or a more recent
manuscript15.
The prediction (5) was verified in early sim-

ulations of the two-dimensional Euler equa-
tions. Indeed, the development of pseudo-
spectral methods in the 1970s allowed to solve
non-dissipative simulations of truncated Euler
dynamics. It was shown by16,17 that the the-
ory of Kraichnan roughly predicts the correct
energy spectrum (5) of the equilibrium state.
It was furthermore observed that ”substantial
deviations from equilibrium are present at low
wavenumbers. These are probably explained by
the long dynamical time scale of large-scale tur-
bulent eddies, so that continuing the calculation

to much longer times may give relaxation”16.
However, more recent numerical investigations
showed that these deviations persist even at
very long times with no hint of relaxation to-
wards the supposed equilibrium12,18,19. In par-
ticular, when the ratio of energy to enstrophy
is large, noticeable discrepancy is observed for
small wavenumbers. To understand the origin
of this discrepancy we need to review certain
key results of an alternative statistical mechan-
ics approach.

B. Point-vortex statistical mechanics

The structure-based statistical mechanics
proposed by Onsager8 was further explored
by Joyce and Montgomery20,21, and more re-
cently by the works of Miller22,23, Robert and
Sommeria24. A concise review can be found
in the article of Eyink and Sreenivasan25, and
more comprehensive reviews in2 and26. The
point-vortex and coarse-grained vorticity sta-
tistical mechanics are approaches based on the
observation that enstrophy, and small vorticity
patches in general, are advected conservatively
in the two-dimensional Euler equations.

In the point-vortex approach used by Joyce
and Montgomery and studied numerically by
Lundgren and Pointin27, the flow is phenomeno-
logically modeled by an ensemble of a large
number of N point-vortices of circulation Γi

(with
∑N

i=1 Γi = 0 in our case) at positions
xi(t) at time t. The vorticity distribution is
then given by

ωN (x, t) =

N∑
i=1

Γiδxi(t)(x). (6)

The point-vortices are advected under the in-
fluence of the velocity field induced by all the
other point-vortices, which conserves by con-
struction the total circulation. Furthermore the
so-defined system is Hamiltonian, conserving in
addition energy. We focus on the case of zero
circulation. The limit of infinitely many point
vortices may be compared with the geometric
formulation of Arnold28 where the configuration
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space for the Euler equations is the space of all
volume preserving diffeomorphisms.
Joyce and Montgomery postulated that the

most likely point-vortex configuration arising
from the Hamiltonian system are microstates,
which maximize the Gibbs-Boltzmann entropy
S(ω) =

∫
Ω
−ω logω dx. Therefore, given an en-

ergy level E, the most likely vorticity microstate
can be obtained by applying a Lagrangian mul-
tiplier method for the constrained optimization
problem (maximizing entropy, subject to given
energy level). This procedure yields a non-
trivial relation between the vorticity and the
streamfunction ψ,

ω = β sinh(λψ), (7)

for some β and λ positive (βλ < 0 is not possi-
ble in a periodic box). We note that due to
the functional dependence between ω and ψ,
the advection term in Eq. (1) vanishes identi-
cally, making these solutions steady states of the
Euler equations. This equilibrium corresponds
to a state where like-signed vortices have clus-
tered together, forming two blobs, or clusters of
vortices21,27.

C. Are Fourier and point-vortex approaches
compatible?

It is interesting that the result (7), which
strictly applies to the Hamiltonian system of
point-vortices, is also observed to a very good
approximation as a transient for the two-
dimensional Navier-Stokes equation, i.e. a dis-
sipative system29. Even though different results
are observed for certain initial conditions30 and
the data can in certain cases be equally well
fitted by functions different from a sinh31, the
result (7) is widely observed, even in three-
dimensional systems in the absence of vortex-
stretching32.
One explanation of this somewhat surpris-

ing result is that it corresponds to a physi-
cal space structure, consisting of two counter-
rotating vortices which retain the energy at
large scales, limiting the amount of dissipation.
Indeed, if the third order structure functions

satisfy ⟨|u(x + r) − u(x)|3⟩1/3 ∼ C|r|α for any
α > 1/3, then by the first half of Onsager’s con-
jecture shown by Constantin, E and Titi33 (and
also previous works by Eyink34), total viscous
dissipation goes to 0 in the inviscid limit. This
is the case for solution of the Euler equations
in 2D with smooth initial condition as the regu-
larity is known to be preserved by the theorem
of Beale, Kato and Majda35, so that for small
enough ν, the dynamics of large-scale structures
is practically non-dissipative.

Therefore, assuming that we may compare
the kmax → ∞ limit of the Galerkin-truncated
system with the ν → 0 limit of the non-
truncated Navier-Stokes equations, it is then
plausible to postulate that the large-scale struc-
ture is stable in the truncated system, as long
as this truncation is applied at large-enough
wavenumber. If this assumption is valid, and
a large-scale stable structure is present in the
flow, ergodicity is most certainly lost since
the large-structure will impede the system to
equally sample all possible positions in phase-
space.

Note that the limit kmax → ∞ is discussed
in [14]. It is argued there that, if the vortic-
ity distribution is averaged over small distances,
the relaxation of systems with infinite kmax, and
with large finite kmax, should be equivalent. It is
also suggested that states in which the vorticity
field is dominated by a few large eddies, cannot
be reached from an initial state with energy at
large scales, but sufficiently smaller than the do-
main size, for kmax tending to infinity. Indeed
enstrophy equipartition implies that for large
kmax enstrophy is dominated by contributions
around kmax.

This section contains a number of unre-
solved issues. First, would a large-scale struc-
ture, formed in a truncated system, be regu-
lar enough? what is the corresponding meaning
of regularity for truncated solutions? And how
to qualify the notions ”large-enough” kmax, or
small enough ν? In order to advance on the un-
derstanding of these notions, we will carry out
numerical experiments. A previous numerical
study of the system was carried out by Venaille
et al.12 and we refer to their paper for results on
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a more general model of long-range interaction
and additional explanations.

III. NUMERICAL EXPERIMENTS OF
TRUNCATED 2D EULER DYNAMICS

We carry out pseudo-spectral numerical sim-
ulations of the Galerkin truncated Euler equa-
tions. We anticipate that the results are not
fully described by either of the two statistical
methods, rather, for the same flow, one part
can be described by point-vortex results and the
rest by a Fourier-equilibrium, satisfying Eq. (5).
We then introduce a physical-space procedure
to disentangle the two co-existing equilibrium
flows and give analytic evidence for the shape
of the energy spectrum of the condensate and
the PDF of its vorticity.

A. Numerical simulations

We perform numerical experiments for the
Galerkin truncated Euler equations (4). Nu-
merical simulations are performed with the par-
allel pseudospectral code GHOST36 on a 2π-
periodic square box, so that the largest wave-
length corresponds to the wavenumber kmin =
1. The initial condition for the velocity field
is given in Fourier space by a Gaussian shaped
spectrum distribution

E(k) = Ce−(k−k0)
2/2σ2

, (8)

for some real numbers C and σ to be chosen to
determine the shape of the initial spectrum.
The system we consider has two important

control parameters. The first one is the spa-
tial resolution. We will present results for
kmax/kmin = 169, corresponding to a resolu-
tion of 5122 grid-points, since the 2/3–method
is used to dealiase.
The other parameter defining the final state

is the ratio of enstrophy to energy, which can
be expressed as a characteristic wavenumber

ku =

√
W

E
. (9)

The minimum value of this wavenumber is ku =
1, corresponding to the case where the energy
spectrum is concentrated on the first wavenum-
ber. The largest value of ku is analogously ob-
tained when all energy is concentrated on kmax,
in which case ku/kmax = 1. In Eq. (8), we
set k0 = 4, σ = 2 and C is chosen so that∫ kmax

1
E(k) dk ≡ E = 1. All Fourier-phases

are chosen randomly so that the initial vorticity-
field is in general structureless.

In Fig. 1 we show steady-state spectra ob-
tained for simulations for initial conditions with
typical wavenumber ku in the range ku ∈
[10, 100]. We observe that the long-time shape
is in agreement with the theoretical predic-
tions at large wavenumbers for all cases. For
small wavenumbers, discrepancies are observed.
Whereas for the case ku = 100, this discrepancy
might be attributed to the discrete lattice effect
associated with the limited number of Fourier-
modes in the lowest wavenumber shells, for the
cases with the smaller values of ku this discrep-
ancy becomes more important. In particular for
the case ku = 10, it is difficult to attribute the
difference between prediction and observation
to non-converged statistics.

These observations confirm previous
results12,16,18,19: the large wavenumbers
are well predicted by Kraichnan’s theory, but
the deviation is clearly noticeable in the small
wavenumbers, in particular in the case where
ku/kmax is small. Indeed, it seems that with
enough separation between the box size and the
truncation scale, a robust and persistent con-
densate can form and that this structure leads
to violation of ergodicity in Fourier-modes. In
the next section we will focus on the case where
ku = 10 (Figure 1(a)), where the deviation
from Eq. (5) is most significant.

B. Identification of the condensate

Visualization of the vorticity field in 2D pro-
vides a good hint to the underlying reason for
the deviation of numerical simulations from the
statistical predictions. In Fig. 2(a) we observe
that a well-defined dipole is present in the vor-
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FIG. 1. Equilibrium energy spectrum for different values of ku with Gaussian initial fields.

ticity field. This dipole is persistent and ob-
served at all time-instants during the statisti-
cally steady-state of this simulation. We there-
fore hypothesize that the flow can be decom-
posed into a condensate and an incoherent part.
This leads to the questions of how to define this
decomposition and whether the results of sta-
tistical mechanics discussed in sections IIA and
IIB may be relevant to the decomposition.

We first decompose the flow and extract the
condensate. Since the dipole is persistent, a first
attempt could consist in time-averaging the flow
to identify the condensate. Since the position
and orientation of the dipole is not necessarily
stationary, this would necessitate a Lagrangian
averaging, introducing the need to determine
the position of the dipole a-priori. This is not
the way we proceed. Alternatively it is possi-
ble to isolate large scale features of the solution
through a low-pass filter, but it is not imme-
diately clear how this filter should be chosen
and whether this choice artificially determines
the statistics of the remaining small scales. A
more adapted way would be coherent-vortex

extraction3738, which still relies on a filtering
threshold and the shape and properties of the
wavelets.

In the present work, we use a more physi-
cal way, using the assumption that the conden-
sate is close to a steady-solution of the Euler-
equations. If we assume that the condensates
arise from a maximum entropy configuration as
discussed in Sec. II B, we can further assume
a functional relation between the vorticity and
stream function, without specifying the shape
of this function. We therefore attempt the fol-
lowing decomposition: Given a proposed func-
tion f for the functional relationship ω = f(ψ),
we define the condensate-vorticity as ω̄ = f(ψ).
and a oscillation part ω′ = ω − ω̄:

ω̄ = f(−∆−1ω), (10)

ω′ = ω − f(−∆−1ω). (11)

We stress that we do not prescribe any particu-
lar function f . However our assumption is that
this function is constant in time and that the
temporal fluctuations of ω′ are of zero average.
We obtain then our estimate of f by assessing
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from the data

⟨f(ψ)⟩ = ⟨∆ψ⟩. (12)

We apply this method to the data obtained
from our numerical experiment shown in figure
2(a). In Fig. 2(b) we show a scatter-plot of the
data, i.e., every black dot corresponds to a data
point (ψ(x, y, t), ω(x, y, t)). In this representa-
tion, the information on the spatial dependence
in (x, y) is lost. Instead, only the distribution of
the ω-values along level sets of ψ is represented.
Averaging ω conditional on the value of ψ for a
sufficiently long time yields the red solid curve,
which is our estimate of f . We note that for this
particular realization, the range of the stream
function is wider in the negative values. This
could be due to the initial condition, or, more
plausibly, due to insufficiently long simulation
time. We also note that, although the Joyce-
Montgomery statistical theory predicts a sinh-
relation between the vorticity and the stream
function, to the author’s knowledge, the range
of the positive and negative branches remains
unknown. In light of the estimates in Sec. IV,
it is not excluded that the positive and nega-
tive vortex blobs forming the condensate have
different radii, resulting in an uneven range for
the stream function.
The fitted function f now in turn provides

a self-consistently determined, and physically
motivated low-pass filter by defining the con-
densate ω̄(x, y, t), at every point in space and
time through the relation (10). The incoher-
ent part is the remaining part of the flow,
ω′(x, y, t) = ω(x, y, t) − ω̄(x, y, t). The result-
ing condensate and incoherent fields are shown
in Fig. 3(a,b). We show that the condensate
is a well-defined smooth dipole-structure. Fur-
thermore, the noise-part seems to be completely
structureless. In Fig. 3(b) we show the en-
ergy spectra associated with the two contribu-
tions. The incoherent part, containing less en-
ergy, is well described by a Kraichnan equilib-
rium Eq. (5), with a close to k−1 scaling over
most of the wavenumber range, associated with
enstrophy equipartition. The noise is also ho-
mogeneous; the distribution of the fluctuating
vorticity ω′, as shown in Fig. 4(b), is close to

Gaussian, indicative of a lack of coherent struc-
tures. On the other hand, the spectrum of the
condensate E0(k) in Fig. 3(b) falls off rapidly
close to exponentially. Indeed, the energy spec-
trum associated with the condensate is well ap-
proximated by

E0(k) ∼ exp(−ck), (13)

with c = O(1) (see Sec. IV for an explanation
of the origin of this type of spectrum associated
with the sinh-Poisson condensate). This part
of the flow is associated with large-scale coher-
ent structures whose non-Gaussian distribution
(see Fig. 4(a)) follows closely the approxima-
tions for the sinh-Poisson condensate derived in
Sec. IV and the corresponding ω̄−3/2 scaling an-
alytically derived in Sec. IVB. We note that
in Fig. 3(b), the condensate spectrum deviates
somewhat from the sinh-Poisson spectrum. In-
deed, the condensate isolated from the realiza-
tion does not exactly satisfy the sinh-Poisson
relation, which can lead to small differences be-
tween the theoretical spectrum and the analyt-
ical estimate. It remains, however, that the
spectrum decays exponentially, indicative of the
smoothness of the large-scale dipole structure.

It is interesting to note the similarities and
differences of the system compared to forced
two-dimensional turbulence where a condensate
forms. The incoherent part is in these flows
also characterized by a k−1 spectrum3 (also ob-
served in the non-forced case39). The spectrum
associated with the condensate is generally ob-
served to exhibit a scaling proportional to k−3

(see e.g. Refs. [3, 40, and 41]), in contrast to
the exponential spectrum of the condensate in
the present case. The difference in these latter
cases is that there is a continuous flux of energy
towards the condensate, which is absent in the
present system.

The decomposition carried out shows that we
can describe the condensate part of the flow by
a sinh relation between stream-function and (fil-
tered) vorticity. It is therefore in the point-
vortex system, in decaying 2D Navier-Stokes
turbulence29, and, on average, in truncated Eu-
ler at high resolution for large values of E/W
that we observe this phenomenology. Simulta-
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(a) (b)

FIG. 2. Results of direct numerical simulations of the Galerkin truncated 2D Euler equations. (a) A
visualization of the vorticity field for the case kmax = 170, ku = 28.4. (b) Scatter plot between vorticity
ω(x, y, t) and stream function ψ(x, y, t) for a given time-instant. The solid line is a time-average over a long-
enough (approx. 26 turnover time) time-interval during the statistically steady equilibrium state, yielding
a functional relation ω = f̄(ψ).
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FIG. 3. (a) The condensate vorticity (left) decomposed from the remaining incoherent (right). (b) The
time-averaged energy spectrum associated with both contributions. The predictions from Kraichnan’s
equilibrium theory for the incoherent part and from the point-vortex system for the sinh-Poisson condensate
are also shown in full lines (see Sec IV for a closed form approximation).

neously, the remaining, noise-like vorticity field
can be described by the Kraichnan Fourier equi-
librium.

IV. ESTIMATES FOR THE ENERGY
SPECTRUM AND PROBABILITY DENSITY
FUNCTION OF THE CONDENSATE

In experiments and simulations of two-
dimensional or thin-layer turbulence the en-
ergy spectrum of a flow in the presence of a
condensate was previously assessed. In these

studies3–5,42,43 the condensate was argued to be
associated with an energy distribution propor-
tional to k−3, in contrast to the observations
in the present investigation. We will illustrate
now that in the present case, in the unforced
Euler equations, when the condensate is well
described by a hyperbolic sine relation, the en-
ergy spectrum should be of exponential shape.

The sinh relation requires solutions of the
nonlinear Boltzmann-Poisson equation −∆ψ =
sinh(Λψ). However, for Λ > 0, the typical max-
imum principle and energy estimates cannot be
applied to guarantee uniqueness of the solu-
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FIG. 4. The distribution of the vorticity field compared against theoretical predictions. (a) Distribution
of the vorticity condensate ω̄ and distribution of a sinh-Poisson condensate obtained from Eq. 18. The
probability densities follow the predicted ω̄−3/2 scaling predicted in Sec. IVB. (b) Distribution of the
incoherent ω′ showing a Gaussian distribution.

tion. Motivated by numerical observations of
vortex pairs, if we assume that ψ is axisymmet-
ric around its local extrema, we write a model
ODE satisfying the sinh-Poisson relation in a
small circular domain,

∂2rψ +
1

r
∂rψ + exp(ψ) = 0. (14)

There exist families of solutions of this ODE
with general form

ψ(r) = log

(
2c21c2r

c1−2

(c2 + rc1)2

)
, (15)

where c1, c2 are arbitrary positive constants.
These solutions are generally not regular, im-

plying a singularity at the vortex core. We ar-
gue that these singular cases should be ruled out
as limiting states of the unforced Euler equa-
tions, as the extrema of the vorticity field are
preserved in time. If the condensate is thought
of as the infinite-time coarse-grained limit of the
vorticity field, then the range of the vorticity
values will shrink, ruling out condensate states
with singular point vortices. In equation (15),
taking c1 = 2 reveals a possible existence of a
regular stream function of the form

ψ(r) = −2 log
(
1 + (ar)

2
)
+ log(8a2) (16)

to leading order as r → 0, for a = c
−1/2
2 , with

vorticity of the form

ω(r) = 8a2
(
1 + (ar)2

)−2
. (17)

The parameter a essentially fixes the radius of
the vortex blobs.

A. Estimate of the energy spectrum

We use Eq. (17) as an ansatz to propose a
sinh-Poisson approximation for the stream func-
tion:

ψB(x, y) = log

(
1 + 2a2 (2− cos(x)− cos(y))

1 + 2a2 (2 + cos(x) + cos(y))

)
,

(18)

which essentially consists of two vortex blobs
of opposite signs at (0, 0) and (π, π) respec-
tively (see figure 5(a)). The idea being that
cos(x) + cos(y) ≈ 2− (x2 + y2)/2 near (0, 0) so
that 2 − (cos(x) + cos(y)) approximates r2/2
near (0, 0) while being strictly positive else-
where. Similarly, 2 + (cos(x) + cos(y)) ap-
proximates r2/2 near (π, π) and is strictly
positive elsewhere. Expression (18) consist
therefore of compositions of the logarithm in
Eq. (16), with trigonometric functions bounded
away from zero. Hence ψB is a periodic real-
analytic function on the torus for any a, with
±(1 + (ar)2)−2 behaviour near (0, 0) and (π, π)
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FIG. 5. sinh-Poisson approximation (18). (a) Visualization of the vorticity field for a2 = 5. (b) Scatter
plots of ψB vs ωB for a2 = 5, 10 and 15 reveal a close agreement with the hyperbolic sine relation. (c) The
energy spectrum of the sinh-Poisson approximation shows a clear exponential decay (≈ exp(−ck) ) with
rate of decay c = 0.88, 0.63 and 0.51 respectively .

and smooth transition between these two vortex
cores. It can be shown that for periodic real an-
alytic functions, the coefficients of the Fourier
series have at least exponential decay44,45 as
k → ∞, with the rate-of-decay depending on
the distance of the closest complex pole to
the real axis. Therefore, in the absence of
singular point-vortices, our ansatz (18) shows
that there exists condensate states consisting
of two counter-rotating vortices approximating
the sinh-Poisson vorticity-stream relation and
whose energy spectrum decays (at least) expo-
nentially. In fact, we expect this to hold for
more general functions f , since the regularity
of the condensate relies only on the bounded-
ness of the vorticity (maximum condensate vor-
ticity should be less than the maximum initial
vorticity) and the smoothness of f .

We check numerically that the ψB-ωB rela-
tion approximates well a hyperbolic sine in fig-
ure 5(b) and the energy spectrum has exponen-
tial decay in frequency space as shown in fig-
ure 5(c). We stress that these results do not
constitute a mathematical proof, but rather a
plausible explanation that, if the condensate
is described by a sinh relation, its spectrum
should be close to exponential. We also note
the discrepancy of these results with existing
findings on equilibrium statistics of the forced
two-dimensional Navier-Stokes or similar dissi-
pative systems3 where a k−3 spectrum is ob-

served, possibly due to the presence of forcing.

B. Analytical estimate of the probability density
function

Eq. (17) also allows us to determine the shape
of the PDF of the vorticity. Indeed, consider-
ing a single axisymmetric vorticity distribution
of form Eq. (17), in a circular domain of sur-
face Stot. The probability to find a value of the
vorticity between ω and ω + δω is proportional
to

δωp(ω) = δS(ω)/Stot. (19)

where δS(ω) is the part of the surface where the
vorticity takes a value between ω and ω + δω.
We have therefore that

p(ω) ∼ dS(ω)

dω
. (20)

Eq. (17) can be inverted to express r as a func-
tion of ω,

r = a−1

(√
8a2

ω
− 1

)1/2

. (21)

Since in our axisymmetric approximation
S(r) = πr2 this allows to compute dS(ω)/dω

dS(ω)

dω
=
∂S

∂r

∂r

∂ω
= −

√
2π

a
ω−3/2. (22)
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We find therefore that

p(ω) ∼ ω−3/2, (23)

with a normalization factor which depends on
the domain size. Furthermore, p(ω) is bounded
by the values |ω| ≤ 8a2. This expression is also
shown in Fig. 4(a).

V. PHENOMENOLOGY OF THE
COEXISTING EQUILIBRIUM FLOWS

We describe here the observed phenomenol-
ogy from the point of view of energy spectra
and make a hypothesis on the dynamics of the
Galerkin truncated Euler equations in the limit
of infinite truncation wavenumber. The obser-
vations from the numerical experiments can be
summarized as follows:

1. For a given conserved total energy E and
total enstrophy W , the long-time solution
approaches a steady energy distribution.
For large enough kmax, the solution ad-
mits a splitting into a condensate part
with total energy and enstrophy E0,W0

and a incoherent part with total energy
and enstrophy E1,W1.

2. The energy spectrum of the condensate is
a truncation of some spectrum g(k) with
finite second moment:

∫∞
1
k2g(k)dk <∞.

The exponential spectrum observed for
the condensate in our numerical simula-
tion satisfies this requirement.

3. The incoherent part satisfies an enstrophy
equidistribution.

Assuming these observations hold in the limit
of kmax → ∞, we see that the enstrophy spec-
trum for the incoherent part is

W1(k) =
2W1

k2max

k (24)

with an associated energy spectrum

E1(k) =
2W1

k2max

k−1. (25)

The incoherent energy is then given by

E1 = 2W1
ln(kmax)− 1

k2max

≤ 2W
ln(kmax)− 1

k2max
(26)

which tends to 0 as kmax tends to infinity.
Therefore, the conservation (or boundedness)
of total enstrophy implies that in the limit of
kmax → ∞, all the energy is contained in the
condensate.

This is consistent with the picture46,47, where
solutions of the full Euler equations in 2D ap-
proach a stable asymptotic state through the
effect of mixing. The asymptotic steady state
should have the same energy as the initial state
but part of the enstrophy will be lost to mix-
ing so that the vorticity only converges in an
averaged coarse-grained sense.

VI. CONCLUSION

In this paper, we investigated the observa-
tion that in certain Galerkin truncated pseu-
dospectral simulations of the Euler equations,
the solution disagrees with the classical predic-
tions from Fourier statistical mechanics. The
cause of this discrepancy is the tendency of 2D
turbulence to form large scale structures. The
formation of these structures is well observed in
the viscous system and can be predicted using
the statistical mechanics applied to the inviscid
point-vortex system. It seems that for the trun-
cated equations, with large enough scale sepa-
ration between the flow’s energetic scales and
the truncation scale, the system approximates
well the full non-truncated system, allowing a
condensate to form.

From our simulations, it seems that the mean
flow created by the condensate does not change
statistical properties of the superposed Kraich-
nan equilibrium state, which, with sufficient
scale separation, is not able to perturb the con-
densate. Thereby, both parts of the flow can
co-exist.

We note that our procedure to extract the
condensate is still fundamentally a filtering op-
eration where the filter is provided by the shape
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of f . Indeed, linearizing the operator f ◦−∆−1 :
ω 7→ f(−∆−1ω) = ω̄, we see that modes
with high wavenumbers k are damped by a fac-
tor of max |f ′|k−2. On the other hand, lower
wavenumbers can be amplified, however, as-
suming good fit of the vorticity-stream data at
lower wavenumbers by the function f , large-
scale structures are mostly unaffected by this
filtering. The filter used in the present sys-
tem differs from scale based filters in that no
shape or threshold is prescribed, it is uniquely
based on the assumptions that there exists a
functional relation f and that a large-scale con-
densate has already formed. In fact, we do not
expect this procedure to work without either of
these two assumptions.

We believe that the main cause for difference
between 2D and 3D Galerkin truncated Euler
equations is the vanishing energy transfer at
large wavenumbers for the 2D case as opposed
to the 3D case. This means that the amount
of energy re-injected to the large scales by the
Galerkin system becomes limited as kmax →
∞ and so the incoherent energy can be con-
trolled. From the point of view of energy spec-
tra, the conservation of both energy and enstro-
phy in 2D controls a characteristic wavenum-
ber

√
W/E, preventing its escape to infinity

in frequency space. It would therefore be in-
teresting to investigate this problem on more
complicated systems such as band-forced 2D
Navier-Stokes equations, where structures are
observed at scales different from the domain-
size (e.g. refs48–50) or the turbulence without
vortex stretching models in 3D51. Lastly, one
interesting direction to examine is the link to
mixing. Indeed, one may see the persistence of
the vortex structures as some sort of “immunity
to mixing”: as mixing breaks down large scales
structures by transferring them to small scales,
a stable persistent structure at large scales must
experience less mixing by the flow. In this re-
gard, the study of long-time behaviours in 2D
flows is related to the study of scalar mixing and
the influence thereon of the correlation with the
vorticity or stream functions52.

Acknowledgments. For the purpose of Open
Access, a CC-BY public copyright licence has

been applied by the authors to the present doc-
ument and will be applied to all subsequent ver-
sions up to the Author Accepted Manuscript
arising from this submission.

The authors acknowledge a helpful referee
who pointed us to ref. 12, where some of our
results were already obtained and discussed.

All DNS simulations were carried out us-
ing the facilities of the PMCS2I (École Cen-
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