
HAL Id: hal-04933199
https://hal.science/hal-04933199v1

Submitted on 13 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effect of quenched heterogeneity on creep lifetimes of
disordered materials

Juan Carlos Verano-Espitia, Jérôme Weiss, David Amitrano, Tero Mäkinen,
Mikko Alava

To cite this version:
Juan Carlos Verano-Espitia, Jérôme Weiss, David Amitrano, Tero Mäkinen, Mikko Alava. Effect of
quenched heterogeneity on creep lifetimes of disordered materials. Physical Review E , 2024, 110,
pp.064133. �10.1103/physreve.110.064133�. �hal-04933199�

https://hal.science/hal-04933199v1
https://hal.archives-ouvertes.fr


Effect of quenched heterogeneity on creep lifetimes of disordered materials
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We revisit the problem of describing creep in heterogeneous materials by an effective temperature
by considering more realistic (and complex) non-mean-field elastic redistribution kernels. We show
first, from theoretical considerations, that, if elastic stress redistribution and memory effects are
neglected, the average creep failure time follows an Arrhenius expression with an effective tempera-
ture explicitly increasing with the quenched heterogeneity. Using a thermally activated progressive
damage model of compressive failure, we show that this holds true when taking into account elastic
interactions and memory effects, however with an effective temperature Teff depending as well on
the nature of the (non-democratic) elastic interaction kernel. We observe that the variability of creep
lifetimes, for given external conditions of load and temperature, is roughly proportional to the mean
lifetime, therefore depends as well on T , on quenched heterogeneity, and the elastic kernel. Finally,
we discuss the implications of this effective temperature effect on the interpretation of macroscopic
creep tests to estimate an activation volume at the microscale.

I. INTRODUCTION

Creep, i.e. the time-dependent deformation of materi-
als under a constant load, as well as associated phenom-
ena such as stress relaxation under a constant strain, are
of great importance in many fields, such as material [1, 2]
and civil [3] engineering, soft matter physics [4–10] or
geophysics and rocks mechanics [11–13]. While submit-
ted to an external load constant in time, most materials
exhibit a common three-stage phenomenology, character-
ized by a decelerating strain-rate during primary creep,
possibly followed by a secondary creep with a constant
minimum strain-rate (in many materials, this can simply
resume to an inflexion point in the strain-rate evolution)
that precedes an acceleration of deformation (tertiary
creep) leading to macroscopic failure in brittle or quasi-
brittle materials, or fluidization in soft matter [14] at a
creep failure time tf . One overarching goal is therefore to
predict, to some extent, this failure time, or lifetime, as a
function of the considered material, the applied load, as
well as environmental conditions, including temperature.

To explain such time-dependent deformation and fail-
ure under a constant applied load, thermally acti-
vated processes have been discussed for a long time
(e.g. Ref. [15]). In brittle rocks, subcritical crack or dam-
age growth, which itself depends on temperature and en-
vironmental conditions (humidity, presence of other cor-
rosion species...) is considered as a main ingredient of the
so-called brittle creep [12, 16–18]. Consequently, it seems
natural to express, at least empirically, the creep life-
time tf in the form of an Arrhenius relation [12, 16, 19–
21]:

tf ∼ t0 exp

[
E

kBT

]
, (1)
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where E is the activation energy, e.g. corresponding to
some corrosion reaction in rocks [16, 18], t0 = Ω−1

0 ≈
10−13 s is the reciprocal of an attempt frequency whose
value is of the same order of magnitude for different solids
and independent of the structure and chemical nature of
the solid [19], kB is the Boltzmann constant and T the
temperature. In order to make predictions of the creep
lifetime, one difficulty is therefore to estimate the appro-
priate value of the activation energy E, and/or to iden-
tify a thermally activated microscopic mechanism domi-
nating the creep process and associated to an activation
volume Va. A natural way to link the activation volume
and the energy is E = Va∆σ, where ∆σ = σath−σ is the
stress gap between a local athermal stress threshold σath,
or ”strength”, and the local stress state σ, such that the
microscopic deformation/damage mechanism takes place
athermally for σ = σath, when the energy barrier van-
ishes [22, 23]. Note, however, that a non linear model,
E ∼ ∆σ3/2, has been proposed as well in case of molec-
ular systems [24].

However, it has been shown that additional difficul-
ties arise when considering material heterogeneity. In
this case, some authors argued, on the basis of demo-
cratic fiber-bundle models (FBM), that Eq. 1 would be
valid only if introducing a heterogeneity-dependent ef-
fective temperature Teff , instead of the thermodynamic
temperature T , in the Arrhenius expression [25–27]. In
other words, the effective temperature of the system is
an amplification of the thermodynamic one, due to the
initial (quenched) spatial disorder of the fiber bundle.
Ciliberto et al. [25] concluded that thermal noise and het-
erogeneity respectively create and enhance the cracking
process. Consequently, the larger the spatial heterogene-
ity of the material, the smaller are the failure times on
average (as Teff increases). In addition, for large initial
heterogeneities, the failure time is essentially dictated by
the quenched spatial heterogeneity, and less sensitive to
the thermal noise.
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Nevertheless, these conclusions were obtained from a
very simple model of creep rupture, based on some rough
assumptions, in particular: (i) a democratic, i.e. mean-
field elastic stress redistribution and (ii) an ”all or none”
breaking rule at the local scale, i.e. absence of memory at
the scale of the fiber. In what follows, we explore further
the concept of a heterogeneity-dependent effective tem-
perature for the creep of materials, and particularly creep
lifetimes, for more realistic situations involving memory
effects at the local scale and realistic non-democratic,
non-convex elastic redistribution kernels. This allows to
analyze the interplay between thermal activation, mate-
rial heterogeneity, damage mechanics, and the nature of
elastic interactions on creep rupture and lifetimes.

The approach developed below is particularly suited to
study the creep of brittle or quasi-brittle materials, such
as rocks or concrete, for which the concept of damage,
i.e. a degradation of local elastic properties during creep,
is fully relevant. However, the phenomenology of creep
is shared with amorphous media, metallic glasses [28], or
glassy suspensions [29]. Strong similarities, such as the
interplay between thermal activation, elastic stress redis-
tribution, and material heterogeneity [30, 31], but also
important differences, exist between the two categories of
materials. First, the creep of amorphous media is gener-
ally studied from elastoplastic models in which localized
plastic strains are (thermally or athermally) activated,
while the elastic constants remain unchanged [30, 31].
This differs from our case, where local damage occurs
but no plastic strain is accumulated. We note, however,
that both mechanisms lead to similar stress redistribu-
tion [32, 33]. Consequently, we would expect that the
main conclusions of this work may be relevant to a larger
class of systems, beyond brittle or quasi-brittle materials.
In addition, in our framework, damage only accumulates
through creeping time and we do not consider structural
relaxation or rejuvenation mechanisms, which potentially
play an important role in the case of glasses [34, 35].

In the first part (Section II), we propose a theoreti-
cal analysis that shows, in the case of an heterogeneous
material while neglecting elastic interactions, that the
creep lifetime follows an Arrhenius expression (Eq. 1)
with an effective temperature increasing with the het-
erogeneity as found by Refs. [25, 26]. To introduce
realistic elastic interactions and local memory effects,
we later (Section III) perform a numerical study based
on a two-dimensional progressive damage model devel-
oped by Refs. [36–39] in which we implemented ther-
mal activation [23, 40] using a kinetic Monte Carlo al-
gorithm [41, 42]. The mechanism of the numerical model
is damage, and we do not take into account plastic de-
formation or fracture mechanics as the model is always
continuous. This confirms the validity of the concept
of an effective temperature Teff , which however depends
both on material heterogeneity and the nature of the elas-
tic interaction kernel. Although this damage model and
our results are mainly discussed in the context of brit-
tle creep [12, 16] of materials such as rocks, we believe
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FIG. 1: Representation of the energy barrier field for a
system composed of N subvolumes, at different

transitions j. Left: En,0. Right: En,j

that our main conclusions would remain valid for other
materials, as long as material heterogeneity, thermal ac-
tivation, and elastic stress redistribution interplay.
In order to avoid confusion, in what follows, mate-

rial heterogeneity refers to spatial variations of the lo-
cal strength σath, while disorder represents a measure-
ment of the entropy of a system (’thermodynamic’ dis-
order) or the number of possible microstates in that sys-

tem [43, 44]. Besides, ⟨X⟩ = N−1
∑N

k (XkYk) refers to
an arithmetic mean value weighted by a given density
distribution Yk over the N elements (spatial average, at

some given time), whereas X = N−1
f

∑Nf

k Xk refers to
an arithmetic mean value over the Nf transitions needed
to reach the macroscopic rupture (time average over the
creep process).

II. THEORETICAL ANALYSIS

We consider a volume of a solid submitted to a con-
stant applied stress, which damages and deforms under
the combined action of mechanical loading and thermal
activation, i.e. experiences creep deformation. Such a
volume can be divided into N sub-volumes, each n =
1, ..., N micro-element with energy barrier En,j having a
probability p(En,j) to be thermally activated and which
may damage several times, this activation defining the
(j + 1)th transition by thermal activation for the whole
volume.

A. Rupture time analysis

The rupture of the whole sample takes place by the
accumulation of successive local damage/microfracturing
events. Each event j + 1 with j ∈ [0,Nf − 1] represents
a transition of the entire system due to a thermal ac-
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tivation. The average lifetime of a single transition is
⟨∆t⟩j+1, from which the creep lifetime tf of the full vol-

ume can be obtained, tf =
∑Nf−1

j=0 ⟨∆t⟩j+1, where Nf is
the number of successive thermally activated events lead-
ing to system-size failure, which happens during tertiary
creep, when the strain rate diverges. In this framework,
the jump rate ωj+1 associated to event j + 1 follows an
Arrhenius expression [42, 45]:

ωj+1 ≈ Ω0 exp

(
− Fj

kBT

)
, (2)

where the subindex j+1 represents the (j + 1)th transi-
tion by thermal activation within the sample, Fj is the
free energy barrier, inherited from the previous transi-
tion, which must be overcome (by thermal activation) to
trigger this event, and Ω0 is the thermal vibration fre-
quency. The inversion of Eq. 2 gives the average waiting
time between successive transitions, ⟨∆t⟩j+1 = ω−1

j+1 [45]:

⟨∆t⟩j+1 =
1

Ω0
exp

(
Fj

kBT

)
. (3)

Here the waiting time, ∆tj+1, between transitions fol-
lows an exponential distribution [46, 47], interpreted in
the study of solids as a transitional probability of dam-
age/fracturing under a constant load [48],

f(∆tj+1)j+1 = ωj+1 exp (−ωj+1∆tj+1), (4)

with a mean and standard deviation equal to ω−1
j+1. It is

worth stressing here that after each event, the jump rate
ωj+1 is modified, as a damage event redistributes elastic
stresses in the rest of the volume, modifying the energy
landscape to En,j+1, and therefore the waiting time to
the next transition. This coupling between thermal acti-
vation and mechanical interactions between sub-volumes
and events is a major topic of the present work. Then, the
average rupture time and its variance, ⟨tf ⟩ and Var[tf ],
are given by:

⟨tf ⟩ =
Nf−1∑
j=0

⟨∆t⟩j+1 =
1

Ω0

Nf−1∑
j=0

exp

(
Fj

kBT

)
, (5)

Var[tf ] =

Nf−1∑
j=0,k=0

Cov[∆tj+1,∆tk+1], (6)

i.e., the average and the variance of a sum of random vari-

ables [47]. Note that Var[tf ] =
∑Nf−1

j=0 ⟨∆t⟩2j+1 for inde-

pendent transitions [47]. In addition, the probability dis-
tribution of the failure time f(tf ) could be represented as
the convolution operation between all the f(∆tj+1) [49],
which converges towards a Gaussian density distribu-
tion for a very large number of independent transitions,
j → ∞, following the central limit theorem [49]. How-
ever, in the considered systems, a given transition (j+1)
is dependent of what occurred at all the previous j tran-
sitions. In other words, the transitions are not a pri-
ori independent, and therefore a non-Gaussian density

distribution of failure times could potentially emerge as
shown by Ref. [50] in the case of Weibull distributed
intial lifetimes.

B. Spatial heterogeneity analysis

Spatial heterogeneity of the material is introduced at
the scale of the N subvolumes (indexed by n), each one
associated to a variable activation energy En,j or en-
ergetic state, which is also evolving with the transition
number j as the result of previous transitions and their
associated stress redistribution (see Fig. 1).
As we consider a mechanical system, we link the ac-

tivation energy En,j to a local stress gap ∆σn,j , i.e.
En,j = ∆σn,jVa, where Va is the activation volume
for the considered damage/fracturing microscopic mech-
anism, considered here as being constant in space and
time. The stress gap ∆σn,j represents a distance, in a
similar way as in Bouchaud’s trap model [51], expressed
in the principal stress space, between the local threshold
σath,n (hereafter denoted athermal as it corresponds to
a failure threshold in absence of thermal disorder) and
the local stress state, ∆σn,j ∼ σath,n − σn,j . Here we do
not address how the stress on each element may vary in
space, and this democratic hypothesis leads to consider
that stress is initially equal in each element. Material
heterogeneity is introduced at the level of each subvol-
ume n through σath,n considered as a quenched random
variable [23, 40]. The linear dependence of the energy
barrier En,j on the stress gap ∆σn,j is equivalent to the
Eyring’s model [52]. It has been argued, however, that

a non-linear dependence, En,j ∼ ∆σ
3/2
n,j , would be more

appropriate in case of driven molecular systems such as
glasses [24]. We considered a linear model in most of
what follows. However, in the numerical analysis, we
compared simulations performed with either a linear or
a non-linear model, and found that our main conclusions
are independent of this scaling between the activation
energy and the stress gap (see section III).
From the definition of the average waiting time be-

tween transitions, ⟨∆t⟩j+1 ∼ exp (Fj/kBT ), the free en-
ergy of the system is defined as [43, 44, 49]:,

Fj = −kBT logZj . (7)

where Zj =
∑

n e
−En,j/kBT is the partition func-

tion [43, 44, 49]. As an alternative representation of the
last equations, it is more convenient to introduce the den-
sity of states g(Enb,j), which corresponds to the number
of energetic states, i.e. the number of the sub-volumes,
that have an energy within a small range Enb,j ± dEnb,j ,
with nb representing the number of the bin in which the
energy value Enb,j falls [43, 49]. We can then rewrite for
a given bin nb, g(Enb,j)dEnb,j = Nf(Enb,j)dEnb,j , which
can be replaced into the partition function [43]:

Zj = N
∑
nb

f(Enb,j)e
−Enb,j

/kBT , (8)
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where f(Enb,j) = g(Enb,j)/N ≈ f(∆σnb,j)/Va represents
a relative density of states and is an explicit represen-
tation of the spatial heterogeneity in the system. It is
equivalent to the probability distribution of the stress gap
(also called the excitation spectrum), taking into account
that the activation volume is assumed constant here.

So far, we did not make any assumption about the
nature of the heterogeneity. To go further, we assume
below a Gaussian distribution of local stress gaps ∆σj

to obtain a prediction of the failure time (Section IIC 2).
The case of a uniform distribution is detailed in Appendix
A 4, giving very similar results.

0 5 10 15 20 25 30

Va
〈
∆σ
〉

0/kBT

101

103

105

107

〈 t f〉 /t 0

〈
tf
〉
gauss ∼Ω−1

0 exp (Va
〈
∆σ
〉

0/kBT)

〈
tf
〉
gauss ∼ 2Ω−1

0 exp [(z2 − z2
var)/2] · [erfc(zvar/

√
2)]−1

Homogenous

Largest heterogeneity

FIG. 2: Dependency of the normalized average lifetime
⟨tf ⟩/t0 on Va⟨∆σ⟩0/kBT , for a Gaussian initial

distribution of stress gaps, and mechanical interactions
neglected. Theoretical result.

C. Prediction of the rupture time tf and the
effective temperature Teff for a heterogeneous

system

We switch to the main question of this work: What is
the combined effect of material heterogeneity (variability
of the stress gaps ∆σj) and (thermal) disorder on creep
lifetimes? And, do we still get an Arrhenius-like expres-
sion for tf , possibly with an heterogeneity-dependent ef-
fective temperature Teff?

Replacing Eq. 8 in Eq. 7, and later replacing it in Eq.
5, we can identify an Arrhenius-like expression for the
average failure time ⟨tf ⟩ = t0 exp (E∆σh,0

/kBTeff ), with
the effective temperature Teff and the ”characteristic”
timescale t0 of Eq. 1 given respectively by (details in
appendix A 2):

kBTeff =
kBT

1−∆Fcor/E∆σh,0

, (9)

t0 =
1

Ω0

Nf

N
, (10)

where E∆σh,0
= ⟨E∆σ⟩0 = Va⟨∆σ⟩0 is the initial arith-

metic mean energy barrier and the term ∆Fcor corre-
sponds to a corrected differential free energy given by:

∆Fcor = −kBT log

[
exp

(
−∆Fj

kBT

)]

= E∆σh,0
− kBT log

[
N

Zj

]
, (11)

and ∆Fj = Fh,0 − Fj ≥ 0 is the differential free energy
between the ”equivalent” homogeneous free energy at the
beginning of the experiment, Fh,0 = E∆σh,0

−kBT logN ,
and the free energy after a transition j is triggered by
thermal activation. ∆Fj is a measure of the heterogene-
ity of a system, just before its transition j, and two ex-
treme cases appears: the first one occurs when ∆Fj = 0
∀j, which would indicate that the system remains homo-
geneous during the entire process, i.e. ∆Fcor = 0. The
other one is given by the fact that the effective temper-
ature should be positive, i.e. Teff > 0, which indicates
that ∆Fcor < E∆σh,0

. Hence, the correcting term, ∆Fcor,
varies between two limits, i.e. E∆σh,0

> ∆Fcor ≥ 0.
Eq. 9 indicates that, even in a very general case,

an effective temperature could be defined, entering an
Arrhenius-like expression for the creep failure time. How-
ever, the term ∆Fcor is complex and depends on the
entire creep process, and particularly the evolution of
the stress gap distribution, as individual sub-volumes
are, thermally or athermally, activated, leading to elas-
tic stress redistributions. In other words, at this stage,
a simple expression between Teff and the characteris-
tics of material heterogeneity cannot yet be proposed.
Nevertheless, as found by Ref. [25], here it is possible
to indicate that for an invariant homogeneous system
kBTeff = kBT , while, on the reverse, the effective tem-
perature increases as the heterogeneity increases.

We can obtain a new expression for the failure time,
⟨tf ⟩, as ⟨tf ⟩ = t0 exp (E∆σh,0

/kBT ) exp (−∆Fcor/kBT ),

where the term e−∆Fcor/kBT , can be interpreted as a
correcting factor around an initial homogeneous ”equiv-
alent” system. Additionally, the upper and lower limits
of the creep lifetimes are given by t0 exp (E∆σh,0

/kBT ) ≥
⟨tf ⟩ > t0. For an initially homogeneous system, in the
course of creep deformation and as the result of dam-
age and elastic interactions, this term takes a value close
to but different from 1. Indeed, if we take into account
that just one thermally activated damage event implies
a stress redistribution to the surrounding elements, the
stress field and therefore the stress gap field become pro-
gressively heterogeneous.

1. Negligible mechanical interactions: general case

In order to express the effective temperature Teff and
the rupture time tf as a function of the initial material
heterogeneity for the most simple case, we first make a
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FIG. 3: Example of the effective temperature term
T/Teff as a function of the arithmetic mean value and
the standard deviation of the initial distribution of the

stress gap.

strong assumption, considering that all the transitions
are independent, i.e. the probability distribution of the
stress gaps, f(∆σnb,j) = f(∆σnb,0), does not evolve dur-
ing creep. In particular, it is not affected by thermal ac-
tivation, and elastic stress redistributions are neglected.
In other words, there is no memory of the past events
and no damage localisation. In this case, creep becomes
a Poisson process with a rate ωj = ω1 and the proba-
bility density of waiting times between successive events
is exponential [46, 47]. Then, the failure will be defined
by a maximum number of thermally activated events Nf

accumulated during the experiment.
With such a (rough) assumption, we can write an ex-

pression for the predicted average failure time ⟨tf ⟩ and
its variance Var[tf ] as a function of the initial material
heterogeneity as:

⟨tf ⟩ ≈ Nf ⟨∆t⟩1 ≈ Nf

Ω0
exp

(
F0

kBT

)
, (12)

Var[tf ] ≈
Nf∑
j=1

⟨∆t⟩21 ≈ Nf ⟨∆t⟩21, (13)

where F0 corresponds to the initial free energy, and
eF0/kBT = 1/[N

∑
nb

f(Enb,0)e
−Enb,0

/kBT ], which deter-
mines the value of the average duration of the first time
step ⟨∆t⟩1. We can see additionally that the average
creep lifetime and its standard deviation are linearly re-
lated as δtf =

√
Var[tf ] = ⟨tf ⟩/

√
Nf .

2. Negligible mechanical interactions: Gaussian quenched
heterogeneity

To be slightly more quantitative, and taking into
account that the material heterogeneity is introduced

trough the athermal threshold σath,n, we could say that
the density distribution of the stress gap f(∆σj) is of the
same shape as the one of the athermal threshold f(σath,j)
as we do not consider elastic redistribution in the theo-
retical analysis, i.e. the stress σn,j equals everywhere.

Consequently, we now consider the case of a
quenched Gaussian distribution of the stress gaps, i.e.
Gaussian distribution of the energy barrier Ej ∼
N (⟨E∆σ⟩j , δE2

∆σ,j) with arithmetic mean value and vari-

ance ⟨E∆σ⟩j , δE2
∆σ,j . Then, the probability density

f(Ej) reads:

f(Ej) =
1

δE∆σ,j

√
2π

exp

[
−1

2

(
Ej − ⟨E∆σ⟩j

δE∆σ,j

)2
]
.(14)

We can then obtain an expression for the lifetime if
we replace the obtained expression for the free energy
in the case of a Gaussian probability density of stress
gap, F0/kBT = ⟨E∆σ⟩0/kBT − 0.5 (δE∆σ,0/kBT )

2 −
log
[
0.5N erfc

(
zvar,0/

√
2
)]
, into Eq. 12 (solution in Ap-

pendix A 3):

⟨tf ⟩gauss =
2

Ω0

Nf

N
exp

(
⟨E∆σ⟩0
kBT

)
×

exp

[
−1

2

(
δE∆σ,0

kBT

)2
] [

erfc

(
zvar,0√

2

)]−1

, (15)

where zvar,0 = δE∆σ,0/kBT − ⟨E∆σ⟩0/δE∆σ,0 and

erfc (x∗) = 2/
√
π
∫∞
x∗ e−x2

dx, the Gauss complementary
error function. This shows that the heterogene-
ity plays an important role on creep lifetime. We
can also deduce from this expression that for a
very high temperature , all the elements are acti-
vated at the same time from the beginning, then
⟨tf ⟩gauss ∼ Ω−1

0 . As expected, in case of a homogeneous
system (δ∆σ,0 → 0), the failure time follows a ”clas-
sical” Arrhenius expression, with the thermodynamic
temperature T , ⟨tf ⟩gauss ∼ Ω−1

0 exp (⟨E∆σ⟩0/kBT ).
On the reverse, for a strong heterogeneity,
⟨tf ⟩gauss ∼ 2Ω−1

0 exp [(z2 − z2var,0)/2][erfc (zvar,0/
√
2)]−1

(taking into account δ∆σ,0 ≫ 0 and ∆σ ≥ 0, i.e.
⟨∆σ⟩0 ≈ zδ∆σ,0 with z the z−value of the confidence
interval. z = 1.96 for 95% of confidence interval). These
two expressions represent upper and lower bounds for
creep lifetimes for a Gaussian quenched heterogeneity,
and memory effects neglected. They are equivalent to
those found by Ref. [25] (see Fig. 2).

Doing an analysis similar to that of Section IIC 1, we
find that the effective temperature for a system with
a Gaussian quenched heterogeneity follows Eq. 9 with
∆Fcor expressed by (see Fig. 3):

∆Fcor

kBT
=

∆F0

kBT
≈ 1

2

(
δE∆σ,0

kBT

)2

+ log

[
1

2
erfc

(
zvar,0√

2

)]
.

(16)
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and different values of the stress ratio σappl/σath. Red:

δC = 0, blue: δC = 1, green: δC = 5

III. NUMERICAL ANALYSIS

A. Numerical model

What we learned from the previous sections can be
summarized as follows: In the most general case, our
analysis still suggests an Arrhenius-like expression, how-
ever with an effective temperature Teff explicitly increas-
ing with the heterogeneity and depending on both the
thermodynamic temperature and, in a non-trivial way,
the entire evolution of the excitation spectrum during
the creep process. This evolution results from the mod-
ification of the internal stress field after each thermally
activated event, and possible athermal cascades of events
(avalanches).

To see if a generic and simple dependence of Teff on
heterogeneity still holds in this complex situation, we rely
below on numerical simulations based on a progressive
damage model [36–39] with thermal activation [23, 40].
This model is not scalar and accurately introduces real-
istic elastic interaction kernels from finite element anal-
ysis, memory effects through a damage parameter, and
thermal activation from a Bortz–Kalos–Lebowitz (BKL)
kinetic Monte Carlo (KMC) algorithm [41]. Compared
to the much simpler democratic fiber bundle model an-
alyzed by Ciliberto et al. [25] and Roux [26], our model
differs in different ways, including a non-mean-field (non-
democratic) and non-convex elastic redistribution kernel
[53], and the fact that a given sub-volume is never fully
broken, i.e. it can damage several times during the creep
process. The goal of the KMC algorithm is to thermally
activate damage events at the element scale according

to the rates of the relevant individual processes. The
jump rate of each element n follows an Arrhenius ex-
pression [41, 42] ωn,j+1 = Ω0 exp (−En,j/kBT ), where
En,j = Va∆σn,j and Ω0 is a vibration frequency, which
is, in solids, of the order of 1013 s−1 [19] and Va is a
time- and spatially-invariant activation volume. In the
present case, in order to simulate brittle creep [16], we
used a Coulomb stress gap between a local cohesion Cn

and the local Coulomb stress, ∆σn,j ∼ Cn−(τn,j−µσn,j)
(Fig. 16), where τn,j and σn,j represent respectively the
shear and the normal stress over an orientation that max-
imizes the Coulomb stress τn,j − µσn,j , ϕ is the fric-
tion angle, and tanϕ = µ the corresponding internal
friction coefficient. After one element thermally acti-
vates, the stress and strain fields are recomputed and
avalanches occur athermally as long as the local dam-
age (Mohr–Coulomb) criterion is satisfied in one or more
elements, ∆σn,j < 0. We assume a clear separation of
timescales between the short timescale of damage propa-
gation during an avalanche and the much longer activa-
tion timescales. Consequently, time is stopped during an
avalanche. The simulation stops when the macroscopic
axial strain reaches a value of 2× 10−2, defining the fail-
ure time tf and the total number of transitions Nf . This
occurs during the tertiary creep stage, when the defor-
mation rate diverges, ε̇j → ∞. To take into account
microstructural heterogeneity [54], the cohesion C is set
randomly, and then kept unchanged to mimic quenched
material heterogeneity, for each element from a Gaussian
distribution, Cn ∼ N (⟨C⟩, δC2), with arithmetic mean
value ⟨C⟩ and standard deviation δC, ⟨C⟩ being con-
stant for all the cases and δC an explicit representation
of the heterogeneity. The distribution is truncated to
avoid negative cohesion cases (see appendix B for addi-
tional details about the model).

The results shown below were obtained for a system of
dimension x× y = 0.5× 1 divided into 960 triangular el-
ements (sections III B 1 and III B 3) and 3968 triangular
elements (sections III B 2) [38], but we checked that the
main conclusions of this work were size-independent. For
a given configuration (internal friction µ, initial hetero-
geneity δC), we first run an athermal test to obtain the
corresponding strength σath, and later setting the applied
creep stress , σappl, at different percentages of the ather-
mal strength. This percentage represents the stress ratio
σappl/σath < 1. For the analysis of the effective tempera-
ture and the activation volume (in III B 1 and III B 3) we
performed 10 realizations of the microstructure in each
specific configuration (stress ratio σappl/σath, tempera-
ture T , and heterogeneity δC = 0, 1, 5 MPa, for both
µ = 0.7 and µ = 0). Additionally, for the analysis of the
probability distribution of the failure time and particu-
larly its variability around its arithmetic mean value (in
III B 2), we performed 20 realizations of the microstruc-
ture in each configuration (stress ratio σappl/σath, tem-
perature T , heterogeneity δC = 0 and 5 MPa, µ = 0.7).
”Mirror” creep experiments are then performed, using ex-
actly the same quenched heterogeneity and configuration,
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FIG. 5: Same as Fig. 4 for µ = 0.7.

but introducing different realizations of thermal activa-
tion (20 realizations). For more details about the differ-
ent input and output parameters of the creep model the
with their respective values, see Table I in Appendix C.

B. Analysis of results

1. Effective temperature and dependency on the
heterogeneity and the elastic kernel

In Figs. 4 and 5, we compare our numerical results, ex-
pressed as individual lifetimes tf obtained for each simu-
lation, normalized by the inverse of t0 in a semilog scale
as a function of the argument Va⟨∆σ⟩0/kBT . The results
obtained for µ = 0 (squares) and µ = 0.7 (dots) and dif-
ferent values of the stress ratio σappl/σath are compared
with the theoretical predictions (dashed lines) obtained
previously for a Gaussian heterogeneity while ignoring
elastic stress redistribution and memory effects (Eq. 15).

For a given temperature T and stress ratio, the failure
time decreases as the heterogeneity increases in all cases,
thus extending this key result, obtained previously for a
democratic FBM [25, 26] as well as from our theoretical
predictions. One additional remark is that for high tem-
peratures, the rupture time tends to a constant value,
tf (T → ∞) ≈ t0 = Nf/(NΩ0), i.e., independently from
the heterogeneity.

For homogeneous systems, i.e. δC = 0, the numerical
results are close to the theoretical curves, which them-
selves follow a classical Arrhenius relation ruled by the
thermodynamic temperature T (see Section IIC 2). This
means that, in this case, although the system becomes
progressively heterogeneous in terms of local elastic prop-
erties as the result of damage, this mechanism has a lim-
ited (however not completely negligible, see more below)
effect on creep lifetimes. On the other hand, for sys-

tems with strong heterogeneity, the analytical prediction
underestimates the real value of tf obtained from the nu-
merical simulations, and this discrepancy increases upon
decreasing the stress ratio σappl/σath, meaning that the
stress redistribution and memory effects plays an impor-
tant role in creep lifetimes.
If one assembles in a single plot all the data of Figs. 4

and 5, we obtain highly scattered values. This confirms
that creep lifetimes of heterogeneous brittle materials do
not follow a classical Arrhenius relation with the ther-
modynamic temperature T as a controlling parameter.
The question is therefore: Can a generic Arrhenius-like
relation, with an heterogeneity-dependent effective tem-
perature Teff substituting for T , unify the results ob-
tained for different degrees of heterogeneity and internal
frictions?, i.e.:

tf ≈ 1

Ω0

Nf

N
exp

(
Va⟨∆σ⟩0
kBTeff

)
. (17)

Figs. 6 and 7 positively answers to this conjecture.
Fig. 6a shows that an empirical but generic relationship
between the temperature enhancement factor Teff/T
(obtained from Eq. 9) in one hand, the quenched het-
erogeneity quantified by δE∆σ,0/⟨E∆σ⟩0 ∝ δ∆σ,0/⟨∆σ⟩0
as well as the internal friction angle ϕ in the other hand,
can be proposed. It reads:

kBTeff ≈ kBT

1− α(1 + sinϕ) · [δ∆σ,0/⟨∆σ⟩0]
, (18)

where α = 0.38 ± 0.05 is obtained from a linear regres-
sion. The error bars correspond to the variability of
Teff/T for the same conditions of temperature, load and
internal friction but different realizations of quenched
heterogeneity. The form of this relation is similar to
that proposed by Ciliberto et al. [25] for a democratic
FBM (their Eq. 16), however with an important differ-
ence: in our case, the effective temperature depends not
only on the quenched heterogeneity but also on the in-
ternal friction, i.e. on the nature of the elastic redistri-
bution kernel. We performed the same analysis from a
set of simulations using a non-linear energy barrier scal-

ing, En,j ∼ ∆σ
3/2
n,j [24], obtaining a similar expression

but with α = 0.61 ± 0.15 ≈ 3/2 × 0.38. The factor 3/2
comes from the approximate relation δ∆σ3/2/⟨∆σ3/2⟩ ≈
(3/2)δ∆σ/⟨∆σ⟩. The form of Eq. 18 is then indepen-
dent of the energy barrier model, except for a change
in the parameter α. A non-linear energy barrier model
reinforces the heterogeneity effect on the effective tem-
perature, i.e. α increases.
Several conclusions can be drawn from Eq. 18:
(i) This expression predicts that Teff → T when

δ∆σ,0/⟨∆σ⟩0 → 0, in agreement with our former ana-
lytical derivations (see Eq. 9 and Section IIC 1) and pre-
vious work on democratic FBM [25, 26] for homogeneous
systems. However, we see from Fig. 6a that this is only
approximately true. More precisely, for purely homoge-
neous systems (in terms of cohesion values), the ratio
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FIG. 6: a) Effective temperature ratio Teff/T as a
function of the heterogeneity. Red: δC = 0, blue:

δC = 1, green: δC = 5. b) Effective temperature ratio
Teff/T as a function of the stress ratio σappl/σath for

homogeneous systems. Squares: µ = 0.0, dots: µ = 0.7.

Teff/T actually ranges between 1 and 1.25, i.e. there is a
limited but significant effect of damage on effective tem-
perature enhancement. This effect is more pronounced
for µ = 0.7 and for stress ratio σappl/σath close to 1,
i.e. when the applied creep load is near the athermal
strength (Fig. 6b).

(ii) In agreement with our theoretical expectation (see
Section IIC) as well as previous results obtained from a
democratic FBM [25, 26], the effective temperature in-
creases with increasing quenched heterogeneity, and this
dependence sums up to an empirical but generic and sim-
ple relationship. This therefore extends this concept to
more complex situations involving more realistic, non-
democratic elastic redistribution kernels and memory ef-
fects.

0 5 10 15
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0/kBTeff

101
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105

107

t f
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0

FIG. 7: Dependency of the lifetime tf/t0 on
Va⟨∆σ⟩0/kBTeff . Squares: µ = 0.0, dots: µ = 0.7. Red:

δC = 0, blue: δC = 1, green: δC = 5.

(iii) The effect of material heterogeneity on Teff

is actually coupled to an effect of the elastic kernel.
The role of quenched heterogeneity is not modified for
a plastic-like (Tresca) kernel, i.e. µ = 0 (sinϕ =
0), but is reinforced for increasing values of µ. We
can argue that increasing µ modifies the geometry of
the quadrupolar (non-convex) elastic redistribution ker-
nel [36], meaning that, after a damage event, elastic
stresses are redistributed along narrower but more ex-
tended branches, i.e. the fractal dimension of the dam-
age field decreases [36]. This reinforces the microstruc-
tural heterogeneity of the material, now expressed both
in terms of local thresholds (imposed quenched hetero-
geneity) and elastic properties (emerging and evolving
heterogeneity), with both components playing a role on
the effective temperature through an evolution of the ex-
citation spectrum. In athermal simulations, the conse-
quence is a stronger localization of damage as approach-
ing the peak stress and a more brittle macroscopic be-
havior [36].

2. Variability of the creep lifetime for given external
conditions

We now raise the question of the distribution of life-
times, and of the variability around the mean, for given
external conditions (load and thermodynamic temper-
ature) and level of heterogeneity, but different realiza-
tions of material heterogeneity and thermal disorder.
In Sections IIA and IIC 1, we mentioned that, if one
assumes the independence of the successive transitions
j+1 leading to creep failure, the distribution of lifetimes
should converge towards a Gaussian distribution (IIA)
and the associated standard deviation should scale as
δtf = ⟨tf ⟩/

√
Nf (II C 1). To what extent this holds for
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σappl/σath = 0.81 and 40 realizations of the

microstructure (green dots) contrasted to a Gaussian
and Lévy distributions.

more realistic cases, taking into account elastic stress re-
distribution and memory effects ?

We used rank-ordered statistics to identify if the mean
⟨tf ⟩ and the standard deviation δtf of the creep lifetimes
are well-defined and do not follow a (Lévy) power-law dis-
tribution whose statistics are more complicated as they
depend on the sampling size [49]. The Fig. 8 represents
the rank-ordered failure times [49] for very heterogeneous
samples under the same initial conditions (green dots).
This is contrasted with a Gaussian complementary cu-
mulative distribution (gray dashed line with points) with
the same mean value and standard deviation, and with
a complementary cumulative Lévy distribution charac-
terized by a fat tail, L1(> tf ) ∼ t−2

f [49] (gray dashed

line). This shows that the empirical distribution of fail-
ure times P (< tf ) only slightly deviates from the Gaus-
sian distribution, especially in the tail. Such a deviation
is not surprising in view of the fact that the successive
transitions j are not independent as the result of stress
redistribution and memory effects. However, the empir-
ical tail decays much faster than t−2

f , i.e. the lifetimes
distribution falls within the Gaussian attraction basin
[49], and the mean ⟨tf ⟩ and the standard deviation δtf
are well-defined.

For a given ”material” (given initial distribution of
cohesion) and fixed external conditions (temperature
and load), the variability of lifetimes can originate
from two different forms of stochasticity, the thermal
disorder in one hand, and the spatial disorder (ini-
tial material heterogeneity) in the other hand, δtf =
f(δtf,thermal, δtf,spatial). Considering first initially ho-
mogeneous systems, we showed that the entropy of the
system is maximized, with Shomog = kB logN (see ap-
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FIG. 9: Spatial distribution of the accumulated damage
field at failure for a) one very heterogeneous system and
b) one homogeneous system, when the KMC algorithm

is launched four different times.
T = 1000 K, σappl/σath = 0.81 and µ = 0.7.

pendix A 1). In this case, the variability of lifetimes ob-
viously comes from thermal disorder only, i.e. δtf =
δtf,thermal and is associated to a maximum spatial un-
predictability (see Fig. 9b). On the reverse, for simu-
lations performed for a strong heterogeneity, different
thermal disorders but with strictly the same initial co-
hesion field (identical samples), we show in Fig. 9a that
the resulting damage patterns at failure are strongly sim-
ilar. In this case, the system entropy is small, the rup-
ture is no more controlled by thermal activation, but by
the initial quenched heterogeneity. In other words, it
becomes ”deterministic”, as long, of course, one has a
perfect knowledge of the initial microstructure. Addi-
tionally, Fig. 10 show that the effect of thermal disorder
on the creep lifetime variability, δtf,thermal, decreases as
the heterogeneity increases (see Fig. 10 on the left) while
this lifetime variability is, overall, larger in heterogeneous
samples compared to homogeneous ones, as the result of
adding the spatial disorder effect, δtf,spatial (see Fig. 10
on the right).

Finally, we show in Fig. 10 the correlation between the
standard deviation and the mean of the creep lifetime. In
all cases, for both homogeneous and strongly heteroge-
neous samples, the lifetime variability is essentially pro-
portional to the mean, δtf ∼ ⟨tf ⟩, in agreement with
our former theoretical expectation. This means that the
non-independence of the successive transitions, resulting
from elastic interactions and memory effects, has only
a limited effect on this scaling, and shows that lifetime
variability increases, like the mean lifetime, with decreas-
ing temperature T , decreasing applied stress, decreasing
quenched heterogeneity, and the nature of the elastic in-
teraction kernel, the two last effects through an effective
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temperature Teff .

3. Implications for the estimation of the activation volume

Representing creep-related macroscopic variables, such
as the time to failure or the minimum (”secondary”)
strain-rate, as a function of thermodynamic tempera-
ture T on an Arrhenius plot is a usual practice to estimate
an activation energy and/or an activation volume Va, and
consequently to identify an underlying microscopic mech-
anism controlling creep deformation. This is done while
ignoring the effect of microstructural heterogeneity on
the relevant effective temperature Teff , and thus can lead
to false estimations of the activation energy or activation
volume.

To illustrate this, we analyze below the implication
on the estimation of the activation volume if one as-
sumes that the failure time of a brittle sample sub-
mitted to a constant load follows a ”classical” Arrhe-
nius law of the form tf ∼ exp (Va,est∆σmacro/kBT ),
i.e. the activation volume Va,est is estimated from Va,est ≈
∂ log tf/∂(∆σmacro/kBT ), where ∆σmacro = (σath −
σappl)(1− sinϕ)/2 is a stress gap at macroscale between
a (supposedly known) athermal strength and the applied
stress obtained from the Mohr–Coulomb rupture crite-
rion at macroscale (See Fig. 16), i.e. σ3,ath = σ3,app = 0,
σ1,ath = σath and σ1,app = σapp. Now, taking into ac-
count the heterogeneity effect, we know that the failure
time actually follows an Arrhenius-like relation of the
form tf ∼ exp (Va⟨∆σ⟩0/kBTeff ), which considers the

true activation volume Va. From this, we can write:

Va,est

Va
≈ T

Teff
· ⟨∆σ⟩0
∆σmacro

, (19)

and replacing the empirical expression for the effective
temperature (Eq. 18):

Va,est

Va
≈
[
1− α(1 + sinϕ)

δ∆σ,0

⟨∆σ⟩0

]
· ⟨∆σ⟩0
∆σmacro

,

or:

Va ≈ Va,est ·
∆σmacro

⟨∆σ⟩0 − α(1 + sinϕ)δ∆σ,0
. (20)

This indicates that the estimated value of the ac-
tivation volume, Va,est, almost systematically overesti-
mates the true microscopic value Va, from a combined
effect of quenched and emerging (damage) heterogene-
ity. Fig. 11, representing the ratio Va,est/Va for all our
creep simulations as a function of the quenced hetero-
geneity δ∆σ,0/⟨∆σ⟩0, confirms this point. In particular,
Va,est/Va > 1, even for initially homogeneous systems,
as the result of an emerging heterogeneity of the damage
field.
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FIG. 11: Dependency of the activation volume
ratio Va,est/Va on the heterogeneity ratio δ∆σ,0/⟨∆σ⟩0.

IV. SUMMARY AND CONCLUSIONS

Previous studies, based on simple fiber-bundle models
of brittle creep with a mean-field elastic stress redistribu-
tion kernel, suggested that the material microstructural
heterogeneity amplifies, for a given external load, the
thermodynamic temperature T , i.e. shortens creep life-
times, an effect that can be interpreted in an Arrhenius
formalism from an effective-temperature Teff [25, 26].



11

Here we extended these former works to more complex
(and realistic) situations taking into account non-mean-
field and non-convex elastic redistribution kernels as well
as cumulative memory effects, on the basis of a numerical
progressive damage model incorporating thermal activa-
tion. We first showed, from a theoretical analysis and for
an initially heterogeneous material while neglecting elas-
tic stress redistribution and memory effects in the course
of creep deformation, that the average creep lifetime still
follows an Arrhenius-like expression, however with an ef-
fective temperature explicitly increasing with the hetero-
geneity of the material as found by Ref. [25, 26]. As
shown by our numerical study, this holds true qualita-
tively as well in the most general case. However, in that
case, the effective temperature depends both on the level
of heterogeneity and on the nature of the elastic interac-
tion kernel, with an increasing convexity enhancing the
effective temperature.

Our analysis also showed that the variability δtf of
lifetimes around its mean, for fixed thermodynamic tem-
perature, load and level of heterogeneity, is essentially
proportional to this average lifetime ⟨tf ⟩. This means
that the non-independence of the successive transitions,
resulting from elastic interactions and memory effects,
has only a limited effect on this scaling. This implies
that this variability follows the same dependence with
the effective temperature, and therefore with the level of
heterogeneity or the nature of the elastic kernel. It means
also that, for highly heterogeneous materials, δtf mainly
arises from sample-to-sample fluctuations of the initial
heterogeneity, and not on thermodynamic disorder.

Finally, we discussed the implication of these results
in the estimation of microscopic parameters, such as an
activation volume, from macroscopic data obtained from

creep tests performed at different thermodynamic tem-
peratures T . In particular, we showed that using such
downscaling procedure while ignoring these effective tem-
perature effects can lead to a strong overestimation of the
real activation volume at the microscale.
It would be interesting to look the possible implica-

tions on the creep lifetime distribution for different kind
of initial heterogeneity distribution, e.g. Weibull distri-
bution. Additionally, concerning the activation volume,
the results show that a great caution should be taken
when trying to estimate a microscopic activation energy
or volume by plotting creep macroscopic variables within
a classical Arrhenius plot while ignoring the potential ef-
fect of microstructural heterogeneity.
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[9] M. Pournajar, T. Mäkinen, S. A. Hosseini, P. Moretti,
M. Alava, and M. Zaiser, Failure precursors and failure
mechanisms in hierarchically patterned paper sheets in
tensile and creep loading, Physical Review Applied 20,
024008 (2023).

[10] I. Y. Miranda-Valdez, M. Sourroubille, T. Mäkinen, J. G.
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tendorst, N. Attig, S. Blügel, and D. Marx (Institute for
Advanced Simulation, Forschungszentrum Jülich, 2009)
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Appendix A: Theoretical analysis

1. Spatial heterogeneity analysis

Spatial heterogeneity of the material is introduced at
the scale of the subvolumes, each one associated to a
variable activation energy En,j or energetic state, which
is also evolving with the transition number j as the result
of previous transitions and their associated stress redis-
tributions (see Fig. 1).
As we consider a mechanical system, we link the ac-

tivation energy En,j to a local stress gap ∆σn,j , i.e.
En,j = ∆σn,jVa, where Va is the activation volume
for the considered damage/fracturing microscopic mech-
anism, considered here as being constant in space and
time. The stress gap ∆σn,j represents a distance, ex-
pressed in the principal stress space, between the local
threshold σath,n (hereafter denoted athermal as it corre-
sponds to a failure threshold in absence of thermal disor-
der) and the local stress state, ∆σn,j ∼ σath,n−σn,j , here
we do not address how the stress on each element may
vary in space, democratic hypothesis leads to consider
that stress is equal in each element. Material heterogene-
ity is introduced at the level of each subvolume n through
σath,n considered as a quenched random variable [23, 40].
The goal is to understand how the coupling between

the material heterogeneity and the (thermodynamic) dis-
order affects the creep rupture time tf in heterogeneous
systems. We first analyze the general case without any
assumptions concerning the analytical form of the mate-
rial heterogeneity,
Recalling the definition of the average waiting time

between transitions, ⟨∆t⟩j+1 ∼ exp (Fj/kBT ), we realize
that an important variable of our problem is the free
energy Fj of the system. Fj is defined as the difference
between the average energy weighted by the activation
energy probability p(Enb,j) (at the transition j+1), ⟨E⟩j ,
and the term linked to the entropy TSj [43, 44, 49]:

Fj = ⟨E⟩j − TSj = −kBT logZj . (A1)

It is important to mention that the thermodynamical
variables showed in the following are not interpreted in
the sense of the kinetic theory of gases, but in that of
the Shannon’s theory of (lack of) information [43, 44,
49, 55]. In this context, the Shannon entropy times the
Boltzmann constant kB is given by:

Sj = −kB
∑
n

p(En,j) log p(En,j), (A2)

where the probability of a solid composed of N sub-
volumes to be in a configuration with energy En,j is

p(En,j) = e−En,j/kBT /Zj [43, 44, 46, 49], where Zj is
the partition function [43, 44, 49] defined by:

Zj =
∑
n

e−En,j/kBT . (A3)

As an alternative representation of the last equations,
it is more convenient to introduce the density of states
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g(Enb,j), which corresponds to the number of energetic
states, i.e. the number of the sub-volumes, that have
an energy within a small range Enb,j ± dEnb,j , with nb

representing the number of the bin in which the energy
value Enb,j falls [43, 49]. We can then rewrite for a given
bin nb, g(Enb,j)dEnb,j = Nf(Enb,j)dEnb,j , which can be
replaced into the partition function [43]:

Zj = N
∑
nb

f(Enb,j)e
−Enb,j

/kBT , (A4)

where f(Enb,j) = g(Enb,j)/N ≈ f(∆σnb,j)/Va represents
a relative density of states and is an explicit represen-
tation of the spatial heterogeneity in the system. It is
equivalent to the probability distribution of the stress
gap (also called the excitation spectrum), taking into ac-
count that the activation volume is assumed constant
here. The probability that the system is in a specific
state with energy Enb,j is:

p(Enb,j) =
Nf(Enb,j)e

−Enb,j
/kBT

Zj
. (A5)

The average energy of the system ⟨E⟩j at transition
j + 1 is the arithmetic mean value of the energy barrier
weighted by the activation energy probability p(Enb,j). It
differs from ⟨E∆σ⟩j , which corresponds to the ”classical”
arithmetic mean value of the energy. Then, the average
energy of the system is given by:

⟨E⟩j =
∑
n

En,jp(En,j) =
N

Zj

∑
nb

Enb,jf(Enb,j)e
−Enb,j

/kBT ,

and, using the expression of Zj in Eq. A4:

⟨E⟩j =
∑

nb
Enb,jf(Enb,j)e

−Enb,j
/kBT∑

nb
f(Enb,j)e

−Enb,j
/kBT

. (A6)

Solving for the entropy term in Eq. A1, TSj = ⟨E⟩j +
kBT logZj , one obtains:

Sj = kB logN +
1

T

∑
nb

Enb,jf(Enb,j)e
−Enb,j

/kBT∑
nb

f(Enb,j)e
−Enb,j

/kBT

+ kB log

[∑
nb

f(Enb,j)e
−Enb,j

/kBT

]
, (A7)

which could be rewritten as:

Sj = kB log

[
N
∑
nb

f(Enb,j) exp

(
−Enb,j − ⟨E⟩j

kBT

)]

= kB log

[
N

〈
exp

(
−Enb,j − ⟨E⟩j

kBT

)〉]
. (A8)

Equation A8 represents the entropy as a function of
any density of states. Note that this expression could
have been obtained from Eq. A2, using a more involved

derivation. A first key result is that the material het-
erogeneity of a system can indeed affect its entropy. As
the entropy is kB log(Ω) where Ω is the number of pos-
sible microstates, this number reads, from Eq. A8, Ω =
N⟨exp [−(Enb,j − ⟨E⟩j)/kBT ]⟩ [43, 44]. One obvious re-
mark is that, for the case of a perfectly homogeneous sys-
tem, i.e. p(En,j) = 1/N and En,j = ⟨E⟩j , or when the
thermodynamic temperature is very large, T → ∞, the
entropy reaches a maximum value Sj = kB logN which
describes a system with all the energetic states having
the same probability of occurrence. This represents the
limit of infinite (thermal) disorder [49], or a high degree
of unpredictability [43], in the sense that thermal noise
dominates the behavior.

2. Prediction of the rupture time tf and the
effective temperature Teff for a heterogeneous

system

We switch to the main question of this work: What is
the combined effect of material heterogeneity (variability
of the stress gaps ∆σj) and (thermal) disorder on creep
lifetimes? And, do we still get an Arrhenius-like expres-
sion for tf , possibly with an heterogeneity-dependent ef-
fective temperature Teff?
From the definition of the rupture time (Eq. 5), we can

rewrite the expression as:

⟨tf ⟩ =
1

Ω0

Nf−1∑
j=0

exp

(
Fj

kBT

)
= Nf ⟨∆t⟩j+1 (A9)

where ⟨∆t⟩j+1 the arithmetic mean value of all the time
intervals between successive transitions along the exper-
iment and Nf is the total number of these transitions
until failure, considered as being constant in what fol-
lows. As a remark, for a case for which each element
n can be only activated once, such as the FBM studied
by Ciliberto et al. [25] and Roux [26], this maximum
number of transitions equals the number of sub-volumes
Nf = N .
The combination of Eqs. A1, A6, A7 and A9 shows

that (i) the free energy Fj evolves during creep and
(ii) the failure time depends on the initial quenched het-
erogeneity, on the applied stress through the distribu-
tion of stress gaps ∆σj , as well as on thermal fluctua-
tions kBT . Moreover, the mechanical interactions be-
tween neighboring sub-volumes after each transition also
modify the stress gaps distributions.
In order to obtain an expression for the effective tem-

perature Teff , we define first the term ∆th,1 correspond-
ing to an initial time step for an ”equivalent” homo-
geneous system, i.e. with maximum entropy, Sh,0 =
kB logN and the average energy equalling the arith-
metic mean energy barrier ⟨E⟩h,0 = ⟨E∆σ⟩0 = E∆σh,0

=
Va∆σh,0. Consequently,

∆th,1 = Ω−1
0 exp

(
Fh,0

kBT

)
=

1

NΩ0
exp

(
E∆σh,0

kBT

)
,(A10)
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which follows an Arrhenius law and decreases with the
system size N . Combining this with Eq. A9, we obtain:

⟨tf ⟩ =
1

Ω0

Nf

N
exp

(
E∆σh,0

kBT

) ⟨∆t⟩j+1

∆th,1
,

and reorganizing:

⟨tf ⟩ =
Nf

NΩ0
exp

[
E∆σh,0

kBT

(
1 +

kBT

E∆σh,0

log

(
⟨∆t⟩j+1

∆th,1

))]
,

we can identify an Arrhenius-like expression for the av-
erage failure time ⟨tf ⟩ = t0 exp (E∆σh,0

/kBTeff ), with
the effective temperature Teff and the ”characteristic”
timescale t0 of equation 1 given respectively by:

kBTeff =
kBT

1−∆Fcor/E∆σh,0

, (A11)

t0 =
1

Ω0

Nf

N
, (A12)

where the term ∆Fcor corresponds to a corrected differ-
ential free energy given by:

∆Fcor = kBT log

(
∆th,1

⟨∆t⟩j+1

)

= −kBT log

 1

Nf

Nf−1∑
j=0

exp

(
−∆Fj

kBT

)
= −kBT log

[
exp

(
−∆Fj

kBT

)]
, (A13)

and ∆Fj = Fh,0 − Fj ≥ 0 is the differential free energy
between the ”equivalent” homogeneous free energy at the
beginning of the experiment, Fh,0 = E∆σh,0

−kBT logN ,
and the free energy after a transition j is triggered by
thermal activation, Fj . ∆Fj is a measure of the hetero-
geneity of a system, just before its transition j.

3. Lifetime for a Gaussian distribution of the stress
gap

We consider that the activation energy, Ej = Va∆σj ,
at a given jth transition follows a Gaussian density of
states Ej ∼ N (⟨E∆σ⟩j , δE2

∆σ,j) with arithmetic mean

value and variance ⟨E∆σ⟩j , δE2
∆σ,j respectively, then the

probability function p(E∆σ,j) is defined by:

f(E∆σ,j) =
1

δE∆σ,j

√
2π

exp

[
−1

2

(
Ej − ⟨E∆σ⟩j

δE∆σ,j

)2
]
.(A14)

Additionally, the average weighted energy ⟨E⟩j and the
entropy Sj if the number of sub-volumes tends to infinity,
N → ∞, are given by:

⟨E⟩j =
∫∞
0

Ejf(E∆σ,j)e
−Ej/kBT dEj∫∞

0
f(E∆σ,j)e−Ej/kBT dEj

, (A15)

Sj = kB logN +
1

T

∫∞
0

Ejf(E∆σ,j)e
−Ej/kBT dEj∫∞

0
f(E∆σ,j)e−Ej/kBT dEj

+ kB log

[∫ ∞

0

f(E∆σ,j)e
−Ej/kBT dEj

]
. (A16)

Using some variable changes and solving the integrals
by parts we obtain:

⟨E⟩j = ⟨E∆σ⟩j−
δE2

∆σ,j

kBT
+

√
2

π
δE∆σ,j

e−(zvar,j/
√
2)2

erfc [zvar,j/
√
2]
,

(A17)

Sj = kB log

[
N

2
erfc

(
zvar,j√

2

)]
− kB

(
δE∆σ,j

kBT

)2

+

√
2

π

δE∆σ,j

T

e−(zvar,j/
√
2)2

erfc [zvar,j/
√
2]
, (A18)

with zvar,j = δE∆σ,j/kBT − ⟨E∆σ⟩j/δE∆σ,j and

erfc (x∗) = 2/
√
π
∫∞
x∗ e−x2

dx, the Gauss complementary
error function. Consequently the free energy, Fj =
⟨E⟩j − TSj is

Fj = ⟨E∆σ⟩j−kBT log

[
N

2
erfc

(
zvar,j√

2

)]
−1

2

δE2
∆σ,j

kBT
.

(A19)

Taking into account that the lifetime of a single jth
transition is given by:

⟨∆t⟩j =
1

Ω0
eFj/kBT , (A20)

we can obtain an expression for the lifetime of a single
transition by substituting Eq. A19 into Eq. A20,

⟨∆t⟩j =
2

NΩ0
e⟨E∆σ,j⟩j/kBT e−

1
2 (δE∆σ,j/kBT )2×[

erfc

(
zvar,j√

2

)]−1

, (A21)

which in the case of negligible mechanical interactions is
constant for all transitions. This corresponds to a Pois-
son process, and consequently the failure time after Nf

transitions is:

⟨tf ⟩gauss ≈
2

Ω0

Nf

N
e⟨E∆σ,j⟩0/kBT e−

1
2 (δE∆σ,0/kBT )2×[

erfc

(
zvar,0√

2

)]−1

, (A22)

which could be re-written as ⟨tf ⟩gauss =

t0e
⟨E∆σ,j⟩0/kBTeff , with t0 = Nf/NΩ0 and Teff is

an effective temperature given by:

kBTeff ≈ kBT

1−∆F/⟨E∆σ⟩0
, (A23)
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with ∆F a differential free energy between the free energy
at the first transition, F0, and the free energy of a homo-
geneous equivalent system, Fh,0 = ⟨E∆σ,j⟩0−kBT logN .
Then the effective temperature could be re-written as:

kBTeff ≈ kBT

1− kBT
⟨E∆σ⟩0 log

[
1
2e

1
2 (δE∆σ,j/kBT )2 · erfc

(
zvar,j√

2

)] .
(A24)

4. Lifetime for a uniform distribution of the stress
gap

We now consider that at a given jth transition, the
activation energy follows a uniform density of states,
Ej ∼ U[Ej,min,Ej,max] with maximum and minimum val-
ues Va∆σmax and Va∆σmin. In this case, the arithmetic
mean and corresponding variance are ⟨E∆σ⟩j , δE2

∆σ,j re-

spectively, then the probability function f(E∆σ,j) is de-
fined by:

f(E∆σ,j) =
1

Ej,max − Ej,min
=

1

2∆Ej
, (A25)

with ∆Ej =
√
3δE∆σ,j . Using some variables change and

solving the integrals by parts we obtain:

⟨E⟩j = ⟨E∆σ⟩j + kBT −∆Ej coth

(
∆Ej

kBT

)
, (A26)

Sj = kB log

[
Ne

kBT

∆Ej
sinh

(
∆Ej

kBT

)]
−∆Ej

T
coth

(
∆Ej

kBT

)
,

(A27)

and consequently the free energy is

Fj = ⟨E∆σ⟩j−kBT log

[
N

kBT

∆Ej
sinh

(
∆Ej

kBT

)]
. (A28)

In Figs. 12a and 12b we show respectively the aver-
age weighted energy ⟨E⟩j and the entropy term TSj ,
as a function of the arithmetic mean value of the lo-
cal activation energies and a term proportional to the
standard deviation ∆Ej ∼ δE∆σ,j , both normalized by
kBT . From Fig. 12a we see that the average weighted
energy ⟨E⟩j increases when increasing the arithmetic
mean value of the local activation energies ⟨E∆σ⟩j , with
⟨E⟩j → ⟨E∆σ⟩j when the system tends to be homoge-
neous, i.e. ∆Ej → 0. On the reverse, for very large

standard deviations, i.e. δE∆σ,j = ∆Ej/
√
3 ≫ 0, the av-

erage energy vanishes. One additional remark is when we
substract the arithmetic mean value of the activation en-
ergy from the average weighted energy (Fig. 12c), we col-
lapse the data in one single expression which is a function
only of the standard deviation of the activation energy
∆⟨E⟩j = ⟨E⟩j − ⟨E∆σ⟩j = kBT −∆Ej coth (∆Ej/kBT ).
From this, we can see that for large heterogeneities,
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FIG. 12: Example of average energy and entropy, both
normalized by kBT , as a function of the arithmetic
mean value and the difference between the maximum
and the minimum value of the activation energy of the

initial distribution of the stress gap.

∆Ej ≥ 2, the average weighted energy follows ⟨E⟩j ≈
⟨E∆σ⟩j + kBT −∆Ej .
Figure 12b illustrates the entropy term TSj normalised

by kBT . We see that the entropy of a heterogeneous sys-
tem that follows a uniform distribution only depends on
the heterogeneity term ∆Ej and not on the arithmetic
mean value, which is represented in Fig. 12d. We see
that for a quasi-homogeneous system, ∆Ej → 0, the en-
tropy is the largest and approximates Sj → kB logN ,
as expected. In addition, as for the Gaussian case, an
increase of the heterogeneity reduces the entropy. In
Fig. 12d we collapse the data in one single expression
which is function only of the standard deviation of the
activation energy. From this plot we can see that for
large heterogeneities, ∆Ej ≥ 2, the entropy scales as
Sj ∼ −kB log (2∆Ej/kBT ).
Then, the duration of a single transition is given by:

⟨∆t⟩j =
1

NΩ0

∆Ej/kBT

sinh (∆Ej/kBT )
e⟨E∆σ⟩j/kBT , (A29)

and the creep lifetime of the full volume, neglecting me-
chanical interaction, after Nf transitions, is given by:

⟨tf ⟩unif =
Nf

NΩ0

∆E0/kBT

sinh (∆E0/kBT )
e⟨E∆σ⟩0/kBT . (A30)

This shows once again that heterogeneity plays an
important role on lifetime. In addition, it is possi-
ble to deduce that for large values of temperature
or low values of the stress gap, ⟨tf ⟩unif ∼ Ω−1

0 .
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FIG. 13: Dependency of the normalized average
lifetime ⟨tf ⟩/t0 on Va⟨∆σ⟩0/kBT , for an uniform initial
distribution of stress gaps, and mechanical interactions

neglected. Theoretical result.

For the case of a homogeneous volume (∆E0 → 0),
the failure time follows an Arrhenius expression,
⟨tf ⟩unif ∼ Ω−1

0 exp (⟨E∆σ⟩0/kBT ) as found by Ref. [19]
in his experiments on homogeneous materials. On the
other hand, for very large heterogeneities, i.e. ∆E0 ≫ 0,
it is possible to say that ∆E0 ≈ ⟨E∆σ⟩0. It im-
plies that Eq. A30 can be written as ⟨tf ⟩unif ∼
2Ω−1

0 (⟨E∆σ⟩0/kBT ) · e⟨E∆σ⟩0/kBT /(e⟨E∆σ⟩0/kBT −
e−⟨E∆σ⟩0/kBT ) ∼ 2Ω−1

0 ⟨E∆σ⟩0/kBT (Fig. 13).
In a similar manner as for the Gaussian case, we can

re-write the failure time as a function of an effective tem-
perature Teff as ⟨tf ⟩unif = t0e

⟨E∆σ,j⟩0/kBTeff , where the
effective temperature is given by:

kBTeff ≈ kBT

1− kBT
⟨E∆σ⟩0 log

[
sinh (∆E0/kBT )

∆E0/kBT

] . (A31)

Figure 14 illustrates the temperature ratio T/Teff as
a function of the arithmetic mean value of the energy
⟨E∆σ⟩0/kBT and the heterogeneity term ∆E0/kBT . We
can see that for homogeneous systems, T/Teff → 1, as
expected. On the contrary, we see that as the heterogene-
ity increases, the ratio T/Teff → 0. When ∆E0 ≫ 0, we
can rewrite the temperature ratio as:

T

Teff
≈ 1− ∆E0

⟨E∆σ⟩0
+

kBT

⟨E∆σ⟩0
log

(
2
∆E0

kBT

)
,

and for the case of maximum heterogeneity, ∆E0 ≈
⟨E∆σ⟩0, the temperature ratio could be written as:

T

Teff
≈ kBT

⟨E∆σ⟩0
log

(
2
⟨E∆σ⟩0
kBT

)
,

which converges for largest values of ⟨E∆σ⟩0/kBT → ∞,
T/Teff → 0. The results shown in Figs. 12, 13 and 14 are
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FIG. 14: Example of the effective temperature term
T/Teff as a function of the arithmetic mean value and
the standard deviation of the initial distribution of the

stress gap.

very similar to those obtained for a Gaussian distribution
of the stress gaps.

Appendix B: Progressive Damage model with
thermal activation

1. Athermal model

The athermal version of the progressive damage model
has been extensively studied by Refs. [36–39], and only
its main characteristics are recalled below. We consider a
2D elastic domain under plane strain made of an isotropic
elastic material characterized by its initial Young modu-
lus Y0 and Poisson ratio ν. This domain, with a height-
to-width ratio of 2, is discretized into an unstructured
mesh using the finite element method [36], i.e. N = 960
elements for a system size L = 16. The height-to-width
ratio is equivalent to that used in classical compression
experiments on brittle materials like rocks or concrete in
order to avoid the final fault formation from the corner
of the specimen (which would be likely with a 1:1 height-
to-width ratio). In the model, it avoids the final fault
to occur through the diagonal most of the time, as the
fault normal surface has typical values around 45− 60◦.
It is loaded under uniaxial compression along y, with the
lower boundary remaining fixed along y direction and the
left and right boundaries allowed to deform freely [36]
to mimic the experimental setup of uniaxial compressive
tests. In this athermal version, increasing the vertical
shrinking along y from the upper boundary simulates
a strain-controlled loading. The local strain εn is cal-
culated using a usual finite element method procedure
and the vertical strain at macroscale ε is calculated from
the average of the local vertical displacement in the up-
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per boundary elements divided by the initial sample’s
height,. When the stress locally exceeds, for one element
n, a given threshold for damage, its elastic modulus Yn

is multiplied by the damage factor 1 − D, with D con-
stant and small compared to 1 (set to 0.1 here). Each ex-
ceedance of the damage threshold induces a damage event
in a given element n. After Dn accumulated damage
events, the Young modulus of that element falls therefore
to Yn = (1−D)DnYn,0 [38], with Yn,0, the initial Young
modulus of that element, while the Poisson’s ratio is un-
affected by this damage. After each damage event, the
static equilibrium is recalculated, this way redistributing
elastic stresses to neighbouring elements. The updated
stress field is then compared to the local damage thresh-
old for all elements. If some of these thresholds are ex-
ceeded, an avalanche of damage occurs. The avalanche
stops when all the elements are below their threshold.
The number of damage events in one loading step, i.e.
while not increasing further the applied shrinking, defines
the avalanche size [36], which compares e.g. with acous-
tic emissions recorded during compression tests on rocks
(e.g. Refs. [12, 56–58]), concrete [59], or other brittle ma-
terials [60]. The local threshold for damage is expressed
by a Mohr–Coulomb criterion, relevant, at a macroscopic
level, for geomaterials under compressive stress states
[61], τ − σ tanϕ = τ − σµ = C, where τ and σ repre-
sent respectively the shear and the normal stress over an
orientation that maximizes the Coulomb stress τ −σµ, ϕ
is the friction angle, tanϕ = µ the corresponding internal
friction coefficient, and C the cohesion. This formulation
of the Mohr-Coulomb criterion allows to compare two
scalar stress values, the Coulomb stress vs the cohesion
and therefore, in the next section, to define a scalar stress
gap. Nevertheless, the model is not scalar and the stress
field variation could result in some elements failing by
traction. For such rare cases we have implemented a trac-
tion criterion which compares a stress traction threshold
to the minor stress, Ct = σt − σ3 [36, 37] . This is com-
pared with the one from Mohr–Coulomb criterion and
the smallest stress gap chosen. To simulate a heteroge-
neous material, i.e. to take into account microstructural
heterogeneity [54], the cohesion C is set randomly, and
then kept unchanged to mimic quenched material hetero-
geneity, for each element from a Gaussian distribution,
Cn ∼ N (⟨C⟩, δC2), with arithmetic mean value ⟨C⟩ and
standard deviation δC:

f(Cn) =
1

δC
√
2π

exp

[
−1

2

(
Cn − ⟨C⟩

δC

)2
]
, (B1)

while µ is set constant in space and time. However, as
explained below, we performed two sets of simulations,
one with µ = 0.7, a classical value for geomaterials [61],
another with µ = 0 for which the Coulomb criterion
amounts to a Tresca plastic criterion independent of the
pressure term, as observed for metals. This will allow
to explore the role of the shape of the elastic interaction
kernel, which depends on µ [36].

Initially, the material is undamaged, Yn,0 = Y0 ∀n,
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FIG. 15: Gaussian probability distribution of the
cohesion for the studied cases. ⟨C⟩ = 20 MPa and

δC = 0, 1, 5 MPa.

and consequently the stress state is homogeneous. Once
damage occurs, the stress field becomes heterogeneous,
due to elastic stress redistribution. Athermal simula-
tions are characterized by an initial linear elastic re-
sponse before a macroscopic softening preceding a large
stress drop mimicking a macroscopic rupture [36, 38].
This athermal model was shown to successfully represent
Coulombic failure of disordered materials like rocks or
concrete, e.g. the progressive localization of damage upon
approaching a peak stress at which an incipient fault nu-
cleates [56], or the impact of confining pressure and of the
internal friction µ on strength and brittleness [62]. Ather-
mal simulations allow defining the athermal strength of
a given sample from the peak stress reached before the
macroscopic stress drop, σath.

2. Thermal activation from a Kinetic Monte Carlo
algorithm

In the athermal, purely elasto-brittle version of the
model, time is irrelevant and damage occurs only if the
external stress and strain are increased. Therefore, it
cannot describe creep deformation, i.e. time-dependent
deformation under constant load. In order to introduce
thermal activation and a physical timescale, a BKL-KMC
algorithm [41, 42] was implemented [23]. At the local (el-
ement) scale, the gap ∆σn between the local stress state
and the Coulombic envelope defines an energy barrier En.
The goal of the KMC algorithm is to thermally activate
damage events at the element scale according to the rates
of the relevant individual processes. The jump rate of
each element n follows an Arrhenius expression [41, 42]:

ωn,j+1 = Ω0 exp

[
−En,j

kBT

]
, (B2)
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where En,j = Va∆σn,j and Ω0 is a vibration frequency,
which is, in solids, of the order of 1013 s−1 [19]. From
Eq. A3, the partition function at the jth transition is
Zj = Ω−1

0

∑
n ωn,j , and consequently the jump rate of

the entire system is given by ωj = Ω0Zj =
∑

n ωn,j .
In creep simulations, the model is initially launched

athermally up to the targeted uniaxial applied
stress, σappl, defined as a fraction of the uniaxial
strength σath obtained by the athermal model for the
same sample, with the same initial quenched heterogene-
ity. During this loading phase the model obeys ather-
mal rules, so some elements can be damaged, possibly
triggering avalanches. Creep starts from the end of this
athermal loading, setting t = 0, by thermally activating a
first element n from the KMC algorithm. This selection
is done at random, weighted by the jump rates ωn,1 given
by Eq. B2. Time advances by an increment ∆t1 following
an exponential probability distribution as given in Eq. 3
and later iterates to obtain the following time increments
∆tj∀j ≥ 1. This time increment is obtained at any j ≥ 1
thermal transition from Ref. [41]:

∆tj = − log uj · ⟨∆t⟩j = − log uj

Ω0Zj
, (B3)

where uj ∈ [0, 1] is a random number chosen from a uni-
form distribution.

The internal stress and strain fields are recalculated af-
ter the jth-thermal activation, potentially triggering an
avalanche of damage events Dn,j while keeping the time
unchanged, i.e. the avalanche duration is considered to
be negligible compared to the creep timescales. Once the
avalanche stops, the KMC algorithm is re-launched to
select the element to be thermally activated next, and to
define the next time interval, and so forth. This is done
according to updated individual jump rates (Eq. B2) re-
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FIG. 18: Example of the temporal evolution of the
macroscopic axial strain for creep simulations with

different heterogeneities.

sulting from modified stress gaps ∆σn,j after the elastic
stress redistribution.
Different definitions of the stress gap ∆σ can be pro-

posed, depending on the physical deformation mecha-
nism. As an example, a von Mises stress gap has been
proposed for amorphous plasticity [22]. In the present
case, in agreement with our local Coulomb criterion and
in order to simulate brittle creep [16], we used a Coulomb
stress gap between a local cohesion Cn and the local
Coulomb stress, ∆σn,j ∼ Cn − (τn,j − µσn,j), (Fig. 16).
Its expression at the local scale reads:

∆σn,j = Cn cosϕ+ σ3,n,j
1 + sinϕ

2
− σ1,n,j

1− sinϕ

2
,(B4)
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where the subindex n,j indicates the element and the
transition respectively, Cn is the local cohesion, σ1,n,j

and σ3,n,j are respectively the local major and minor
principal stresses, and ϕ is the internal friction angle.
The intermediate principal stress under the plane strain
hypothesis corresponds to σ2,n,j = ν(σ1,n,j+σ3,n,j). The
equation B4 can also be written in Cartesian coordinates
doing the following variable change:

σ1,n,j , σ3,n,j =
σx,n,j + σy,n,j

2

±

√(
σx,n,j − σy,n,j

2

)2

+ τ2xy,n,j , (B5)

where σx,n,j and σy,n,j are the local horizontal and ver-
tical stresses respectively, and τxy,n,j = τyx,n,j are the
local shear stresses in the horizontal and vertical plane.

The probability distribution of the stress gaps, f(∆σ),
which evolves during the test (Fig. 17), corresponds to
a convolution of probability distributions [49]. It can be
written as:

f(∆σj) = (fC ∗ fσ1,σ3) (∆σj)

∼
∫ ∞

−∞
fC(C cosϕ)fσ1,σ3(∆σj − C cosϕ)dC (B6)

with fC = f(C cosϕ) the probability distribution of the
cohesion term, set as a Gaussian distribution in our
setup, and fσ1,σ3

the probability distribution of the stress
state, fσ1,σ3

(∆σ − C cosϕ) = (fσ1
∗ fσ3

) (∆σ − C cosϕ).

If during the initial athermal stage no damage occurs,
the only term affecting the probability distribution of the
stress gaps at the onset of creep is fC , as the initial stress
field is homogeneous and the principal stresses σ1, σ3 are
spatially invariant. Consequently, the stress gap proba-
bility distribution at t = 0 is also Gaussian, comparable
to the theoretical expressions considered in Section II. In
the model, final failure is assumed to occur, and so the
simulation terminates, once the axial macroscopic strain
εj ≥ εmax, with εmax ≈ 2× 10−2, thus defining the fail-
ure time, tf . In all cases, this happens during a tertiary
creep regime for which the strain rate eventually diverges,
ε̇j → ∞ (see Fig. 18), just like in experiments.

Appendix C: Summary of the used parameters and
their corresponding notations
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Symbol Description Value, unit

Cn local cohesion MPa
⟨C⟩ arithmetic mean value of the cohesion 20 MPa
D damage parameter 0.1
Dn local cumulated damaged events (due to avalanches) during the athermal load (Dn,j during creep) -
E activation energy J

En,j local activation energy at event (transition) j + 1 J
E∆σh,0 arithmetic average of the activation energy for the first event (transition) J
⟨E⟩j average energy weighted by the activation energy probability p(En,j), at the event (transition) j + 1 J

⟨E∆σ⟩j arithmetic average of the activation energy at the event (transition) j + 1 J
f(Enb,j) relative density of states -

Fj free energy J
Fh,1 free energy (from an ”equivalent” homogeneous system) at the first event (transition) J

f(∆σnb,j) probability distribution of the stress gap -
g(Enb,j) density of states (number of nb sub-volumes with energy within a small range (Enb,j , Enb,j + dEnb,j)) -

j index indicating a thermally activated event (transition) -
kB Boltzmann’s constant 1.38× 10−23 JK−1

L system size 16
n index indicating a sub-volume (micro-element) -
N total number of sub-volumes forming a solid volume -
Nf number of successive thermally activated events (transitions) leading to failure -

p(En,j) probability of a solid composed of N sub-volumes to be in a configuration with energy E=n, j -
Sj Shannon’s entropy JK−1

T absolute temperature K
Teff effective temperature K
tf rupture time s
⟨tf ⟩ average rupture time for different realizations of the initial quenched heterogeneity s

⟨tf ⟩gauss predicted average rupture time from a Gaussian distribution of the initial quenched heterogeneity s
Va activation volume for the damage / fracturing microscopic mechanism 11× 10−27 m3

Va,est estimated activation volume for the damage / fracturing microscopic mechanism -
Y0 Young’ modulus of reference 21 GPa
Yn local Young’ modulus after a damage event occurs during the athermal load (Yn,j during creep) GPa
Zj partition function at the event (transition) j + 1 -
δC2 variance of the cohesion 0,1,5 MPa

δE2
∆σ,j variance of the activation energy at the event (transition) j + 1 J2

δ2∆σ,j variance of the stress gap at the event (transition) j + 1 MPa2

∆Fj differential free energy J
∆th,1 ”equivalent” initial time step (from an ”equivalent” homogeneous system) s
∆tj waiting time between events (transitions) s

⟨∆t⟩j arithmetic mean value of all the time intervals between successive events (transitions) s
⟨∆t⟩j average waiting time between events (transitions) s

∆σmacro stress gap at macroscale between a (supposedly known) athermal strength and the applied stress Pa
∆σn,j local stress gap at event (transition) j + 1 Pa
⟨∆σ⟩j arithmetic average of the stress gap at the event (transition) j + 1 MPa
σappl applied creep stress at macroscale MPa
σath macro athermal threshold MPa
σath,n local athermal threshold Pa
σn,j local stress state at event (transition) j + 1 Pa

σappl/σath stress ratio (percentage of the athermal strength) -
µ = tanϕ internal friction coefficient (function of the internal friction angle ϕ) 0.0, 0.7

ν Poisson’s ratio 0.25
Ω0 thermal vibration frequency 1× 1013 s−1

ωj jump rate at event (transition) j s−1

TABLE I: Summary of the notation of the different parameters used.


