
HAL Id: hal-04933073
https://hal.science/hal-04933073v1

Submitted on 6 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Editing Watertight Manifold Polyhedra using Face Shifts
with Automatic Topological Updates and Edge Flips

Florent Geniet, Mathieu Brédif, Bruno Vallet

To cite this version:
Florent Geniet, Mathieu Brédif, Bruno Vallet. Editing Watertight Manifold Polyhedra using Face
Shifts with Automatic Topological Updates and Edge Flips. Lowcost3D, Dec 2024, Brescia, Italy.
pp.169-176, �10.5194/isprs-archives-XLVIII-2-W8-2024-169-2024�. �hal-04933073�

https://hal.science/hal-04933073v1
https://hal.archives-ouvertes.fr


Editing Watertight Manifold Polyhedra using Face Shifts with Automatic Topological Updates
and Edge Flips

Florent Geniet, Mathieu Brédif, Bruno Vallet

Univ Gustave Eiffel, ENSG, IGN, LASTIG, F-94160 Saint-Mandé, France
florent.geniet@ign.fr, mathieu.bredif@ign.fr, bruno.vallet@ign.fr

Keywords: 3D reconstruction, 3D building models, polyhedral modeling, half-edge structure, plane arrangements

1. Introduction

City modeling has become a very important domain in the last
decade, particularly with the democratization of 3D mapping,
but also with the development of acquisition methods allowing
to collect 3D data (Lidar point clouds, dense matching DSMs)
on large areas with decreased costs.

The will to produce 3D models which are more accurate, and
also more complex induce a need for more precise and detailed
data, with a minimum production time.

The new data acquisition methods that have been developed
lately have enabled city modeling to be performed on vast areas,
making it a very important source of data for 3D urban map-
ping.

In 3D city modeling, the reconstruction of buildings from ac-
quired 3D data (point clouds, DSMs, meshes) is a crucial op-
eration, which can be very error prone, particularly when high
fidelity and accuracy are required. Several tools have been de-
veloped to help creating 3D building models, some of them
automatic, and others manual. Automatic methods are way
faster and less expensive than manual ones, that require im-
portant human interaction, but they are also sensible to the data
defects (occlusion, heterogeneous data...), and can even fail to
reconstruct buildings which have a complex roof structure. On
the other hand, manual methods are much more expensive than
automatic methods on most buildings for a similar result, be-
cause they require the work of trained operators for an optimal
result. But humans are able to understand complex structures,
or to correct the defaults of the data, which makes manual meth-
ods more robust, producing higher quality models.

Manual and automatic methods have complementary advant-
ages and drawbacks, so we believe it is interesting to explore
combining them in such a way that it would guarantee a qual-
ity close to that of manual modeling, but lowering significantly
production time and cost.

In our work, we propose a pipeline which would allow for
such a combination (Figure 1). We propose to start from an
automated reconstruction, and then propose ergonomic manual
polyhedral editing tools to correct possible reconstruction er-
rors. Our focus in this paper will thus be on the creation of a
polyhedral modeler which would allow the edition of the geo-
metry and topology of polyhedral building models.

Figure 1. Overview of the proposed pipeline

2. Related work

2.1 3D models

We call 3D object the representation of an object of the real
world. A 3D object contains a geometrical description of the
real world object, and other information concerning this object.

In most of the models, this description contains some geo-
metrical data (e.g. : coordinates of a point, coordinates of a
plane...), and these geometrical data are structured by topolo-
gical data, which describe how the different parts of the 3D
object as combinations of some geometrical data (e.g. : a plane
can be described as an ordered set of vertices, an edge can be
described as a pair of vertices...).

In addition to the geometrical and topological data, it is pos-
sible to add semantic data about the object or its components.
These are all the data that give information about the object or
its components which are not about its geometry or its topology.

There exists different ways representing the geometry of 3D
objects, which focus on different aspects of the 3D object.

First, raw data acquired from a real scene, such as Lidar or
dense matching point clouds gives a 3D sampling of an object
but does not provide information about its structure. Raw data
is often the input data of 3D reconstruction methods which
produce more structured representations, which we will present
now.

A popular representation for 3D objects is meshes. They
describe the geometry of an object with 3D points, its topo-
logy with cells, and potentially also contain some semantics
attached to the cells that compose the surface. The cells that
compose a mesh are planar polygons defined by ordered lists
of coplanar 3D points. They can be triangles (triangle mesh),
quadrilaterals (quad mesh)... or any combination of planar
polygons (polyhedral mesh).



While the topology of meshed models is usually stored as
ordered lists of 3D point indices, other data structures have
been proposed for more efficient traversal and topological
edition, such as half-edges models (Line Segment Intersection,
2008) or generalized maps (Lienhardt, 1991)(Belhaouari et al.,
2014).

Finally, higher level data models have been proposed to store
the geometry, topology, and semantics of 3D objects, such as
the CityGML model implemented in the CityJSON file format
(Ledoux et al., 2019), or the 3DCityDB database (Yao et al.,
2018).

In the domain of the city modeling, objects are often represen-
ted as meshes (Caraffa et al., 2017), or polyhedrons (Huang
et al., 2022), which are well adapted for building modeling.
In this models, the geometrical data are often given as points
coordinates, and the topological data describe the faces of the
polyhedron as a set of borders, each border being a linear ring
of vertices.

2.2 Automatic reconstruction

Among the various automated tools which are used during the
reconstruction process, we can distinguish several possible out-
puts : point clouds, meshes (Caraffa et al., 2017), polyhedrons
(Nan and Wonka, 2017, Bauchet and Lafarge, 2020, Huang et
al., 2022), all with or without additional semantic data (surface
type, LoD...). Most of this methods have an output with a dif-
ferent data type than the input data type (point cloud to mesh,
point cloud to polyhedron...). But some of them add semantic
data to their inputs, giving an output in the same data type than
the input.

Some methods give geometrical and topological guaranties, like
the watertightness (Caraffa et al., 2017), or the closure or man-
ifoldness of the output (Nan and Wonka, 2017, Huang et al.,
2022).

We can cite as an example the family of tools using plane ar-
rangements (Nan and Wonka, 2017, Bauchet and Lafarge, 2020,
Huang et al., 2022), which guaranty that their outputs are closed
and borderless polyhedrons.

2.3 Manual edition of 3D models

A lot of 3D modeling software already exist (among the most
popular are Blender, Sketch up and ZBrush (Keller, 2011)).
These modelers can be used either to create new 3D objects
from scratch, or to modify existing ones.

The modelers which concentrate on the creation of new shapes
use mainly triangle or quad meshes, with basic topological data
which does not always correspond to the structure of the real
object (Keller, 2011). Some other modelers, like Sketch up, use
topological models which can handle more complex topology
(like polygon mesh (Ying et al., 2011)), which allows them to
have a better representation of the real structure of the objects.
However they do not provide object edition tools which allow
direct interaction with the topological model.

3. Methodology

3.1 3D model

To model buildings as polyhedra, we use a 3D representation
based on the half-edge data structure, and representing the geo-

metry through plane equations of the faces of the model, instead
of the more usual vertex coordinates. This has the advantage of
ensuring that faces are planar by construction, but adds the con-
straint that more than 3 faces sharing a vertex must co-intersect.
The half-edge data structure stores the polyhedron topology as
faces, half-edges and vertices. Each edge of the polyhedron is
broken down into two opposite half-edges, as shown in figure 2.
Each half-edge points to an origin vertex (one of the vertices of
the edge), a face (one of the two sharing the edge), an opposite
half-edge (the other half-edge representing the edge and point-
ing to the other face), and a next half-edge (along the boundary
of its face).

half-edge pointers pointed data type
origin vertex

opposite half-edge
next half-edge
face face

Figure 2. Half-edge data in the half-edge data structure.

Each vertex points to only one of the half-edges having this ver-
tex as origin (see figure 3). From this information, it is possible
to find all the other half-edges having this vertex as origin (by
traveling from an half-edge to the next of its opposite, and so
on until getting back to the original half-edge).

vertex pointers pointed data type
half-edge half-edge

Figure 3. Vertex data in the half-edge data structure.

Finally, each face points to only one of the half-edges that form
its exterior boundary, and to n ∈ N half-edges, one for each
interior boundary that the face contains (Figure 4).

Once again, with only one half-edge per interior boundary, it is
easy to find the other half-edges belonging to this boundary by
performing a loop beginning to the stored half-edge, and then



traveling from one half-edge to its next one, until it gets back to
the stored half-edge.

face pointers pointed data type
Exterior half-edge half-edge
Interior half-edges half-edge[]

Figure 4. Face data in the half-edge data structure.

In our model, the 3D geometry is stored as the equations of the
supporting planes of each face. With these geometrical data, it
is possible to compute the 3D coordinates of each vertex adja-
cent to at least three faces which planes co-intersect.

Because our modeler is meant to modify existing 3D objects, it
needs to be able to import other data types and to translate them
into our 3D data model. Currently, the data that can be imported
in our modeler are CityJSON data. We use an intermediate data
structure between the CityJSON model and our final 3D model,
which respects a subset of the CityGML norm (Groger et al.,
2008) (the subset concerning the geometrical and semantic de-
scription of a building). So adding the possibility to import data
respecting the same norm, such as 3DCityDB for instance (Yao
et al., 2018), will be easy.

For easier use of the polyhedral modeler, it has been decided
to define the validity of a 3D object as a set of topological and
geometrical rules that all 3D objects should satisfy before and
after edition. As our polyhedral modeler is meant for urban
objects modeling, these rules are adapted to buildings.

This rules depict objects that must be manifold, closed and
border-less. This implies that the objects are watertight and that
they define a single volume.

The half-edge data structure gives us an easy way to ensure that
the topology described is valid : a topology that would have
a border would have at least one half-edge without opposite,
and non-edge manifold objects cannot be represented with half-
edges (it would require several opposites for one half-edge. For
vertex manifoldness, we need to check that all half-edges are
reachable from their origin vertex using the loop we described
earlier. So we can propose the following rules, which ensure the
validity of an half-edge structure defined by an half-edge set H ,
a vertex set V and a face set F :

• ∀h ∈ H , ∃!ho ∈ H such that opposite(h) = ho and
opposite(ho) = h

• Let us define the exterior orbit of
a face f ∈ F as Oext(f) =
{h ∈ H, ∃n ∈ N, nextn(exteriorHalfEdge(f)) = h},
and let us define in the same way all the interior orbits of
the face (Oint

i (f)).

Then the exterior and interiors orbits are a partition of the
set of the half-edges that belongs to the face f :

∀f ∈ F,∀O1, O2, O1 ̸= O2 ∈ Oext(f)
⋃

Oint
i (f),

O1

⋂
O2 = ∅, and Oext(f) ∪

⋃
i O

int
i (f) =

{h ∈ H, face(h) = f}

• Let us define the orbit of a vertex v ∈ V as O(v) =
{h ∈ H, ∃n ∈ N, (next ◦ opposite)n(halfEdge(v)) = h}.

Then ∀v ∈ V,O(v) = {h ∈ H, origin(h) = v}

Validity also extends to geometry as a valid topology with in-
valid geometry could describe a self intersecting object. For
instance, the object represented in figure 10 can be represen-
ted with a valid half-edge structure, but the auto intersections in
two of its borders makes of this object a non manifold object.
To avoid this, we propose different validity certificates for each
edition operators, which ensure that the objects that are mod-
ified stay valid, so that the user can never accidentally create
invalid building structures.

3.2 Operators

We have developed three edition operators in our polyhedral
modeler, which we present in the following section.

In the figures where we present half-edge structures, some half-
edges are named relative to another half-edge (denoted h here),
and the name of the half-edge describes the operations needed
to travel from h to this half-edge. For instance, hnop is the
(p)revious half-edge of the (o)pposite half-edge of the (n)ext
half-edge of h.

In the tables presenting the changes of data during the applica-
tion of the operators, we use a color code to represent the type
of modification:

• the green lines, dots or faces represent the data of the se-
lected elements

• the red lines, dots or faces represent the deleted elements

• the blue lines, dots or faces represent the created items

• the other lines, dots or faces (without color) represent the
other elements

Also, in the tables, some data replacements are noted in the
following way : ?h1 → h2. This notation means that if the data
is equal to h1, we replace it by h2, and we do nothing otherwise.

3.2.1 Face shifting The FACE-SHIFT operator allows the
user to move a single face of a 3D object along its normal. For
a face supported by a plane parameterized by (a, b, c, d), such
movement can be performed by modifying its last plane para-
meter from (a, b, c, d) to (a, b, c, d + δ). Note that, as vertex
positions are defined at the intersection of the planes support-
ing their adjacent faces, they will not move along the normal of
the moving plane, but slide on the line supporting the intersec-
tion of 2 planes supporting other adjacent faces.

Figure 5. The FACE-SHIFT operator moves one face, but doesn’t
change the other faces. The coordinates of each vertex are

computed as the intersection of its adjacent planes.



The value of the change, denoted as δ, is derived from a drag-
and-drop user interaction in screen-space as follows (Figure 5):

• The mouse-down event selects the moving face by 3D
picking. We define a 3D ray r1 directed by the normal of
the moving face and originating from the picked 3D point.

• Every mouse-move event defines a 3D ray r2 from the
viewing camera position in the direction of the pixel of
the mouse location. Then we find the point p of r1 that is
the closest to r2. The value δ is the distance between the
picked 3D point of the moving face and the point p (Figure
6).

Figure 6. The value of the shift δ can be computed from the new
position of the mouse.

3.2.2 Edge flipping The EDGE-FLIP operator modifies the
topological definition of an edge, by changing the face adja-
cencies of the incident vertices (Figures 7 and 9). This is only
possible if the vertices are not adjacent to more than three faces
which supporting planes coordinates are linearly independent.

Figure 7. The edge defined as the boundary between the faces B
and D is redefined as the frontier between the faces A and C.

This operator therefore changes only the half-edge data of the
object. The geometrical data are then updated according to the
new topology of the object. The changes in half-edge data are
presented in figure 8.

half-edge origin next opposite face
h V1 hn hpo ho B C
ho V2 hon hnon h A D
hp ... h hn hpo B
hop ... ho hon hnon A
hno ... hnon ho hn D
hono ... hpo h hon C
hpo V1 V2 ... hp C
hnon V2 V1 ... hop D

point label half-edge
V1 ?hpo → h
V2 ?hnon → ho

face label exterior half-edge interiors half-edges
A ?ho → hon ?ho → hon

B ?h → hn ?h → hn

Figure 8. The topological modifications that occur during the
EDGE-FLIP of the edge defined by the half-edges h and ho are

shown here.

Figure 9. Result of an EDGE-FLIP on an edge of the roof of a
house.

Although this operator can be applied on any edge having its
vertices adjacent to only three faces with linearly independent
supporting plane coordinates with a valid half-edge structure as
a result, in most cases it will create auto-intersections on faces
borders (see figure 10), which would not fit with our notion of
validity of 3D objects. For this reason, we check before doing
the flip that it will not create any auto-intersections, and we
disable the EDGE-FLIP operator on edges that would yield an
invalid result.

Figure 10. The EDGE-FLIP may create auto-intersections in the
borders of adjacent faces.

3.2.3 Face creation from an edge or a vertex This oper-
ation transforms a vertex (Figure 11), or an edge (Figure 12),
into a face. Once again, this operation only modifies the topo-
logical data of an object, but the plane equations supporting the
faces are not modified.



Contrary to previous operators, this operator can be applied on
vertices adjacent to more than three faces and on edges which
vertices are adjacent to more than three faces. For this reason,
we present the modification of the half-edge structure with an
arbitrary number of faces adjacent to the vertex or to the edge
(Figures 13 and 14).

Figure 11. FACE-CREATION from a vertex with an arbitrary
number of adjacent faces.

Figure 12. FACE-CREATION from an edge with an arbitrary
number of adjacent faces on every vertex of the edge.

half-edge
label origin next opposite face

hi, i ̸= 1 V Vi−1 ... ... ...

hio
... h(i+1)%n ... ...

... hnew
(2i+1)%n

... ...

hnew
2i−1

i ̸= 2 V(i−2)%n

i = 2 V
hi hnew

2i Pi

hnew
2i

i ̸= 1 V(i−1)%n

i = 1 V
hnew
2(i−1)%2n

hnew
2i−1 P

point label half-edge
V ?hi, i ̸= 1 → h1

Vi hi+1

face label exterior half-edge interiors half-edges
P hnew

2

Figure 13. Half-edge structure changes during the
FACE-CREATION from a vertex with an arbitrary number of

adjacent faces. All the vertices indices are given for
i ∈ J1, n− 1K and all the half-edges indices are given for

i ∈ J1, nK, where n is the number of faces adjacent to the vertex
V (which is the vertex being split).

3.3 Topological event resolution

We use our topological data structure combined to the geomet-
rical data to detect the topological events created by the user’s
actions, and to modify automatically the topological structure
of the objects according to the topological events. The face
shift operator traces out the weighted straight skeleton (Auren-
hammer and Walzl, 2016) of the input polyhedron with weights
depending on the dihedral angles with neighboring planes with
the moving plane, and this leads to topological events which
needs to be resolved, by changing the topology.

Three event resolutions have been developed so far, and we
present them in the following sections.

3.3.1 Edge collapsing This event resolution occurs when
the length of the edge becomes zero, and it transforms the edge
with vanishing length into a vertex. It is made by merging the
two vertices of the edge (Figure 15).

half-edge label origin next opposite face
h V1 hn ho B
ho V2 hon h A
hp ... h hn hpo B
hop ... ho hon hopo A
hn V2 V1 ... hno B
hopo V2 V1 ... hop D

point label half-edge
V1 h hn

V2 ho

face label exterior half-edge interiors half-edges
A ?ho → hon ?ho → hon

B ?h → hn ?h → hn

Figure 15. Half-edge structure changes during the EDGE

COLLAPSE resolution.

3.3.2 Vertex splitting This event resolution occurs during
the shift of a face, when one of the vertices of this face is adja-
cent to more than three faces with linearly independent support-
ing planes coordinates. It transforms this vertex into an edge,
by splitting the vertex into two vertices. This operation is the
opposite of EDGE COLLAPSE.



half-edge label origin next opposite face

h ... ... ho h1,new
1 ...

ho ... ... h h2,new
1 ...

h1
i , V1 V 1,new

i ... ... ...
i ̸= n1 + 1

h1
io
, ... h1

i+1 h1,new
i+1 ... ...

i ̸= n1 + 1

h2
j , V2 V 2,new

j ... ... ...
j ̸= n2 + 1

h1
jo
, ... h2

j+1 h2,new
j+1 ... ...

j ̸= n2 + 1

h1,new
2i , V 1,new

i h1
i+1 h1,new

2i+1 P 1
i

i ̸= n1 + 1

h1,new
2i−1 V 1,new

i

{
i ̸= 1 h1,new

2(i−1)−1

i = 1 h2,new
2n2+1

{
i ̸= 1 h1,new

2∗(i−1)

i = 1 h
P

h2,new
2j , V 2,new

j h1
j+1 h2,new

2j+1 P 2
j

j ̸= n2 + 1

h2,new
2j−1 V 2,new

j

{
j ̸= 1 h2,new

2(j−1)−1

j = 1 h1,new
2n1+1

{
j ̸= 1 h2,new

2∗(j−1)

j = 1 h
P

point label half-edge
V1 ?h1

i → ho

V2 ?h2
j → h

V 1,new
i h1

i

V 2,new
j h2

j

face label exterior h.-e. interiors h.-e.
P h1,new

1 /

Figure 14. Changes during the FACE-CREATION from an edge with an arbitrary number of adjacent faces on every vertex of the edge.
All the half-edges indices are given for i ∈ J1, n1K and j ∈ J2, n2K, where n2 is the number of faces adjacent to the vertex V2 and not

adjacent to the vertex V1, and n1 is the number of faces adjacent to the vertex V1 and not adjacent to the vertex V2.

half-edge label origin next opposite face
h1 V1 hpo h2 B
h2 V2 hon h1 A
h V1 V2 hn ho D
ho ... hon h2 h A
hpo V1 V2 ... hp B
hpop ... hpo h1 honon B

point label half-edge
V1 ?h ∨ hpo → h1

V2 h2

Figure 16. General half-edge structure modification during
VERTEX SPLIT.

While there exists only one way to split a vertex into one edge
for a vertex adjacent to at least five faces with linearly independ-
ent supporting planes coordinates, in the case of a vertex adja-
cent to four faces with linearly independent supporting planes
coordinates, there exist two ways to split the vertex into one
edge. The first one, which is the way that works also for ver-

tices having more adjacent faces, is presented in figure 16, and
the other one, which is specific to this case of the vertices adja-
cent to four faces, is presented in figure 17.

half-edge label origin next opposite face
h1 V1 h h2 D
h2 V2 honon h1 C
h V1 V2 hn ho D

hono ... honon h2 hon C
hon V1 V2 ... hono A
hp ... h h1 hpo D

point label half-edge
V1 ?h ∨ hon → h1

V2 h2

Figure 17. Specific half-edge structure modification during
VERTEX SPLIT for a vertex adjacent to four vertices.



3.3.3 Face collapsing This event resolution occurs when
the area of a face becomes null. But an easier way to detect
these events is to detect all the triangle faces which have on
edge that is collapsing (see figure 18). This resolution is the
same as the EDGE COLLAPSE, but with a face becoming an
edge. We present the half-edge structure modification of this
event resolution in Figure 19.

Figure 18. The FACE-COLLAPSE always happens after the
resolution EDGE COLLAPSE occurs on an edge of a triangle face,

reducing this face to one segment.

half-edge label origin next opposite face
h1o V1 h2o h1 P
h2o V2 h1o h2 P
h1 ... ... h1o h2 ...
h2 ... ... h2o h1 ...

point label half-edge
V1 ?h1o → h2

V2 ?h2o → h1

face label exterior half-edge interiors half-edges
P ... ...

Figure 19. Changes of the half-edge data structure during a
FACE-COLLAPSE.

4. Results

The resulting modeler is able to perform several modifications
to both the topology and the geometry of the objects (Figure
20). Each modification applied on a 3D object leaves the ob-
ject in a valid state : the object remains manifold, closed, and
borderless.

The code of the modeler is open source and is provided with a
test dataset 1 and an online demo is available2.

Figure 20. Most of the user geometrical modifications actions
are based on face’s support plane modifications.

The loading process which creates a new object using our data
structure can be time consuming for complex buildings (about

1 https://github.com/LelouchLiBritania/3D-Viewer.git
2 https://lelouchlibritania.github.io/3D-Viewer/

ten seconds for the most complex ones), which makes it difficult
to load entire areas. So we use an intermediate data structure to
visualize entire areas, and then when the user select a building
for the first time, the loading process is done and the object
using our data structure is created (see figure 21).

Figure 21. It is possible to deal with large amounts of buildings,
using intermediate data structure.

However, there exists some input data that the loading process
cannot handle. In our tests, around 5% of the buildings failed to
be loaded (26 fails for a total of 486 buildings). These failures
are caused by some particular cases that have not been handled
yet, like vertices which would be adjacent to only two faces,
which makes impossible the calculation of their coordinates
with plane equation intersections, or like adjacent faces which
would share the same supporting plane. All these issues should
be resolved in our future works.

5. Conclusion

We presented here a work done in the context of the creation
of a semi automatic polyhedral modeling pipeline which com-
bines the speed of automated reconstruction methods with the
robustness of the manual modeling. In this pipeline, most of the
components can be taken off the shelf, but we decided to cre-
ate our own polyhedral modeler in order to make it easier for
the user to interact with the objects. This improvement of the
polyhedral modeling part is mostly done by the use of a half-
edge data structure to represent topology and plane equations
for geometry, and also with the proposition of rules defining
a notion of validity for the objects, which can then be used to
prevent the user from breaking this validity.

The operators that have been developed so far are the FACE-
SHIFT, the EDGE-FLIP and the FACE-CREATION operators. In
addition to the FACE-SHIFT operator, we have added the pos-
sibility to modify the topological structure of the object when
topological events occurs. The events resolution that have been
implemented so far are the edge collapsing, the vertex splitting,
and the face collapsing.

Future works will tackle other components of the pipeline, such
as an object importer assessing and ensuring validity of impor-
ted objects , to facilitate correction of large amount of automat-
ically reconstructed objects.

Concerning the proposed modeler, our perspective is to imple-
ment other useful operators (face rotation, face cut...), to have
it tested by real users and to enhance it based on their feedback.
A user study is therefore planned to assess its usability and ef-
ficiency.

https://github.com/LelouchLiBritania/3D-Viewer.git
https://lelouchlibritania.github.io/3D-Viewer/


References

Aurenhammer, F., Walzl, G., 2016. Straight Skeletons and
Mitered Offsets of Nonconvex Polytopes. Discrete & Computa-
tional Geometry, 56(3), 743–801. doi.org/10.1007/s00454-016-
9811-5.

Bauchet, J.-P., Lafarge, F., 2020. Kinetic Shape Reconstruction.
ACM Transactions on Graphics. doi.org/10.1145/3376918.

Belhaouari, H., Arnould, A., Le Gall, P., Bellet, Thomas”,
e. H., König, B., 2014. Jerboa: A Graph Transformation Library
for Topology-Based Geometric Modeling. Graph Transforma-
tion, 8571, Springer International Publishing, Cham, 269–284.
Series Title: Lecture Notes in Computer Science.

Caraffa, L., Brédif, M., Vallet, B., 2017. 3D Watertight Mesh
Generation with Uncertainties from Ubiquitous Data. S.-H. Lai,
V. Lepetit, K. Nishino, Y. Sato (eds), Computer Vision – ACCV
2016, 10114, Springer International Publishing, Cham, 377–
391. Series Title: Lecture Notes in Computer Science.

Groger, G., Kolbe, T. H., Czerwinski, A., Nagel, C., 2008.
OpenGIS® City Geography Markup Language (CityGML) En-
coding Standard. Version 1.0.0. Report, Open Geospatial Con-
sortium. Accepted: 2019-10-28T20:43:28Z.

Huang, J., Stoter, J., Peters, R., Nan, L., 2022. City3D:
Large-Scale Building Reconstruction from Airborne
LiDAR Point Clouds. Remote Sensing, 14(9), 2254.
doi.org/10.3390/rs14092254. Number: 9 Publisher: Mul-
tidisciplinary Digital Publishing Institute.

Keller, E., 2011. Introducing ZBrush 4. John Wiley & Sons.

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labet-
ski, A., Vitalis, S., 2019. CityJSON: a compact and easy-to-use
encoding of the CityGML data model. Open Geospatial Data,
Software and Standards, 4(1), 4. doi.org/10.1186/s40965-019-
0064-0.

Lienhardt, P., 1991. Topological models for boundary repres-
entation: a comparison with n-dimensional generalized maps.
Computer-Aided Design, 23(1), 59–82. doi.org/10.1016/0010-
4485(91)90082-8.

Line Segment Intersection, 2008. M. de Berg, O. Cheong,
M. van Kreveld, M. Overmars (eds), Computational Geometry:
Algorithms and Applications, Springer, Berlin, Heidelberg, 19–
43.

Nan, L., Wonka, P., 2017. PolyFit: Polygonal Surface Recon-
struction from Point Clouds. 2017 IEEE International Confer-
ence on Computer Vision (ICCV), IEEE, Venice, 2372–2380.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T., 2018. 3DCityDB
- a 3D geodatabase solution for the management, analysis,
and visualization of semantic 3D city models based on
CityGML. Open Geospatial Data, Software and Standards, 3.
doi.org/10.1186/s40965-018-0046-7.

Ying, S., Li, L., Guo, R., 2011. Building 3D cadastral sys-
tem based on 2D survey plans with SketchUp. Geo-spatial
Information Science, 14(2), 129–136. doi.org/10.1007/s11806-
011-0483-2. Publisher: Taylor & Francis eprint:
doi.org/10.1007/s11806-011-0483-2.


	Introduction
	Related work
	3D models
	Automatic reconstruction
	Manual edition of 3D models

	Methodology
	3D model
	Operators
	Face shifting
	Edge flipping
	Face creation from an edge or a vertex

	Topological event resolution
	Edge collapsing
	Vertex splitting
	Face collapsing


	Results
	Conclusion

