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Abstract

To extract the 3D displacements of structures using a camera network, It is
essential to know the frame timestamps. However, technical constraints in
outdoor conditions can make synchronous frame acquisition impossible. This
study aims to reconstruct the timestamps of frames during post-processing
to employ cameras without special camera feature. To achieve this, a LED
panel that emits a coded light signal is placed in the field of view common to
all cameras. The pixel intensity of the LED region in the sequential images
is processed to reconstruct each frame’s timestamp. The uncertainty of the
timestamp reconstruction is numerically estimated to encode the light signal.
Validation was conducted through indoor experiments and outdoor applica-
tions to monitor a tower crane. The uncertainty of the obtained timestamp
is 1.65% of the frame interval under uncontrolled conditions. The proposed
method can be used with cameras, even when synchronization is unattain-
able.

Keywords:
Camera network, computer vision, image processing, frame timestamp
reconstruction, uncertainty characterization

1. Introduction

A camera network is obtained by positioning several cameras at different
locations in a given environment [1] and allows to measure the same event
from various angles or in a wider field of view (FOV) [2, 3]. This technique
has received a lot of attention from the industrial and academic communities



[4]. For example, it can be employed to perform multi-view tracking, 3D
displacement and deformation measurements by stereo-vision, modal analy-
sis, and 3D reconstruction [5, 6, 7]. Also, it is a valuable structural health
monitoring method for the safety and security of large civil structures such
as highways and bridges [8, 9].

Recently, increasing interest is being placed in using low-cost cameras
in outdoor environments to study the dynamics of large-scale structures.
Indeed, combining commercial cameras, such as smartphones or action cam-
eras, rather than industrial ones can be a reasonable way to get a camera
network at a relatively low cost. In order to investigate the dynamic scene
by a camera network, synchronization is always mandatory. However, these
cameras do not provide specific synchronization features, so synchronous im-
age acquisition can be complex. Nevertheless, the obtained image data must
be aligned in time by the process to acquire the timestamp of frames for fur-
ther analysis, such as 3D displacement measurement and Operational Modal
Analysis [10].

Existing methods to know the timestamp of frames and their limitations
will be reviewed here. The first approach is synchronous image acquisition.
In hardware-based synchronization, the images are acquired synchronously
from more cameras through a trigger signal provided by a hardware source
[11, 12, 13]. As a drawback, additional hardware is required. This hardware
has to be connected to each camera with a line, so all cameras in the network
must support the corresponding feature [14]. As another strategy, network-
based synchronization can be used. If all cameras support the related feature,
synchronous image acquisition can be executed after synchronizing the clocks
of each camera via signal exchanges through a network. In other words, the
camera clock can be synchronized through protocols such as the Network
Time Protocol (NTP) [15, 16] and the Precision Time Protocol (PTP) [17,
16]. This approach requires every camera to be connected through Ethernet.
Therefore there is a limitation not only on the bandwidth [5] but also on the
remote or wireless application [18]. More importantly, this approach cannot
be used when cameras do not provide the corresponding NTP or PTP feature.

Another solution is to reconstruct the timestamps of the frames in a post-
processing stage, in which the times of the asynchronous signals obtained
from a set of independent sensors are reconstructed after the data acquisition
[19]. Frame matching methods by correlating specific fingerprints in videos
have been proposed in [2, 20]. However, these methods only match frames and
do not consider asynchronous frame acquisition and acquisition time in sub-
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frames. In addition, several studies have proposed methods for reconstructing
timestamps that take into account the asynchronous frame acquisition in
the sub-frame. Examples of this include methods based on the motion of
silhouettes [21], trajectory matching [22], and the human pose estimation
[23]. In these studies, reconstruction of timestamps is performed through the
movement of the subject in each scene. The reconstruction of timestamps of
moving cameras is done through baseline matching and tracking [24]. As a
drawback, all these studies require recording a subject with large movement
in the FOV common to all cameras.

A sub-frame timestamp reconstruction method that can be used wirelessly
and without additional camera features consists of placing an independent
event in the FOV common to all cameras. In this framework, Zhao and
Chen [18] measured the offset time between video records by adding a light
source providing a random On/Off light signal. The sub-frame offset between
cameras is obtained by using the binary light signal and its filmed binary
signal. An average error of 8 % of the frame interval is obtained at a frame
rate of 200 Hz. Ding and Tao. [25] extracted the timestamps of frames by
using LEDs in the form of a matrix that displays different combinations of
arrays. However, this method required a LED matrix that covers a large
part of the FOV with a theoretical accuracy reported as less than 1 ms. In
the study of Kim and Ichikawa [26], the timestamp of frames is achieved by
knowing the position of a linearly oscillating lighting spot filmed by each
camera. The accuracy obtained is around 2 % of the frame interval when the
frame rate is set to 1000 Hz. The feasibility of their timestamp reconstruction
method has been proven in a large-scale camera network. However, the
implementation in an uncontrolled outdoor environment or with different
camera parameters is not detailed.

In this paper, we propose a sub-frame timestamp reconstruction method
of a camera network using a coded light signal that is applicable to a large-
scale scene. The reconstructed timestamp with an identical clock can be
used for interpolation followed by 3D displacement triangulation in the case
of a camera network filming a large-scale structure. The method is suitable
for dynamic and vibration analysis of structures. This is conducted by post-
processing the light signal in the sequential frames already acquired. The
protocol works with a camera network consisting of a variety of commercial-
grade cameras, without any special camera features, and consists in placing
a light source with a coded signal in the filmed scene. The fundamental
concept underlying the reconstruction of the time stamp with a coded light
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signal is the utilization of slightly different frequencies for the light signal
and the camera frame rate. Furthermore, if the camera exposure is partially
overlapped with the light-on time, it helps to achieve higher accuracy. A
suitable coded light signal was thus determined by numerical simulation. The
accuracy of the proposed method is quantified in a laboratory environment
with different camera parameters and in an outdoor environment on a large-
scale scene.

The paper is organized as follows. In Section 2, the proposed system and
the timestamp reconstruction protocol are presented. Numerical simulations
are carried out in Section 3 to determine the parameters of the coded light
signal and to investigate the influence of the frame rate and exposure time of
the camera. Finally, in Section 4, the validation and accuracy of the proposed
method will be discussed through experiments in two environments. First,
the process and results of the experiment in a laboratory environment will be
presented for different camera settings (frame rate and exposure time) and
second, for an outdoor application when the camera network is employed to
measure the 3D displacements of a tower crane.

2. Principle of the method for reconstructing the timestamp of a
camera network from a coded light signal

A representation of tools required for the method proposed in this study
is shown in Figure 1. The light signal generator is placed in the common
FOV of a camera network, where a structure of interest is also observable.
As a light signal source, a system composed of a control box and a LED panel
is manufactured and is represented in Figure 1. Inside the control box, a mi-
croprocessor NI (National Instruments) MyRio is installed and programmed
to send a specific sequence of On/Off signals to the LED panel. A lithium
iron phosphate battery (12.8 V–12000 mAh) is installed in the control box
to serve as a power source for the LED panel and microprocessor. The LED
panel size is 500 x 300 mm2 in order to have sufficient brightness to be
detected by the cameras and the light signal to be recognized, even in an
outdoor environment. The maximum distance can be calculated for this size
of LED panel using the thin lens equation, assuming that one side of the
LED panel should be at least three pixels. For example, if a camera Basler
acA1300-200um with a lens with a focal length of 8 mm is used, the maxi-
mum distance can be calculated as 277 m. The maximum distance can be
also calculated as 1060 m when a camera Vieworks VC-12MX with 35 mm
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Figure 1: The structure of interest and light signal generator as a timestamp reconstruction
tool. The light signal generator and LED panel are placed in the common FOV of a camera
network. In this study, they are located on the top of a tower crane.

lens is used. The features of the coded signal will be described in the next
sections.

The general concept behind the sub-frame timestamp reconstruction to
find the time when the frames were acquired is shown in Figure 2. The light
source emits a light signal as programmed (Figure 2a). Asynchronous video
recording of each camera is performed for a defined duration (Figure 2b).
A region of interest (ROI) is selected around the LED panel and the mean
pixel intensity value is calculated for each frame (Figure 2c). This mean
pixel intensity depends on the relationship between the time instants of the
acquisition of the frames and those of the light signal flashes. By relating
these two pieces of information, the determination of the timestamp of each
frame can be conducted (Figure 2d), i.e. the clock of each camera can be
synchronized with the clock of the light signal. The details are presented in
Section 2.2, and all the parameters that are used in this paper is summarized
in Table 1.

2.1. Camera signal

During the acquisition of a frame, the image sensor receives photons for a
defined period of time, called the exposure time, and converts the quantity of
photons received into gray levels (for monochrome camera) to form an image.
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Figure 2: Steps of timestamp reconstruction of a camera network using a coded light signal.
(a) MyRio microprocessor On/Off sequence for the light signal, (b) recorded frames, (c)
mean pixel intensity processed in the ROI, (d) reconstructed timestamp with respect to
the coded light signal.
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Figure 3: Camera image acquisition signal represented as a rectangular pulse signal. When
the camera state is On, the camera sensor exposure starts and the sensor receives photons.
When the camera state is Off, the image sensor does not receive photons.

Assuming that the camera sensor exposure starts and ends instantaneously
and that the acquisition frame rate of sequential images is constant, which is
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Table 1: Description of parameters used

Parameters Description

Cstart Vector of time when the camera exposure starts. kth component is Cstart
k

Cend Vector of time when the camera exposure starts. kth component is Cstart
k

t0 Offset time with respect to a reference time
dt Frame interval (inverse of the frame rate)
te Exposure time
Lstart Vector of time when flash turns on. lth component is lstarti

Lend Vector of time when flash turns off. lth component is lendi

S Vector of the overlapping ratio of the light-on state with respect to the camera sensor exposure time
tovk Overlapping time during which the camera sensor is on and the LED is turned on
I Vector of mean pixel intensity of the ROI of the LED region
Imax Vector of maximum value of the mean pixel intensity of the LED region
Imin Vector of minimum value of the mean pixel intensity of the LED region
Sob Vector of observed overlapping ratio S
Ton Duration when the light is on
Toff Duration when the light is off
Tcycle Duration of a cycle of light signal
Nslot Number of slots flashes that can appear in each pattern at most
Th Duration of hour pattern
Tm Duration of minute pattern
Tb Duration of normal pattern
Tstop Duration when off state maintains after each pattern
H Current hour
M Current minute
Nh Number of flash occurrences corresponding to the current hour
Nm Number of flash occurrences corresponding to the current minute
C Time base unit (a coded light signal is coded as a multiple of C)

a common assumption when timestamp is reconstructed with events in the
FOV [18, 22, 21], the exposure state of the camera sensor can be expressed
as a rectangular pulse signal, as shown in Figure 3. The start (Cstart) and
end (Cend) states of this rectangular pulse signal can be expressed in the
following manner:

Cstart =
{
Cstart
1 , · · · , Cstart

k , · · ·Cstart
N

}
with Cstart

k = t0 + (k − 1)dt

Cend =
{
Cend
1 , · · · , Cend

k , · · ·Cend
N

}
with Cend

k = t0 + te + (k − 1)dt
(1)

where t0 is the offset time with respect to a reference time, dt is the frame
interval which is the inverse of the frame rate (fps), te is the exposure time,
and N is the number of sequential images. The reference time is the time
instant with respect to which frames of each camera are reconstructed. The
kth image is an image obtained by exposing the image sensor from time
instants Cstart

k to Cend
k .

2.2. Determination of the timestamp of frames
In this section, we will explain how the timestamp of the recorded video

can be reconstructed from the measurement of the ROI light intensity ob-
tained through a video acquisition. By assuming that the physical transition
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of the LED state is instantaneous, the transition times of the light during
video acquisition can be expressed as:

Lstart =
{
lstart1 , lstart2 , lstart3 · · ·

}
Lend =

{
lend1 , lend2 , lend3 · · ·

} (2)

which indicates that the ith flash turns on at time instant lstarti and turns off
at time instant lendi . The overlapping ratio of the light-on state with respect
to the camera sensor exposure time for the kth frame can be calculated as in
Eq. 3.

Sk =
tovk

Cend
k − Cstart

k

=
tovk
te

, with S = {Sk} (3)

where the overlapping time tovk indicates the duration for which both the
camera sensor state signal, for the kth image, and the LED state signal, for
the ith flash, are On. This is graphically represented in Table 2. This over-
lapping time tovk can be calculated with the time instants Cstart

k and Cend
k and

the corresponding light-on time instants lstarti and lendi (Eq. 4).

Three cases of overlapping occur, as presented in Table 2. First, there
is the fully overlapping case, where the light is always on during the camera
frame acquisition. The overlapping time tovk can be calculated with Eq. 4a.
Second, there is a partially overlapping case in which the state of light changes
while the acquisition of an image is in progress. In this case, Eq. 4b and 4c can
be used to obtain the overlapping time. Last, the non-overlapping case occurs
when the light is always off during the camera frame acquisition. Since there
is no overlapping between the two On-state signals, the overlapping time is
equal to zero as written in Eq. 4d.

tovk = te if lstarti < Cstart
k < Cend

k < lendi (4a)

tovk = lendi − Cstart
k if lstarti < Cstart

k < lendi < Cend
k (4b)

tovk = Cend
k − lstarti if Cstart

k < lstarti < Cend
k < lendi (4c)

tovk = 0 if Cstart
k < Cend

k < lstarti or lendi < Cstart
k < Cend

k (4d)

As a result, given Lstart and Lend, S is the output of a function f , which
inputs are the parameters needed to determine Cstart and Cend:

f : X 7→ S (5)
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Table 2: Cases of overlapping ratio between the camera and the light state signals for the
kth frame. The mean pixel intensity in the ROI around the LED panel is maximum for
fully overlapping On-state signals, and minimum when they do not overlap.

Signal Fully overlapping case Partially overlapping case Non-overlapping case

Sk Sk = 1 0 < Sk < 1 Sk = 0

Signal

visualization
 !
"#$%#

 !
&'(

)*
"#$%#

)*
&'(  !

"#

 $

Camera sensor

exposureLight ON

Image

example

where X = {t0, te, dt}, S ∈ RN , and 0 ≤ Sk ≤ 1.

Figure 4 shows the overlapping ratio for a given sequence of camera and
light state signals.
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Figure 4: Overlapping ratio S between camera and light state signals determined by t0,
te, and dt. In this case, t0 is the offset time with respect to the reference time lstart1 .

In addition to the assumption of instantaneous physical change of camera
sensor and light states, we assumed that the relationship between exposure
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time and pixel intensity is linear before the pixel saturation occurs. This
assumption can be reliable when γ-correction is switched off [27]. Thanks
to this assumption, the ratio Sk can be calculated from the mean pixel in-
tensities measured in the ROI placed around the LED panel. The observed
overlapping ratio Sob

k can then be calculated by:

Sob
k =

Ik − min
[k−n,k+n]

(Ik)

max
[k−n,k+n]

(Ik)− min
[k−n,k+n]

(Ik)
=

Ik − Imin
k

Imax
k − Imin

k

(6)

with Sob =
{
Sob
k

}
, I = {Ik}, Imax = {Imax

k }, and Imin =
{
Imin
k

}
. Ik is the

mean pixel intensity of the ROI in the kth frame. Imax
k is the maximum value

of the mean pixel intensity in the neighborhood of the kth image. The number
of neighborhood frames considered, n, has to be large enough to enclose the
fully and non-overlapping cases. Likewise, Imin

k is the minimum value of the
mean pixel intensity in the neighborhood of the kth image. Indeed, during a
video sequence, the extreme values of the mean pixel intensity may be time-
dependent. For example, variations may occur outdoors due to changes in
lighting, light reflections, and vibration of structures.

Based on the assumptions of the linear relationship between the exposure
time and pixel intensity, and the instantaneous physical transition of camera
sensor and LED states, we can consider that S is equal to Sob. As a conse-
quence, the timestamp of each frame can be obtained by finding the optimal
X that minimizes the root–mean–square error (RMSE) between S and Sob

according to:

argmin
X=(t0,te,dt)

√√√√ N∑
k=1

(
Sk(X)− Sob

k

)2
N

(7)

As a result, reconstructed timestamps of a video sequence (Cstart and
Cend) with respect to the reference time can be obtained by the determina-
tion of optimal X. In this way, we can find t0, as well as te and dt, which
are close to the camera settings, but with an uncertainty that will depend
on different parameters that will be studied in Section 3.

2.3. Structure of the coded light state signal

In order to reconstruct the timestamps of the On-state signal of the cam-
era sensor with the aforementioned method, the light-state signal has to be
encoded in such a way as to ensure a certain level of accuracy and robustness
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Figure 5: One period of light state signal (a) and a sequence of the coded light state signal
(b). The sequence repeats periodically. At the start of a sequence, the current time is
indicated through the time pattern and then the normal pattern is executed until the next
sequence starts.

with respect to the camera settings, in particular frame rate and exposure
time. Therefore, we propose to encode the light state signal as the repetition
of a sequence that can be tunable depending on the camera settings.

A flash of light can be represented as a cycle of a rectangular pulse signal,
where Ton and Toff are the durations of the On and Off states, respectively
(see Figure 5(a)). In one sequence, three pulse patterns are coded to be
distinguished in the videos by specific cycle duration and number of occur-
rences, as shown in Figure 5(b): one pattern to give the hour information by
the number of occurrences of flashes as a 12-hour clock, another to give the
minute information by the number of occurrences as the ordinal number of
the current sequence in 60 minutes, and the other for the determination of
timestamp with sub-frame resolution. Each pattern ends by maintaining the
Off state for a duration Tstop.

The first pattern of the programmed LED state signal is the hour pattern,
starting from the point Ph and having a duration Th. The second one is the
minute pattern, starting from the point Pm and having a duration Tm. The
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time pattern consists of these first two patterns, starting from the point Ph

and having a duration Th + Tm. The last pattern, called here the normal
pattern, starts from point Pn and has a duration Tn. The whole sequence re-
peats periodically with the period Ts. At the beginning of each sequence, the
time pattern is updated and indicates the current time. The following steps
are used to determine the coded light state signal enabling the determination
of the timestamp of the images obtained by the cameras.

1. Select the camera parameters (dt from the camera frame rate, exposure
time te, and video acquisition time) depending on the objective of the
camera network.

2. Decide the duration of a sequence (in minutes) which is shorter than
the video acquisition time and is a divisor of 60 min.

3. Select Ton and Tcycle in the normal pattern, based on the numerical
simulations presented in Section 3.

4. Decide on the specific duration of each pattern.

Since the purpose of our camera network is to study the dynamics of large
structures, for which the frequency range of interest is below 2 Hz, dt is set
to 32 ms (i.e. fps = 31.25 Hz) and the video acquisition time to more than
4 minutes. Therefore, the duration of a sequence Ts is set to 4 minutes to
always indicate the current time in the acquired videos. The next step is
to find the specific duration of the normal pattern based on the numerical
simulations presented in Section 3 for the selected camera parameters.

3. Determination of the parameters of the coded light state signal

In order to illustrate the proposed method and to determine the parame-
ters of the coded light state signal, we checked whether X (= {t0, te, dt}) can
be specified by S calculated for a synthetic normal pattern (Lstart and Lend).
For these simulations, the exposure time te and frame acquisition interval dt
are fixed so that the unknown vector X is reduced to the offset time t0. For
this case, the situation where X and S have a one-to-one correspondence
is investigated. Otherwise, a range of X (equivalent to t0 here) that yields
the same vector S is identified and this range is defined as the offset time
uncertainty.
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3.1. Quantification of the offset time uncertainty

For these simulations, the exposure time te is set to 0.5 ms and the frame
acquisition interval dt to 32 ms. The normal pattern is arbitrarily defined
by the duration of the light-on and light-off states: Ton = 66 ms and Toff =
198 ms (or Tcycle = 264 ms). These durations are chosen as multiples of
a time base unit C, defined in Section 3.4, needed to encode the light state
signal used by the MyRio microprocessor. The offset time uncertainty is here
calculated and studied only with the normal pattern. To quantify the offset
time uncertainty, the overlapping ratio vector S is calculated and investigated
for t0 varying from 0 to 264 ms with a step of 0.01 ms. The reference time
for the offset time t0 corresponds to the first light-on time instant (lstart1 ), as
shown in Figure 6.

 !
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 " = 264 #$
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Figure 6: Simulation of numerical camera sensor signals to calculate the overlapping ratio
vector S for each signal. With fixed exposure time te and frame acquisition interval dt,
the vector S is calculated for t0 from 0 to 264 ms with a step of 0.01 ms.

Each overlapping ratio Si is taken as an idealized observed overlapping
ratio Sob and called Sreal

i , where i corresponds to the index of the step of
the offset time t0 (see Figure 6), called treali0 . Then, a RMSE vector whose
components are the RMSE between the overlapping ratios, Sj, and the one
taken as a reference, Sreal

i , is calculated for each step (treali0 ) of the offset
time t0. The RMSE vectors obtained for treali0 = 89.6, 105, and 132 ms
(corresponding respectively to i= 8961, 10501, and 13201) are depicted in
Figure 7. Assuming that treali0 is the real offset time and Sreal

i is the idealized
overlapping ratio Sob, the uncertainty of the offset time t0 is defined as the
range of t0 where the RMSE between Sj and Sreal

i is equal to 0, i.e. Sj is
equal to Sreal

i (see Eq 7). In this way, the uncertainty of the estimation of
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the offset time t0 is obtained. Figure 7 shows the uncertainties obtained for
treali0 = 89.6, 105, and 132 ms.
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Figure 7: Quantification of the offset time uncertainty (with te = 0.5 ms and dt = 32 ms)
as the range of t0 for which Sj is equal to Sreal

i , i.e. the RMSE between Sj and Sreal
i is

equal to zero. In the red rectangles, the offset time uncertainty regions are zoomed and
their ranges are visualized.

In the case where treali0 is equal to 132 ms, for example, the offset time
uncertainty obtained is 5.5 ms. The evolution of the offset time uncertainty
determined for all treali0 is shown in Figure 8.

The evolution of the offset time uncertainty presented in Figure 8 is pe-
riodic. At worst, the sub-frame accuracy is therefore equal to 5.5 ms when
the frame acquisition interval is 32 ms. Only with the normal pattern, the
proposed method enables an image timestamp 5.8 times more accurate than
the frame acquisition interval. Better timestamp accuracy can be achieved
by using also the time pattern, as discussed in Section 4.

3.2. Influence of the durations Ton and Tcycle on the offset time uncertainty

In order to determine the parameters Ton and Tcycle of the normal pattern
of the light state signal, their influence on the uncertainty of the offset time,
defined in Section 3.1, is investigated in this section and their values for
the coded light signal are decided accordingly. The range studied for these
parameters is [33; 100] ms for Ton and [100; 300] ms for Tcycle.
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Figure 8: Evolution of the offset time uncertainty with respect to treali0 when te = 0.5
ms and dt = 32 ms (or fps = 31.25 Hz). In (a), the uncertainty of the offset time t0 is
calculated for every treali0 from 0 to 264 ms. In (b), the uncertainty is depicted for treali0

from 125 to 140 ms.

In Figure 9a, the maximum uncertainty of the offset time t0 is plotted
with respect to the durations of the light state signal Ton and Tcycle, where
the x-axis is the duration of the light state cycle Tcycle and the y-axis is
the light-on state duration Ton. For this calculation, the camera acquisition
parameters are set to dt = 32 ms for the frame acquisition interval, te = 0.5
ms for the exposure time, and N = 1000 images for the number of frames.
In order to be able to observe the change of state of the light signal through
the images acquired, it is necessary to have at least one non-overlapping case
when the state of the light signal is Off and one fully overlapping case when
the state of the light signal is On (see Table 2).

It can be seen from Figure 9b that when Tcycle is a multiple of dt, this
corresponds to the peaks of the maximum uncertainty curve. In Figure 9c,
the values for which Ton is a multiple of dt also yield a high level of the
maximum uncertainty, even though the influence of Ton is smaller than that
of Tcycle. These results indicate that the situation where Tcycle and Ton are
multiples of dt should be avoided. As a time base unit has to be defined to
encode the light state signal used by the MyRio microprocessor and multiples
of dt should be avoided, the time base unit C is arbitrarily set to 33 ms since
dt is 32 ms for the camera (fps = 31.25 Hz). Thus, based on the numerical
calculations and since the durations have to be multiples of the time base
unit C, we decided to set Ton to 66 ms (= 2 C) and Tcycle to 264 ms (= 8 C)
for the normal pattern. For these values, the maximum uncertainty of the
offset time is 5.5 ms (see Figure 9c).
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Figure 9: Influence of the coded light signal parameters on the offset time uncertainty:
(a) the maximum uncertainty of t0 is investigated for different light state signals when
camera parameters are dt = 32 ms, te = 0.5 ms, and N = 1000 images. The maximum
uncertainty is plotted with respect to the duration of the light state cycle Tcycle (x-axis)
and the duration of the light-on state Ton (y-axis). The maximum uncertainty is calculated
every 0.1 ms along x- and y-axis. In (b), the influence of Tcycle on the maximum uncertainty
is shown when Ton = 66 ms. In (c), the relationship between the maximum uncertainty
and Ton is shown when Tcycle is set to 256 and 264 ms.

3.3. Sensitivity of the offset time uncertainty to camera frame rate and ex-
posure time

The influence of the camera frame rate and exposure time on the offset
time uncertainty is investigated here to check the adaptability of the proposed
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method to determine a coded light signal for other values of the camera
settings and to study the effect of a change of the camera settings, especially
the exposure time, on the offset time uncertainty. The range studied for these
parameters is [30; 125] Hz for fps and [0; 5] ms for te. For this calculation,
the following parameters are set: the number of frames N = 1000 images, the
light-on state duration Ton = 66 ms, and the duration of the light state cycle
Tcycle = 264 ms. In Figure 10a, the maximum uncertainty of the offset time
t0 is plotted with respect to the camera frame rate (x-axis) and the exposure
time (y-axis). The effect of the camera frame rate is presented in Figure 10b
for te = 0.5 ms and Figure 10c investigates how the exposure time affects the
maximum uncertainty of t0 for fixed camera frame rates (fps =30, 31.25, 60,
and 62.5 Hz).

The graph of Figure 10b presents several peaks. This occurs when the
least common multiple of Tcycle and dt (= 1/fps) is too small. For exam-
ple, when fps = 30.3 Hz, dt is approximately 33 ms, which is a divisor of
Tcycle = 264 ms. As a result, the coded light state signal can be used with
different frame acquisition intervals if those are selected based on the numer-
ical calculations. In Figure 10c, the maximum uncertainty linearly decreases
when te increases. This can be explained by the fact that, when te increases,
the number of occurrences of the fully or non-overlapping cases is reduced
and that of the partially overlapping case increases leading to the one-to-one
correspondence between X and S.

3.4. Characteristics of the coded light state signal

Since the duration of a sequence of the coded light state signal is fixed at
4 minutes, the time pattern shown in Figure 5 is coded as follows. During
each pattern, at most Nslot flashes can appear. For example, during the hour
pattern, at most 12 flashes can appear, where each corresponding to an hour.
For the minute pattern, at most 15 flashes can appear, one every 4 minutes.
Each pattern ends by maintaining the Off state for a duration Tstop. Thus,
the total duration Ti of each pattern, where i = h,m, n respectively for hour,
minute, and normal, can be expressed by the Eq. 8.

Ti = NslotTcycle + Tstop (8)

where Tcycle = Ton + Toff .

The current time is indicated in the time pattern through the number
of flash occurrences. In the hour pattern, the number of flashes is set to be
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Figure 10: (a) The maximum uncertainty of the offset time t0 is plotted with respect to
the camera frame rate (x-axis) and exposure time (y-axis). The maximum uncertainty
is calculated every 0.05 Hz along x-axis and 0.05 ms along y-axis. (b) Influence of the
camera frame rate on the maximum uncertainty when the exposure time is fixed to 0.5
ms. (c) Maximum uncertainty with respect to the camera exposure time when the camera
frame rate is set to 30, 31.25, 60, and 62.5 Hz.

equal to the current hour (H) according to Eq. 9. For example, a On/Off
LED state cycle occurs nine times at 9 am, whereas it occurs three times
at 3 pm. Likewise, in the minute pattern, the number of flashes is set to
be determined by the current minute (M) based on Eq. 10 and is updated
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every 4 minutes, according to the sequence period.

Nh =

{
H if am
H− 12 if pm

(9)

Nm =

 E

(
M
4

)
+ 1 for M < 60

1 for M = 60
(10)

where Nh and Nm are the number of flash occurrences corresponding to the
current hour H and minute M, respectively. E() is the integer part of divi-
sion. As an example, Figure 5 indicates that the current time is 6:52.

The specific duration of each pattern for the experimental study presented
in Section 4 is detailed in Table 3. The duration of the light signal during
each pattern is programmed here to be proportional to the time base unit
C. For the specific durations Ton and Toff of the hour pattern and minute
pattern, we set them arbitrarily to 16 and 8 times the time base unit C to
make it easier to distinguish each pattern by the duration of the light state
signal.

Table 3: Detailed duration of each pattern in one sequence of the coded light state signal.
C = 33 ms is a time base unit of the light state signal. The sequence period is Ts = 4
minutes.

Pattern Ton Toff Tcycle Nslot Tstop Ti

Hour 16 C 16 C 32 C 12 40 C 12 Tcycle+40 C = 424 C = Th

Minute 8 C 8 C 16 C 15 35 C 15 Tcycle+35 C = 275 C = Tm

Normal 2 C 6 C 8 C 818 30 C − 9 818 Tcycle+30 C − 9 = 6574 C − 9 = Tn

Thanks to this coded light state signal, the frames recorded from different
cameras can be matched using the unique time pattern that appears every
Ts. As detailed in Section 3.1, a timestamp with a sub-frame accuracy can
be obtained with the normal pattern.
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4. Experimental validation

4.1. Test case 1. Sub-frame timestamp reconstruction of a camera network
for a laboratory experiment

In order to confirm the applicability of the proposed method and to es-
timate the accuracy of the timestamp reconstruction with the coded light
signal previously defined, an experiment is conducted in a controlled indoor
environment.

Light Panel

Camera 1

Camera 2

Figure 11: Experimental setup for the timestamp reconstruction of two cameras in the
controlled indoor environment.

The system is configured as shown in Figure 11. The LED panel is placed
in an environment without ambient light and filmed by two cameras Vieworks
(Model VC-12MX). Both cameras are synchronized through a hardware trig-
ger to enable the validation of the timestamps reconstructed by the proposed
method. A parametric study is performed for the frame rate and exposure
time of the cameras. The frame rate of the cameras is successively set to
31.25, 62.5, 125, and 250 Hz, and the exposure time is set to 0.5, 1, and
3 ms for each frame rate. In this way, a total of 12 experiments are first
conducted. Videos with a duration of 256 s are acquired synchronously by
the two cameras.

To summarize, the timestamp reconstruction of the cameras by the pro-
posed method is performed according to the following steps:
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Figure 12: Process to reconstruct the timestamps in a laboratory test.(a,b): te = 1 ms,
fps = 125 Hz, (c,d): te = 3 ms, fps = 31.25 Hz. (a)(c) Raw signal: mean pixel intensity
calculated for the ROI around the LED panel for each frame, and the corresponding upper
and lower envelopes. (b)(d) Optimized results after normalization of the envelopes: com-
parison between the observed overlapping ratio Sob and the overlapping ratio S optimized
from the reconstructed timestamps.

1. For each frame, the mean pixel intensity I in the ROI containing the
LED panel is extracted;

2. Imax and Imin are evaluated as the upper and lower envelopes of the
intensity at each frame;

3. Sob is obtained from Eq. 6;

4. X = (t0, te, dt) is obtained by minimizing the RMSE between Sob and
S. The minimization of Eq. 7 is performed in MATLAB® using the
fmincon function;

5. The timestamp of each camera, Cstart, is reconstructed with the opti-
mized vector Xopti from Eq. 1.

The signal processing and optimization process of Camera 1 are shown in
Figure 12a and 12b for te = 1 ms and fps = 125 Hz, and in Figure 12c and
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Table 4: Ratio of the uncertainties δt0 and δtRMSE
0 by the frame acquisition interval dt

for all exposure times and frame rates of the parametric study. The uncertainty δt0 is the
absolute value of the difference of the offset times t0 estimated for each camera |t0,cam1

−
t0,cam2 |. The uncertainty δtRMSE

0 is computed as the RMSE between the reconstructed
timestamps obtained for each camera (Cstart

cam1
and Cstart

cam2
).

ratio (in %) fps

=
(

δt0
dt
,

δtRMSE
0

dt

)
31.25 Hz 62.5 Hz 125 Hz 250 Hz

te

0.5 ms (0.43, 0.24) (0.29, 0.26) (6.89, 3.78) (7.51, 3.98)

1 ms (0.10, 0.08) (0.03, 0.04) (1.19, 1.31) (19.68, 11.20)

3 ms (0.46, 0.32) (1.69, 0.86) (4.09, 2.90) (7.28, 3.71)

12d for te = 3 ms and fps = 31.25 Hz. The overlapping ratio S calculated
using Xopti is represented by red circles in Figure 12b and 12d.

Since it is assumed that these two cameras are perfectly synchronized
through the hardware trigger, the uncertainty of the timestamp determined
by the present method is estimated in two ways: as the absolute value of
the difference of the offset times t0 estimated for the two cameras (δt0 =
|t0,cam1 − t0,cam2|) and the RMSE between the reconstructed timestamps ob-

tained for each camera (δtRMSE
0 =

√
1
N

∑N
k=1

(
Cstart

k,cam1
− Cstart

k,cam2

)2
). Table 4

presents the ratio of these uncertainties by the frame acquisition interval dt
for all exposure times and frame rates of the parametric study. The results
confirm that the uncertainty is significantly lower than the frame acquisition
interval dt for all tests.

As the frame rate of commercial cameras is fixed or of very limited choice,
for example the GoPro camera HERO9 only has two possible frame rates (30
or 60 Hz), another experiment is conducted at these frame rates, with te = 0.5
ms, to evaluate the accuracy of the timestamp reconstruction. The ratio of
the absolute value of the difference of the offset times t0 estimated for each
camera, δt0, by the frame acquisition interval, dt, is equal to 0.39% for the
frame rate of 30 Hz and to 1.71% for 60 Hz. For the ratio of the RMSE
between the reconstructed timestamps obtained for each camera, δtRMSE

0 , by
the frame acquisition interval, it is equal to 0.20% for the frame rate of 30
Hz and 0.86% for 60 Hz. At these frame rates, a sub-millisecond accuracy
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is also achieved. Thus, it is possible to affirm that the proposed method is
applicable with accuracy in the microsecond range when using a commercial
camera, the frame rate of which cannot be modified and which does not
provide other synchronization features.

4.2. Test case 2. Timestamp reconstruction of a camera network in uncon-
trolled environment

Tower Crane

Camera 1

Camera 2

Camera 3

Camera 4

Camera 5

Light Panel

Figure 13: Position of the cameras of the network in real environment for the monitoring
of a tower crane (reprinted from Google Maps).

One purpose of using a camera network is to measure the 3D displace-
ments of a structure, for example for structural health monitoring applica-
tions. In this section, it is studied whether the proposed method can be used
and what is its accuracy for real outdoor conditions and the reconstruction
of the displacements of a tower crane. The setup of the experiment in an
outdoor environment is shown in Figure 13. Five cameras are placed on
the third floor of a building in order to record the motion of a tower crane
located near the building. The LED panel and the control box are placed
on the upper part of the tower crane (see the upper right corner of Figure
13), so that the light signal from the LED panel could be filmed by each
camera. As presented in Table 5, different models of camera are used. The
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Table 5: Properties of the cameras used for the outdoor experiment.

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Camera Model
Basler

acA1300-200um

Basler

acA1300-200uc

Vieworks

VC-12MX

JAI

SP-12000

JAI

SP-12000

fps 31.25 Hz 31.25 Hz 31.25 Hz 31.25 Hz 31.25 Hz

te 1 ms 2 ms 3 ms 2.5 ms 2.5 ms

Synchronization with hardware trigger NO NO NO YES YES

frame rate is set to 31.25 Hz and different exposure times are set to suit the
characteristics of each camera. The Cameras 4 and 5 are synchronized by a
hardware trigger and the other three start video acquisition asynchronously.
The timestamp is then reconstructed using the sequence of light state signal
defined is Section 3.4 and used by the LED panel filmed by all cameras.
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Figure 14: Reconstruction process of the timestamps for the outdoor test (Camera 4).
(a) Raw signal: mean pixel intensity calculated for the ROI around the LED panel for
each frame, and the corresponding upper and lower envelopes. (b) Optimized result after
normalization of the envelopes: comparison between the observed overlapping ratio Sob

and the overlapping ratio S optimized from the reconstructed timestamps.

The process of timestamp reconstruction is shown in Figure 14. In the
first step, the mean pixel intensity I is calculated for the ROI with the LED
panel. Next, the maximum and minimum values of the mean pixel intensity
in the neighborhood of each image, Imax and Imin, are obtained. Imax and
Imin represent the lower and upper envelopes of the mean pixel intensity.
The number of neighborhood frames to determine Imax and Imin is 5 when
the light state signal is in the normal pattern part and 401 when the light
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state signal is in the time pattern part. In this outdoor experiment, it can be
seen that the local minima and maxima change due to the varying lighting
conditions. Moreover, the lower and upper envelopes oscillate due to the
vibration of the tower crane. The resulting oscillations in the envelope signals
are related to the number of neighborhood frames used to compute the local
maxima and minima. These changes and the important noise level in pixel
intensity due to the application of the proposed method in outdoor conditions
can be clearly observed when comparing the raw pixel intensity (I) with
that obtained in the laboratory, as illustrated in Figure 12c. Figure 14b
presents the normalized intensity signal Sob and the signal S obtained after
the optimization process, from the reconstructed timestamps. The influence
of illumination changes and interferences due to vibration of the structure
was mitigated in the normalization process in Sob, however the noise level is
larger than that observed in the laboratory tests.

Table 6: Camera settings and optimized parameters from the timestamp reconstruction
process based on the coded light signal for the outdoor test.

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Camera settings
te (ms) 1 2 3 2.5 2.5

dt (ms) 32 32 32 32 32

Optimized values

t0 (ms) 152.740 156.394 140.167 167.816 168.261

te (ms) 1.00 1.80 2.91 2.45 2.58

dt (ms) 31.9993 31.9994 31.9991 31.9984 31.9984

The vector of optimized parameters Xopti is reported in Table 6 for each
camera. Thus, the timestamps of each camera can be reconstructed based
on Eq. 1. The camera image acquisition signal of each camera is shown
in Figure 15 for the first three frames when the acquisition start time of
the 450th frame of Camera 3 (Cstart

450,cam3
) is considered as a reference. In this

way, the timestamp reconstruction of different cameras is carried out in an
outdoor environment by reconstructing timestamps of frames acquired by
each camera.

In this experiment, the external lighting, the vibration of the tower crane,
and the large distance between the cameras and the LED panel may affect
the accuracy of the timestamp reconstruction. Since Cameras 4 and 5 are
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Figure 15: Reconstructed timestamps of the camera sensor signals with sub-frame accuracy
when the acquisition start time of the 450th frame of Camera 3 is considered as a reference.

synchronized by a hardware trigger, the uncertainty of the proposed method
for this outdoor test is estimated by calculating the RMSE between the
reconstructed timestamps obtained for these cameras, δtRMSE

0 , as previously
done for the laboratory test. The uncertainty obtained is equal to 0.527 ms,
i.e. 1.65% of the set frame acquisition interval dt = 32 ms. It is then possible
to confirm that the uncertainty of the proposed timestamp reconstruction
method in an outdoor environment is not only in the sub-millisecond range
but also 60 times smaller than the frame acquisition interval. Additionally,
our error is compared with the similar methods that were presented by Zhao
and Chen [18], Ding and Tao [25], and Kim and Ichikawa [26] in Table 7.

Table 7: Comparison of the proposed method with the existing methods

Error as percentage of frame interval Test Condition Test scale of camera network

Zhao and Chen [18] 8 % Controlled + Uncontrolled Lab-scale

Ding and Tao [25] Not measured Controlled Lab-scale

Kim and Ichikawa [26] 1.62 %, 2.9 % Controlled Lab-scale

Proposed method 1.65% Controlled + Uncontrolled Large-scale (100 m)

5. Conclusions

A method of sub-frame timestamping for camera networks through a
coded light signal is presented in this paper. It reconstructs the timestamp
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of asynchronous frames by post processing the light signal in sequential im-
ages. The influence of camera exposure time and frame rate on the uncer-
tainty of timestamp identification is investigated by numerical simulations. It
helps to decide the parameter values of the coded light signal. The proposed
timestamp reconstruction procedure is evaluated through two experiments,
one indoor and the other outdoor for monitoring a tower crane. Then, sub-
millisecond uncertainty is obtained in the outdoor experiment although this
latter is affected by poorly controlled lighting conditions, structural motion,
and reduced camera resolution. This corresponds to an uncertainty of 1.65%
of the time interval between two consecutive frames.

The proposed method can be carried out with a simple and low-cost sys-
tem. Additionally, since the timestamping of sequential images is performed
through a light signal, the camera network can be configured with cameras
that do not support functions such as hardware-triggered image acquisition
and network-based synchronization (NTP or PTP). Therefore, commercial-
grade cameras without synchronization feature can be used simply for infras-
tructure and environment monitoring. Finally, it does not require any line
connection between cameras, so some restriction in camera position can be
overcome.

However, there is a limitation in that the proposed method does not allow
cameras of a camera network to acquire every image simultaneously as our
method is applicable when this is not possible. This is because our method
is used to determine the instant time when the sensor has operated and the
image is acquired. In the case of accurate 3D measurements, the extracted
timestamps of each frame can be used for further analysis. Moreover, since
the LED panel should be located in the common FOV of the camera network,
our method is adequate when one structure is continuously monitored by
several cameras.
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