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Highlights
Bridging the inference gap in Mutimodal Variational Autoencoders

Agathe Senellart, Stéphanie Allassonnière

• Development of two novels methods for modeling and generating mul-
timodal data, based on the Variational Autoencoder framework, Nor-
malizing Flows and Self-Supervised Learning.

• Comprehensive evaluation showing superior performance compared to
state-of-the-art models on several benchmark datasets.
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Abstract

From medical diagnosis to autonomous vehicles, critical applications rely
on the integration of multiple heterogeneous data modalities. Multimodal
Variational Autoencoders offer versatile and scalable methods for generating
unobserved modalities from observed ones. Recent models using mixtures-
of-experts aggregation suffer from theoretically grounded limitations that
restrict their generation quality on complex datasets. In this article, we pro-
pose a novel interpretable model able to learn both joint and conditional
distributions without introducing mixture aggregation. Our model follows a
multistage training process: first modeling the joint distribution with vari-
ational inference and then modeling the conditional distributions with Nor-
malizing Flows to better approximate true posteriors. Importantly, we also
propose to extract and leverage the information shared between modalities
to improve the conditional coherence of generated samples. Our method
achieves state-of-the-art results on several benchmark datasets.
Keywords:
Multimodality, Variational Autoencoders, Normalizing Flows, Contrastive
Learning

1. Introduction

In many cases, information is conveyed through multiple heterogeneous
modalities. In the medical field, a patient’s status is comprehensively de-
scribed through various analyses: sonograms, MRI, blood analysis, textual
reports, etc . . . Taking different views into account jointly leads to richer rep-
resentations and a better understanding of the modalities’ interactions. Two
important challenges in multimodal machine learning are the tasks of learn-
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ing relevant joint representations and generating realistic data, either from
one modality to another or in all modalities jointly.

Multimodal Variational Autoencoders are latent generative models that
can be used to tackle both challenges at the same time. In recent years,
several approaches have been proposed to extend the Variational Autoen-
coder [1] (VAE) to efficiently model multimodal data. Some of them suggest
training coordinated VAEs where the latent spaces for all modalities are con-
strained to be similar [2, 3, 4]. In other works, a single latent space is used
to jointly represent all modalities [5, 6, 7]. Among these models, one popular
approach is to aggregate modalities using a simple function such as Product-
of-Experts [6], or Mixture-of-Experts [7], [8]. Aggregation has the advantage
of requiring fewer parameters and therefore being easily scalable. However,
recent works show that it can limit the quality and diversity of generated
samples [9, 8].

In this article, we propose a new flexible VAE-based framework that can
model the joint and conditional distributions across any number of
modalities. In particular, our main contributions are:

• Development of two novel multimodal VAE-based methods for model-
ing and generating multimodal data. Unlike recent approaches, we do
not use aggregation, which enables us to improve generation, particu-
larly by integrating Normalizing Flows and leveraging shared informa-
tion across modalities.

• Comprehensive evaluation on several benchmark datasets demonstrat-
ing that the proposed models outperform recent methods.

2. Background

Mathematically speaking, we assume that we observe multimodal samples
X = (x1, x2, . . . , xM) with M modalities from an unknown distribution p(X).
We aim to approximate this joint distribution as well as the conditional
distributions with parametric ones pθ(X), pθ(xj|xi) for any 1 ≤ i ̸= j ≤ M .
pθ(xj|xi) is the distribution of one modality xj given xi.

In the VAE framework, one assumes that there exists a shared latent
representation z, from which all modalities can be generated with parametric
distributions (pθ(xj|z))1≤j≤M called decoders. For instance, for an image
modality x1, pθ(x1|z) can be a Gaussian distribution N (µθ(z),Σθ(z)) whose
mean and variance are given by a neural network. In most cases [6, 10, 5],
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each modality is supposed to be conditionally independent of the others given
z, such that the joint model writes:

pθ(X, z) = pθ(X|z)pθ(z) = pθ(z)
M∏
j=1

pθ(xj|z) , (1)

where pθ(z) is a prior distribution over the latent variables and θ refers to
all parameters used to model the prior and the decoders. In that framework,
the two goals mentioned above (model the joint and conditional distributions)
translate as follows: first, we want to learn the best possible θ to model the
observations. Secondly, we want to approximate the inference distributions
pθ(z|(xj)j∈S) to infer the latent variable from any given subset of modalities
S ∈ P(M) where P(M) = {S|S ⊂ [|1,M |] and S ̸= ∅}. If we can infer z
from observed modalities, we can then generate unobserved modalities with
the decoders (pθ(xj|z))1≤j≤M . In the rest of the article, we note xS := (xj)j∈S
to simplify notations.

2.1. Estimating the generative model’s parameter θ

Given N multimodal observations (X(i))1≤i≤N , a natural objective to es-
timate θ is to optimize the log-likelihood of the data [1]:

θ∗ ∈ argmax
θ

N∑
i=1

log pθ(X
(i)) = argmax

θ

N∑
i=1

(
log

∫
z

pθ(X
(i), z)dz

)
.

Since this objective is intractable, one can resort to Variational Inference [11,
1] by introducing an auxiliary parametric distribution qϕ(z|X) allowing us to
derive an unbiased estimate of the likelihood of the data:

p̂θ(X, z) =
pθ(X, z)

qϕ(z|X)
such that pθ(X) = Eqϕ(z|X) [p̂θ] . (2)

Then, using Jensen’s inequality allows us to derive a lower bound on log pθ(X),
referred to as the Evidence Lower Bound (ELBO).

log pθ(X) = logEqϕ(z|X) [p̂θ]

≥ Eqϕ(z|X) [log pθ(X|z)]−KL(qϕ(z|X)||pθ(z)) = L(X; θ, ϕ) . (3)

This bound is tractable and can be optimized through Stochastic Gradient
Descent [1]. Noteworthy, the first term can be seen as a reconstruction error
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and the second as a regularization term encouraging latent embeddings to
follow the prior distribution [12]. The distribution qϕ(z|X) is generally called
the encoder and one may prove that:

L(X; θ, ϕ) = log pθ(X)−KL(qϕ(z|X)||pθ(z|X)) . (4)

This implies that maximizing L(X; θ, ϕ) with respect to ϕ leads to min-
imizing the Kullback-Leibler (KL) divergence between the true posterior
pθ(z|X) and its variational approximation qϕ(z|X) [1]. Some models also
rely on variations of Eq. (3) to learn θ: [8, 13] adds a β factor to weigh the
KL term in (3). That hyperparameter can be tuned to promote disentangle-
ment in the latent space [14]: by increasing the KL term, it increases pressure
on the latent variables to be independent, so that a single unit might encode
a single generative factor. Other models [7, 13] use a k-sampled importance
weighted estimate of the log-likelihood (IWAE bound) [15] or replace the KL
with a Jensen-Shannon divergence [16].

2.2. Choice of the approximate inference distribution
A simple choice is to model the approximate posterior qϕ(z|X) as a Gaus-

sian distribution N (µϕ(X),Σϕ(X)) where a dedicated joint encoder network
takes all modalities as input and outputs the parameters µϕ(X),Σϕ(X). By
maximizing L, we obtain an estimation of θ and an approximation of the
joint posterior pθ(z|X) with qϕ(z|X). However, we do not have access to
the remaining subset posteriors (pθ(z|xS))S∈P(M) which are intractable. To
estimate these posterior distributions, two approaches have been proposed,
which we detail in the following paragraphs.

2.3. Surrogate distributions and learning objectives
First, a few models such as JMVAE [5], or TELBO [17] introduce sur-

rogate parametric distributions (qϕS
(z|xS))S∈P(M) and train them with an

additional loss function to approximate the desired posterior distributions.
However, those models use quite a large number of parameters since the
joint posterior qϕ(z|X) and each approximate posterior (qϕS

(z|xS))S∈P(M)

use a dedicated network encoder. The number of parameters then scale with
the number of subsets |P(M)| = 2M .
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2.4. Aggregated models
Aggregated models compute the joint posterior qϕ(z|X) as an aggregation

of unimodal encoders qϕj
(z|xj) for 1 ≤ j ≤ M . MVAE [6] uses a Product-

of-Experts (PoE) operation qϕ(z|X) ∝ pθ(z)
∏

j qϕj
(z|xj) while MMVAE [7]

uses a Mixture-of-Experts (MoE). Many variants were then introduced such
as Mixture-of-Product of Experts [8] or Generalized Product of Experts [18].
Such a choice for qϕ(z|X) has several advantages. First it reduces the number
of trainable parameters since qϕ(z|X) shares the same parameters as the uni-
modal encoders (qϕj

(z|xj))1≤j≤M . To model a subset posterior qϕ(z|xS) for
S ∈ P(M), no additional parameter is necessary; one can simply aggregate
on the modalities in S. Therefore, these models are easily scalable to large
number of modalities. Furthermore, optimizing Eq. 3 allows to optimize the
generative parameter θ and all inference parameters ϕ = (ϕj)1≤j≤M with-
out introducing additional objectives to the loss function. In particular, [8]
rewrites the ELBO (3) to explicitly highlight how these aggregation methods
encourage each estimated posteriors qϕj

(z|xj) to be close to the true joint
posterior pθ(z|X).

However, it has been shown [9] that all mixture-based models suffer from
a fundamental limitation that caps their generative quality. More precisely,
for these models, there is a generative discrepancy ∆(X) between the log-
likelihood of the data and the ELBO:

Ep(X)(log(pθ(X))) ≥ Ep(X)(L(X; θ, ϕ)) + ∆(X) , (5)

where p(X) is the observed empirical distribution. ∆(X) is strictly positive
and only depends on the law of X and the mixture components [9].

Using Ep(X)(log(pθ(X)) − L(X; θ, ϕ)) = Ep(X) (KL (qϕ(z|X)||pθ(z|X))),
one can rewrite (5) as:

Ep(X) (KL(qϕ(z|X)||pθ(z|X))) ≥ ∆(X) . (6)

This lower bound implies that the approximate joint posterior qϕ(z|X) can
only approach the true joint posterior pθ(z|X) up to ∆(X) > 0.

The authors in [9] detail in extensive experiments how these generative
discrepancy results in a diminished quality of generated samples.

For aggregated models that are only based on a Product-of-Experts such
as the MVAE, this issue is avoided but a trade-off is observed between the
generative coherence and the generative diversity [8].
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2.5. Recent developments
In order to compensate for this diversity/coherence trade-off, additional

terms might be added to the ELBO to further ensure certain properties of
the unimodal encoders. For instance, the MVTCAE model adds Conditional
Variational Information Bottleneck (CVIB) terms to the ELBO [19] while
the CRMVAE model adds unimodal reconstruction terms [20]. Another
approach is to modify the training paradigm with a contrastive learning
objective [10]. Recently, methods have been proposed with more complex
generative models including multiple, separated [8, 21, 22] or hierarchical
latent variables [23, 24]. An additional goal of these models is to separate
into different latent spaces the information shared across modalities from
modality-specific factors. Models using multiple latent variables are some-
times sensitive to the shortcut issue, referring to shared information leaking
into the modality specific latent spaces. Recently, MMVAE+ [13] was pro-
posed with an amended ELBO loss and modalities’ specific priors to limit
that phenomenon [13]. However the MMVAE+ is still based on a mixture ag-
gregation and therefore suffers from the intrinsic limitation mentioned above
in Eq. (6), which we observe in our experiments.

Finally, recent work complement multimodal VAEs with diffusion models
to improve generative quality [25, 24].

3. Proposed method

To overcome the generative discrepancy gap observed in mixture-based
models, we propose to disentangle the training of the joint generative model
pθ(X) and the approximation of the posteriors pθ(z|xj) for 1 ≤ j ≤M in the
same line of work as [5, 17].Therefore our method consists of two separate
steps:

• Train a Variational Autoencoder to learn the generative model θ as well
as an approximation of the joint posterior qϕ(z|X).

• For conditional generation, approximate the unimodal posteriors with
Normalizing Flows [26] qϕj

(z|xj) for 1 ≤ j ≤M .

For the subset posteriors, we show that, for any S ∈ P(M), we can
approximate pθ(z|xS) with a Product-of-Experts

∏
j∈S qϕj

(z|xj)/pθ(z)
|S|−1.

This way, no additional network needs to be trained and our framework
scales for large numbers of modalities. Note that this Product-of-Experts
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is only used during inference after the training and not in the optimization
of the multimodal ELBO, which means that it doesn’t suffer from the same
limitations as PoE aggregated models. In the following subsections, we de-
tail each step of our method, and then we introduce an improvement that
leverages information shared across modalities.

3.1. Step 1: Training the joint generative model
For learning the generative parameter θ, we optimize the ELBO (3)

with a β factor weighting the regularization term. We model the joint en-
coder qϕ(z|X) as a Gaussian distribution N (µϕ(X),Σϕ(X)), with µϕ(X) and
Σϕ(X) given by a neural network taking all modalities as inputs. This step
is exactly similar to training a unimodal VAE, and every improvement that
was proposed for the unimodal case could be easily adapted here.

3.2. Step 2: Learning the posterior distributions
Once the generative model is learned, we freeze the generative model

pθ(X|z) and the joint encoder qϕ(z|X). For 1 ≤ j ≤ M we introduce a sur-
rogate distribution qϕj

(z|xj) to approximate the unimodal posterior pθ(z|xj)
that is intractable. To fit these distributions, we minimize the following
objective introduced in [5].

Luni(X; (ϕj)1≤j≤M) =
M∑
j=0

KL(qϕ(z|X)|qϕj
(z|xj)) . (7)

Intuitively, minimizing (7) encourages qϕj
(z|xj) to cover all the relevant

modes or support of the trained posterior qϕ(z|X). Since qϕ(z|X) is frozen,
minimizing Equation (7) amounts to minimizing:

˜Luni(X; (ϕj)1≤j≤M) = −
M∑
j=0

Eqϕ(z|X)

(
log qϕj

(z|xj)
)
. (8)

For 1 ≤ j ≤M , the expectation inside the sum can be estimated by sampling
z ∼ qϕ(z|X). Equation (8) shows that during training, the unimodal encoders
are informed by the joint encoder: a latent variable z is sampled from qϕ(z|X)
and then for each 1 ≤ j ≤M , log qϕj

(z|xj) is maximized. [17, 5] and [19] pro-
vide interesting interpretations of this objective that we detail in Appendix
C. In particular, one can prove that for any 1 ≤ j ≤M , optimizing (7) brings
qϕj

(z|xj) close to an average distribution q
(avg)
ϕ (z|xj) := Ep((xi)i ̸=j |xj)(qϕ(z|X)).
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This loss function is used in [5], but the JMVAE model suffers from poor
coherence in certain use cases. One reason for this is the use of Gaussian
distributions to model qϕj

(z|xj) for 1 ≤ j ≤M , which lacks flexibility for ap-
proximating the true posteriors. We transform these gaussian distributions
using Normalizing Flows which allow us to better approximate complex dis-
tributions. Normalizing Flows are a powerful modeling tool that enables the
modeling of complex, differentiable distributions [26]. A flow is an invertible
smooth transformation f that can be applied to an initial distribution to
create a new one, such that if Z is a random vector with density q(z), then
Z ′ = f(Z) has a density given by:

q′(z′) = q(z)

∣∣∣∣det ∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det ∂f∂z
∣∣∣∣−1

. (9)

Combining K transformations zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0) allows us to gain
in complexity of the final distribution.

In our case, for each modality 1 ≤ j ≤ M , we model the approximate
posterior qϕj

(z|xj) with the following log-density:

log qϕj
(z|xj) = log q

(0)
ϕj
(z0|xj)−

K∑
k=1

log

∣∣∣∣∣det ∂f
(j)
k

∂zk−1

∣∣∣∣∣ , (10)

where q
(0)
ϕj
(z0|xj) is a simple parametrized Gaussian distribution, the param-

eters of which are given by neural networks, and (f
(j)
k )1≤k≤K are Masked

Autoregressive Flows [27]. In section 4.1, we illustrate that this expression
allow us to approximate much more precisely the true unimodal posteriors.
Because of the joint training of Normalizing Flows during this step, we refer
to our model as JNF.

3.3. Sampling from the subset posteriors
Recall that one of our goals is to be able to infer the latent variable z

from any subset of modalities S ∈ P(M). Until now, we have estimated the
joint posterior with qϕ(z|X) and the unimodal posteriors with qϕj

(z|xj) for
any j ∈ [|1,M |]. Using the same derivation as [6], we prove that we can
approximate any subset posterior using the trained unimodal encoders.
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Let S ∈ P(M) and xS = (xj)j∈S:

pθ(z|xS) =
pθ(xS|z)pθ(z)

pθ(xS)
=

pθ(z)
∏

j∈S pθ(xj|z)
pθ(xS)

=
pθ(z)

∏
j∈S

pθ(xj ,z)

pθ(z)

pθ(xS)
(11)

=

∏
j∈S pθ(z|xj)pθ(xj)

pθ(z)|S|−1pθ(xS)
=

1

Z

∏
j∈S pθ(z|xj)

pθ(z)|S|−1
≈ 1

Z

∏
j∈S qϕj

(z|xj)

pθ(z)|S|−1

(12)

where 1
Z
=

∏
j∈S pθ(xj)

pθ(xS)
is a normalizing constant. We use Equation (1) in the

second equality. To sample from this distribution at inference time, we use
Hamiltonian Monte Carlo (HMC) sampling [28, 29] that enables sampling
from any distribution with a differentiable density function known up to a
multiplicative constant. We recall the algorithm for HMC in Appendix F.

3.4. An improvement of our method leveraging shared information
Up until now, we have not made any assumption regarding the inter-

actions between modalities (x1, x2, . . . , xM). However, in many multimodal
datasets, there is an amount of shared semantic information between modali-
ties. For instance, in the MNIST-SVHN dataset [30, 31], the shared semantic
content is the digit present in both images. The background information is
modality-specific in the sense that it doesn’t affect other modalities. To gener-
ate unobserved modalities, one would only need the shared semantic content
and not the modality specific information. Therefore, it seems relevant to
try to extract and use this shared information. Formally, let us assume that
for any 1 ≤ j ≤M we have a projector gj such that:

∀1 ≤ i ≤M, pθ(xi|xj) = pθ(xi|gj(xj)) . (13)

Morally speaking, gj extracts the information shared across modalities while
tuning out the modality specific information. Then we can write:

pθ(xi|gj(xj)) =

∫
z

pθ(xi|z)pθ(z|gj(xj))dz (14)

That is, to generate modality xi from modality xj, we can learn to ap-
proximate pθ(z|gj(xj)) which might be simpler than approximating pθ(z|xj)
if we use relevant functions (gj)1≤j≤M .

We propose an improvement of our method, in which we use pretrained
functions (gj)1≤j≤M to extract shared information across modalities and model
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the distributions qϕj
(z|gj(xj)) instead of qϕj

(z|xj). In that case, we model
qϕj

(z|gj(xj)) with Normalizing Flows and use the adapted loss function for
step 2 (Section 3.2):

L(shared)
uni (X; (ϕj)1≤j≤M) =

M∑
j=0

KL(qϕ(z|X)|qϕj
(z|gj(xj))) . (15)

Extracting information shared across modalities. How can we learn relevant
functions (gj)1≤j≤M that would verify Equation (13)? Many methods have
been proposed to extract information shared across modalities, and the best
method might depend on the dataset, which is why this is a flexible com-
ponent of our method. In our experiments, we tried two general methods:
Deep Canonical Correlation Analysis (DCCA) [32] and Contrastive Learn-
ing (CL) [33, 34, 35, 36]. In both cases, the projectors (gj)1≤j≤M are trained
jointly to learn similar representations across modalities. For the projections
(gj(xj))1≤j≤M to be similar across modalities, the projectors have to extract
shared information while discarding unrelated information. The notion of
similarity is defined differently in both methods: DCCA maximizes corre-
lation between projections while CL optimizes cosine similarity. We detail
each method in Appendix B. We conjecture that using these methods, we
can extract summary statistics (gj(xj))1≤j≤M verifying Equation (13) and
check this assumption in our experiments. Note that the projectors (gj) are
trained before training the VAE and that existing pretrained networks could
also be used.

We refer to this improvement of our method as JNF-Shared. In Figure 1,
we summarize both models and aggregated models in the case M = 2.

4. Experiments

In this section, we first illustrate our method on a toy dataset, and then
compare results against state-of-the-art methods.

4.1. Toy dataset
We design a toy dataset with two black and white image modalities: x1 is

a square and x2 is a circle. The sizes of each shape are independent. There
are two classes of shapes: the full shapes and the empty ones. This class is
shared across modalities: if the circle is full, the square is full regardless of
their size. Figure 2 presents samples of this toy dataset. We perform the first
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(a) Aggregated Models (b) JNF model (c) JNF-Shared model

Figure 1: Graphical models in the case M = 2. Dashed lines represent decoders, solid lines
represent encoders, and red arrows represent the projectors extracting shared information.
"NF" refers to Normalizing Flows.

step of our method on this dataset (see 3.1), which is training a simple joint
VAE with a two-dimensional latent space that we can visualize. In Figure 2,
we can see how this joint latent space is structured, with the full shapes on
one side (blue dots) and the empty shapes on the other side (red dots). In
Figure 2 ,the intensities of the colors indicate the size distribution with larger
squares encoded away from the center.

Using this well-structured latent space we then train qϕ1(z|x1) to approx-
imate pθ(z|x1) using our objective Luni (7). We display an example distribu-
tion qϕ1(z|x1) that we obtain for x1 being a large full square. We compare
results when modeling qϕ1(z|x1) with either a Gaussian or Normalizing Flows
(NF). The latter provides a more realistic approximation and generate co-
herent and diverse samples in the circles modality (shown on the right side
of each plot).

In the last plot of Figure 2, we use the variant of our method where
we first extract the information shared across modalities (here the empti-
ness or fullness of the shape) with a projector g1(x1) and then approximate
qϕ1(z|g1(x1)). Here, g1 and g2 are neural networks trained with the DCCA
objective. We see in Figure 2 right panel, that qϕ1(z|g1(x1)) covers well the
part of the latent space corresponding to full samples and generates coherent
and diverse samples. This shows that we have been able to capture both the
conditional distribution and the shared information with g1(x1) driving the
conditional generation. On this toy dataset, both pθ(z|x1) and pθ(z|g1(x1))
are well approximated but on benchmark datasets, it appears that the lat-
ter is often easier to approximate than the former because it has a larger
support.
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Figure 2: a) Samples from the toy dataset. b) The joint generative model pθ(x1, x2)
has been learned and we visualize the 2-dimensional latent space. Each point encodes a
pair of images (x1, x2). Here the color of each point, indicates the size and class of the
encoded square. We try to approximate the posterior pθ(z|x1) of a large square image
x1 (shown in the top left), that corresponds to dark blue dots in the latent space. In
b), we use a diagonal Gaussian distribution and in c) we use Normalizing Flows. We
see that Normalizing Flows capture a realistic posterior where the Gaussian distribution
has a support that is too large, leading to unrealistic generation framed in red. d) Using
DCCA, we extract the information shared across modalities, which is the shape class: full
or empty. We learn qϕ1

(z|g1(x1)) and see that it approximates well the part of the latent
space which encodes full shapes. For b), c), and d) we present samples generated in the
circle modality using the learned posterior on the right side of each plot. Both c) and d)
produce relevant and diverse samples.

4.2. Benchmark datasets and evaluation metrics
We evaluate JNF and JNF-Shared on four benchmark datasets:

• MNIST-SVHN introduced in [7] that contains paired images from MNIST [30]
and the Street View House Numbers (SVHN) dataset [31]. The latter
contains natural images of digits with diverse backgrounds and some-
times cropped distracting digits on the sides of the digit of interest.

• PolyMNIST introduced in [8] with five image modalities built from
MNIST images with varied and complex backgrounds. This dataset
allows to test the scalability of our method.

• Translated PolyMNIST introduced in [9] to demonstrate the limitations
of mixture-based models. It is made of downscaled and translated digits
with the same backgrounds as PolyMNIST. In [9] the authors point out
that the generative performance is very degraded for mixture-based
models on this dataset.
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• Finally, we test our method on a dataset with heterogeneous modalities:
the Multimodal Handwritten Digits dataset (MHD) [23] which contains
three modality types: image, sound and trajectory.

We provide additional details and samples for each dataset in Appendix
A. We focus on conditional and unconditional generation and we evaluate:

• the coherence of multimodal samples. With pretrained classifiers, we
assess whether the generated samples are consistent (i.e, share the same
label) across modalities.

• the diversity of generated samples. To assess this diversity, we follow
the procedures used in [13] and [23]. For the MNIST-SVHN and PolyM-
NIST datasets, we compute Fréchet Inception Distance [37] (FID) be-
tween the distributions of true and generated samples. For the MHD
dataset, the Inception network is not relevant to extract meaningful
features since the modalities that we use are not natural images. There-
fore, we use pretrained, class-based and modality specific autoencoders
to extract features for each sample and then compute the Mean Fréchet
Distance (MFD) between true and generated samples.

4.3. Comparison to previous work
We compare our method to several strong models: JMVAE [5], MMVAE

[7], MoPoE [8], MVTCAE model [19], MMVAE+ [13] and Nexus [23]. We use
implementations that were first validated by reproducing previous results.
For a fair comparison, we use the same architectures and the same latent
capacity across models except for the MMVAE and MMVAE+ for which
we use smaller latent spaces due to memory limitations from the K-sampled
objective. We detail all hyperparameters in Appendix E. We train all models
with a β-weighted ELBO and keep the β ∈ {0.5, 1, 2.5} that maximizes
average coherence for each model. Each experiment is repeated with four
different seeds. We try training the projectors (gj) for our model JNF-Shared
with Contrastive Learning (CL) or DCCA and report results for both.

4.4. Experimental results
In Figure 3, we present generated samples and in Table 1, we present

quantitative results for the MNIST-SVHN dataset.
Most models (except MoPoE and JNF-Shared) struggle to generate co-

herent MNIST images from SVHN images. We interpret this phenomenon
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Model Joint M −→ S S −→ M FID (↓)
JMVAE 0.43± 0.10 0.73± 0.07 0.53± 0.05 57± 3
MMVAE (k = 10, β = 0.5) 0.35± 0.02 0.80± 0.01 0.70± 0.01 130± 5
MVTCAE 0.44± 0.02 0.81± 0.01 0.52± 0.02 48± 2
MoPoE 0.36± 0.01 0.12± 0.01 0.72± 0.01 359± 12
MMVAE+ (k = 10) 0.43± 0.05 0.60± 0.09 0.58± 0.04 63± 5

JNF (Ours) 0.51± 0.01 0.82± 0.01 0.52± 0.01 54± 2
JNF-Shared (DCCA) (Ours) 0.51± 0.01 0.75± 0.03 0.69± 0.05 53± 2
JNF-Shared (CL) (Ours) 0.51± 0.02 0.81± 0.01 0.75± 0.02 49± 1

Table 1: Results on MNIST-SVHN. We present coherence for joint generation, conditional
generation from MNIST (noted as M) to SVHN (noted as S) and vice-versa. FID values
are computed on 50,000 SVHN images generated from MNIST. Best values are in bold
and second-best are underlined.

by looking at reconstructed SVHN images in Figure 3. For many models,
the background is well reconstructed but not the digit which is not well in-
ferred using qϕ2(z|x2) (where x2 is the SVHN modality). With JNF-Shared,
the background is tuned out by the projector g2 and the digit information
is therefore better preserved when sampling z ∼ qϕ2(z|g2(x2)). Our model
JNF-Shared (CL) is the only one to reach competitive values for all metrics
on this dataset with coherent and diverse generations.

(a) JMVAE (b) MMVAE (c) MMVAE+ (d) MVTCAE (e) MoPoE (f) JNF (g) JNF-CL

Figure 3: On the first row: generation from MNIST to SVHN. On the second row: genera-
tion from SVHN to MNIST. On the third row: generation from SVHN to SVHN (unimodal
reconstruction). In red, we frame samples where the background is well reconstructed but
not the digit. JNF-CL refers to our model JNF-Shared with CL. Note that for this model,
when reconstructing SVHN, we sample z ∼ qϕ2

(z|g2(x2)) and therefore the background
information is filtered by the projector g2(x2) and cannot be reconstructed. However, the
digit is well preserved which is what is required for cross-modal generation.
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JNF-Shared with CL projectors achieve higher coherence than DCCA
projectors, which means that CL better extracts the shared information on
this dataset. The MMVAE and MoPoE both produce SVHN samples that
look ’averaged’ resulting from the quality gap analyzed in [9]. In Figure 4,
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(b) Translated PolyMNIST

MMVAE

JMVAE
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MMVAE+

JNF (Ours)

JNF-Shared (DCCA) (Ours)

JNF-Shared (CL) (Ours)

Figure 4: In the two left columns, we present results for conditional generation when
varying the number of conditioning modalities. In the right column, we display coherence
and FID for unconditional generation. Each point correspond to a different training seed.
For these plots, best models having high coherence and low FID are in the top left corner.
The FID is computed on 10,000 samples of the first modality.

we present coherence and diversity results for all models on PolyMNIST and
Translated PolyMNIST. We observe that our models reach the best coher-
ence while maintaining low FID values. We present samples of unconditional
generation in Figure 5: our models produce coherent and diverse samples.
Our method JNF-Shared works well with both CL and DCCA projectors
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on this dataset. In [9], the authors observed that MMVAE and MoPoE
show very degraded coherence on TranslatedPolyMNIST. We extend their
observations to the MMVAE+ model that also has a conditional coherence
close to 0.10, corresponding to random digit association. This is a direct
consequence of the mixture aggregation, which limits generative quality on
complex datasets [9]. In that setting, these models fail to extract any shared
information across modalities. All models fail on the unconditional gener-
ation task from the prior: our models have good FID values but very low
coherence. To improve this, a possible direction would be to fit a distribu-
tion on the latent embeddings after training rather than sampling from the
prior [38]. On the contrary, MMVAE and MoPoE have high joint coherence
but looking at the generated samples in Appendix D, we see that they only
produce averaged images of the first digit.

(a) JMVAE (b) MMVAE (c) MoPoE (d) MVTCAE (e) MMVAE+

(f) JNF (g) JNF-CL (h) JNF-DCCA

Figure 5: Joint generation in all five modalities when sampling a latent code from the prior.
In each image, each row corresponds to a modality. JNF-CL (resp. DCCA) correspond to
our method JNF-Shared with CL (resp. DCCA).

In Table 2, we present results on the MHD dataset, where our models
reach the best results for coherence and second best for diversity. For all
datasets, additional results and generated samples can be found in Appendix
D.

5. Discussion and Perspectives

In this article, we presented two novel VAE-based multimodal approaches
for modeling and generating multimodal data. Several components of our
methods are flexible and can be adapted to the use-case. For instance, the
first step of our method consists of training a basic Joint Variational Au-
toencoder. However, many enhancements of the VAE have been proposed
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Coherence (↑) MFD (↓)
Joint Conditional Joint Conditional

JMVAE 0.57± 0.02 0.86± 0.01 1.32± 0.01 0.29± 0.02
MMVAE 0.63± 0.01 0.86± 0.01 1.63± 0.05 0.76± 0.01
MMVAE+ 0.57± 0.01 0.89± 0.01 1.58± 0.07 0.55± 0.08
MVTCAE 0.38± 0.01 0.87± 0.01 1.31± 0.02 0.13± 0.01
MoPoE 0.44± 0.02 0.74± 0.01 1.56± 0.03 2.17± 0.03
Nexus 0.13± 0.01 0.34± 0.01 2.98± 0.04 3.36± 0.03

JNF(Ours) 0.67± 0.01 0.89± 0.01 1.32± 0.02 0.23± 0.02
JNF-Shared(CL)(Ours) 0.65± 0.02 0.93± 0.01 1.35± 0.04 0.21± 0.03
JNF-Shared(DCCA)(Ours) 0.66± 0.01 0.92± 0.01 1.37± 0.04 0.23± 0.03

Table 2: Experimental results on the MHD dataset. We present average coherence and
MFD results for each model, for conditional and unconditional generation. Best values
are in bold and second-best values are underlined.

to better learn the generative parameter θ with more expressive modeling
of the posterior or prior distributions([39, 40, 41]) or increased tightness of
the objective bound function [15, 42]. These improvements can be used in
our framework to enhance the estimation of the joint generative model on
which the rest of the model depends. We also introduced the idea of learning
unimodal posteriors conditioned on a summary statistic containing the infor-
mation shared across modalities. For extracting the shared information, one
can rely on Contrastive Learning or DCCA but also on other methods suited
to the dataset. For instance Kernel Canonical Correlation Analysis [43] was
used on functional imaging datasets [44] or genetics [45]. Finally, diffusion
decoders [46] could also be used to improve the quality of generated samples
as was done in [24].
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Appendix A. Details on the datasets used in the experiments

Appendix A.1. The MNIST-SVHN dataset
To create this dataset, we paired images from the MNIST dataset [30]

and the SVHN dataset [31]. Previous work [7] paired each image in MNIST
with 30 different images in SVHN to create a train set of 1 682 040 samples.
To create a more challenging and realistic dataset, we only paired each image
5 times to have a smaller (yet still large) training dataset of 280 340 samples.

Appendix A.2. PolyMNIST and Translated PolyMNIST Dataset
In Figure A.6, we plot example images of the PolyMNIST and Translated

PolyMNIST dataset used in the experiments in section 4. For the Translated
PolyMNIST dataset, we downscale the digit by a factor 0.75 and add a
random translation. Each dataset contains 60 000 training samples and 10
000 test samples.

(a) PolyMNIST. (b) Translated PolyMNIST.

Figure A.6: Eight multimodal samples for the PolyMNIST and TranslatedPolyMNIST
dataset: each row correspond to a modality.

Appendix A.3. Multimodal Handwritten Dataset

Figure A.7: The MHD dataset that we use contains three modalities.

The ’Multimodal Handwritten Digits’ (MHD) introduced in [23] contains
4 modalities (including label):

• Image: gray digit images of size (1,28,28)
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• Audio: spectrograms images with shape (1,32,128)

• Trajectory: flat arrays with 200 values

• Label : 10 categorical values

In our experiments, we don’t use the label as a modality to make the task
more challenging. This dataset contains 50 000 samples for training and 10
000 for testing.

Appendix A.4. Toy dataset with circles and squares
The images of circles and squares used in the toy experiment are of size

(32,32) with black and white pixels. All circles and squares are centered in
the middle of the image with a minimum width of 10 pixels and a maximum
width of 28 pixels. This dataset contains 200,000 pairs of circles and squares.
Half are empty and half are full.

Appendix B. Methods to learn shared information across multiple
modalities

Here we detail two methods we have used to train the projectors (gj)1≤j≤M

to extract information shared across modalities. The projectors (gj)1≤j≤M

are trained before training our multimodal VAE JNF-Shared that uses them.

Appendix B.1. Deep Canonical Correlation Analysis
Deep Canonical Correlation Analysis [32] (DCCA) aims at finding corre-

lated neural representations for two complex modalities such as images. It
is based upon the classical Canonical Correlation Analysis (CCA) [43] which
we briefly recall here. Let (X1, X2) ∈ Rn1 × Rn2 two random vectors, Σ1,Σ2

their covariances matrices and Σ1,2 = Cov(X1, X2). CCA’s objective is to
find linear projections aTX1, bTX2 that are maximally correlated :

(a∗, b∗) = argmax
aTΣ1a=bTΣ2b=1

aTΣ1,2b .

Once these optimal projections are found, we can set (a1, b1) = (a∗, b∗) and
search for subsequent projections (ai, bi)2≤i≤k with the additional constraint
that they must be uncorrelated with the previous ones. We can rewrite the
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problem of finding the first k optimal pairs of projection as finding matrices
A ∈ R(n1,k), B ∈ R(n2,k) that solve:

(A∗, B∗) = argmax
ATΣ1A=BTΣ2B=I

Tr(ATΣ1,2B) (B.1)

If we further have k = n1 = n2 then the maximum value for Tr(ATΣ1,2B)

is F (X1, X2) = Tr(T⊤T )
1
2 with T = Σ

1
2
1Σ1,2Σ

1
2
2 . This value is the total CCA

correlation of the random vectors X1, X2. It can also be seen as the sum of
the singular values of T , each singular value representing the correlation of
the embeddings along a direction. Note that this optimal value F (X1, X2)
only depends on the covariance matrices (Σ1,Σ2,Σ1,2).

In the DCCA method, we consider two neural networks g1, g2 so as to
optimize the total CCA correlation F (g1(X1), g2(X2)). The gradient of this
objective with respect to the parameters of g1, g2 can be derived in order to
use gradient descent.

In practice, to compute F we can use the singular value decomposition
of T and sum the first k singular values of T . Furthermore the singular
values are interesting since they give an information of how much correlation
is contained in each projection. That information can be used to analyse the
data and choose an optimal dimension k for the projection.

When considering more than two modalities, a proposed extension to the
CCA is to optimize the sum of the pairwise CCA objectives [47]. We adapt
this idea to the DCCA framework and train DCCA encoders for m modalities
by maximizing

∑
i<j∈[|1,m|] F (gi(Xi), gj(Xj)).

Our implementation is based upon https://github.com/Michaelvll/
DeepCCA.

Appendix B.2. Multimodal Contrastive Learning
Contrastive learning methods have emerged as a powerful tool to learn

descriptive, transferable representations of high dimensional data such as
images or text [36, 34].

In the two-modalities case, we aim at learning two embbeding functions
g1(x1), g2(x2) that brings together "positive pairs" observed from the joint
distribution x1, x2 ∼ p(x1, x2) and separates "negatives pairs" observed from
the product of the marginal distributions x1, x2 ∼ p(x1)p(x2).

Formally, considering a batch of multimodal samples (xi
1, x

i
2)1≤i≤K , the

loss function writes:
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L =
K∑
i=1

L1,2(i) + L2,1(i) (B.2)

L1,2(i) = − log

(
simγ(x

i
1, x

i
2)∑K

j=1 simγ(xi
1, x

j
2)

)
∀1 ≤ i ≤ K (B.3)

L2,1(i) = − log

(
simγ(x

i
2, x

i
1))∑K

j=1 simγ(xi
2, x

j
1)

)
∀1 ≤ i ≤ K , (B.4)

where simγ(x1, x2) = exp( 1
τ

g1(x1)
||g1(x1)|| ·

g2(x2)
||g2(x2)||) is the exponential cosine sim-

ilarity between the embeddings,τ is a hyperparameter and γ parameterize
the embedding functions g1, g2 that we aim to optimize. τ = 0.1 in our
experiments.

For any 1 ≤ i ≤ K, the pair (x
(i)
1 , x

(i)
2 ) is a positive pair which should

have high similarity and the pairs (x
(i)
1 , x

(j)
2 )1≤j ̸=i≤K , (x

(j)
1 , x

(i)
2 )1≤j ̸=i≤K are

negative pairs that should have low similarity.
In order to bring together positive pairs in the embedding space and sepa-

rate negative pairs, the projectors (gj)1≤j≤M have to extract the information
between modalities.

For a larger number of modalities: M ≥ 2, we can compute the sum of
all pairwise losses and minimize them jointly [36].

Appendix C. Interpretations of the Luni Objective

In this appendix, we provide several interpretations of the Luni loss func-
tion Equation (7)that explains why minimizing it is a sensible objective to
fit the unimodal posteriors. First, we reinterpret Equation (7) to show that
it brings the unimodal encoder qϕi

(z|xi) (for i ∈ [1,m]) close to an average
distribution qavg(z|xi) = Ep̂((xj)j ̸=i|xi)(qϕ(z|X)) that is close to pθ(z|xi) pro-
vided that the joint encoder is well fit. Secondly, we recall an analysis from
[5] that links Equation (7) to the notion of Variation of Information.

Appendix C.1. Interpretation in Relation to an Average Distribution
We recall an interpretation by [17] and extend it to a more general case.
First, let’s suppose that we have only two modalities x1, x2 and that x2

takes only discrete values in a set V2. We isolate the term with qϕ2(z|x2) in
Equation (7) and sum over the whole dataset D:
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N∑
(x1,x2)∈D

KL(qϕ(z|x1, x2)||qϕ2(z|x2)) =
∑
y∈V2

∑
(x1,y)∈D

KL(qϕ(z|x1, y)||qϕ2(z|y))

(C.1)

=
∑
y∈V2

KL(
∑

(x1,y)∈D

qϕ(z|x1, y)||qϕ2(z|y))

(C.2)

Each distribution qϕ(z|x1, y) is a gaussian with a small variance, and
qϕ2(z|y) is encouraged to cover this mixture of all distributions

∑
(x1,y)∈D qϕ(z|x1, y)

which correspond to all parts of the latent space where a pair (x1, y) was em-
bedded with the joint encoder qϕ(z|X).

We now study the general case with M ∈ N and xj not taking discrete
values.

For 1 ≤ j ≤M , we isolate the term with qϕj
(z|xj) in Equation (7):

Luni(j) = KL(qϕ(z|X)||qϕj
(z|xj)) (C.3)

= Eqϕ(z|X)

(
− log(qϕj

(z|xj))
)
−H(qϕ(z|X)) (C.4)

where H(qϕ(z|X)) is the Shannon entropy of qϕ(z|X). Since, qϕ(z|X) is
fixed while optimizing Equation x(7), this term is a constant.

When optimizing this loss over the entire dataset, we actually optimize
the expectation of this term over the empirical distribution p(X).

Ep(X)(Luni(j)) = Ep(X)

(
Eqϕ(z|X)

(
− log(qϕj

(z|xj))
))

+ cte (C.5)

where cte is an additive constant term.
Furthermore, we can decompose p(X) = p(xj)p(XCj

|xj) where we note
XCj

= (xi)1≤i ̸=j≤M the set of modalities from which we exclude xj.

Ep(X)(Luni(j)) = Ep(xj)

(
Ep(XCj

|xj)

(
Eqϕ(z|X)

(
− log(qϕj

(z|xj))
)))

+ cte

(C.6)

We suppose the density qϕj
(z|xj) bounded by a constant C, which allows

us to use Fubini’s theorem and exchange the expectations.
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Ep(X)(Luni(j)) = Ep(xj)

(
Ep(XCj

|xj)

(
Eqϕ(z|X)

(
− log(

qϕj
(z|xj)

C
)

)))
− log(C) + cte

(C.7)

= Ep(xj)

(∫
XCj

∫
z

− log

(
qϕj

(z|xj)

C

)
qϕ(z|X)p(XCj

|xj)dzdXCj

)
+ cte

(C.8)

= Ep(xj)

(∫
z

− log

(
qϕj

(z|xj)

C

)∫
XCj

qϕ(z|X)p(XCj
|xj)dXCj

dz

)
+ cte

(C.9)

= Ep(xj)

(
E

q
(avg)
ϕ (z|xj)

(
− log

(
qϕj

(z|xj)

C

)))
+ cte (C.10)

= Ep(xj)

(
KL

(
q
(avg)
ϕ (z|xj)||qϕj

(z|xj)
))

+H(q
(avg)
ϕ (z|xj)) + cte

(C.11)
(C.12)

where q
(avg)
ϕ (z|xj) :=

∫
XCj

qϕ(z|X)p(XCj
|xj)dXCj

and cte regroups all ad-
ditive constant terms at each line. We use Fubini’s theorem at line (C.10)
since all terms in the integral are positive.

Since H(q
(avg)
ϕ (z|xj)) is also a constant term, we see that minimizing

Luni(j) reduces to miniming the Kullback-Leibler divergence between qϕj
(z|xj)

and this average distribution q
(avg)
ϕ (z|xj).

Appendix C.2. Interpretation in Relation to the Variation of Information
First, in the bimodal case where M = 2, we recall an interpretation

provided by [5] that links (7) to the Variation of Information (VI) of x1

and x2 where x1 (resp. x2) represent the variable of the first modality (resp
second).

Recall the definition of the VI :

V I(x1, x2) = −EP(x1,x2)

(
logP(x1|x2) + logP(x2|x1)

)
. (C.13)

If we analyse Eq. (C.13), we see that the more the modalities are predictive
of one another, the smaller is the Variation of Information. We do not know
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the true joint and conditional distributions but we can use the following
approximation summing on N training samples:

Ṽ I = −
N∑

n=1

log pθ,ϕ1(x
(n)
1 |x(n)

2 ) + log pθ,ϕ2(x
(n)
2 |x(n)

1 ) ,

where for i, j ∈ {1, 2} with i ̸= j, pθ,ϕi
(xj|xi) :=

∫
pθ(xj|z)qϕi

(z|xj)dz is our
conditional generative models to sample xj from xi. We can show that with
L being the ELBO defined in Eq. (3) and Luni defined in Eq. (7):

−L(x1, x2; θ, ϕ) + Luni(x1, x2;ϕ) ≥ Ṽ I . (C.14)

We recall that in our method, we first maximise L(x1, x2; θ, ϕ) and then we
minimize Luni(x1, x2;ϕ), therefore we minimize an upper bound on Ṽ I that is
the empirical Variation of Information between modality 1 and 2. Minimizing
Ṽ I is a sensible goal as it encapsulates the predictive power of a modality
given the other.

Let us now prove Equation (C.14) :

log pθ,ϕ1(x2|x1) + log pθ,ϕ2(x1|x2) ≥ Eqϕ(z|x1,x2)

(
log

pθ(x1|z)qϕ2(z|x2)
qϕ(z|x1, x2)

)
+ Eqϕ(z|x1,x2)

(
log

pθ(x2|z)qϕ1(z|x1)
qϕ(z|x1, x2)

)
= Eqϕ(z|x1,x2)

(
log pθ(x1|z)) + Eqϕ(z|x1,x2)

(
log pθ(x2|z)

)
−KL(qϕ(z|x1, x2)||qϕ2(z|x2))−KL(qϕ(|x1, x2)||qϕ1(z|x1))
= L(x1, x2) +KL(qϕ(z|x1, x2)||p(z))− Luni(x1, x2; θ, ϕ)
≥ L(x1, x2)− Luni(x1, x2; θ, ϕ) .

Appendix D. Additional experimental results

Appendix D.1. Additional results on MNIST-SVHN
In Figure D.8, we present samples generated from the prior. JNF-CL

refers to our model JNF-Shared using Constrastive Learning (CL) to extract
the shared information. This method performed best on this dataset, to
extract the shared information.
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(a) JMVAE (b) MMVAE (c) MMVAE+

(d) MVTCAE (e) MoPoE (f) JNF

(g) JNF-CL

Figure D.8: Unconditional generation: for each model, latent codes are sampled from the
prior and decoded jointly.

In Table D.3, we report all coherences results for different values of the
parameter β. For each model, we kept the value of β that maximises the
mean coherence for the results presented in Table 1.

Joint M −→ S S −→ M
mean std mean std mean std

Model β
JMVAE 0.5 0.27 0.02 0.67 0.03 0.57 0.03

1 0.34 0.07 0.69 0.05 0.54 0.03
2.5 0.43 0.10 0.73 0.07 0.53 0.05

MMVAE 0.5 0.35 0.02 0.80 0.01 0.70 0.02
1 0.35 0.02 0.80 0.02 0.68 0.02
2.5 0.33 0.01 0.80 0.02 0.68 0.03

MMVAE+ 0.5 0.24 0.04 0.55 0.04 0.62 0.02
1 0.27 0.03 0.50 0.03 0.59 0.06
2.5 0.43 0.05 0.60 0.09 0.58 0.05

MVTCAE 0.5 0.29 0.01 0.74 0.02 0.36 0.02
1 0.35 0.02 0.75 0.05 0.44 0.02
2.5 0.44 0.02 0.81 0.01 0.52 0.02

MoPoE 0.5 0.27 0.02 0.13 0.01 0.77 0.00
1 0.32 0.01 0.12 0.00 0.75 0.01
2.5 0.36 0.01 0.12 0.00 0.72 0.01

JNF 0.5 0.37 0.01 0.80 0.01 0.47 0.01
1 0.43 0.01 0.81 0.01 0.48 0.02
2.5 0.51 0.01 0.82 0.01 0.52 0.01

JNF-Dcca 0.5 0.36 0.02 0.76 0.01 0.71 0.02
1 0.42 0.02 0.76 0.01 0.71 0.02
2.5 0.51 0.01 0.75 0.03 0.69 0.05

JNF-CL 0.5 0.36 0.03 0.78 0.02 0.79 0.01
1 0.42 0.01 0.81 0.01 0.78 0.02
2.5 0.51 0.02 0.81 0.01 0.75 0.02

Table D.3: All coherences results for different values of β for each model. We indicate
in bold, the value of β that maximises average (conditional and joint) coherence for each
model and that we kept for table 1. In 1, we presented results for our model JNF-Shared
using Constrastive Learning (CL). Here we present additional results with the DCCA used
instead of Constrastive Learning.
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Appendix D.2. Additional results on PolyMNIST
In Figure D.9 we present samples generated by conditioning on a subset

of two modalities and in Figure 5 we present samples generated from the
prior (unconditional generation). Our models produce diverse and coherent
images, while the MoPoE and MMVAE models produce images that look
"averaged" from using a mixture based aggregation [9].

Figure D.9: We present generated samples when conditioning on the first two modalities.
The first two rows are the samples we condition on and the rest of the rows are generated
samples in each modality.

Appendix D.3. Additional results on Translated PolyMNIST
Figure D.10 shows examples of generated images on TranslatedPolyM-

NIST and in Figure D.11 we present samples generated from the prior. MM-
VAE and MoPoE reach a high joint coherence on this dataset but if we look
at the generated images, we realize the generated images all look averaged,
resembling a small "1" digit. The FID is very high since the generation is
not diverse.
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Figure D.10: Conditional generation on Translated PolyMNIST. The first four rows are
the images we condition on and the newt rows are generated samples in the first modality.
JNF-CL refers to our model JNF-Shared with CL.

(a) JMVAE (b) MMVAE (c) MoPoE (d) MVTCAE (e) MMVAE+

(f) JNF(Ours) (g) JNF-CL (Ours)

Figure D.11: Unconditional generation on Translated PolyMNIST when sampling a latent
code from the prior.

In Table D.4, we present coherences and FID results for different values of
the parameter β for each model. We used this table for selecting the value of
β. For all models we observe inverse tendencies between joint and conditional
coherence with the value of β. We chose to favor conditional coherence to
select the best value of β for each model for the results presented in Table 4.
In this table, we also test two values for the number of flows nflows ∈ {2, 3} for
our models. After selecting β, we varied and selected the optimal parameter
nflows.
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Coherence (↑) FID (↓)
Joint Conditional 1 modality to m0

Model β nflows

JMVAE 0.5 0.00 0.15 37.06
1.0 0.00 0.14 43.93
2.5 0.00 0.12 55.09

MMVAE+ 0.5 0.006 0.10 60.48
1 0.005 0.10 69.80
2.5 0.15 0.10 206.13

MVTCAE 0.5 0.004 0.13 42.35
1 0.08 0.11 121.86
2.5 0.23 0.11 178.49

MMVAE 0.5 0.63 0.10 185.97
1.0 0.49 0.10 172.44
2.5 0.58 0.10 181.08

MoPoE 0.5 0.26 0.10 195.53
1.0 0.50 0.10 199.48
2.5 0.50 0.10 199.94

JNF (Ours) 0.5 3 0.0004 0.17 30.91
0.5 2 0.0002 0.18 31.76
1.0 3 0.0007 0.17 33.82
2.5 3 0.06 0.12 218.75

JNF-Shared (CL) (Ours) 0.5 3 0.0002 0.21 32.09
0.5 2 0.0005 0.23 33.17
1 3 0.0008 0.20 35.30
2.5 3 0.06 0.13 217.02

Table D.4: Coherences and FID results for different values of β. Here, we average over all
possible subsets for the conditional coherence. For almost all models, we observe inverse
tendencies for joint and conditional coherence with the value of β. For the results presented
in the main text, we chose to favor conditional generation to select the value of β for each
model. The chosen β is set in bold. For the JNF-Shared (DCCA) we used the same
β = 0.5 and 2 flows as for JNF-Shared (CL) because of the similarity between models.

Appendix D.4. Additional results on the MHD dataset
In Figure D.12, we display images and spectrograms obtained when con-

ditioning on a given trajectory (that is not displayed here) drawing a zero
digit. Our models generate diverse and constrasted images.

In Table D.5, we present all coherence results for different values of the
parameter β for each model. We used this table to chose β for each model.
For all models we observe inverse tendencies between joint and conditional
coherence with the value of β. We chose to favor conditional coherence to
select β for each model for the results presented in Table 2.
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Joint Conditional
mean std mean std

Model β

JMVAE 0.5 0.57 0.02 0.86 0.01
1.0 0.15 0.02 0.79 0.01
2.5 0.15 0.04 0.75 0.02

MMVAE 0.5 0.63 0.01 0.86 0.01
1.0 0.60 0.07 0.84 0.04
2.5 0.65 0.02 0.86 0.01

MMVAEPlus 0.5 0.58 0.03 0.89 0.02
1.0 0.64 0.05 0.82 0.03
2.5 0.47 0.15 0.50 0.08

MVTCAE 0.5 0.38 0.01 0.87 0.01
1.0 0.48 0.01 0.85 0.00
2.5 0.54 0.02 0.79 0.01

MoPoE 0.5 0.44 0.02 0.74 0.01
1.0 0.50 0.01 0.72 0.02
2.5 0.45 0.02 0.62 0.01

JNF 0.5 0.67 0.01 0.89 0.01
1.0 0.71 0.02 0.86 0.01
2.5 0.72 0.02 0.81 0.01

JNF-Shared (DCCA) 0.5 0.66 0.01 0.92 0.01
1.0 0.71 0.02 0.90 0.01
2.5 0.72 0.02 0.80 0.01

JNF-Shared (CL) 0.5 0.65 0.02 0.93 0.01

Table D.5: All coherence results for different values of β for each model. We indicate in
bold, the value of β that maximises conditional coherence for each model and that we
kept for Table 2. For the JNF-Shared (CL) we use the same β as for JNF-Shared (DCCA)
since the model are very similar.

.
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Figure D.12: Samples generated when conditioning on a given trajectory.

Appendix E. Architectures and hyperparameters used in the ex-
periments

In Figure E.17 we summarize the general architectures of most models
used in our experiments. For the Nexus model, we refer the reader to [23].

We describe in the following sections the encoders/decoders architectures
for all experiments. Note that for the JNF-Shared, the projectors (gj)1≤j≤M

have the same architectures as the encoders of other models, and the en-
coders that parameterize qϕj

(z|gj(xj)) are simple two-layers MLPs taking
the projections (gj)1≤j≤M(xj) as inputs.

Our implementations of Normalizing Flows rely on the opensource library
Pythae [48].

Code and data needed for reproducing the experiments are available at
https://anonymous.4open.science/r/JNF_VAE/README.md.

Appendix E.1. On MNIST-SVHN
In Table E.6, we indicate all architectures and training parameters used

in the MNIST-SVHN experiments. All models are trained until convergence.
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Figure E.13: Architectures of MM-
VAE, MoPoE and MVTCAE

Figure E.14: Architecture of MM-
VAE+

Figure E.15: Architecture of JNF
and JMVAE model.

Figure E.16: Architecture of JNF-
Shared

Figure E.17: Architectures for most models used. For the JMVAE model, it is the same
architecture as the JNF model except without the Normalizing Flows.

For all models, we test three values for β ∈ {0.5, 1.0, 2.5} and for each model
we kept the value that maximized average coherence (joint and conditional).
Extensive results for all values of β are presented in Table D.3. For the
MMVAE and MMVAE+ model, we use Laplace distributions for modeling
prior and posterior distribution following [7]. For all others models, we use
Gaussian distributions for prior and posteriors. For the decoders distribu-
tions pθ(X|z) we use Laplace distributions. Following previous work [7, 8] we
rescale the likelihoods of each modality with factors λMNIST , λSV HN in order
to compensate for the different sizes of the modalities and mitigate conflict-
ual gradients [49].The values for λMNIST , λSV HN are indicated in Table E.6.
Intuitively, we need to put more weight on the smaller modalities so that
they are also well reconstructed.

We give specific details for each model:
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• MVTCAE: we set α = 0.9 following their recommandations in the
supplemental material in [19].

• MMVAE: we set K=10 for the number of samples in the ELBO.

• MMVAE+: we set K=10 for the number of samples in the ELBO. The
shared latent space as well as the modality-specific latent spaces have
a dimension of 10.

• JMVAE model, we set α = 0.1 as it appears as a good compromise
value in [5]. We use annealing as in the original paper with a 100
epochs for warmup. The joint encoder is made up of separate heads
and a common merging part where the separate heads have the same
architecture as the unimodal encoders in Table E.6. The merging part
is a simple two-layer MLP with 512 neurons in each layer.

• JNF: we used Masked Autoregressive Flows with two MADE blocks[27].
We use the same joint encoder as for the JMVAE model.

• JNF-Shared: We use the same flows and joint encoder as JNF. The
projectors used for CL or DCCA have the same architectures as the
encoders in Table E.6. The encoders qϕj

(z|gj(xj)) are simple networks
with two linear hidden layers.

Appendix E.2. On PolyMNIST
For the PolyMNIST experiments, we used the same Resnet [50] architec-

tures as used in [13]. These architectures are summarized in Figure E.18.
Following [13], we train all models as β-VAE and set β = 2.5. Each model
is trained until convergence with a batchsize of 128 and learning rate of 1e-
3. The latent dimension is set to 190 to match the total capacity of the
MMVAE+ model in [13].
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Figure E.18: Encoder and decoder architectures used for the experiments on the PolyM-
NIST dataset.

We give specific details for each model:

• MMVAE: Due to memory limitations, we set the latent dim to 64 and
used K=10 for the number of samples in the ELBO.

• MVTCAE: we set α = 5
6
.

• JMVAE: we set α = 0.1 and annealing with a warmup of 100 epochs.
In the original JMVAE model, a new encoder network needs to be in-
troduced for each subset of modalities. In our experiments, we didn’t
choose that solution since it represents a very large number of parame-
ters. Instead, we use for the JMVAE model, the PoE sampling solution
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that we also use for our models (Equation (12)). The joint encoder
is made-up of separate heads with the same architectures as in Fig-
ure E.18 and a merging neural networks with two hidden linear layers
of 512 neurons.

• MMVAE+: We use 32 dimensions for the shared latent space and 32
dimension for each modality specific space as in [13].

• JNF: Same joint encoder as JMVAE. We use Masked Autoregressive
flows with 2 MADE blocks.

• JNF-Shared: Same joint encoder and Normalizing flows as JNF. The
projectors (gj) are simple convolutional networks similar to the SVHN
encoders in E.6 and the encoders qϕj

(z|gj(xj)) are simple linear en-
coders as for the MNIST-SVHN experiments: see Table E.6.

Appendix E.3. On Translated PolyMNIST
For the TranslatedPolyMNIST experiments, we used similar architectures

as in the PolyMNIST experiments with a latent dimension of 200 (except
for MMVAE and MMVAE+ whose parameters are specified below). We
performed experiments with β ∈ {0.5, 1., 2.5}. For all models, we kept the
value of β that maximized average conditional coherence. In Table D.4, we
present results for different values of β and the selected values for each model.
We use a latent dimension of 200 for all models but the MMVAE+ that has
multiple latent spaces (see below). All models are trained until convergence
with learning rate 1e-3 and batchsize 128.

We give specific details for each model:

• MMVAE: Due to memory limitations, we used a latent dimension of
100 for the MMVAE model and used K=10 for the number of samples
in the ELBO.

• MVTCAE: we set α = 5
6

as in PolyMNIST.

• JMVAE: we set α = 0.1 and a warmup of 100 epochs. PoE sampling is
applied for JMVAE as in the other experiments. The joint encoder is
made of separate heads with the same architectures as in Figure E.18
and we concatenate the outputs of each head to form the joint repre-
sentation. This concatenation instead of a merging network allows to
avoid conflictual gradient issues and modality collapse [49].
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• MMVAE+: We use 32 dimensions for the shared latent space and 32
dimension for each modality specific space as in [13]. We use K=10 for
the number of samples in the ELBO.

• JNF: Same joint encoder as JMVAE. We use Masked Autoregressive
flows with 3 MADE blocks.

• JNF-Shared (CL): Same joint encoder and Normalizing flows as JNF.
The projectors (gj) have the encoder architectures in Figure E.18 and
the encoders qϕj

(z|gj(xj)) are simple linear networks as for the MNIST-
SVHN experiments: see Table E.6. We use Masked Autoregressive
flows with 2 MADE blocks.

• JNF-Shared (DCCA): when using DCCA to extract the shared infor-
mation, we used more simple architectures for the projectors (gj) for
instability reasons. We used simple convolutional networks similar to
the SVHN encoders in Table E.6. Precise architectures are given in the
code. We use Masked Autoregressive flows with 2 MADE blocks.

Appendix E.4. On MHD
Table E.7 contains all relevant architectures and general training param-

eters.
We use the same architectures than the ones used in [23] except that

we don’t pretrain the sound encoder and decoder. All models with a β
term weighing the Kullback-Leibler divergence in (3) and for all models, the
β = 0.5 gives the best average conditional coherence. We present additional
results for all values of β in Table D.5. We used Gaussian distributions
to model all posterior, prior and decoding distributions. We use a latent
dimension of 64 for all models but the MMVAE+ that has multiple latent
spaces (see below).

We use rescaling for the likelihoods of each modality following [7]. It
has been shown that this limits the phenomenons of conflictual gradients
and modality collapse [49]. The rescaling factors λimage, λaudio, λtrajectory are
given in Table E.7

We train all models until convergence. We give specific details for each
model:

• MMVAE: We used K=10 for the number of samples in the ELBO.
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• MVTCAE: we tried α ∈ {0.75, 0.9} and kept best results obtained for
α = 0.9.

• JMVAE: we set α = 0.1 and a warmup of 100 epochs. In the original
JMVAE model, a new encoder network needs to be introduced for each
subset of modalities. In our experiments, we didn’t choose that solution
since it represents a very large number of parameters. Instead, we use
for the JMVAE model, the PoE sampling solution that we also use for
our models (Equation (12)). The joint encoder is made-up of separate
heads with the same architectures as in Table E.7 and a merging neural
networks with two hidden linear layers of 512 neurons.

• MMVAE+: We use 32 dimensions for the shared latent space and 32
dimension for each modality specific space. We used K=10 for the
number of samples in the ELBO.

• JNF: Same joint encoder as JMVAE. We use Masked Autoregressive
flows with 2 MADE blocks.

• JNF-Shared: Same joint encoder and Normalizing flows as JNF. The
projectors (gj) have the encoder architectures in Figure E.18 and the
encoders qϕj

(z|gj(xj)) have the same architectures as for the MNIST-
SVHN experiments: see Table E.6.

• NEXUS : we use the same hyperparameters as used in [23].
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Appendix F. Hamiltonian Monte Carlo Sampling

In this appendix, we recall the principles of Hamiltonian Monte Carlo
Sampling and detail how we apply it in our model. The Hamiltonian Monte
Carlo (HMC) sampling belongs to the larger class of Markov Chain Monte
Carlo methods (MCMC) that allow to sample from any distribution f(z)
known up to a constant [28]. The general principle is to build a Markov Chain
that will have our target f(z) as stationary distribution. More specifically,
the HMC is an instance of the Metropolis-Hasting Algorithm (see 1) that
uses a physics-oriented proposal distribution.

Algorithm 1 Metropolis-Hasting Algorithm
1: Initialization : z ← z0
2: for i := 0 → N do
3: Sample z′ from the proposal g(z′|z)
4: With probability α(z′, z) accept the proposal z ← z′

5: end for

Sampling from the proposal distribution g(z′|z0) is done by integrating
the Hamiltonian equations :

∂z

∂t
=

∂H

∂v
,

∂v

∂t
= −∂H

∂z
,

z(0) = z0

v(0) = v0 ∼ N (0, I) ,

(F.1)

where the Hamiltonian is defined by H(z, v) = − log f(z)+ 1
2
vtv. In physics,

Eq. (F.1) describes the evolution in time of a physical particle with initial
position z and a random initial momentum v. The leap-frog numerical scheme
is used to integrate Eq. (F.1) and is repeated l times with a small integrator
step size ϵ :

v(t+
ϵ

2
) = v(t) +

ϵ

2
· ∇z(log f(z)(t)) ,

z(t+ ϵ) = z(t) + ϵ · v(t+ ϵ

2
) ,

v(t+ ϵ) = v(t+
ϵ

2
) +

ϵ

2
∇z log f(z(t+ ϵ)) .

(F.2)
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After l integration steps, we obtain the proposal position z′ = z(t + l · ϵ)
that corresponds to step 3 in Algorithm 1. The acceptance ratio is then
defined as α(z′, z0) = min

(
1, exp(−H(z0,v0))

exp(−H(z′,v(t+l·ϵ)))

)
. This procedure is repeated

to produce an ergodic Markov chain (zn) converging to the target distribution
f [51, 52, 53, 54]. In this work, we use HMC sampling to sample from the
PoE of unimodal posteriors in Eq. (12). To do so we need to compute and
derivate the (log) of the target distribution given by the PoE of the unimodal
distributions:

log q(z|(xi)i∈S) = − log p(z) +
∑
i∈S

log qϕi
(z|xi) . (F.3)

We can use autograd to automatically compute the gradient∇z log q(z|(xi)i∈S)
that is needed in the leapfrog steps.

In our experiments, we use 100 steps per sampling.

Appendix G. Information on the classifiers used for evaluation

Appendix G.1. MNIST-SVHN
In Table G.8 we provide the architectures and the accuracies for the

classifiers that we use to evaluate coherence on the MNIST-SVHN dataset.

SVHN MNIST

Conv2d(3,10,5) Conv2d(1,10,5)
MaxPool2d,RELU MaxPool2d,RELU
Conv2d(10,20,5), Dropout(0.5) Conv2d(10,20,5), Dropout(0.5)
MaxPool2d,RELU MaxPool2d,RELU
Linear(500,50), RELU, Dropout Linear(350,50), RELU, Dropout
Linear(50,10), Softmax Linear(50,10), Softmax

Accuracies on test

0.87 0.99
Table G.8: Classifiers used for the MNIST-SVHN experiments.

Appendix G.2. Classifiers on PolyMNIST
We use the architectures and the pretrained models available at https:

//github.com/thomassutter/MoPoE [8].
The accuracies of the classifiers for the five modalities of the test set are

respectively: 0.95, 0.99, 0.99, 0.97, 0.95.

40

https://github.com/thomassutter/MoPoE
https://github.com/thomassutter/MoPoE


Appendix G.3. Classifiers on TranslatedPolyMNIST
We pretrain classifiers on this dataset having similar architectures as in

Figure E.18 with a output size of 10.
The accuracies of the trained classifiers for the five modalities of the test

set are respectively: 0.98, 0.97, 0.98, 0.97, 0.98.

Appendix G.4. Classifiers on MHD
We use the pretrained classifiers available at https://github.com/miguelsvasco/

nexus_pytorch/.
The accuracies of the trained classifiers on the test set are: 0.95 for the au-

dio modality, 0.99 for the image modality and 0.99 for the trajectory modal-
ity.
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