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Abstract

Metamodels are cornerstone in MDE. They define the different domain concepts
and the relations between them. A metamodel is also used to generate concrete
artifacts such as code. Developers then rely on the generated code to build their
language services and tooling, e.g., editors, checkers. To check the behavior of
their client code, developers write or generate unit tests. As metamodels evolve
between releases, the generated code is automatically updated. As a consequence,
the additional developers’ code is impacted and is co-evolved accordingly for
each release. However, there is no guarantee that the co-evolution of the code is
performed correctly. One way to do so is to re-run all the tests after each code
co-evolution, which is expensive and time-consuming.
This paper proposes an automatic solution for tracing impacted tests due to meta-
model evolution. Thus, we end up matching metamodel changes with impacted
code methods and their corresponding tests both in the original and evolved ver-
sions of a given project. After that, we map the two versions of the impacted tests
and compare them to analyze the behavior of the code before and after its evo-
lution due to the metamodel evolution. In particular, we implemented an Eclipse
plugin that allows tracing, mapping, execution, and reporting back the results to
the developers for easier in-depth analysis of the effect of metamodel evolutions
rather than analyzing the whole test suite.
We first ran a user study experiment to gain evidence on the difficulty or not of
the manual task of tracing impacted tests. We found that manually tracing the

1



tests impacted by the evolution of the metamodel is a hard and error-prone task.
Not only the participants could not trace all tests, but they even wrongly traced
non-impacted tests. We then evaluated our approach on 18 Eclipse projects from
OCL, Modisco, Papyrus, and EMF over several evolved versions of metamodels.
For the 14 projects without manual tests, we generated a test suite for each release
with the state-of-the-art tool EvoSuite. The results show that we successfully
traced the impacted tests automatically by selecting 1608 out of 34612 tests due
to 473 metamodel changes. When running the traced tests before and after co-
evolution, we observed cases indicating possibly both behaviorally correct and
incorrect code co-evolution. Finally, we reached gains representing, on average, a
reduction of 88% in the number of tests and 84% in the execution time.

Keywords: Metamodel evolution, code co-evolution, Unit tests, testing co-evolution

1 Introduction

Model-driven engineering (MDE) is a state-of-art software engineering approach for
supporting the increasingly complex construction and maintenance of large-scale sys-
tems [1–3]. In particular, MDE allows domain experts, architects, and developers
to build languages and their tools that play an important role in all phases of the
development process [4].

A central artifact in MDE when building languages is the metamodel that defines
the aspects of a business domain, i.e. the main concepts, their properties, and the
relationships between them [5]. A metamodel is the cornerstone to not only specify
model instances, constraints, or transformations, but also the code when building the
necessary language tooling, e.g., editor, checker, compiler, data access layers, etc. In
particular, metamodels are used as inputs for complex code generators that leverage
the abstract concepts defined in metamodels. Eclipse Modeling Framework (EMF) [6]
is a prominent example that supports the generation of Java code consisting of a
core code API for creating, loading and manipulating the model instances, adapters,
serialization facilities, and an editor, all from the metamodel elements. This generated
code is further enriched by developers to offer additional functionalities and tooling,
such as validation, transformation, simulation, or debugging. A metamodel and its
generated code API are, hence, a cornerstone when building a language and its tooling.
For instance, UML1 and BPMN2 Eclipse implementations rely on the UML and BPMN
metamodels to generate their corresponding code API before building around it all
their tooling and services in the additional code.

One of the foremost challenges to deal with in MDE, is the impact of the evolution
of metamodels on its dependent artifacts, in particular, the impacted code. Indeed,
when a metamodel evolves between two releases, and as the core API is re-generated
again, the additional code implemented by developers can be impacted. As a conse-
quence, it is co-evolved accordingly by the developer in the next release. However,
while developers co-evolve their code either manually or automatically, they cannot

1https://www.eclipse.org/modeling/mdt/downloads/?project=uml2
2https://www.eclipse.org/bpmn2-modeler/
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ensure that the code co-evolution is behaviorally correct, i.e., without altering the
behavior of their impacted code. Especially, when there is alternative co-evolution of
the same impacted code. One way to check this is to re-run all the tests after each
code co-evolution, which is expensive and time-consuming. It is also tedious and error-
prone when the developer checks the output of the tests’ execution and manually maps
them between the original and evolved versions. Whereas several existing approaches
automate the metamodels and code co-evolution [7–14], to the best of our knowledge,
they do not focus on checking the behavioral correctness of the co-evolved code and
do not trace till the impacted tests.

This paper proposes a new fully automatic approach to check the behavioral cor-
rectness of the code co-evolution between different releases of a language when its
metamodel evolves. We leverage the test suites of the original and evolved versions
of the language, and hence, its metamodels and code. Test suites are usually used
to check the code is behaviorally correct. In our work, we use unit test suites before
and after code co-evolution to check that the co-evolution did not alter the behavior
of the code. The approach first takes as input the metamodel evolution changes and
then parses the code to compute the code call graph (CCG). With the changes and
the CCG, we first locate all usages of the metamodel elements in the generated code.
For example, a getter/setter of a metamodel attribute/reference, interface, the class
implementation, etc. After that, we recursively trace the code usages of the meta-
model elements in the CCG throughout the methods calls in the additional code until
reaching the test methods. Thus, we end up matching the metamodel changes with
impacted code methods and their corresponding tests. We perform this step on both
releases corresponding to the original and evolved metamodels and code to be able to
check the behavioral correctness of the code before and after co-evolution. We imple-
mented our approach in an Eclipse plugin that allows to trace the tests, map them with
state-of-the-art solution GumTree [15] and execute them. Then, we report them back
in a form of diagnostic to the developers for an easier in-depth analysis of the effect
of metamodel evolution rather than re-running and analysing the whole test suite.

A first part of the evaluation consisted of an user study experiment to gain evidence
on the difficulty or not of the manual task of tracing impacted tests after metamodel
evolution and co-evolution. We found that tracing manually the tests impacted by the
evolution of the metamodel is a hard and error-prone task. Not only the participants
could not trace all tests, but they even wrongly traced non-impacted tests. The post-
questionnaire results after a demonstration of our automatic approach suggest its high
usefulness and adoption likelihood. We then evaluated our approach on 18 Eclipse
projects from OCL, Modisco, Papyrus, and EMF over several evolved versions of
metamodels. For four projects we had manually written tests. For the 14 projects
without manual tests, we generated a test suite for each release with the best available
state-of-the-art tool EvoSuite [16]. Results show that we automatically traced 1608
out of 34612 tests based on 473 metamodel changes. When running the traced tests
before and after co-evolution, we observed the two cases, indicating possibly both
behaviorally incorrect and correct code co-evolution. Thus, helping the developer to
locate code co-evolution to investigate in more details. In addition, our approach
provided gains representing, on average a reduction of 88% in the number of tests
and 84% in execution time.
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Fig. 1 Evolution of metamodels and related artifacts of a software language

This paper significantly extends our previous vision paper [17] where we laid out
the base for the test tracing. In addition to a more detailed approach, we extend this
work by additional core contributions of 1) the mapping of impacted tests between
original and evolved versions, 2) executing them programmatically, and 3) reporting
the result of the mapped tests and the causing metamodel changes in a GUI to the
user. Moreover, the preliminary evaluation of the vision paper [17] was extensively
improved both 1) in research questions with three added structured questions, 2) in
the number of case studies that was extended from 4 projects to 18 projects with
both manually written tests and automatically generated tests, and 3) a user study
experiment with 8 participants.

The rest of the paper is structured as follows. Section 2 discusses the background.
Section 3 presents our approach for test tracing while Section 4 evaluates it. Sections 5
and 6 discuss threats to validity and related work. Finally, Section 7 concludes the
paper and discusses future work plan.

2 Background and Example

This section gives a background on how metamodels play a significant role when
building software languages and their tooling for a better comprehension of the current
work. It then discusses the scenario of co-evolution that arises between metamodels
and code, and the need for testing its behavioral correctness.

2.1 Key Concepts

Metamodels are a cornerstone in MDE. It serves to create model instances, constraints,
or transformations. In our work, we focus on the relation between metamodels and
code. Figure 1 depicts a software language structure and its usage as in practice in
the Eclipse platform. Once the metamodels are carefully defined and validated in a
given version. The core API code is generated [6] consisting of the class implementa-
tions of the metamodel classes, a factory and package classes, etc. All this generated
code allows parsing the AST of the metamodels’ models instances, navigate in it and
modify it. The generated code is enriched with additional code to offer more advanced
functionalities. For instance, methods defined in classes in the metamodel are gener-
ated without their bodies, which developers must implement. Developers also integrate
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additional classes to implement advanced functionalities, such as language services like
validation and language tooling like an execution engine. Finally, a test suite is added
on top of the generated and the additional code to test the implemented functional-
ities. This can be done manually or with the existing techniques for automated test
generation [16, 18, 19].

However, the generated code, additional code and tests hold for a single version of
the metamodel. With metamodel evolution comes the challenges of co-evolution and
its correctness. For example, when a metamodel evolves, model instances must be co-
evolved. One way to check the models’ correctness is to rely on the OCL constraints to
verify the static semantic of the models [5, 20]. Thus, one can compare the constraints
before and after the models’ co-evolution. In our case, when the metamodel evolves, the
API code can be re-generated again. As a consequence, the additional code manually
integrated by developers must be co-evolved accordingly as well. Unfortunately, there
is also no guarantee that the code co-evolution is correct. Usually, the test suite is used
to identify possible bugs in the new evolved version of the code. In this work, similarly
to the practice of regression testing, we leverage the test suites in both the original
and evolved versions of the code to check particularly the behavioral correctness of
the co-evolution.

Indeed, in regression testing, the goal is to re-run tests after any code changes to
ensure that the software still works as intended [21–23]. In this paper, we intend to
follow a similar methodology by tracing the impacted tests that must be re-run to
compare their results before and after code co-evolution.

2.2 Motivating Example

This section introduces a motivating example to illustrate the challenge of metamodel
and code co-evolution and testing it.

Figure 2 shows an excerpt of the ”Modisco Discovery Benchmark” metamodel3

consisting of 10 classes in version 0.9.0. It illustrates some of the domain concepts
Discovery, Project, and ProjectDiscovery used for the discovery and reverse engi-
neering of an existing software system. From these metaclasses, a first code API is
generated, containing Java interfaces and their implementation classes, a factory, a
package, etc. In version 0.11.0, the Modisco metamodel evolved with several significant
changes, among which we find: 1) Renaming the property totalExecutionTimeInSec-
onds to discoveryTimeInSeconds in metaclass Discovery, followed by 2) Moving the
property discoveryTimeInSeconds (after its renaming) from metaclass Discovery to
DiscoveryIteration

Listing 1 shows a directly impacted test from the class DiscoveryImpl ESTest

after the evolution of Modisco metamodel. It tests directly the evolved method. In the
class DiscoveryIterationImpl ESTest of Modisco 0.11.0, the test shown in Listing 2
is impacted indirectly by the same change. Indeed, the method totalExecutionTimeIn-
Seconds after its rename and move is used in the method eSet as shown in Listing 3,
which is in turn used in the unit test shown in Listing 2. It tests indirectly the evolved
method.

3https://git.eclipse.org/r/plugins/gitiles/modisco/org.eclipse.modisco/+/refs/tags/0.12.1/org.eclipse.
modisco.infra.discovery.benchmark/model/benchmark.ecore
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Fig. 2 Excerpt of Modisco Benchmark metamodel in version 0.9.0.

The above examples show the direct and indirect impact of the metamodel evolu-
tion on the code and on the tests. However, manually tracing the impact of multiple
metamodel evolutions at once till the test is tedious, error-prone and time-consuming.
In particular, this tracing must be done before and after the metamodel evolution and
then to map the traced tests to investigate the code co-evolution correctness.

The next section presents our contribution for an automated tracing of the tests
impacted by the evolution of the metamodel that allows later to check the behavioral
correctness of the metamodel and code co-evolution.

Listing 1 Excerpt of a directly impacted test in Modisco.

1 @Test(timeout =4000)
2 public void test000 () throws Throwable {
3 DiscoveryIterationImpl discoveryIterationImpl0 = new DiscoveryIterationImpl ();
4 ...
5 assertFalse(discoveryIterationImpl0.eIsProxy ());
6 assertEquals (0.0, discoveryIterationImpl0.getDiscoveryTimeInSeconds(), 0.01);

7 assertTrue(discoveryIterationImpl0.eDeliver ());
8 assertEquals (0.0, discoveryIterationImpl0.getSaveTimeInSeconds (), 0.01);
9 assertEquals (0L, discoveryIterationImpl0.getMaxUsedMemoryInBytes ());

10 assertTrue(discoveryIterationImpl0.eDeliver ());
11 ...
12 }

Listing 2 Excerpt of an indirectly impacted test in Modisco.

1 @Test(timeout = 4000)
2 public void test16 () throws Throwable {
3 DiscoveryIterationImpl discoveryIterationImpl0 = new DiscoveryIterationImpl ()

;
4 EList <Event > eList0 = discoveryIterationImpl0.getMemoryMeasurements ();
5 try {
6 discoveryIterationImpl0. eSet(30, (Object) eList0);

7 fail("Expecting␣exception:␣ClassCastException");
8
9 } catch(ClassCastException e) {

10 verifyException("org.eclipse.modisco.infra.discovery.benchmark.impl.
DiscoveryIterationImpl", e);

11 }
12 assertEquals (0.0, discoveryIterationImpl0.getSaveTimeInSeconds (), 0.01);
13 ...
14 }
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Listing 3 Excerpt of an impacted method in Modisco.

1 @Override
2 public void eSet(int featureID , Object newValue) {
3 switch (featureID) {
4 ...
5 case BenchmarkPackage.DISCOVERY_ITERATION__DISCOVERY_TIME_IN_SECONDS:
6 setDiscoveryTimeInSeconds((Double)newValue);

7 return;
8 case BenchmarkPackage.DISCOVERY_ITERATION__SAVE_TIME_IN_SECONDS:
9 setSaveTimeInSeconds (( Double)newValue);

10 return;
11 case BenchmarkPackage.DISCOVERY_ITERATION__MAX_USED_MEMORY_IN_BYTES:
12 setMaxUsedMemoryInBytes ((Long)newValue);
13 return;
14 ...
15 }

3 Approach

This section presents our proposed overall approach. It first gives an overview. Then,
it describes how to detect the metamodel changes and how to trace their impacts until
the tests and map them. Finally, it details our prototype implementation.

3.1 Overview

The overall objective of our approach is to help developers in checking the behavioral
correctness of the code co-evolution when metamodels evolve, as the co-evolution may
be done incorrectly or in an incomplete way (i.e., referred to as partial co-evolution
in [24, 25]). Several ways exist, such as using formal methods, manual code review,
or unit tests, etc. Our scope lies in tracing the impact of the metamodel changes till
the tests and rely on them as an indicator for behavioral correctness of the code co-
evolution, similarly as in a regression testing method [21–23]. Our vision is rather than
letting the developers execute all test suite in both versions and manually analyzing
them, we can reduce the set of tests to be analyzed to the only minimum necessary
one. Thus, saving effort and time for developers.

Figure 3 depicts the overall approach workflow. We first compute the difference
between the two metamodel versions each of them having a generated code and an
additional code (step 1 ). In the original version, the additional code is the impacted
one, and in the evolved version, the additional code is the co-evolved one. After that,
we run the impact and the test tracing analysis to link the metamodel changes to
the impacted and co-evolved code and their respective tests (step 2 ). Therefore, a
developer can run the traced tests before and after the code co-evolution to check their
behavioral correctness. Finally, to ease this task, we map the traced tests and execute
them to report them back in a form of a diagnostic to the developers for an easier in-
depth analysis of the effect of metamodel evolution rather than analyzing the whole
test suite (step 3 ). Therefore, in a nutshell, there are no particular preconditions
to our approach except having available code and tests from both before and after
co-evolution along with the delta of the metamodel changes.
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Fig. 3 Overall approach

3.2 Detection of metamodel Changes

Software artifacts continuously evolve over time [26]. As any artifact, metamodels
evolve as well. Two types of changes are known and considered in the literature for
metamodel evolution: atomic and complex changes [27]. Atomic changes are addi-
tions, removals, and updates of a metamodel element. Complex changes consist of a
sequence of atomic changes combined together [28, 29]. For example, move property
is a complex change where a property is moved from a source class to a target class.
This is composed of two atomic changes: delete a property and add a property [27].
Several existing approaches allow to automatically detect metamodel changes between
two versions, such as [28, 30–34].

In this work, we use an interface specification of changes 1 that is a connec-
tion layer to our test tracing approach with the existing change detection approaches.
It basically defines each metamodel change as a class with its necessary informa-
tion. Therefore, in practice, any detection approach [28, 30–34] can be integrated by
bridging its changes to our interface and the rest of our approach can be performed
independently.

In practice, we focus on the impacting metamodel changes that will require co-
evolution of the code and not on the non-impacting changes. For example, a delete
change or a change of type will impact the code and possibly its behavior that can
be observed with its tests. However, addition changes, although non-breaking, can be
traced back to their newly added tests. Thus, we also consider them to observe their
behavior. The list of metamodel changes [32, 35] we consider for tracing their impact
up to the tests is as shown in the first column of Table 1.
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Table 1 List of metamodel changes and how they are traced up to the tests in the original and
evolved versions.

Tests treatment
Metamodel changes

In original version (V1) In evolved version (V2)

⋄ Delete property p in class C Search for usages of p in C n/a

⋄ Delete class C Search for usages of C n/a

⋄ Add property p in class C n/a Search for usages ofp in C

⋄ Add class C n/a Search for usages of C

⋄ Rename element e to e’ in class C Search for usages of e in C Search for usages of e’ in C

⋄ Change multiplicity of property
p in class C

Search for usages of p in C

⋄ Change type of property p
from S to T

Search for usages of p in C

⋄ Move property pi from
class S to T through ref
⋄ Extract class of properties p1,
..., pn from S to T through ref

Search for usages of all pi in S Search for usages of all pi in T

⋄ Push property pi from
class Sup to Sub1,...,Subn

Search for usages of all pi in Sup Search for usages of all pi in all Subi

⋄ Pull property pi from
classes Sub1,...,Subn to Sup

Search for usages of all pi in all Subi Search for usages of all pi in Sup

⋄ Inline class S to T

with properties p1, ..., pn
Search for usages of all pi in S Search for usages of all pi in T

For each version of the tests, we use different information provided by each meta-
model change, depending on whether we are tracing the impacted tests in the original
or the evolved versions. Columns 2 and 3 of table 1 detail the treatments of each
metamodel change in the original and evolved versions. For example, for a rename ele-
ment e to e’, we search for e and e’, respectively, in the original and evolved versions.
Similarly, for the other changes, such as Move, Pull, Push, etc. where the source and
target classes are different in the original and evolved versions. Only the impact of
delete changes is searched in the original version, while the impact of addition changes
is only searched in the evolved version.

3.3 Tracing the Impacted Tests

Our approach traces the impact of metamodel changes up to the test. To do that, we
structure the code source to better navigate in it. Before starting, we parse the code
source including tests and build the Code Call Graph (CCG) at the methods level. It
consists of nodes N that are methods, and edges E that are calls between methods.
For a given method, the CCG allows us to retrieve its callers, hence, tracing the call
methods recursively up to the tests. After that, we apply Algorithm 1 on the built
CCG. Overall, for each detected metamodel change, the algorithm computes the list of
direct and indirect impacted tests that can be traced to the given metamodel change.
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First, we analyze the AST of the code to identify the code usages of the evolved
metamodel element. The information concerning the metamodel element before and
after evolution, which is included in the metamodel change (see Table 1), allow us to
spot the impacted code usages (Line 1). For example, for a rename property id, the
algorithm will first find its usages, such as getId() or setId()4. Then, we filter these
impacted code usages by keeping only the ones found inside a method declaration.
Let us call the found method declaration using the impacted code IM() (Line 5). If
IM() is a test method, that means that we found a direct impacted test (Line 7).
Otherwise, thanks to the CCG, we retrieve IM()’s parents parentsOfIM, which are
all the method declarations invoking IM() (Line 9-17). Afterwards and recursively,
we check each parent of IM() if it is a test method or not (Line 14). The process
is finished if we reach a method declaration that has no parents in the CCG that
is either a test or not, or if the reached method declaration is already treated in
the parentsOfIM. Therefore, by design, after browsing all the impacted code usages,
Algorithm 1 traces the list of all impacted tests, without missing any if impacted. It
is worth noting that tracing all impacted tests holds syntactically and w.r.t. static
semantics. Possible side-effect will require further advanced dynamic analysis and is
left for future work. Listing 1 presents an example of an impacted test in the Eclipse
Modisco.infra.discovery.benchmark project. As described in Section 3.2, we detect that
the attribute setTotalExecutionTimeInSeconds is renamed and moved from the class
Discovery to the class DiscoveryIteration. After that, Algorithm 1 detects the code
usage getDiscoveryTimeInSeconds. Then, it traces it to the method test000. As it has
the @Test annotation, we conclude that test000 is an impacted test due to the detected
move change. Note that a test can be impacted by multiple metamodel changes, and
one metamodel change can impact many tests. Algorithm 1 will detect either cases.

3.4 Mapping of impacted tests

After having traced the impacted tests, we further assist developers in analyzing the
output of our approach. We provide a diagnostic in a form of a visualized report.
This report displays the mapping of impacted tests between the original and evolved
versions, along with the verdict of their execution (i.e., pass, fail, and error) and the
corresponding impacted change. As an input to generate the diagnostic, the developer
selects two impacted traced test classes in the original and evolved versions. The
mapping between the two sets of test cases for these classes is performed using a state-
of-the-art tool, namely GumTree [15]. It parses both test classes into a tree structure
to enable the matching of the test cases. Herein, we distinguish three cases, namely: 1)
tests that exist in both versions, 2) tests that exist in the original version but not in
the evolved one, and 3) tests that exist in the evolved version but not in the original
one. The impacted tests are then executed programmatically using JUnit runner. To
facilitate the analysis and the tracing of impacted tests, we include the corresponding
impacting metamodel changes in an additional column of the diagnostic report.

4Note that the knowledge about the generated code elements from the metamodel elements (e.g., get-
ter/setter for EAttribute, class/interface for EClass, etc.) is so far hard-coded in the implementation of
Algorithm 1. The mappings must be provided for our approach to be able to trace the tests.
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Algorithm 1 Impacted tests detection

Require: codeCallGraph, change
1: impactedUsages ← match(AST, change)
2: impactedTests ← ϕ
3: for (impactedUsage ∈ impactedUsages ) do
4: /* Find the method declaration using impactedUsage*/

5: IM ← getIM(impactedUsage, codeCallGraph)
6: if (isTest(IM)) then
7: impactedTests.add(IM) /*If not already added*/
8: else
9: parentsOfIM ← getParents(IM, codeCallGraph)

10: nextRound.add(parentsOfIM)
11: while (nextRound.hasNewIMs()) do
12: IM ← nextRound.get()
13: if (isTest(IM) then
14: impactedTests.add(IM)/*If not already added*/
15: else
16: parentsOfIM ← getParents(IM, codeCallGraph)
17: nextRound.add(parentsOfIM)
18: end if
19: end while
20: end if
21: end for

Figure 4 illustrates a screenshot of the test tracer report on a toy example
”Employee Management Project”. After selecting the class of tests that have been
traced before code co-evolution, and the class of tests that have been traced after code
co-evolution, the user clicks on ”Map tests” to display the table of mapped tests with
their verdict of execution. To illustrate the verdict of the test execution, we made: the
passing test in green, the failing test in blue, and erroneous tests in red. For exam-
ple, the change ”Delete Class Contact” impacts two tests, test11 which passes, and
test06 which fails. The verdict of the execution of the tests has no relation with the
change itself but with the test that uses the code elements impacted by the meta-
model change. Those tests do not exist anymore in the evolved version since the class
Contact is absent and cannot be tested anymore.

3.5 Tool implementation

We implemented our solution as an Eclipse Java plugin handling Ecore/EMF meta-
models and their Java code. We rely on our approach [29] to perform the detection of
the metamodel changes bridged with the change interface. The test tracing, technically,
consists of parsing the java code and manipulating its AST using JDT eclipse plugin5

to construct the Code Call Graph (CCG). After that, we navigate within the methods
calls until we either reach a test or not. Finally, for each impacted TestClass, we create

5Eclipse Java development tools (JDT): https://www.eclipse.org/jdt/core/
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Fig. 4 A snippet of the diagnostic report view to visualize and analyze the traced impacted tests.

a copy TestClass Impacted where we only include the impacted traced test cases. The
developer can then launch the traced tests in both the original and evolved versions to
investigate the behavioral correctness of the co-evolved code. We further implemented
the diagnostic report as a view that shows the mapped tests with GumTree [15], their
verdict retrieved programmatically using JUnit Runner6 and impacting metamodel
changes, as shown in Figure 4. The goal is to ease the developers’ in-depth analysis
of the effect of metamodel evolutions rather than rerunning and analyzing the whole
test suite.

4 Evaluation

This section evaluates our automatic approach of checking the behavioral correctness
of the metamodel and code co-evolution. First, we present the data set and the evalua-
tion process. Then, we set the research questions we address and discuss the obtained
results.

4.1 Data Set

This section presents the used data set in our evaluation to be found in the attached
supplementary material7.

We evaluate our approach on four case studies of language implementations in
Eclipse, namely OCL [36], Modisco [37], Papyrus [38], and EMF [39] project. OCL
is a standard language defined by the Object Management Group (OMG) to specify
First-order logic constraints. Modisco is an academic initiative to support development
of model-driven tools, reverse engineering, verification, and transformation of existing
software systems. Papyrus is an industrial project led by CEA8 to support model-
based simulation, formal testing, safety analysis, etc. The EMF project is a modeling
framework and code generation facility for building tools and other applications based

6https://junit.org/junit4/javadoc/4.13/org/junit/runner/Runner.html
7https://figshare.com/s/b6251b9e47fa82983ce5
8http://www-list.cea.fr/en/
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Table 2 Details of the metamodels and their evolutions.

Evolved metamodels Versions
Atomic changes
in the metamodel

Complex changes
in the metamodel

Pivot.ecore
in project
ocl.examples.pivot

3.2.2
to
3.4.4

Deletes: 2 classes, 16 properties, 6 super types
Renames: 1 class, 5 properties
Property changes: 4 types; 2 multiplicities
Adds: 25 classes, 121 properties, 36 super types

1 pull property
2 push properties

Pivot.ecore
in project
ocl.pivot

6.1.0
to
6.7.0

Deletes: 0 classes, 4 properties, 4 super types
Renames: 0 class, 1 properties
Property changes: 49 types;
Adds: 5 classes, 47 properties, 7 super types

n/a

ExtendedTypes.ecore
in project
papyrus.infra.extendedtypes

0.9.0 to
1.1.0

Deletes: 10 properties, 2 super types
Renames: 3 classes, 2 properties
Adds: 8 classes, 9 properties, 8 super types

2 pull property
1 push property
1 extract super class

Benchmark.ecore
in project
modisco.infra.discovery.benchmark

0.9.0 to
0.13.0

Deletes: 6 classes, 19 properties, 5 super types
Renames: 5 properties
Adds: 7 classes, 24 properties, 4 super types

4 moves property
6 pull property
1 extract class
1 extract super class

Ecore.ecore
in project
org.eclipse.emf

2.37.0 to
2.37.0’

Deletes: 1 class, 2 properties
Renames: 2 properties

1 move property
1 pull property

on a structured data model [6]. Thus, the four case studies cover standard, academic,
and industrial languages that have evolved several times for more than 10 years of
continuous development period.

Moreover, we aimed at selecting meaningful evolutions that do not consist in only
deleting metamodel elements, but rather include complex evolution changes. We also
aimed to select long and short evolution intervals in the selected releases versions to
stress test our approach in different scenarios. This is the case for the OCL, Modisco,
and Papyrus case studies. However, they do not have manually written tests. Thus,
we added the EMF case study that have manually written tests, but its metamodel is
stable with no evolutions. Therefore, we had to simulate a set of metamodel evolution
changes similar to those real-world changes observed in our three first case studies and
we co-evolved their impacts with our previous work [13].

Table 2 gives details about the selected case studies, in particular about their
metamodels and the changes applied during evolution. The total of applied metamodel
changes was 452 atomic changes and 21 complex changes in the five metamodels.
Table 3 gives details on the size of the projects in terms of code and tests of the original
and evolved versions. We collected a total of 18 projects to evaluate our approach on.

4.2 Evaluation Process

We evaluate our approach by: 1) investigating its usefulness compared to the manual
tracing of the impacted tests with user study, 2) measuring its ability to automatically
trace the impacted tests due to impacting metamodel changes both in the original
and evolved version of the project, 3) assessing its ability to give an indication about
the correctness of the code and metamodel co-evolution, and finally 4) measuring the
gains of its usage in terms of reduction of tests and their execution time. Note that as
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the metamodel changes are taken as input of our automatic test tracing, we studied
the original and evolved versions to confirm the metamodel changes. Therefore, we
do not take an incorrect input of metamodel changes that would mislead our traced
tests, which would mislead the behavioral checking of the code co-evolution.

Regarding the tests, only the EMF case study had manually written tests. Thus,
we had to generate tests for OCL, Modisco, and Papyrus case studies. We used a state-
of-the-art tool, namely EvoSuite [16]. EvoSuite is a search-based tool for Unit Tests
generation. It uses a heuristic algorithm, particularly, genetic algorithm in the Test
Suit generation. In their used approach Fraser et al. [16] aimed to maximize the cover-
age metric and mutation score which guarantees good-quality tests. EvoSuite is largely
used and it was evaluated not only in literature but also in the industrial context.
Firhard et al. [40] compared it with DSpot, a state-of-the-art tool for test amplifica-
tion, their results show that EvoSuite achieves a statistically better mutation score.
Herculano et al. found that EvoSuite’s generated tests can successfully help to identify
faults during maintenance tasks [41]. In industry, Rozière et al. use automated tests
generated with EvoSuite to filter invalid code translations in the context of their work
done for Meta [42]. Gruber et al. [43] further showed the quality and robustness of the
generated tests. It showed that while flakiness is at least as common in generated tests
as in developer-written tests, EvoSuite is effective in alleviating this issue giving 71.7%
fewer flaky tests. Thus, EvoSuite is appropriate in our work to generate robust tests
in the original code and in the co-evolved code to compare their results, i.e., check
behavioral correctness. We simply let EvoSuite run to generate Junit test classes for
the selected projects with the following parameters: -DmemoryInMB=2000 -Dcores=4
-DtimeInMinutesPerClass=10 evosuite:generate evosuite:export. It uses up to 2GO of
RAM, 4 CPU cores, and 10 minutes per test class. Generating tests is a best practice,
in particular w.r.t. its efficiency in test generation and at a large scale for all public
methods [44, 45]. EvoSuite generates tests for all public methods, whereas developers
tend to manually write a few tests for only some targeted methods. Thus, relying only
on manually written tests increases the risk of not assessing the behavioral correctness
of many cases of code co-evolutions that are not covered by test cases. Generating
tests alleviates this risk. Indeed, this is observed when computing the coverage met-
ric for each of our considered projects. Table 4 shows that the highest coverage (69%
to 95%) is obtained on projects with automatically generated tests and the lowest
coverage (17% to 33%) were on the two projects with manually written tests.

4.3 Research Questions

This section sets the research questions (RQs) to assess our work. The research
questions are as follows:

RQ0. To what extent can developers manually trace the tests impacted by the
evolution of the metamodel? This aims to asses if developers can manually trace the
tests that are impacted by the changes of the metamodel. This also aims further to
assess our approach’s usefulness through main observations.

RQ1. To what extent does our automatic approach trace the impact of the meta-
model evolution to the tests? This aims to assess on real-world case studies the ability
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Table 3 Details of the projects and their tests.

Projects co-evolved in response to the evolved
metamodels

No of
packages

No of
classes

No of test
packages

No of test
classes

No of
LOC

No of
tests

[P1V 1] ocl.examples.pivot 22 439 22 290 74002 7322

[P1V 2] ocl.examples.pivot 22 480 22 220 89449 4990

[P2V 1] ocl.examples.base 12 181 12 119 17617 2320

[P2V 2] ocl.examples.base 12 181 12 118 17596 2133

[P3V 1] ocl.pivot 60 1006 55 598 142236 8795

[P3V 2] ocl.pivot 63 1090 58 683 153613 6396

[P4V 1] papyrus.infra.extendedtypes 7 37 7 19 2057 135

[P4V 2] papyrus.infra.extendedtypes 7 51 7 26 2570 248

[P5V 1] papyrus.infra.extendedtypes.emf 5 25 4 14 1145 104

[P5V 2] papyrus.infra.extendedtypes.emf 5 25 4 14 1145 104

[P6V 1] papyrus.uml.tools.extendedtypes 5 15 3 9 726 75

[P6V 2] papyrus.uml.tools.extendedtypes 5 15 3 9 725 75

[P7V 1] org.eclipse.modisco.infra.discovery.benchmark 3 28 3 15 2333 524

[P7V 2] org.eclipse.modisco.infra.discovery.benchmark 3 30 3 15 2588 619

[Pecore V 1] org.eclipse.emf.ecore 13 168 / / 142586 0

[Pecore V 2] org.eclipse.emf.ecore 13 166 / / 141434 0

[P8V 1] org.eclipse.emf.test.core / / 19 141 40858 322

[P8V 2] org.eclipse.emf.test.core / / 19 141 40544 322

[P9V 1] org.eclipse.emf.test.xml / / 6 27 12088 64

[P9V 2] org.eclipse.emf.test.xml / / 6 27 12088 64

Table 4 Coverage metric of each evaluation project.

Projects [P1] [P2] [P3] [P4] [P5] [P6] [P7] [P8] [P9]

Coverage V1 66.9% 86.1% 80.1% 95.6% 95.1% 89.5% 91.3% 18% 33.4%

Coverage V2 66.2% 85.4% 74.1% 95.2% 95.2% 89.2% 87.5% 17.2% 33%

and applicability of our automatic approach to trace the metamodel changes with code
elements till their tests.

RQ2. What is the observed behavioral correctness level of the code co-evolution?
This aims to assess through running the selected tests the effect of the code co-
evolution, whether it keeps the tests’ results stable, or instead degrade or improve
them.

RQ3. What are the observed gains (w.r.t. test case reduction and execution time)
obtained from our approach of tracing impacted tests by metamodel evolution ? This
aims to highlight the benefit of our approach compared to when not using it and
relying on the whole test suite as a baseline.
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4.4 Results

We now discuss the results w.r.t. our research questions.

4.4.1 RQ0

The first goal of our evaluation is to gain evidence on the difficulty or not of the manual
task of tracing impacted tests. Thus, we designed and ran a user study experiment.

RQ0 Set Up

We first describe our user study experiment.
Subjects selection. The experiment was conducted with 8 participants (2 females

and 6 males), including PhD students and research engineers in IRISA Laboratory,
at the University of Rennes. The participants have a varying level of experience in
programming (from 3 to 12 years with an average of 7 years), and a varying level in
model-driven engineering (MDE) (from 0 to 7 years with an average of 2 years and 6
months).

Experiment Task. The experiment aims to evaluate the ability of participants
to trace manually and analyze the affected unit tests before and after the metamodel
evolution. We prepared two Eclipse workspaces. The first one contains the original
version of the project org.eclipse.emf.test.core, and the second workspace con-
tains the evolved version of the same project. The number of tests is 322 in both
versions. The number of tests that must be traced is respectively 173 and 17 in
the original and evolved versions. We then give in the guideline of the experiment
the list of the changes that details the evolution of the metamodel (see last row of
Table 2) with a description of the metamodel and project. We also explain what type
of code elements are generated from each metamodel element. Each participant had
then to identify impacted unit tests in the original and evolved version of the project
org.eclipse.emf.test.core. This procedure not only highlights the direct impacts
of the metamodel changes but also requires the consideration of indirect impacts.
Additionally, the study explores the usefulness and potential adoption of our approach
as an automatic support tool for tracing the impacted tests. After the end of this
task, we presented our automatic tracing approach to the participant then we ran a
post-questionnaire.

Variables. Our user study aimed to measure to what extent can developers trace
impacted tests. The independent variable we controlled was the impacting metamodel
changes. We covered seven different types of changes with both atomic and com-
plex changes. We then observed the dependent variable of the traced tests by the
participants.

RQ0 Results

When we analyzed the answers of each participant, we found that they were able to
trace only a few tests. In the original version of the project, the total number the
manually traced tests varied between 1 and 18, with an average of 6 tests out of
the 173 impacted tests. In the evolved version of the project, the total number the
manually traced tests varied between 2 and 32, with an average of 11 tests out of
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the 17 impacted tests. While we first observe that none of the participants traced all
tests, they also did not correctly trace the tests.

Indeed, the number of correctly manually traced tests varies between 1 to 18 in
the original version of the project, with an average of 5 traced tests. In the evolved
version, the number of correctly manually traced tests varies between 0 to 10 tests with
an average of 4 tests. We had five participants out of eight who wrongly traced eight
tests in the original version of the projects, varying between one or two tests for each
of them. In the evolved version of the project, all participants have wrongly traced
between one to 26 tests that are not impacted by the evolution of the metamodel.
We investigated the cause of this incorrect tracing. We found that one reason was the
tracing of tests that contain a commented impacted code. Another reason was traced
the wrong overload method getEEnumLiteral(EInt) of the actually evolved method
getEEnumLiteral(EString). Another reason was to simply include sibling tests in
the class of a trace test.

In addition, we found that five participants considered both the direct and indirect
impact of the metamodel evolutions on the tests, while the 3 remaining participants
considered only the directly impacted tests. The results of the user study show the
difficulty of manually tracing the tests with the evolved metamodel. Not only the
participants could not trace all tests, but they even wrongly traced non-necessary tests.

Regarding the answers of the participants about usefulness9 of our approach as
an automatic support tool for tracing the impacted tests. One participant graded our
approach as ’Somewhat useful’, five out of eight graded it as ’Very useful’, and two
graded it as ’Extremely useful’. The last question was about their potential adop-
tion10of our approach as an automatic support tool for tracing the impacted tests.
Two participants out of eight answered ’Somewhat likely’, three participants answered
’Likely’, and the three remaining participants answered ’Very likely’. The finding of
this experiment emphasizes the adoption likelihood and usefulness of our approach
(discussed in RQ4).

RQ0 insights: From our user study experiment, we observe that tracing man-
ually the tests impacted by the evolution of the metamodel is a hard and
error-prone task. The post-questionnaire results after a demonstration of our
automatic approach suggest its high usefulness and adoption likelihood.

4.4.2 RQ1

Following the evaluation protocol, we executed our approach on our case studies in
Table 3. Figure 5 depicts the number of traced tests due to the impacting metamodel
changes in Table 2. We first observe that we can trace tests successfully. We traced a
total of 1608 out of 34612 tests due to 473 metamodel changes, distributed in 1106 and
502 tests in the original and evolved versions. Thus, we can isolate for the developers
the tests that must be executed and looked at to check the behavioral correctness of
the co-evolution.

9Between ’Useless – Little useful – Somewhat useful – Very useful – Extremely useful’.
10Between ’Very unlikely - Unlikely - Somewhat likely - Likely - Very likely’.
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Fig. 5 Traced tests due to metamodel evolution in each project.

We also observe that the more the number of evolution changes between the original
and evolved versions of the metamodel increases, the more the number of tests we
trace increases as well. In particular, when a lot of tests are available for analysis. This
is true for the OCL Pivot project [P1] and Modisco project [P1]. We also observe no
overall difference between projects with automatically generated tests and projects
with manually tests. We traced similar ratios of tests.

Moreover, as several deletions of classes and properties occurred in the evolution
changes, several tests are not generated in the evolved version, which explains why we
trace more tests in the original version than in the evolved version. This is observed in
most of the projects except the [P4], where [P4V 2] had more tests. We double-checked
this case, and we found that there were strangely more tests generated by EvoSuite in
[P4V 2] than in [P4V 1] for the same classes, likely due to more dependencies available
in V2.

Finally, regarding the overhead, the time performance varied from 5 minutes in
projects Papyrus Extendedtypes with 42 metamodel changes and 726 LOC up to 60
minutes in projects OCL Pivot with 117 metamodel changes and 142236 LOC. This is
of course to be compared to manual tracing of the tests in both original and evolved
versions before and after co-evolution, which can be tedious and time-consuming. In
particular, when thousands of tests exist as in the project of OCL Pivot. However,
our prototype traces the impact of the metamodel changes sequentially as a proof-of-
concept for feasibility and applicability. Time performance can further be improved
by parallelizing the tracing for the metamodel changes. This is left as future work.

RQ1 insights: We could successfully trace the tests that must be executed
before and after the co-evolution regardless of whether they are manually or
automatically written. This would help developers to immediately check the code
co-evolution by executing the subset of relevant traced tests among the whole
test suite.
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Table 5 Selected tests before and after code co-evolution.

Projects
[P1V 1]
to
[P1V 2]

[P2V 1]
to
[P2V 2]

[P3V 1]
to
[P3V 2]

[P4V 1]
to
[P4V 2]

[P5V 1]
to
[P5V 2]

[P6V 1]
to
[P6V 2]

[P7V 1]
to
[P7V 2]

[P8V 1]
to
[P8V 2]

[P9V 1]
to
[P9V 2]

No class
tests

114 - 57 51 - 4 8 - 2 5 - 10 2 - 3 2 - 3 11 - 12 32 - 8 1 - 1

No

pass
106 - 97 124 - 0 14 - 1 10 - 22 2 - 3 2 - 2 206 - 68 146 - 10 5 - 5

No

fail
2 - 5 1 - 1 0 - 0 1 - 3 0 - 0 0 - 0 1 - 0 0 - 1 0 - 0

No

error
347 - 192 25 - 5 6 - 1 2 - 27 0 - 0 3 - 3 76 - 50 27 - 6 0 - 0

4.4.3 RQ2

After tracing the tests, we could execute them to observe their effect before and
after co-evolution of the code. Table 5 depicts the results for the original and evolved
projects’ versions. The second line gives the number of traced class tests and the rest
of the lines categorizes the tests. We overall observe no significant difference between
projects with automatically generated tests and projects with manually tests.

The most interesting project is the first [P1V 1] to [P1V 2]. Even though the tests
decreased by 161 (455 - 294 from Figure 5), the number of passing tests decreased
only by 9 (106 - 97 from Table 5). Regarding the error tests, they decreased by 155.
However, the failing tests increased by 3 from 2 to 5, as shown in Table 5. There was
also the appearance of one failing test in [P8]. These cases of increased failing tests
indicate that the code co-evolution may be not completely behaviorally correct.

Moreover, in the other projects [P2][P3][P7][P8], many tests that existed in the
original version were not in the evolved version due to the delete changes of the meta-
models. This is actually a sign of behavioral correct co-evolution, as indeed the tests
should be removed following the removal of the generated code for those deleted meta-
model elements. In the rest of the projects [P4][P5][P6][P9], roughly the same number
of tests in the original version behaved the same in the evolved version, suggesting
again a behaviorally correct co-evolution. These results should help developers to fur-
ther check the code co-evolution rather than simply accepting them in particular when
it is fully automated.

RQ2 insights: Our traced tests could hint in two projects that the co-evolution
may not be entirely correct due to more failing tests and fewer passing tests.
The rest of the project would hint on rather a correct co-evolution due to delete
metamodel changes. Overall, automating the help for checking of the behavioral
correctness of the code co-evolution for developers, regardless of whether they
tests are manually or automatically written.
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4.4.4 RQ3

With the traced tests due to the metamodel evolution, we can assess the gains in
terms of test reduction and execution time compared to the whole test suite as a
baseline. Indeed, rather than re-running the whole test suite both in the original and
evolved versions, or worse, not considering the tests at all. We provide developers with
a zoomed view of traced impacted tests by the metamodel evolution, hence, focusing
on assessing the code co-evolution.

The first line of Table 5 already gives the number of traced impacted test classes
that are always less than the original number of test classes.

Table 6 further illustrates the differences between the original test suite and the
traced impacted tests in terms of number of test cases and execution time. Columns 2
and 3 give the number of original tests and of traced tests. Column 4 depicts the gains
in terms of test reduction percentage. On average, we observe a reduction gain of 88%
of test cases, varying from 46% to 99.9%. Out of 34612 tests in the 18 projects, we
traced 1608 impacted tests representing an absolute 95% reduction.

This naturally leads to a gain in terms of execution time reduction of the tests.
Columns 5 and 6 give the execution times for the whole test cases and the traced
ones. Herein, we measured the execution time through IDE runner for the Junit tests.
Column 7 depicts the gains in execution time of the traced tests compared to the
whole test suite. On average, we observe a reduction of 84%, varying from 69% to 99%.
Overall, we observe no significant difference in benefit of reducing tests and the gain in
execution time between projects with automatically generated tests and projects with
manually tests. Respectively, we observe a reduction gain in tests of 88% versus 81%
and a reduction gain in execution of 82% versus 95.5%.

RQ3 insights: Tracing the metamodel evolution changes up to the impacted
tests allows assessing the co-evolution behavioral correctness, while gaining, on
average, a reduction of 88% in the number of tests and 84% in execution time. The
reduction gains are similar with no significant difference regardless of whether
the tests are manually or automatically written.

5 Threats to Validity

This section discusses threats to validity [46].

5.1 Internal Validity.

To be able to trace the impact of metamodel changes to the tests, we had to have
a test suite in the selected projects. However, we observed that the Eclipse projects
relying on metamodels do not come with the test suite. This was not only the case
of OCL[36], papyrus [38] or Modisco [37], but also other Eclipse languages [47, 48].
Therefore, we were obliged to generate the test suite with a state-of-the-art available
tool EvoSuite [16]. Even though, automatic test generation is a best practice, there is
the risk of having tests that are different from manually written tests. However, this
does not pose a risk to our approach as the main algorithm of our approach is generic
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and would be able to trace the impact of a metamodel change in the same way for
both automatically generated tests as well as manually written tests. This is what we
observed with the fourth EMF case study having manually written tests. Indeed, the
overall results of tracing tests and reduction gains were not significantly different in all
case studies regardless of whether the tests are automatically generated or manually
written. The main risk is related to the behavioral correctness of the code co-evolution.
To check it, we require unit tests that target single methods. However, automatic test
generation can even be more advantageous herein. Indeed, it generates tests for all
public methods, whereas developers tend to manually write only few tests for some
targeted methods. Thus, if relying only on manually written tests, there is a high risk
of not assessing the behavioral correctness of many cases of code co-evolutions that are
not covered by test cases. This is mitigated by relying on EvoSuite that generates a full
test suite of unit tests with Junit assertions. This tool has shown his efficiency in test
generation as a state-of-the-art tool [44, 45]. Indeed, this is observed when computing
the coverage metric for each of our considered projects (see Table 4). The highest
coverage is on projects with automatically generated tests and the lowest coverage is
on the two projects with manually written tests.

Therefore, our approach not only checks the correctness of the code co-evolution
with the traced tests, but also favors the best practice of tests generation in each
release of a software language after its metamodel evolution.

Finally, as our tracing approach relies on the quality of detected metamodel
changes, we analyzed, in our evaluation, each detected change and checked whether it
occurred between the original and evolved metamodels. This alleviates the risk of rely-
ing on an incorrect metamodel change that would degrade the tracing of the impacted
tests by metamodel changes, i.e., not tracing an impacted test by a non-considered
metamodel change. In addition, as we did not have the ground truth, we could not
report on the precision and recall of our approach. However, our approach uses the
Code Call Graph and starts from the generated code elements corresponding to the
evolved metamodel elements to recursively trace back any existing tests. Thus, by
design we actually detect all the impacted tests that must be traced. To test that our
algorithm does not miss any impacted test, and does not trace non-impacted tests, we
manually verified the ground truth for our smallest data set projects [P6] and [P9],
because they have fewer tests and are less complex. We checked for every metamodel
change all the impacted tests and we found that our approach traces all of them.
Further evaluation on a ground truth is left for future work.

5.2 External Validity.

We implemented and evaluated our approach for EMF/Ecore metamodels and Java
code with Junit tests. Other languages, such as C# or C++, use a different syntax, but
conceptually use the same constructions as in Java. Although we think that the tracing
would be applicable for other languages, we cannot generalize our results. Further
experimentation on other languages is necessary. However, the only requirement to
apply our approach to other languages is to have access to the ASTs of the parsed code
and tests, and to adapt our tracing of the tests in the build call graph. Moreover, our
evaluation was performed on Eclipse projects from five languages. Thus, we cannot
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generalize our findings to all software languages or DSLs. We also cannot generalize
our results on manually written tests, in particular the test verdicts of the traced
tests, i.e., pass, fail, and error. Further experimentation remains necessary and is left
for future work.

5.3 Conclusion Validity.

Our evaluation gave promising results, showing that we could trace the impact of
metamodel changes till the tests, and hence, check the behavioral correctness of the
code co-evolution in practice for real-world projects. However, even though we evalu-
ated our approach on 18 projects of metamodel evolution and code co-evolution with
automatically generated tests and manually written tests, further evaluation is needed
on more case studies to have more insights and statistical evidence. Finally, our user
study experiment suggesting our approach usefulness needs to be replicated with more
participants.

6 Related work

This section discusses the main related work w.r.t. testing the metamodel and code
co-evolution.

Extensive literature exists on co-evolution of metamodel and models [49–58], con-
straints [59–64] and transformations [65–69]. Several other approaches propose to
automate the code co-evolution. Henkel et al. [70] proposed an approach that cap-
tures refactoring actions and replays them on the code to migrate. They support only
the changes renames, moves, and type changes. Nguyen et al. [71] also proposed an
approach that guides developers in adapting code by learning adaptation patterns
from previously migrated code. Similarly, Dagenais et al. [72] also used a recommen-
dation mechanism of code changes by mining them from previously migrated code.
Anderson et al. [73] proposed to migrate drivers in response to evolutions in Linux
internal libraries. It identifies common changes made in a set of files to extract a
generic patch that can be reused on other code parts. However, all those approaches
are not tailored to metamodel and code co-evolution. More importantly, they do not
test the behavioral correctness of their co-evolution.

Moreover, a more related approach to metamodel co-evolution, Riedl et al. [7] pro-
posed an approach to detect inconsistencies between UML models and code. Pham
et al. [8] proposed an approach to synchronize architectural models and code with
bidirectional mappings. Jongeling et al. [9] propose an early approach for the con-
sistency checking between system models and their implementations by focusing on
recovering the traceability links between the models and the code. Jongeling et al. [10]
later relied on the recovered traces to perform the consistency checking task. Zaheri
et al. [11] also proposed to support the checking of the consistency-breaking updates
between models and generated artifacts, including the code. Yu et al. [12] proposed
to co-evolve the metamodels and the generated API in both directions. Khelladi et
al. [13] proposed an approach that propagates the metamodel changes to the code as
a co-evolution mechanism. However, all those approaches [7–13] focus on co-evolving
the code without checking the behavioral correctness of the co-evolved code.
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Our work is also related to regression test selection [74], where different approaches
exist based on Genetic algorithms [75], slicing [76], or database safety [77]. However,
our goals are different. Our approach aims to trace the impact of metamodel evo-
lution up to the tests to check the behavioral correctness of the code co-evolution
rather than fault localization. Furthermore, from the survey of Yoo et al. [78], our
approach can be categorized along the incremental test selection approaches, such as
Infinitest11, EKSTAZI [79], and Moose [80]. However, our approach is different from
several aspects. Infinitest is a test case selection plugin. It selects only the direct tests
of changed methods and not indirectly impacted tests as in our work (cf. Section 3.3).
EKSTAZI [79] is a regression test selection tool by dynamically analyzing the code
and the tests. EKSTAZI must compile the code including the tests to be able to track
the changes of a .class files later and then select the subset of impacted tests. Our
work only needs to parse the code and the tests. Moose [80] represents source code
entities in a model. This model gathers entities such as packages, classes, methods,
and the relations between them. This is the opposite flow of our work because our
starting point is a Metamodel. All of Infinitest, EKSTAZI and Moose aim to analyze
code changes incrementally to select impacted tests in the evolved version of the code
only. As a consequence, the developers can only have the latest states of their selected
tests after code changes. They cannot compare them with before and after the applied
changes. To do so, developers would have to manually undo the code changes and
to manually select and re-run the same tests to be able to compare them before and
after manually, which represents a significant burden for the developers. Our approach
automates the tests’ tracing before and after code co-evolution and gives the output
as a visual report to developers for an easier analysis of the impact of each meta-
model change and its code co-evolution. If there is an issue, this report would allow
the developer to know which metamodel changes are causing this issue, with the tests
impacted by these metamodel changes.

Finally, Ge et al. [81] propose to verify the correctness of refactoring with a set
of condition checkers that are executed only after the refactoring application. This is
rather similar to the intention of our work. However, we rely on a testing technique that
is applied to check before and after code co-evolution with the metamodel evolution.

To the best of our knowledge, our work is the first attempt to propose a fully
automatic approach for checking the behavioral correctness of the code co-evolution.
We leverage the tests in the original and evolved versions and trace the impacted tests
before and after co-evolution. Thus, allowing developers to have more confidence in
the automatic co-evolution or at least to locate the tests that must be investigated
after co-evolution in case of a bug introduction. This avoids to re-run all test suite,
which is expensive and time-consuming before manually mapping the tests in both
versions, which is tedious and error-prone.

7 Conclusion

This paper proposes an automated tracing of the impacted tests due to metamodel
evolution. Thus, by tracing the tests before and after code co-evolution, we check

11https://infinitest.github.io/doc/eclipse
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its behavioral correctness. Our approach takes as input the metamodel changes and
then finds the different pattern usages of each metamodel element in the code. After
that, we recursively search for its usages in the code call graph until reaching the
tests. Thus, we end up matching metamodel changes with impacted code methods and
their corresponding tests. We further implemented our approach in an Eclipse plugin
that allows to trace the tests, map them with state-of-the-art solution GumTree and
execute them. We then report them back as a diagnostic to the developers for an
easier in-depth analysis of the effect of metamodel evolutions rather than re-running
and analyzing the whole test suite.

The user study experiment we conducted showed that tracing manually the tests
impacted by the evolution of the metamodel is a hard and error-prone task. Not only
the participants could not trace all tests, but they even wrongly traced non-impacted
tests. We then evaluated our approach on 18 Eclipse projects from OCL, Modisco,
Papyrus, and EMF over several evolved versions of metamodels. Four projects had
manually written tests and we generate tests for the other 14 projects. The results
show that we successfully traced the impacted tests automatically by selecting 1608
out of 34612 tests due to 473 metamodel changes.

When running the traced tests before and after co-evolution, we observed two cases
indicating possibly both behaviorally incorrect and correct code co-evolution. Thus,
helping the developers to locate the code co-evolution to investigate in more detail.
Furthermore, our approach provided gains that represent, on average, a reduction
of 88% in number of tests and 84% in execution time. No significant difference was
observed between projects with manually written tests and automatically generated
ones.

As future work, we first plan to improve the performance of our implementation
with optimization of the tests’ tracing. We also plan to extend our approach to projects
that use an equivalent form of metamodels in other technological space than Eclipse,
such as JHipster and OpenAPI that both generate code from a model specification
similar to a metamodel. Thus, we can have alternative case studies.

After that, we plan to investigate the techniques of test amplification on the
selected tests we traced from the metamodel changes. Indeed, once we select a subset
of tests, we could amplify them by generating more similar tests, yet, with different
assertions to cover more corner cases. This would amplify the behavioral check of the
code co-evolution.

Finally, we will also explore another type of amplification, which is the interchange
of the tests between the original and evolved versions. In other words, we aim to co-
evolve the tests of the original and evolved versions, respectively forward and backward
to the evolved and original versions, while removing duplicates.
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of evolutions in software histories to identify code and test co-evolutions. In:
2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 206–216 (2021). IEEE

[25] Zaidman, A., Van Rompaey, B., Van Deursen, A., Demeyer, S.: Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Empirical Software Engineering 16, 325–364
(2011)

[26] Mens, T.: Introduction and Roadmap: History and Challenges of Software Evo-
lution, pp. 1–11. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-76440-3 1 . https://doi.org/10.1007/978-3-540-76440-3 1

[27] Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of
operators for the coupled evolution of metamodels and models. Lecture Notes in
Computer Science 6563 LNCS, 163–182 (2011)

[28] Vermolen, S.D., Wachsmuth, G., Visser, E.: Reconstructing complex metamodel
evolution. In: Sloane, A., Aßmann, U. (eds.) Software Language Engineering, pp.
201–221. Springer, Berlin, Heidelberg (2012)

[29] Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J., Gervais, M.-P.: Detecting
complex changes during metamodel evolution. In: CAISE, pp. 263–278 (2015).
Springer

[30] Alter, S.: Work system theory: A bridge between business and IT views of systems.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 9097, 520–521 (2015) https:
//doi.org/10.1007/978-3-319-19069-3

[31] Williams, J.R., Paige, R.F., Polack, F.A.: Searching for model migration strate-
gies. In: Proceedings of the 6th International Workshop on Models and Evolution,
pp. 39–44 (2012). ACM

[32] Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing dependent changes in
coupled evolution. In: International Conference on Theory and Practice of Model
Transformations, pp. 35–51 (2009). Springer

[33] Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M., Seidl, M., Wieland,
K., Kappel, G.: A posteriori operation detection in evolving software models.
Journal of Systems and Software 86(2), 551–566 (2013)

[34] Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J., Gervais, M.P.: Detecting
complex changes and refactorings during (Meta)model evolution. Information
Systems 62, 220–241 (2016) https://doi.org/10.1016/j.is.2016.05.002

28

https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1007/978-3-319-19069-3
https://doi.org/10.1007/978-3-319-19069-3
https://doi.org/10.1016/j.is.2016.05.002


[35] Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel
evolution in mde. Journal of Object Technology 11(3), 3–1 (2012)

[36] MDT: Model Development Tools. Object Constraints Language (OCL). http:
//www.eclipse.org/modeling/mdt/?project=ocl (2015)

[37] MDT: Model Development Tools. MoDisco. http://www.eclipse.org/modeling/
mdt/?project=modisco (2015)

[38] MDT: Model Development Tools. Papyrus. http://www.eclipse.org/modeling/
mdt/?project=papyrus (2015)

[39] EMF, E.: Eclipse Modeling Framework (EMF). https://github.com/eclipse-emf/
org.eclipse.emf (2020)

[40] Roslan, M.F., Rojas, J.M., McMinn, P.: An Empirical Comparison of Evo-
Suite and DSpot for Improving Developer-Written Test Suites with Respect to
Mutation Score. In: Papadakis, M., Vergilio, S.R. (eds.) Search-Based Software
Engineering, pp. 19–34. Springer, Cham (2022)

[41] Herculano, W.B.R., Alves, E.L.G., Mongiovi, M.: Generated tests in the context of
maintenance tasks: A series of empirical studies. IEEE Access 10, 121418–121443
(2022) https://doi.org/10.1109/ACCESS.2022.3222803

[42] Roziere, B., Zhang, J.M., Charton, F., Harman, M., Synnaeve, G., Lample, G.:
Leveraging automated unit tests for unsupervised code translation. arXiv preprint
arXiv:2110.06773 (2021)

[43] Gruber, M., Roslan, M.F., Parry, O., Scharnböck, F., McMinn, P., Fraser, G.: Do
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