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ABSTRACT

Browser fingerprinting is a tracking technique that collects at-
tributes and calls functions from the browser’s APIs. Unlike cookies,
browser fingerprints are difficult to evade or delete, raising signifi-
cant privacy concerns for users as they can be used to re-identify
individuals over browsing sessions without their consent. Yet, there
has been limited research on the impact of browser configuration
settings on these fingerprints.

This paper introduces FP-Rainbow, a novel approach to sys-
tematically explore and map the configuration space of Chromium-
based web browsers aiming to identify the impact of configuration
parameters on browser fingerprints and their changes over time.
We explore 1, 748 configuration parameters (switches) and identify
their impact on the browser’s BOM (Browser Object Model). By
collecting and analyzing over 61, 000 fingerprints from 18 versions
of Chromium, our study reveals that 32 to 56 of these configuration
parameters (depending on versions), such as disable-3d-apis
or disable-notifications, influence the fingerprint of a web
browser.

FP-Rainbow also proves efficient in identifying browser con-
figuration parameters from unknown fingerprints, achieving an
average successful identification rate of 84% when considering a
single configuration parameter and 78% when multiple parameters
are involved, across all evaluated browser versions. These findings
emphasize the importance of measuring the impact of configuration
parameters on browsers to develop safer and more privacy-friendly
web browsers.

CCS CONCEPTS

• Security and privacy → Web application security; • Infor-
mation systems→ Browsers.
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1 INTRODUCTION

Web browsers, now used by billions of people, constantly evolve to
meet the Internet’s growth and user expectations. They incorporate
new features, allowing developers to deploy more sophisticated
apps with each version. Simultaneously, users can personalize their
browsing experience through the various settings of their browsers.
A Europe-wide study shows that 36% of users reported having mod-
ified their browser settings to prevent or limit the use of cookies 1.
Combined with the popularity of many browser extensions, many
users personalize their browsing experience. This, however, leads
to browser configurations that are potentially detectable due to
side effects, some configurations may change the performance or
behavior of a browser, while others may affect the Browser Object
Model (BOM) and JavaScript APIs exposed by the browser, making
them thus detectable. The BOM is distinct from theDocument Object
Model (DOM). While the DOM focuses on the content of a web page,
the BOM is a programming interface that enables interaction with
the browser. It provides access to objects, attributes, properties, and
methods associated with the browser window. This makes it possi-
ble to retrieve more information about the browser’s environment
and configuration. These side-effects leak information to attackers
that can be used to identify exploitable configurations (e.g., unsafe
or experimental settings) or to simply increase the uniqueness of
browser fingerprints and improve tracking algorithms.

Browser fingerprinting is a well-known technique to re-identify
browsers [1, 14, 19]. Most fingerprinting algorithms use a few
dozen attributes to create a unique identifier. These attributes are
chosen because of their entropy, which provides uniqueness, and
their stability between executions. Common attributes include the
user agent, language, screen resolution, time zone, and plugins,
as well as more complex attributes, such as canvas images to fin-
gerprint the graphics layers [17, 21], font enumeration to recover
installed fonts [9, 23], browser extension fingerprinting [30, 35],
and GPU [16] or CPU fingerprinting [27, 31]. However, it has been
shown that the browser exposes a much larger set of attributes
that can potentially be exploited by attackers [29]. By enumerating
the Browser Object Model (BOM), starting from the window object,
we find anywhere from 12 to over 16 thousand objects, attributes,
and methods exposed. Furthermore, little is known about how a
browser’s configuration affects the BOM, nor about the side-effects
browser developers introduce when developing new features. To
the best of our knowledge, no work has explored the impact of

1https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20220208-1
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browser configuration settings on browser fingerprints. This in-
formation is useful in different scenarios, for both developers but
also to attackers. For example, developers need information about
the client’s environment and configuration parameters to better
reproduce their environment and quickly fix bugs. For attackers,
they can identify configurations that are known to have security
issues and exploit them.

In this paper, we present FP-Rainbow, an approach to system-
atically explore and identify browser settings and configurations
that affect the Browser Object Model (BOM) and the browser’s fin-
gerprint. For every configuration parameter available, we execute
the browser in both headless and headful modes.2 FP-Rainbow
enumerates its BOM and collects an extensive fingerprint of around
15 thousand attributes depending on the browser’s version and
configuration. We then analyze the fingerprints to identify which
configuration parameters impact which fingerprint attributes, if
any. With this information, we provide a method to reidentify con-
figuration parameters from the browser’s fingerprint.

The key contributions of our work are:
• A dataset consisting of an exploration of 1, 748 configuration
parameters in 18 versions of Chromium, for which we col-
lected 61, 559 browser fingerprints, each containing between
12, 334 and 16, 473 attributes.

• The identification of 32 to 56 configuration parameters, de-
pending on the browser’s version, that impact the BOM. We
also document the attributes that are added, removed or
changed for each configuration parameter across different
browser versions, finding relatively few collisions between
switches in terms of impacted attributes.

• Through 1, 116 randomly sampled browser configurations,
we show that a dataset calculated on a single device can be
leveraged to successfully identify configuration parameters
from other devices.

• A method for (re-)identifying browser configuration param-
eters from a browser’s fingerprint by comparing attribute
subsets, achieving an average successful identification rate
of 84, 36% across all browser versions and configuration pa-
rameters that impact the BOM.

The remainder of this paper is structured as follows. Section 2
provides an overview of the current state of the art in the field of
browser fingerprinting and motivates our work. Section 3 intro-
duces FP-Rainbow. Section 4 outlines our experimental methodol-
ogy, while Section 5 presents the results of our experiments. Sec-
tion 6 concludes the paper.

2 RELATEDWORK

Given the increasing awareness of privacy concerns [10], research
has been undertaken to strengthen user protection while brows-
ing [24, 26, 32]. In the last decade, researchers and privacy advocates
have thus explored various aspects of browser fingerprinting and
its implications for user privacy [1, 3, 8, 35]. A substantial body of
related work has shed light on the prevalence, mechanisms, and
challenges associated with browser fingerprinting [7]. Some key
findings and approaches from prior research include:

2Unlike the headful mode, headless mode has no graphical user interface.

Fingerprinting Techniques and Evasion. In the past few years,
many studies have contributed valuable insights to the field of fin-
gerprinting [8, 14, 22]. Research by Acar et al. [1] and Englehardt et
al. [8] highlighted the sophistication of browser fingerprinting
techniques employed by online entities. These techniques combine
attributes to create a unique fingerprint, enabling user tracking
across different sites, even when attempting anonymity through
tools like VPNs or incognito mode. Unlike traditional methods
such as cookies, browser fingerprinting is challenging for users
to control or detect. Users cannot disable fingerprinting without
breaking their Web experience due to the very nature of how mod-
ern browsers work. These studies demonstrated the ability to track
users across websites and identified various attributes used in fin-
gerprinting [19, 23, 34]. They also investigated techniques to evade
fingerprinting and the effectiveness of privacy-enhancing browser
extensions.

Anti-Fingerprinting Tools. Efforts to counter browser fingerprint-
ing have resulted in the development of diverse anti-fingerprinting
methods and techniques [28]. One notable solution proposed by
Laperdrix et al. [18] aims to mitigate the risks associated with
browser fingerprinting by constantly randomizing parts of the
browser’s environment that influences the browser’s fingerprint,
within a controlled environment. In a similar vein, Azad et al. [4]
conducted tests on various tools designed to spoof the browser
fingerprint and discovered that certain attributes can be exploited
to detect anti-fingerprinting tools. These anti-fingerprinting tools
are primarily focused on manipulating the attributes utilized in
fingerprinting to reduce the uniqueness of user fingerprints and
bolster privacy. By altering and obfuscating specific attributes, these
tools seek to make it more challenging for online entities to track
and identify users based on their browser fingerprints. However,
these tools can impact the user experience and break some websites.
They can also be recognizable and are difficult to maintain over
time [33].

Configuration Exploration. As presented in the survey proposed
by Pereira et al. [25], many studies focus on exploring configura-
tions, e.g., for performance prediction [12], optimization [11] or
dynamic reconfiguration [20]. A wide variety of domains have been
studied, such as the Linux kernel [2], JVM parameters [6], or video
encoding [15]. In our previous work [13], we generated fingerprints
by running browser configurations, but we did not explore the im-
pact of configuration parameters on the browser’s fingerprint nor
did we identify which configuration parameters are associated with
specific parts of the fingerprint.

Motivation. Researchers have explored the impact of changes in
browsers and Web standards on fingerprinting resistance [5]. Vari-
ous studies have examined the potential of browser configurations,
their code [26], and standard updates to reduce the effectiveness
of browser fingerprinting techniques. Despite progress in under-
standing and addressing browser fingerprinting, several limitations
persist in existing approaches like the browser’s complexity, its
wide range of uses and its tendency to evolve rapidly. There is
thus a critical need to thoroughly explore browser configurations
to pinpoint configurations and settings that may pose privacy or
security risks, as well as provide tools to assist browser developers
in minimizing the side-effects of their code on the Browser Object
Model (BOM).
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3 FP-RAINBOW

We present FP-Rainbow, our approach to systematically explore
browser configurations to identify the impact they have on the
Browser Object Model (BOM) through the collection of exhaustive
fingerprints. Our objective is to identify how each configuration
parameter impacts the BOM and thus reveals information about
the browser’s configuration.

FP-Rainbow relies on a three-step process, as depicted by Fig-
ure 1. First, fingerprints are collected from different versions of
Chromium. More precisely, one fingerprint is generated for each
configuration parameter of each browser version. Second, each
fingerprint is compared to the default browser configuration to
determine which attributes are impacted by the configuration pa-
rameter. Many configuration parameters do not impact the BOM.
We are interested in those that do. We use the knowledge of which
configuration parameters impact what attributes of the BOM for
version of the browser to:

• Given a fingerprint from a browser with an unknown con-
figuration, we identify as many configuration parameters as
possible that the browser has enabled.

• Calculate which attributes are good indicators of the ac-
tivation of a configuration parameter by weighting their
importance using a stability metric we develop.

In our current implementation, FP-Rainbow targets one type of
configuration parameter, namely command-line switches3 but is
extensible to flags and other configuration options.

3.1 Fingerprint Collection and Analysis

Fingerprint Collection. FP-Rainbow collects fingerprints and the
browser’s configuration, including the operating system it runs on,
browser’s version, and various configuration parameters. Specif-
ically, FP-Rainbow systematically executes multiple instances of
the browser, each with distinct versions and configuration param-
eters, and retrieves the resulting fingerprint. Such a fingerprint
and its related browser configuration are then stored in a database
to be further analyzed (see next steps). To delve into the details
of the BOM, FP-Rainbow builds upon and extends two existing
techniques, namely FingerprintJS4, a popular open-source browser
fingerprinting tool specialized in re-identifying browser’s for track-
ing or authentication services, and JavaScript Template Attacks5, a
BOM enumeration solution developed by Schwarz et al. [29].

Fingerprint Analysis. Each generated fingerprint 𝐹𝑃new is com-
pared with the reference fingerprint 𝐹𝑃ref , i.e., the fingerprint de-
void of any manually set configuration parameters, retaining only
the default configuration parameters. This comparison aims to dis-
cern any distinctions introduced by the adjustment of configuration
parameters. During the comparison, FP-Rainbow focuses on at-
tribute differences between each 𝐹𝑃new and 𝐹𝑃ref . In particular, for
every attribute in the fingerprint 𝐹𝑃new , FP-Rainbow distinguishes
between four cases:

• The attribute exists in 𝐹𝑃ref with the same value.

3https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md#
Switches

4https://github.com/fingerprintjs/fingerprintjs
5https://github.com/IAIK/jstemplate

• The attribute exists in 𝐹𝑃ref , but its value differs.
• The attribute does not exist in 𝐹𝑃ref .
• The attribute does not exist in 𝐹𝑃new .

FP-Rainbow associates each configuration parameter with the
fingerprint it generates and identifies the impact on the browser’s
BOM. The objective is twofold: to help identify the attributes im-
pacted by different configuration parameters and to build a knowl-
edge base that can be leveraged to identify the configurations from
unknown fingerprints. In short, we consider :

• 𝐹𝑃ref : The referent fingerprint which serves as the baseline
for a specific browser version (one per version).

• 𝐹𝑃new : The fingerprint generated by applying a specific con-
figuration parameter (one per parameter per version).

• 𝐹𝑃unk : The unknown fingerprint, where we aim to determine
the configuration parameters used to generate it.

Configuration Identification. Relying on the dataset of im-
pacted attributes, FP-Rainbow can attempts to identify configu-
ration parameters from a browser by analyzing its fingerprint. To
do so, for each configuration parameter from the unknown finger-
print 𝐹𝑃unk , attributes known to be impacted by a configuration
parameter (from the previous fingerprint analysis step, e.g., by a
changed switch) are extracted and assessed, falling into one of the
three following cases:

• Added: The unknown fingerprint 𝐹𝑃unk has the attribute
known to be impacted by the configuration parameter.

• Changed: The unknown fingerprint 𝐹𝑃unk has the attribute
known to be impacted by the configuration parameter but
with a different value.

• Removed: The unknown fingerprint 𝐹𝑃unk does not have
the attribute known to be impacted by the configuration
parameter.

Extracting subsets of attributes per configuration parame-

ter. To identify an unknown fingerprint’s configuration parameters,
we compare it with the impact analysis for each configuration pa-
rameter from our dataset. The set of impacted attributes for each
configuration parameter is small compared to the entirety of the
fingerprint. We do not compare the fingerprints entirely since this
will simply pollute the calculation, especially if multiple config-
uration parameters are activated or if the fingerprint originates
from different environments. During the fingerprint analysis, as
described previously, we identify the impact of each configuration
parameter on the browser’s fingerprint, in terms of attributes added,
changed, or removed attributes. This provides us with a subset of
attributes that are known to be impacted by the configuration pa-
rameter. We then extract the same attributes of the subset from
the unknown fingerprint 𝐹𝑃unk to compare them. Similar to the
analysis step, each attribute may exist, not exist, or exist with a
different value. We then compare the extracted set of attributes
from the unknown fingerprint 𝐹𝑃unk to those from the configu-
ration parameter and decide if the parameter is active or not in
the unknown fingerprint 𝐹𝑃unk . Given the amount of variability
found in browser fingerprints, we cannot expect our comparisons
to always be identical.

https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md#Switches
https://chromium.googlesource.com/chromium/src/+/main/docs/configuration.md#Switches
https://github.com/fingerprintjs/fingerprintjs
https://github.com/IAIK/jstemplate
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Figure 1: Overview of the FP-Rainbow approach

3.2 Stability Analysis of Impacted Attributes

During fingerprint generation, we collected between 12, 334 and
16, 473 attributes per fingerprint. Many attributes can vary between
devices or across different browser versions. Additionally, a single
configuration parameter may modify multiple attributes, or certain
attributes might no longer be impacted in newer browser versions.
To address this, we focus on identifying stable attributes that remain
consistent in detecting configuration parameters. We introduce the
concept of attribute stability and use it to quantitatively evaluate
how stable specific attributes are across various browser versions
under varying configuration parameters. An attribute is considered
perfectly stable when it is influenced by only a single configuration
parameter, regardless of the browser version.

Let 𝐶𝑃 be the set of configuration parameters, 𝐴 the set of at-
tributes, and 𝑉 the set of browser versions. Then, 𝑐𝑝 is a configura-
tion parameter from fingerprint 𝐹𝑃new such as 𝑐𝑝 ∈ 𝐶𝑃 . 𝑐𝑝default
represents the default configuration used in 𝐹𝑃ref . For each version
𝑣 ∈ 𝑉 , each attribute 𝑎 ∈ 𝐴 is either associated with a version 𝑣 and
a configuration parameter 𝑐𝑝 , and is referred to as 𝑎𝑐𝑝,𝑣 , or with a
version 𝑣 and no configuration parameter for the default configu-
ration 𝑐𝑝default and is defined as 𝑎𝑐𝑝default ,𝑣 . The difference between
fingerprints 𝐹𝑃ref and 𝐹𝑃new for each attribute 𝑎 is computed as
follows:

Impacted𝑎𝑐𝑝,𝑣 = 1 if and only if 𝑎𝑐𝑝,𝑣 ≠ 𝑎𝑐𝑝default ,𝑣 (0 otherwise)
(1)

Thus, 𝐼𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑎𝑐𝑝,𝑣 = 1 if the attribute 𝑎 is impacted (changed,
added, or removed). Else 𝐼𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑎𝑐𝑝,𝑣 = 0 if the attribute is not
impacted. We evaluate stability across all configuration parameters
𝑐𝑝 ∈ 𝐶𝑃 . The more configuration parameters impact a given at-
tribute, the more unstable the attribute is. If an attribute is impacted
by only one configuration parameter, we consider it perfectly stable.

To determine the stability of all attributes 𝑎 ∈ 𝐴 for each configura-
tion parameter 𝑐𝑝 ∈ 𝐶𝑃 , we check if an attribute 𝑎 is impacted by
all configuration parameters 𝑐𝑝 relying on the following formula:

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎,𝑣 = (1 −
(∑

𝑐𝑝∈𝐶𝑃𝑣 𝐼𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑎𝑐𝑝,𝑣

|𝐶𝑃𝑣 |

)
) (2)

Where |𝐶𝑃𝑣 | is the total number of configuration parameters that
have impacted an attribute 𝑎 for a version 𝑣 . Thus, 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎,𝑣 = 1
if and only if the attribute 𝑎 is impacted by only one configuration
parameter 𝑐𝑝 ∈ 𝐶𝑃 . That is, 0 ≤ 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎,𝑣 ≤ 1: the more con-
figuration parameters impact a given attribute, the lower 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
while a value close to 1 signifies stability for attribute 𝑎 across all
configuration parameter 𝑐𝑝 ∈ 𝐶𝑃 for a version 𝑣 ∈ 𝑉 .

To compute the stability of an attribute across all browser ver-
sions as well as to consider other environments or browser vari-
ations such as Headless and Headful, Equation (2) is iteratively
applied over all versions 𝑣 ∈ 𝑉 . The result is then divided by the
total number of browser versions |𝑉 | as follows:

𝜔𝑎 =

∑
𝑣∈𝑉 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑎,𝑣

|𝑉 | (3)

The overall stability of an attribute, 𝜔𝑎 , is thus computed such
that 0 ≤ 𝜔𝑎 ≤ 1, with an attribute 𝑎 being more stable as its related
𝜔𝑎 gets closer to 1.

Relying on Equation (3), one can measure the importance and
stability of browser attributes across various versions and config-
uration parameters (≈ 1, 748 switches). An attribute with a value
𝜔𝑎 close to 1 is highly important, stable, and reliable for use when
identifying configuration parameters. Conversely, a value close
to 0 indicates high variability and less reliability. This approach
identifies essential attributes, minimizing time and resources for
generating browser fingerprints while maintaining efficiency and
accuracy in identifying configuration parameters.
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3.3 Fingerprint Comparison for Configuration

Identification

To identify a configuration parameter, we compare subsets of im-
pacted attributes that we retrieved using impactedacp,v in equation 1.
We define the set of impacted attributes resulting from our formula 1
as impactedSet for all versions, and impactedSubsetv for a specific
version, such that impactedSubsetv ⊆ impactedSet. During identi-
fication, we select only the attributes of the unknown fingerprint
𝐹𝑃unk that exist in our set impactedSet. By definition, the set of
selected attributes from the unknown fingerprint 𝐹𝑃unk is less than
or equal to the set of attributes in impactedSet. We have categorized
the impacted attributes into three categories:

• 𝐴𝑑𝑑𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘 = 1 if and only if the attribute 𝑎
didn’t exist in fingerprint 𝐹𝑃𝑟𝑒 𝑓 ,𝑣 but exists in 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣
and in 𝐹𝑃unk ,

• 𝐶ℎ𝑔𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘 = 1 if and only if the value of at-
tribute𝑎 is different in fingerprint 𝐹𝑃𝑟𝑒 𝑓 ,𝑣 and 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣
but is identical between 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 and 𝐹𝑃unk ,

• 𝑅𝑚𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘 = 1 if and only if the attribute 𝑎 ex-
ists in fingerprint 𝐹𝑃𝑟𝑒 𝑓 ,𝑣 but does not exist in 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣
nor in 𝐹𝑃unk .

For each attribute, we have three cases, as indicated above (i.e., Add-
ed, Changed, Removed). We count the occurrences of each case and
normalize the value between 0 (the configuration parameter does
not match) and 1 (the configuration parameter matches perfectly).
To simplify we make the sum of the three case such as :

𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑𝑆𝑒𝑡𝑣 = 𝐴𝑑𝑑𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘

+𝐶ℎ𝑔𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘

+ 𝑅𝑚𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘

(4)

Then, we define:
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ),(𝐹𝑃unk )=∑

𝑎∈𝐴𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣
(𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑𝑆𝑒𝑡𝑣)

|𝐴𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 |
(5)

Where |𝐴𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 | is the number of impacted attributes 𝑎 for
a version 𝑣 . From this equation, we can identify the configuration
parameters 𝑐𝑝 used by an unknown web browser based on its
fingerprint 𝐹𝑃unk by comparing each impacted attribute between
the subset 𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 and the unknown fingerprint.

The behavior of the𝐶ℎ𝑔𝑎,𝑖𝑚𝑝𝑎𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑣 ,𝑢𝑛𝑘 operator is adapted
for each type of data being processed, such as strings, numerical
values, or PNG images. For numerical values, a simple absolute
difference is often sufficient. However, to prevent large differences
from skewing the comparisons, we assign normalize the differences.
For strings, differences aremeasured using the Levenshtein distance.
Regarding PNG images, particularly in the context of comparing
Canvas fingerprints [21], the sum of the absolute pixel-by-pixel dif-
ferences is generally sufficient. Given the large image size and the
number of channels (i.e., RGBA), this absolute difference is normal-
ized similarly to numerical values. By summing the pixel-by-pixel
differences, it reduces to a single numerical value, allowing PNG
images to be processed and normalized as numerical parameters.

4 METHODOLOGY

This section describes our hardware settings, our data collection
process, and the comparison methods we employed.

4.1 Research Questions

In this paper, we propose an approach to systematically explore and
identify browser settings and configurations that affect the BOM,
and aim to answer the following research questions:

RQ1: What impact do individual browser configurations parame-
ters have on the BOM? In particular, we want to assess the impact
of one type of configuration parameters: switches.

RQ2: Is it possible to identify a configuration parameter from an
unknown fingerprint? Comparing an unknown fingerprint to a set
of known-to-be-impacted configuration parameters can provide
insights into the unknown browser configuration.

RQ3: Can a dataset generated from a single device effectively be
leveraged to identify fingerprints across multiple devices? If so, this
could reduce the need for generating datasets on many, diverse
devices, and instead, for example, allow calculating the dataset once
on a more powerful server.

4.2 Software Setup and Hardware Settings

To isolate all components and enforce reproducibility, we conducted
all our experiments using Docker and Docker Compose. Each soft-
ware component, including the web browser, the database, the
analysis tools, and the web server, is thus encapsulated in a Docker
container, ensuring portability and reproducibility across different
environments. Each container has its own Puppeteer6 instance,
and the same database is shared across all Docker containers. All
experiments were conducted on a machine featuring an : 2x Intel(R)
Xeon(R) Gold 5118 CPU and 188GB of RAM, operating on Rocky
Linux with kernel version 4.18 for the dataset, and a laptop with an
Intel(R) i7-1185G7 CPU and 64GB of RAM, operating on Arch Linux
with kernel version 6.11, for the generation of unknown browser
fingerprints.

4.3 Experimental Protocol

4.3.1 Fingerprint Collection. We start Chromium browser with
Puppeteer and inject configuration parameters into the browser’s
configuration. We run our browsers in a dedicated Docker con-
tainer to facilitate reproduction and deployment. The configuration
parameters are fetched from the database, a new entry is generated
in the database with a UUID. The browser accesses our finger-
printing webserver that collects the fingerprint and cleans unstable
attributes (for example, random unique identifiers and hashes that
change at every execution). The database stores the browser ver-
sion, browser configuration parameters, operating system, and CPU
architecture, as well as the browser fingerprints. Browser finger-
prints are stored in JSON files with unique identifiers (UUIDs) for
quick retrieval. In case of a browser crash or unresponsiveness,
the latest database entry is marked as timeout, this is a rare oc-
curence. We launch one to four browser versions per thread, each
with a distinct configuration. The collection is repeated for each
configuration parameter 𝑐𝑝 ∈ 𝐶𝑃 available in the database for each

6https://pptr.dev/

https://pptr.dev/
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version of the browser. The initial launch for each version collects
its default configuration, which serves as the reference fingerprint
𝐹𝑃ref during the subsequent analysis phase.

The fingerprint for each browser configuration is collected twice,
in a row. The attributes that have been changed between the two
fingerprints are discarded, stabilizing the fingerprint. Overall, 1, 748
switch configuration parameters have been successfully tested. Ex-
ecuting all configurations takes approximately 5 hours on our hard-
ware configuration, as we test up to 4 browser versions per CPU
thread. Once all fingerprints and their corresponding browser con-
figurations are collected, the analysis can be started.

4.3.2 Fingerprint Analysis. Certain attributes, including the test’s
URL, test timing, or network type, are not taken into account be-
cause they are specific to our test website or are unstable but not
caught by our initial double fingerprint filter. Each remaining at-
tribute of every fingerprint 𝐹𝑃new is compared with the reference
fingerprint 𝐹𝑃ref , which uses the default configuration. When a
difference is detected, the UUID of the fingerprint, the browser
configuration, and the observed differences are stored (cf. Figure 2
in Appendix A). By running the browser on the same platform, with
the same configuration with the exception of one configuration
parameter, we isolate the impact of the parameter. Throughout this
step, we analyzed over 61, 559 fingerprints with 12 to 16 thousand
attributes. After analyzing all versions, the resulting dataset cap-
tures the relationship between each configuration parameter and
its impact on the BOM for each browser version. This dataset can
then serve as a baseline to identify unknown fingerprints.

4.3.3 Configuration Identification. To compare an unknown finger-
print 𝐹𝑃unk configuration parameters from the impacted attributes,
we employed two strategies: one using the fingerprints generated
from our BOM exploration and the other using FingerprintJS. In the
former case, the fingerprint size can increase as the complete BOM
is explored and each attribute-value pair is retrieved. As shown in
Table 1, the number of attributes during our experimentation varied
between 12, 334 and 16, 473. We selected the known impacted at-
tributes from each switch (see Table 3 in Appendix A) in our dataset
and compare these attributes from the unknown fingerprint. As
explained in Section 3, attributes are either added, changed, or have
their values removed. Our identification process thus distinguishes
between these three cases where we apply our Equation (5). In
the case of the FingerprintJS library, a straightforward diff proved
sufficient for all three cases given the fingerprint’s relatively simple
structure and the key/value pair similarity. These two approaches
have allowed us to gain a deep understanding of the configura-
tion parameters impact on the fingerprint. We have applied these
techniques to all of our datasets.

5 RESULTS

This section presents the results obtained through the utilization of
our approach, FP-Rainbow. We first discuss the fingerprint collec-
tion and analysis phases. We then delve into the comparison phase
and provide insights on configuration parameters that impacted an
unknown fingerprint. All data gathered during our experiments,

Table 1: Analysis of the effects of switches on the BOM, in-

cluding the generation of browser fingerprints and the num-

ber of attribute for specific browser versions

Browser version

Number of
switches

that impact
the BOM

Number of
switches

that impact
FingerprintJS

Total
Number of
switches
impacted

Fingerprint
Generated

Min
attributes

per
Fingerprint

Max
Attributes

per
Fingerprint

Chrome-113.0.5672.63 45 15 50 1713 12894 15888
Chrome-114.0.5735.133 46 15 50 1713 12910 15917
Chrome-115.0.5790.170 46 15 50 1713 13014 16018
Chrome-116.0.5845.96 45 15 49 1713 13036 16029
Chrome-117.0.5938.149 45 17 49 1712 13062 16031
Chrome-118.0.5993.70 44 18 48 1712 13072 16080
Chrome-119.0.6045.105 44 18 48 1712 13070 16101
Chrome-120.0.6099.109 42 18 47 1712 13100 15945
Chrome-121.0.6167.184 42 17 46 1712 13120 15984
Chrome-122.0.6261.128 41 17 46 1712 13119 16052
Chrome-123.0.6312.122 42 17 45 1711 13164 16128
Chrome-124.0.6367.207 41 17 46 1710 13189 16134
Chrome-125.0.6422.141 40 16 44 1710 13300 16180
Chrome-126.0.6478.182 40 16 44 1710 13316 16227
Chrome-127.0.6533.119 40 16 44 1710 13335 16253
Chrome-128.0.6613.137 53 29 56 1722 13308 16279
Chrome-129.0.6668.58 54 30 58 1724 13310 16422
Chrome-130.0.6710.0 56 32 61 1726 13332 16473

HeadlessChrome-113.0.5672.63 37 12 40 1725 12334 15380
HeadlessChrome-114.0.5735.133 37 12 42 1725 12396 15409
HeadlessChrome-115.0.5790.170 37 12 40 1725 12500 15510
HeadlessChrome-116.0.5845.96 37 12 41 1725 12522 15521
HeadlessChrome-117.0.5938.149 36 14 40 1725 12540 15518
HeadlessChrome-118.0.5993.70 36 15 41 1725 12550 15567
HeadlessChrome-119.0.6045.105 35 15 40 1724 12558 15589
HeadlessChrome-120.0.6099.109 35 15 40 1725 12588 15433
HeadlessChrome-121.0.6167.184 35 15 40 1725 12608 15472
HeadlessChrome-122.0.6261.128 34 15 39 1724 12607 15540
HeadlessChrome-123.0.6312.122 33 15 39 1725 12650 15616
HeadlessChrome-124.0.6367.207 32 15 37 1604 12676 15623
HeadlessChrome-125.0.6422.141 33 14 38 1604 12757 15669
HeadlessChrome-126.0.6478.182 33 14 37 1723 12779 15722
HeadlessChrome-127.0.6533.119 34 14 37 1722 12785 15748
HeadlessChrome-128.0.6613.137 41 15 46 1696 13308 16279
HeadlessChrome-129.0.6668.58 41 15 46 1696 13310 16422
HeadlessChrome-130.0.6710.0 41 15 47 1694 13332 16473

as well as additional data retrieved from other platforms (Win-
dows and Debian) and hardware not reported in this paper are are
publicly accessible.7,8

5.1 Impact of Browser Configurations on the

BOM [RQ1]

We generated fingerprints for 18 Chrome browser versions span-
ning over 18 months, for both the Headful and Headless variants,
for a total of 36 browsers. The list of considered versions is avail-
able in Table 1. This deliberate choice of a small sample of browser
versions allowed us to exhaustively measure and comprehend the
impact of each configuration parameter on the BOM.

As mentioned in the official Chromium documentation, the con-
figuration for switches can be found on the peter.sh blog9. We tested
a total of 1, 748 switches. Throughout our tests, an average of 1, 710
switches were successfully executed in the Headless browser ver-
sion without encountering a timeout (3 timeouts were reported on
each version) or a crash (23 to 144 crashed depending on version),
and an average of 1, 714 switches in the graphical version (22 to 38
crashes). Out of all launched switches, 12 to 15 switches affected
the fingerprint from the FingerprintJS library, and 32 to 41 switches
impacted the fingerprint from the BOM exploration in the head-
less Chrome version. In the Headful version, we observed 15 to 32
switches affecting the FingerprintJS, and 40 to 56 switches affecting
the BOM exploration. The differences between each Headless or

7https://github.com/HuygheMaxime/fp-rainbow
8https://doi.org/10.5281/zenodo.13933676
9https://peter.sh/experiments/chromium-command-line-switches/

https://github.com/HuygheMaxime/fp-rainbow
https://doi.org/10.5281/zenodo.13933676
https://peter.sh/experiments/chromium-command-line-switches/
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Headful version is due to the versions themselves, as we utilized
all existing switches from the latest version, and some of these
switches did not exist in earlier versions. However, the difference
between Headless and Headful browser versions lies in the addi-
tional functions for graphical processing in the latter. This outcome
opens the possibility of foreseeing a bot detection system designed
for bots that operate without utilizing the graphical interface.

The majority of impacted fingerprints from FingerprintJS were
also impacted in the BOM exploration, except for the switches that
affected the canvas generation. Switches like disable-reading-
from-canvas, force-prefers-reduced-motion, and force-high-
contrast were detected with the FingerprintJS library. The switch
disable-font-subpixel-positioningwas detected in the Head-
less Chromium version only, showing that certain configuration
parameters also influence the canvas and can therefore be detected.
The switch headless applied in Headful version shows that it im-
pacts the browser fingerprint, and is therefore detectable on all
the versions we tested. Some attributes can be affected by different
switches, such as those ending with length, which are regularly
impacted. The most affected attribute was window._length, which
was impacted by ≈ 22 different switches followed by attribute
window.wgl_length impacted by ≈ 8 different switches.

As explained earlier, some attributes can be impacted by different
switches. However, in the majority of cases, each switch impacts
the value of the attribute similarly, except for some attributes like
length ones for which values can vary substantially. The limited
number of collisions and relative independence allows us to avoid
exploring all possible combinations of switches, which would be
unfeasible given the number of switches, and instead create our
dataset by enabling switches linearly, one at a time.

5.2 Configuration Identification [RQ2]

After assessing the impact of each configuration parameter, FP-
Rainbow leverages this information to identify an unknown finger-
print. We evaluate FP-Rainbow’s effectiveness for (i) identifying
the browser fingerprints impacted by the configuration parameters
in the dataset and (ii) generating and identifying browser finger-
prints with several switches activated at the same time.

5.2.1 Baseline identification. First, we attempt to identify switches
from fingerprints that already exist in our dataset from the data
collection and analysis processes. This provides a baseline to under-
stand if a switch is identifiable. As shown in Table 2, FP-Rainbow
successfully identified the majority of the switches. During the
experimentation, we observed that some switches enable the same
feature and have exactly the same impact on the BOM, such as
disable-3d-apis and disable-webgl. After verifying the source
code10, we can confirm they are perfectly identical. We consider
such switches as equivalent switches. The dataset also contains
cases where a switch is a perfect subset of another. This includes
disable-speech-synthesis-api being a part of disable-speech-
api. In some cases, a switch like disable-3d-apis can have both
an equivalent and a subset like disable-gpu-driver-bug-workarounds.
Identifying subsets allows us to distinguish if the child switch is

10https://source.chromium.org/chromium/chromium/src/+/main:
content/browser/web_contents/web_contents_impl.cc;l=3000;drc=
7fa0c25da15ae39bbd2fd720832ec4df4fee705a

enabled and not the parent switch. Table 2 also reveals that Chrome
versions 128.0.6613.137, 129.0.6668.58 and 130.0.6710.0 ex-
hibit a significantly higher number of impacted switches compared
to earlier versions.

5.2.2 Multi-switch identification. We repeated the same experi-
ment described in Section 5.2.1 but with multiple switches. Since it
is impractical to explore every possible combination and there is no
statistical data on the number of switches users typically activate,
we devised a random sampling strategy to obtain representative
samples. We generated 31 fingerprints per browser version. To
cover as many browser fingerprints as possible, we used a pool
of switches, distributing them evenly across tests. Specifically, we
generated 10 browser fingerprints using 1

4 of the available switches,
then repeated the process with 1

2 of the switches and 3
4 of the

switches. Finally, we generated a fingerprint incorporating all the
switches impacted by this version. The result was a successful
identification rate of 78.15% across all fingerprints with multiple
switches, including identifying various switch combinations across
all tested versions, as shown in Table 2.

5.3 Leveraging Single-Device Dataset for

Fingerprint Identification Across Multiple

Devices [RQ3]

We replicate the experiment described in Section 5.2.2, that was
run on a server, but this time collect fingerprints from a different
environment using a laptop. The setup remains identical to that
in Section 4.2. As shown in Table 2, some identification results
are identical or very similar for fingerprints generated on the two
different machines. However, the differences between the two ex-
periments show that changing the environment impacts the BOM.
On average, FP-Rainbow achieves a recognition rate of 77.54%,
compared to 78.15%, when testing fingerprints from a different
environment, showing we can leverage single-device datasets to a
large extent. Despite technical issues with older versions (113 and
114) which are not shown in the Table, the results indicate that
FP-Rainbow can successfully identify configuration parameters in
environments other than the original dataset.

5.4 Discussion

Minimal Fingerprint. Using FP-Rainbow, it is possible to deter-
mine a minimal browser fingerprint for the identification of con-
figuration parameters. To find out this minimal fingerprint, proper
attributes must be selected. To do this, the 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 formula (see
formula 2) is applied when aiming for one specific version, or the
𝜔𝑎 formula (see formula 3) to broaden the scope over all versions.
Attributes are then ranked based on stability. If an attribute is con-
sistently linked to a single switch across all versions, it is considered
stable and ranked higher. Conversely, if an attribute is impacted by
multiple switches and/or only on certain versions, it is considered
unstable and ranked lower. A threshold is then set for selecting
the number of attributes, either regarding performance or preci-
sion. Selecting more attributes increases identification accuracy, but
also extends the time required for generating and processing the

https://source.chromium.org/chromium/chromium/src/+/main:content/browser/web_contents/web_contents_impl.cc;l=3000;drc=7fa0c25da15ae39bbd2fd720832ec4df4fee705a
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/web_contents/web_contents_impl.cc;l=3000;drc=7fa0c25da15ae39bbd2fd720832ec4df4fee705a
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/web_contents/web_contents_impl.cc;l=3000;drc=7fa0c25da15ae39bbd2fd720832ec4df4fee705a
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Table 2: Analysis of the effects of switches on the BOM and switch identification. Left provides statistics on the generation

of browser fingerprints, attribute density for specific browser versions, results of individual switch identification from the

BOM, equivalent and subset switches [RQ1]. Middle-right shows the results of the multi-switch identification experiment

[RQ2] on the same platform that collected the dataset (Server), and Right shows the multi-switch identification platform with

fingerprints from a different platform [RQ3].

Impact [RQ1] and Identification [RQ2] of switches
from browser fingerprints

Multiswitch identification experiment
Server [RQ2]

Multiswitch identification experiment
Laptop [RQ3]

Browsers version

Switches
that

impacted
the BOM

Identified
switches

Failed
switch

identification

Equivalent
switches

Subset
switches

Number of
switches
tested

Identified
switches

Mistaken
identification
(False Positive)

Unidentified
(False Negative)

Number of
switches

Identified
switches

Mistaken
identification
(False Positive)

Unidentified
(False Negative)

Chrome-113.0.5672.63 45 89.13% (41) 5 9 6 461 75.9% (350) 4.8% (22) 24.1% (111)
Chrome-114.0.5735.133 46 89.36% (42) 5 9 7 751 76.3% (573) 2.9% (22) 23.7% (178)
Chrome-115.0.5790.170 46 89.36% (42) 5 9 7 751 77.0% (578) 3.1% (23) 23.0% (173) 136 84.6% (115) 8.1% (11) 15.4% (21)
Chrome-116.0.5845.96 45 89.13% (41) 5 9 6 742 76.8% (570) 3.5% (26) 23.2% (172) 110 87.3% (96) 10.0% (11) 12.7% (14)
Chrome-117.0.5938.149 45 89.13% (41) 5 9 8 742 79.5% (590) 3.2% (24) 20.5% (152) 183 80.9% (148) 5.5% (10) 19.1% (35)
Chrome-118.0.5993.70 44 88.89% (40) 5 9 7 720 79.2% (570) 3.5% (25) 20.8% (150) 182 79.1% (144) 6.6% (12) 20.9% (38)
Chrome-119.0.6045.105 44 88.89% (40) 5 9 6 719 80.7% (580) 2.9% (21) 19.3% (139) 719 80.3% (577) 3.2% (23) 19.7% (142)
Chrome-120.0.6099.109 42 88.37% (38) 5 8 5 687 82.0% (563) 3.2% (22) 18.0% (124) 688 81.8% (563) 3.2% (22) 18.2% (125)
Chrome-121.0.6167.184 42 88.37% (38) 5 8 5 689 82.6% (569) 3.6% (25) 17.4% (120) 612 82.5% (505) 3.9% (24) 17.5% (107)
Chrome-122.0.6261.128 41 88.10% (37) 5 8 5 677 81.8% (554) 3.4% (23) 18.2% (123) 677 81.8% (554) 3.4% (23) 18.2% (123)
Chrome-123.0.6312.122 42 88.10% (37) 6 8 7 676 80.8% (546) 3.8% (26) 19.2% (130) 634 80.4% (510) 4.1% (26) 19.6% (124)
Chrome-124.0.6367.207 41 87.80% (36) 4 8 6 657 80.8% (531) 3.2% (21) 19.2% (126) 615 80.7% (496) 3.7% (23) 19.3% (119)
Chrome-125.0.6422.141 40 87.50% (35) 6 8 6 656 80.5% (528) 4.3% (28) 19.5% (128) 656 80.5% (528) 4.3% (28) 19.5% (128)
Chrome-126.0.6478.182 40 87.50% (35) 6 8 6 655 80.9% (530) 4.1% (27) 19.1% (125) 655 80.9% (530) 4.1% (27) 19.1% (125)
Chrome-127.0.6533.119 40 87.50% (35) 6 8 6 656 80.5% (528) 0.9% (6) 19.5% (128) 656 80.5% (528) 0.9% (6) 19.5% (128)
Chrome-128.0.6613.137 53 67.92% (36) 18 8 6 849 63.4% (538) 2.5% (21) 36.6% (311) 849 63.4% (538) 2.5% (21) 36.6% (311)
Chrome-129.0.6668.58 54 66.67% (36) 19 8 5 868 62.3% (541) 4.6% (40) 37.7% (327) 868 62.3% (541) 4.6% (40) 37.7% (327)
Chrome-130.0.6710.0 56 64.29% (36) 21 8 6 911 59.5% (542) 2.9% (26) 40.5% (369) 911 59.5% (542) 2.9% (26) 40.5% (369)
HeadlessChrome-113.0.5672.63 37 86.84% (33) 5 6 6 103 79.6% (82) 7.8% (8) 20.4% (21)
HeadlessChrome-114.0.5735.133 37 86.84% (33) 5 6 6 613 79.4% (487) 4.7% (29) 20.6% (126)
HeadlessChrome-115.0.5790.170 37 86.84% (33) 5 6 6 613 80.3% (492) 4.1% (25) 19.7% (121) 614 77.9% (478) 6.7% (41) 22.1% (136)
HeadlessChrome-116.0.5845.96 37 86.84% (33) 5 6 6 611 80.5% (492) 4.1% (25) 19.5% (119) 611 77.7% (475) 7.0% (43) 22.3% (136)
HeadlessChrome-117.0.5938.149 36 86.49% (32) 5 6 6 590 80.3% (474) 4.1% (24) 19.7% (116) 591 77.8% (460) 9.5% (56) 22.2% (131)
HeadlessChrome-118.0.5993.70 36 83.78% (31) 6 6 5 591 79.7% (471) 6.6% (39) 20.3% (120) 591 76.6% (453) 12.2% (72) 23.4% (138)
HeadlessChrome-119.0.6045.105 35 86.11% (31) 5 6 4 591 79.0% (467) 4.1% (24) 21.0% (124) 591 77.3% (457) 12.2% (72) 22.7% (134)
HeadlessChrome-120.0.6099.109 35 86.11% (31) 5 6 4 588 81.6% (480) 4.9% (29) 18.4% (108) 588 79.4% (467) 12.9% (76) 20.6% (121)
HeadlessChrome-121.0.6167.184 35 86.11% (31) 5 6 4 590 81.5% (481) 4.1% (24) 18.5% (109) 591 79.4% (469) 12.5% (74) 20.6% (122)
HeadlessChrome-122.0.6261.128 34 85.71% (30) 5 6 4 559 81.4% (455) 4.8% (27) 18.6% (104) 559 78.5% (439) 13.6% (76) 21.5% (120)
HeadlessChrome-123.0.6312.122 33 85.29% (29) 5 6 5 547 80.3% (439) 4.4% (24) 19.7% (108) 547 77.9% (426) 13.5% (74) 22.1% (121)
HeadlessChrome-124.0.6367.207 32 87.88% (29) 4 6 5 529 82.4% (436) 6.0% (32) 17.6% (93) 529 79.4% (420) 14.2% (75) 20.6% (109)
HeadlessChrome-125.0.6422.141 33 88.24% (30) 4 6 5 550 82.5% (454) 4.2% (23) 17.5% (96) 550 78.2% (430) 13.3% (73) 21.8% (120)
HeadlessChrome-126.0.6478.182 33 85.29% (29) 5 6 5 549 80.1% (440) 3.8% (21) 19.9% (109) 549 74.7% (410) 10.6% (58) 25.3% (139)
HeadlessChrome-127.0.6533.119 34 85.71% (30) 5 6 5 558 79.4% (443) 4.3% (24) 20.6% (115) 558 76.2% (425) 10.9% (61) 23.8% (133)
HeadlessChrome-128.0.6613.137 41 80.49% (33) 9 5 6 656 76.1% (499) 4.7% (31) 23.9% (157) 656 75.0% (492) 5.5% (36) 25.0% (164)
HeadlessChrome-129.0.6668.58 41 78.05% (32) 9 5 4 656 74.7% (490) 6.7% (44) 25.3% (166) 656 74.7% (490) 6.6% (43) 25.3% (166)
HeadlessChrome-130.0.6710.0 41 78.05% (32) 9 5 4 657 74.1% (487) 7.2% (47) 25.9% (170) 657 74.1% (487) 7.0% (46) 25.9% (170)

fingerprint. This approach allows developers to inform users of sub-
optimal or inadequate configurations and suggest improvements
when visiting the website.

Limitations. As previously highlighted, the attributes impacted
by switches may sometimes overlap with another switch and re-
duce the identification rate, such as with the disable-webgl and
disable-3d-apis switches (see Section 5.2). Additionally, we no-
ticed some noise during our analysis, like unstable attributes, or
attributes impacted outside of our configuration parameters. This
noise can be mitigated through an in-depth analysis of each at-
tribute, which may lead to the exclusion of such attributes during
the identification phase or the assignation of a lesser weight due
to their instability or randomness. Several factors also introduce
potential threats to the validity of our study. First, our dataset
was exclusively generated using Headless and Headful Chromium
versions within a Docker environment, which may restrict its gen-
eralizability to real-world scenarios.

6 CONCLUSION

This paper introduced FP-Rainbow, a systematic approach to in-
vestigate and identify browser settings and configurations influ-
encing the BOM. We explore over 1, 700 configuration parameters

and identify 61 of which impact the BOM and its fingerprint as
seen through FingerprintJS. We show that it is possible to identify
configuration parameters from unknown fingerprints, albeit some
parameters being unstable are not always properly identified. We
show that altering a browser’s configuration impacts the attack
surface, allowing for possible attacks or improved fingerprint track-
ing approaches, and should be of concern to both users as well as
developers. This work opens up several avenues for future research.
In particular, we plan to investigate additional factors that influence
the browser’s fingerprint, such as user settings, hardware, firmware,
plugins, and extensions. We expect to improve our tooling to better
inform developers of the side-effects of the features they add or the
changes they introduce into browsers.
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1 "85a43f31-84b7-4647-b4b0-696ed8fc20ea": {

2 "window.Object": [

3 "function Object() { [native code] }"

4 ],

5 "window.Function": [

6 "function Function() { [native code] }"

7 ],

8 "window.openDatabase": [

9 "function openDatabase() { [native code] }"

10 ],

11 "window._length": [

12 924

13 ]

14 }

1 "b3c20d9f-e617-466c-8aae-d7c8bc9bb072": {

2 "window.Object": [

3 "function Object() { [native code] }"

4 ],

5 "window.Function": [

6 "function Function() { [native code] }"

7 ],

8 "window._length": [

9 923

10 ]

11 }

Figure 2: Impact of the switch –disable-databases on the BOM enumeration (excerpt) for the HeadlessChrome/117.0.5938.149
version. When the –disable-databases switch is not activated (left), the attribute window.openDatabase is present and the

attribute window._length has a value of 924. When this switch is activated (right), the attribute window.openDatabase disappears
and the value of window._length changes from 924 to 923.
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Table 3: List of impacted switches across 18 tested Chromium versions in headless and headful modes, with the min, max, and
average number of impacted attributes (Added, Changed, Removed), and the number of impacted versions (Headful, Headless, and
Total).

Switch Name Min Max Average

Headful versions

Impacted

Headless versions

impacted

Total versions

impacted

–auto-open-devtools-for-tabs 11 11 11 5 0 5
–deterministic-mode 1 1 1 0 15 15
–disable-3d-apis 2220 2269 2256.66 18 18 36
–disable-databases 2 2 2 6 15 21
–disable-field-trial-config 1 88 20.85 18 3 21
–disable-file-system 3 3 3 18 18 36
–disable-gpu-driver-bug-workarounds 61 61 61 6 6 12
–disable-javascript-harmony-shipping 2 143 86.78 18 18 36
–disable-local-storage 52 52 52 18 18 36
–disable-notifications 5 5 5 18 18 36
–disable-permissions-api 31 31 31 15 15 30
–disable-remote-playback-api 2 2 2 18 18 36
–disable-scroll-to-text-fragment 29 29 29 18 18 36
–disable-shared-workers 2 2 2 18 18 36
–disable-software-rasterizer 2220 2269 2256.66 18 0 18
–disable-speech-api 52 54 53.11 18 18 36
–disable-speech-synthesis-api 47 49 48.11 18 18 36
–disable-threaded-compositing 1 1 1 18 18 36
–disable-web-security 4 4 4 11 11 22
–disable-webgl 2220 2269 2256.66 18 18 36
–dom-automation 26 26 26 18 18 36
–enable-begin-frame-control 1 1 1 0 15 15
–enable-benchmarking 15 18 16.33 18 3 21
–enable-blink-test-features 743 1059 887.64 18 18 36
–enable-experimental-web-platform-features 566 936 710.8 18 18 36
–enable-experimental-webassembly-features 2 9 6.06 18 18 36
–enable-field-trial-config 54 54 54 0 1 1
–enable-gpu-benchmarking 64 80 70.78 18 18 36
–enable-low-end-device-mode 2 2 2 18 18 36
–enable-nacl 428 590 458.85 18 3 21
–enable-net-benchmarking 17 17 17 18 3 21
–enable-network-information-downlink-max 4 4 4 18 18 36
–enable-precise-memory-info 2 2 2 18 18 36
–enable-privacy-sandbox-ads-apis 6 71 13.65 4 13 17
–enable-skia-benchmarking 29 41 34 18 18 36
–enable-stats-collection-bindings 27 27 27 18 18 36
–enable-webgl-developer-extensions 15 15 15 18 18 36
–enable-webgl-draft-extensions 13 13 13 7 7 14
–enable-webgl-image-chromium 2269 2269 2269 8 8 16
–force-fieldtrials 6 71 20 7 0 7
–headless 8 8 8 3 0 3
–ignore-gpu-blocklist 59 71 65.67 18 0 18
–instant-process 121 121 121 18 3 21
–javascript-harmony 2 53 10.2 10 10 20
–kiosk 2 2 2 0 3 3
–lang 2 2 2 0 15 15
–mangle-localized-strings 7 7 7 18 3 21
–override-use-software-gl-for-tests 15 15 15 18 0 18
–ozone-override-screen-size 10 11 10.33 0 3 3
–pdf-renderer 53 53 53 3 3 6
–shared-array-buffer-unrestricted-access-allowed 2 2 2 18 18 36
–start-fullscreen 2 2 2 0 3 3
–start-maximized 2 2 2 0 3 3
–touch-events 19 19 19 18 18 36
–use-first-party-set 3 12 8.25 2 6 8
–use-gl 2220 2256 2246.8 10 10 20
–use-gpu-in-tests 59 71 65.67 18 0 18
–user-agent 2 2 2 18 16 34
–variations-server-url 1 88 20.85 18 3 21
–web-sql-access 2 2 2 6 0 6
–whitelisted-extension-id 8 8 8 1 0 1
–win-jumplist-action 8 8 8 1 0 1
–window-name 8 8 8 2 0 2
–window-position 8 8 8 3 0 3
–window-size 8 8 8 3 0 3
–window-workspace 8 8 8 3 0 3
–windows-mixed-reality 8 8 8 3 0 3
–winhttp-proxy-resolver 8 8 8 3 0 3
–with-cleanup-mode-logs 8 8 8 3 0 3
–wm-window-animations-disabled 8 8 8 3 0 3
–xr_compositing 8 8 8 3 0 3
–xsession_chooser 8 8 8 3 0 3
–yuy2 8 8 8 3 0 3
–zygote 8 8 8 3 0 3
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