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Abstract. In the Path Cover problem, one asks to cover the ver-
tices of a graph using the smallest possible number of (not necessarily
disjoint) paths. While the variant where the paths need to be pairwise
vertex-disjoint, which we call Path Partition, is extensively studied,
surprisingly little is known about Path Cover. We start filling this gap
by designing a linear-time algorithm for Path Cover on trees. Let t be
the treewidth of a given graph. We then show that Path Cover can
be solved in polynomial time on graphs of bounded treewidth, in XP
time ntO(t)

, using a dynamic programming scheme. Our algorithm gives
an FPT 2O(t log t)n algorithm for Path Partition as a corollary. These
results also apply to the variants where the paths are required to be
induced (i.e. chordless) and/or edge-disjoint.

Keywords: Path Cover · Trees · Treewidth

1 Introduction

Path problems in graphs are fundamental problems in algorithmic graph theory,
consider for example the problem of computing shortest paths in a graph, which
has been one of the first studied graph problems from which efficient algorithms
were obtained [6, Chapter 24]. Finding disjoint paths is also a problem of utmost
importance, both in algorithmic and structural graph theory [25]. When it comes
to covering the graph, the Hamiltonian Path problem is another classic path-
type problem studied both in combinatorics and computer science. We study its
generalizations, Path Cover and Path Partition, which are about covering
the vertices of a graph using a minimum number of paths (unrestricted and
pairwise vertex-disjoint, respectively). They are formally defined as follows.
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Path Cover
Input: A graph G.
Problem: Compute a minimum-size path cover, that is, a set of paths of G

such that every vertex of G belongs to at least one of the paths.

Its variant that requires the solution paths to be pairwise vertex-disjoint is
very well-studied and defined as follows.

Path Partition
Input: A graph G.
Problem: Compute a minimum-size path partition, that is, a set of pairwise

vertex-disjoint paths of G such that every vertex of G belongs to
at least one of the paths.

Our goal is to study the algorithmic complexity of Path Cover and Path
Partition on trees and graphs of bounded treewidth. Treewidth is an important
graph parameter and the associated tree-decompositions enable to solve various
problems efficiently when this parameter is bounded. We refer to the book [8]
for more on the topic of algorithms for graphs of bounded treewidth.

Related work. As both problems generalize Hamiltonian Path (which amounts
to decide whether a graph can be covered by a single path), they are both NP-
hard, and this holds even, for example, for 2-connected cubic bipartite planar
graphs [1].

Unlike us, most work in the literature refers to Path Partition as “Path
Cover”; indeed, the former is much more studied than the latter: see [7, 15] for
such works on Path Partition. In some cases, Path Partition is also called
Hamiltonian Completion [12, 13, 18]. To avoid any confusion between the
two problems, we use the terminology of Path Cover and Path Partition as
defined above, a choice taken from the survey [21] on path-type problems.

Several papers from the 1970s studied Path Partition on trees [4, 13, 18].
However, they did not explicitly analyze the running times. A properly analyzed
linear-time algorithm was given in 2002 [12]. Path Partition was also shown to
be solvable in polynomial time on many other graph classes such as cographs [20],
distance-hereditary graphs [15], cocomparability graphs [7] (which contain all
interval graphs), or block graphs/cactii [23]. We do not know of any explicit
algorithm for Path Partition on graphs of bounded treewidth, but algorithms
exist for the closely related Cycle Partition problem [9].

Both Path Cover and Path Partition have numerous applications, in
particular in program testing [22], circuit testing [2], or machine translation [19],
to name a few. Although Path Partition is more widely studied, Path Cover
is also a natural problem, with specific applications in bio-informatics when
restricted to directed acyclic graphs [5, 24]. We refer to [5, 10, 22, 24] for the few
references about Path Cover that we are aware of.
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Our results. Although Path Partition is well-studied on trees and other graph
classes, surprisingly, this is not the case of Path Cover. Note that despite
the two problems having similar statements, they typically have very different
optimal solutions. For example, on a star with k leaves, an optimal path partition
has size k − 1, but an optimal path cover has size ⌈k/2⌉.

We first focus (in Section 2) on Path Cover on trees, for which no efficient
algorithm has been given in the literature. For trees, the size of an optimal
solution is given by the ceiling of half of the number of leaves. The proof of this
fact was given by Harary and Schwenk in 1972 [14] for the problem of covering the
edges of the tree. An analysis of their proof yields a quadratic-time algorithm.
We show how Path Cover can in fact be solved in linear time on trees, by
giving an improved algorithm based on depth-first-search (DFS).

We then study graphs of bounded treewidth in Section 3. We design an
explicit dynamic programming algorithm that runs in time nt

O(t)

for graphs of
treewidth at most t and order n. With a slight simplification, the same algorithm
also solves Path Partition and runs in improved FPT running time 2O(t log t)n.

It is not clear whether Path Cover can be solved in FPT time as well or
not; however, we give some indications of why that might not be the case.

Moreover, we argue that our algorithms also apply to the versions of both
Path Cover and Path Partition where the paths in the solution are required
to be induced (i.e. chordless) or pairwise edge-disjoint. These variants have been
studied in the literature (see [11, 21] and references therein).

We finally conclude in Section 4.

2 Path Cover on trees

We first study Path Cover on trees. In [14, Theorem 7], it is proved that the
minimum number of paths needed to cover the edges of a tree is equal to ⌈ℓ/2⌉,
where ℓ is the number of leaves of a tree. This is an obvious lower bound, since
for any leaf of a tree, there must be a solution path starting at that leaf. This
also holds for covering the vertices. The argument of [14], based on pairing the
leaves arbitrarily and switching the pairing to increase the number of covered
vertices at each step, leads to a quadratic-time algorithm for Path Cover on
trees. We next present an algorithm for solving Path Cover of a tree with a
runtime that is linear in the number of vertices.

Theorem 1. Path Cover can be solved in linear time on trees, and the optimal
size of a solution for a tree with ℓ leaves is ⌈ℓ/2⌉.

Consider the input tree T to be rooted at an arbitrary internal vertex r of T . The
intuition here is to cover the vertices of the tree by simulating the Depth-First-
Search (DFS) algorithm with some modifications in the steps, thus the running
time would become the same as the running time of DFS.
First, we recall the recursive DFS algorithm, see e.g. [6, Chapter 22.3]. In this
algorithm, there are two timestamps assigned to each vertex: the first timestamp
is given when we discover the vertex for the first time while traversing the tree,
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and the second timestamp is given when we finish traversing all the vertices
of the sub-tree rooted at that particular vertex. We use these timestamps in
our algorithm. We use the first timestamp to mark the vertex v as visited and
the second timestamp to consider a valid solution of Path Cover to cover the
vertices rooted at v, including v. The algorithm starts at the root and marks
the vertices as visited in DFS order until it reaches a leaf. At the leaf on the
way back, it starts a path with endpoints at the leaf and continues toward the
parent, and the paths are recorded. Now we need some definitions to specify the
steps of our algorithm.

We use p = (x1, x2, . . . , xk) as a notation for paths where xi are all distinct
vertices of T connected by the path p. The vertices x2, . . . , xk−1 are internal
vertices; the vertices x1 and xk are endpoints of the path p.

Definition 1. A path is closed if both of its endpoints are leaves, and a path is
open if one of its endpoints is not a leaf. We assume a singleton path at a leaf
of the tree to be an open path.

Definition 2. Let v be a vertex in the tree T and P be a set of paths in the
subtree rooted at v. For instance p1 = (a1, . . . , aj) and p2 = (b1, . . . , bk) are
two paths in P = {p1, p2, . . . } where a1 and b1 are leaves of T . We define the
following operations:
– We use the notation P · v to concatenate the paths in P with vertex v, that

is, For each path p ∈ P if there exists an edge between v and the endpoint
of p ∈ P, then we add vertex v to the path p. As an example P · v =
{(a1, . . . , aj , v), (b1, . . . , bk, v), . . . }. If P = {p} for a single path p, we write
p · v as shorthand for P · v.

– Two vertex-disjoint open paths p1 = (a1, . . . , aj) and p2 = (b1, . . . , bk) are
combined at the vertex v if v is connected to one of the endpoints of each
path. By combining p1 and p2 at vertex v, we obtain a new path, formally,
comb(p1, p2) = (a1, . . . , aj , v, bk, . . . , b1).

Let Tv be the subtree of T rooted at a given vertex v. Let {T 1
v , T

2
v , . . .} be

the set of connected components of Tv \ {v}. Two open paths coming from these
connected components to v can only be combined at v if they are coming from
two different components from {T 1

v , T
2
v , . . .}. Since, for the combining operation,

the paths need to be vertex-disjoint, the open paths coming from the same
component to v can not be combined at v. Two open paths are called unrelated
if they come from two different components from {T 1

v , T
2
v , . . .} at v.

In the algorithm, for each vertex v ∈ T , we define three sets of paths:
– Pclose

v is a set of paths that consists of closed paths combined at vertex v,
– Popen

v is a set of paths that consists of open paths that will be extended
further from vertex v,

– Pv is the set of all paths extended as open paths from the children of v.
Among these sets, we need to store the set Popen

v corresponding to each node for
further usage in the parent node of v.

The aim of our algorithm is to have all paths closed, and when a path is open
it means we extend the path until it gets combined and closed. Note that we mark
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Algorithm 1 PC(T, v, S)
1: Mark v as visited
2: for Each child u of v do
3: if u is unvisited then
4: recursively call PC(T, u, S)
5: end if
6: end for
7: if v is a leaf then
8: Popen

v ←− {(v, v)} and Pclose
v ←− ∅

9: else
10: Pv ←−

⋃
c

Popen
c ▷ union over all the paths coming from all children c of v

11: Pclose
v ←− ∅

12: while |Pv| > 2 do
13: Find two unrelated paths pi and pj
14: Pclose

v ←− Pclose
v

⋃
comb(pi, pj)

15: Pv ←− Pv \ {pi, pj}
16: end while
17: if v is the root of T and |Pv| = 2 then
18: Pclose

v ←− Pclose
v

⋃
comb(p1, p2)

19: else if v is the root of T and |Pv| = 1 then
20: Pclose

v ←− Pclose
v

⋃
p1 · v

21: else
22: Popen

v ←− Pv · v ▷ when v is not the root of T and |Pv| ≤ 2
23: end if
24: end if
25: Mark v as covered
26: S ←− S

⋃
Pclose

v

27: return Popen
v

a vertex covered when all the vertices of the subtree rooted at that vertex are
visited and covered. Now, we present Algorithm 1 to compute a path cover of T .
The input to our algorithm is a tree T , a designated root vertex r, and a solution
set S, which is initially ∅. After the execution of Algorithm 1, the solution set
S provides an optimal path cover of T . We store a path p = (a1, a2, . . . , aj) in
terms of its endpoints i.e. p = (a1, aj).

Proof (Proof of Theorem 1). First, we have to prove that the size of S is
⌈
ℓ
2

⌉
where the number of leaves of T is ℓ. We start a path in the leaf of T and keep
it as an open path as long as it is not combined with another path and closed.
When a path is closed, both of its endpoints become leaves of T . Additionally,
in the root, all the paths get closed except for possibly one path. Hence, for an
even number of leaves, the size of S is ℓ

2 and for an odd number of leaves, the
size of S is ℓ−1

2 + 1, which proves the first part of the theorem.
Now, we show that the running time of Algorithm 1 is O(n) where n is the

number of vertices of T . Algorithm 1 closely resembles the DFS algorithm, with
the addition of some constant time operations to store the paths covering the
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vertices. Two operations, comb(p, q) and Pv · v take O(1) time as we store the
paths by their endpoints, and after each of these operations, only the endpoints
are changed while the new paths are created. Finding a pair of unrelated paths
can also be done in O(1) time, as the children of a particular vertex can be
ordered from left to right, and the paths coming from the children can also
be ordered accordingly. For each path p, we just need to check at most two
consecutive paths in this ordering to find a path q which is unrelated to p.
Therefore, in each of the iterations of the while loop (line 12-16) we do the
operations in O(1) time. All the iterations of the while loop together traverse
each of the edges between v and its children O(1) time. These edges are only
traversed in v’s recursive call. The recursive PC(T, v, S) call is made only once
for each vertex. Therefore, the recursive calls altogether make the running time
of the algorithm O(n+m), where m is the number of edges of T (since each edge
of T is traversed O(1) times), which is same as the running time of DFS. As m
is O(n) for T , the total running time becomes O(n), which proves the second
part of the theorem. ⊓⊔

3 Path Cover on graphs with bounded treewidth

In this section, we present an algorithm that solves Path Cover on general
graphs in XP time when parameterized by treewidth. The algorithm is a classic
dynamic programming scheme over a tree decomposition.

Theorem 2. Path Cover can be solved in time nt
O(t)

, where n is the number
of vertices, and t is the treewidth of the input graph.

See [8, 3, 16] for basic definitions of tree decompositions and treewidth. We
distinguish between vertices of G and vertices of the tree decomposition by re-
ferring to the latter as nodes. Each node v is associated with a bag Xv: a subset
of vertices of graph G. We use the classic nice tree decompositions:

Definition 3 ([16]). A tree decomposition T of graph G is nice if:
– T is rooted at node r with Xr = ∅.
– Each leaf node v of T has an empty bag Xv = ∅.
– Each non-leaf node is of one of the types below:

1. An Introduce node v has exactly one child u such that Xv = Xu∪̇{x}
for some vertex x in V .

2. A Forget node v has exactly one child u such that Xv = Xu \ {x} for
some vertex x in V .

3. A Join node v has two children u1, u2 such that Xv = Xu1
= Xu2

.

Given a graph G on n vertices and an integer t, there is an algorithm that either
outputs a tree decomposition of G of width at most 2t+1, or determines that the
treewidth of G is larger than t, in time 2O(t)n [17]. Given a tree decomposition
of G of width t and O(n) nodes, a nice tree decomposition of width t with at
most 4n nodes can be constructed in time O(t · n) [3].
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Fig. 1. Illustration of the different types of a vertex with respect to some node v and
partial path. The set of types is N = {∅, {−}, {−,−}, {↑}, {↓}, {↑, ↑}, {↓, ↓}, {↓, ↑}, {↑
,−}, {↓,−}}. “−” shows a vertex with a neighbour inside the bag Xv, “↑” shows a vertex
with a neighbour in G−Gv, and “↓” shows a vertex with a neighbour in Gv −Xv.

Let G = (V,E) be a graph and (T , X) be a nice tree decomposition of G
with width at most t. Let Tv be the subtree of T rooted at node v and Vv be the
union of all bags in this subtree including Xv. We define Gv as the subgraph of
G induced by Vv. We will use the following lemma from [8].

Lemma 1. Let (T , X) be a tree decomposition of a graph G and let uv be an
edge of T . The forest T − uv obtained from T by deleting edge uv consists of
two connected components Tu and Tv. Then (Vu, Vv) is a separation of G with
separator Xu ∩Xv.

We implement our dynamic programming scheme for Path Cover in a bottom-
up manner, starting at the leaf nodes of T . At each node v, we deal with a
potential solution for G that covers the vertices of Xv. We define a path as a
sequence of vertices where any vertex in a path p is incident to at most two
vertices from p, giving at most two neighbours in the subgraph induced by p.
Each neighbour of a vertex in p can either belong to Gv − Xv (and thus have
been forgotten in the bag of some descendant node of v), which we represent
with “↓”, or belong to G −Gv (it will appear in the bag of some ancestor node
of v), which we represent by “↑”, or belong to Xv, which we represent by “−”.
Therefore, we characterize each vertex by the types of its neighbour(s) inside a
potential solution path. To this end, let N be the set of multisets of size at most
two whose elements are taken from the set {−, ↑, ↓}.

At each node v, we define a partial path p (representing the intersection of
a path of G with the bag Xv) by (Πp, φp) where Πp is an ordered subset of Xv

and φp is a function φp : Πp → N which describes, for each vertex of p, the
types of its neighbour(s) inside the path of G represented by p. These paths are
called “partial” since they consist of several paths, and might have neighbour(s)
in the path that lie outside the node. Each vertex x of a partial path p in Xv has
the possibility of being in either of the types illustrated in Figure 3 with respect
to the path p′ of G represented by p.

We say that a partial path for node v is consistent if it corresponds to the
intersection with Xv of some path of G.
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Now, we extend the notion of a partial path p of a node v to that of a partial
path p of a subgraph Gv in a natural way as follows. A partial path p of Gv is an
ordered subset Πp of Vv and a function φp : Πp → N which describes, for each
vertex of a path, the types of its neighbour(s) inside the path, where “↑” now
refers to a neighbour in V (G) \ Vv, “−” refers to a neighbour in Vv, and there is
no vertex of p whose type contains “↓”.

We say that a partial path p of v agrees with a partial path p′ of Gv if the
following conditions hold:
– Πp ⊆ Πp′ ;
– the order of the vertices in Πp ∩Πp′ is the same in Πp and Πp′ ;
– all vertices in Πp′ \Πp, have a type in {−}, {−,−}, ∅;
– φp(x) = φp′(x), for each vertex x with types ∅, {−}, {−,−}, {↑}, and {↑,−};
– If φp(x) = {↓} then φp′(x) = {−};
– If φp(x) = {↑, ↑} then φp′(x) = {↑, ↑};
– If φp(x) = {↓, ↓} then φp′(x) = {−,−};
– If φp(x) = {↑, ↓} then φp′(x) = {↑,−};
– If φp(x) = {↓,−} then φp′(x) = {−,−}.

For a node v, we define a partial solution S of Gv as a collection P of partial
paths of Gv whose vertices cover all the vertices in Vv. We require that every
partial path is consistent, that is, it may correspond to the intersection of a path
ofG withGv. We also require that any partial path that has no vertex whose type
contains “↑”, is unique (i.e. appears only once in S). However, partial paths with
vertices whose type contains “↑” may appear multiple times (at most n times).
Indeed, they might correspond to different paths in a path cover of G, that all
happen to have the same intersection with Gv. For notational convenience, a
partial solution S is stored as a set P of partial paths, and a function f where,
for every partial path p in S, we let f(p) ∈ {1, . . . , n} be the number of times
the partial path p appears in the partial solution S.

Let P be a set of partial paths of a node v together with a function f : P →
{1, . . . , n}, and S = (P ′, f ′) be a partial solution of Gv. Let M be the multiset
obtained from P by adding, for every partial path p of P , f(p) copies of p to M .
Similarly, let M ′ be the multiset obtained from P ′ obtained from the subset of
partial paths of P ′ that intersect Xv, by adding to M ′, f ′(p) copies of each such
path p of P ′. We say that P corresponds to S if there is a bijection ψ from the
M to M ′, such that p agrees with ψ(p) for every partial path p of P .

Dynamic Programming. We define a DP-state [v, P, f ] as follows:
– v is a node in a nice tree decomposition (T , X);
– P is a set of partial paths that covers the vertices of Xv;
– f is a function f : P → {1, . . . , n} that maps each partial path p in P to a

value that shows how many times p is used.
We say that a DP-state [v, P, f ] valid if every partial path in P is consistent,

and (P, f) corresponds to a partial solution S of Gv. For a valid DP-state, we
define opt[v, P, f ] as the minimum number of partial paths in a partial solution
of Gv corresponding to (P, f). If there exists no such partial solution, then the
DP-state is invalid, and opt[v, P, f ] = ∞.
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Now, we explain how to compute the value of a DP-state from the values of
the children’s DP-states. We need to check the compatibility condition between
DP-states of a node and the children’s DP-sates; this is specific for each node
type. Therefore, we consider each case individually.

Let v be an introduce node with a child node u. Two valid DP-states [v, P, f ]
and [u, P ′, f ′] are compatible if there exist partial solutions Sv of Gv and Su of
Gu corresponding to (P, f) and (P ′, f ′) respectively, such that the intersection
of Sv with Gu is Su. Let v be a forget node with a child u. Two valid DP-states
[v, P, f ] and [u, P ′, f ′] are compatible if there exist partial solutions Sv of Gv

and Su of Gu corresponding to (P, f) and (P ′, f ′) respectively, such that the
intersection of Su with Gv is Sv.

Let v be a join node with two children u1 and u2. Three valid DP-states
[v, P, f ], [u1, P ′, f ′], and [u2, P

′′, f ′′] are compatible if there exist partial solutions
Su, Su1 , Su2 of Gv, Gu1 and Gu2 corresponding to (P, f), (P ′, f ′) and (P ′′, f ′′)
respectively, such that the intersection of Sv with Gu1 is Su1 and the intersection
of Sv with Gu2

is Su2
.

The algorithm starts at the leaf nodes and approaches the root. At each node,
the algorithm computes a value for each possible DP-state using the values of
the children’s compatible DP-states, and chooses the minimum possibility. We
next describe the computations done at each node, depending on their type. (We
omit the case of forget nodes and join nodes due to space constraints.)

Leaf node. For each leaf node v, Xv = ∅, so it is trivial that opt[v, ∅, f ] = 0.

Introduce node. Let v be an introduce node with child node u such that Xv =
Xu∪̇{x} for some x ∈ V (G). Let [v, P, f ] be a valid DP-state for node v.

Note that if there is a partial path p ∈ P and x with one of the values
φp(x) = {↓}, φp(x) = {↑, ↓}, φp(x) = {−, ↓}, and φp(x) = {↓, ↓}, then the
DP-state is not valid and opt[v, P, f ] = ∞. Indeed, by Lemma 1, there is no edge
between x and a vertex in Vv \Xv.

Otherwise, we will look for all DP-states [u, P ′, f ′] for u compatible with
[v, P, f ]. To check whether [u, P ′, f ′] and [v, P, f ] are compatible, we only need
to check the type of x in every partial path p (and the type of its neighbour(s)
in p), since the remaining state in Xu must be the same as Xv.

Let Px be the set of partial paths of P that contains at least one vertex other
than x. We must find a bijection between the partial paths of Px and those of P ′

(taking into account their multiplicities), in the following way. For every partial
path p of P not containing x at all, we require that p also belongs to P ′, with
f(p) = f ′(p). Moreover, for every partial path p of P containing x and at least
one other vertex of Xv, there must be a partial path p′ of P ′ such that p′ agrees
with p after removing x.

Let C be the collection of all DP-states [u, P ′, f ′] that are compatible with
DP-state [v, P, f ] and let k be the number of partial paths of P (accounting for
their multiplicity via function f) containing only x. We have:

opt[v, P, f ] = min
[u,P ′,f ′]∈C

{opt[u, P ′, f ′]}+ k
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To justify the validity of this formula, note that (by induction hypothesis)
our process constructs only valid partial solutions. Indeed, consider a partial
solution S′ corresponding to (P ′, f ′) of size opt[u, P ′, f ′], where [u, P ′, f ′] ∈ C
is such that opt[u, P ′, f ′] is minimum. We obtain a partial solution S of size
|S′| + k corresponding to (P, f) by extending S′. To do so, include vertex x
into the partial paths of P ′ that correspond to partial paths of P containing
x, as explained in the compatibility check. Moreover, add as many singleton
partial paths x as needed. This shows that opt[v, P, f ] ≤ |S| ≤ |S′| + k =
min[u,P ′,f ′]∈C{opt[u, P ′, f ′]}+ k.

Conversely, note that an optimal partial solution S of size opt[v, P, f ] corre-
sponding to (P, f) can be transformed into another one, S′, by deleting x from
it, with |S′| = |S| − k and S′ corresponds to some (P ′, f ′) where [u, P ′, f ′] is
compatible with [v, P, f ]. This shows that min[u,P ′,f ′]∈C{opt[u, P ′, f ′]} ≤ |S′| ≤
opt[v, P, f ]− k and thus, opt[v, P, f ] ≥ min[u,P ′,f ′]∈C{opt[u, P ′, f ′]}+ k.

Proof (Proof of Theorem 2). The algorithm goes through the tree in a bottom-
up fashion and computes, for each possible DP-state of the current node, the
optimal value for this state using the children’s optimal values. The correctness
follows from the above discussion and the correctness of the inductive formulas.
The optimal value of a solution is found at the root. To obtain the actual path
cover, one may use a standard backtracking procedure to build it inductively.

The running time is dominated by the generation, at each node, of all possible
DP-states. By the preliminary discussions, we have |Xv| ≤ 2t+ 2 for each node
v of the tree decomposition, if G is of treewidth t. Let us count the number
of possible DP-states [v, P, f ] for a node v. P is a collection of partial paths
that covers the vertices of Xv. Each partial path in P is an ordered subset of
Xv, where each vertex has 10 possible types inside the partial path. Therefore,
there are at most (10t)! = tO(t) possible partial paths. To each of them, we
associate a number between 1 and n using the function f . There are at most
n(10t)! possible functions f , thus, the total number of partial solutions inside
each node is at most nt

O(t)

, and we can compute them in this time. We can also
check the validity, compatibility, etc of the DP-states in time that is polynomial
in the size of a DP-state. In a forget/introduce node, we process all pairs of
DP-states coming from the parent and child node, which takes k2 time (if there
are at most k possible DP-states per node), and in a join node, we go through all
triples of DP-states coming from the parent and the two children nodes, which
takes k3 time. In each case, we have k = nt

O(t)

and thus this is still nt
O(t)

. We
have at most 4n nodes in the tree decomposition; hence, the algorithm solves
Path Cover in time nt

O(t)

. ⊓⊔

The case of Path Partition. In the Path Partition version of the problem,
we are dealing with vertex-disjoint paths. Therefore, the number of paths that
pass through each bag of the tree decomposition is at most the size of the bag.
Hence, a DP-state simply needs a collection of partial paths that forms a parti-
tion of the bag into ordered sets, and thus, there are at most tO(t) = 2O(t·log t)
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possible DP-states for every node, since there are at most (t+1)! = tO(t) order-
ings and tO(t) possible partitions of a bag. Thus, we obtain an FPT algorithm
for Path Partition in time 2O(t·log t)n.

The case of induced paths and edge-disjoint paths. The case where the solution
paths are required to be induced can be handled easily, indeed, a solution path is
induced if and only if its intersection with every bag is induced as well. Thus, it
suffices to only consider the DP-states where the partial paths have no unwanted
chord inside the bag. Otherwise, the algorithm remains the same.

For the edge-disjoint variants, it suffices to check that the partial paths in
every considered DP-state are edge-disjoint; otherwise the algorithm is the same.

4 Conclusion

We have re-initiated the study of Path Cover, which surprisingly is not ex-
tensively studied. We settled its complexity for trees by giving a linear-time
algorithm on this class, and we gave an explicit nt

O(t)

XP-time dynamic pro-
gramming scheme for graphs of treewidth t. The same algorithm modified for
Path Partition gives a 2O(t log t)n FPT running time. These running times also
hold for the variants of Path Cover and Path Partition where the solution
paths are required to be induced and/or edge-disjoint.

It would be nice to improve the running times of our algorithms. Probably,
one can design a 2O(t)n algorithm for Path Partition using the ideas of [9],
where they solved Cycle Partition in this running time. But can one get an
nO(t) algorithm for Path Cover? Can Path Cover even be solved in FPT time
for parameter treewidth? It is possible that this is not the case, as the number of
solution paths going through one bag of the tree-decomposition can be arbitrarily
large. In case of a negative answer, this would show a striking contrast between
the algorithmic complexities of Path Cover and Path Partition.
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