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Abstract

Topologically Associating Domains (TADs) are sub-Megabase regions in vertebrate genomes with enriched
intra-domain interactions that restrict enhancer-promoter contacts across their boundaries. However,
the mechanisms that separate TADs remain incompletely understood. Most boundaries between TADs
contain CTCF binding sites (CBSs), which individually contribute to the blocking of Cohesin-mediated
loop extrusion. Using genome-wide classification, we show here that TAD boundary width forms a
continuum from narrow to highly extended and correlates with CBS distribution, chromatin features,
and gene regulatory elements. To investigate how these boundary widths emerge, we modified the
Random Cross-Linker (RCL) polymer model to incorporate specific boundary configurations, enabling
us to evaluate the differential impact of boundary composition on TAD insulation. Our analysis identifies
three generic boundary categories, each influencing TAD insulation differently, with varying local and
distal effects on neighboring domains. Notably, we find that increasing boundary width reduces long-
range inter-TAD contacts, as confirmed by Hi-C data. While blocking loop extrusion at boundaries
indirectly promotes spurious intermingling of neighboring TADs, extended boundaries counteract this
effect, emphasizing their role in maintaining genome structure. In conclusion, TAD boundary width not
only enhances the efficiency of loop extrusion blocking but may also modulate enhancer-promoter contacts
over long distances across TADs boundaries, providing a mechanism for transcriptional regulation.

Significance statement

Topologically Associating Domains (TADs) compartmentalize vertebrate genomes to limit cross-domain
enhancer-promoter loops. Our study reveals that boundaries between TADs are diverse genomic en-
tities that range from narrow to highly extended. Using an interdisciplinary approach that combines
genome-wide data analysis with biophysical polymer modeling, we find that wider TAD boundaries re-
duce spurious long-range interactions between neighboring domains. Moreover, we reveal how different
boundary components can create this difference in insulating capacity. Our identification and charac-
terization of TAD boundary width and composition suggests they have the potential to regulate the
formation of enhancer-promoter loops across TAD boundaries at close and long distance.
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Hi-C technology has emerged as the gold standard for studying genome-wide 3D chromatin orga-
nization [1]. This technology has revealed the existence of Topologically Associating Domains (TADs)
in human and mouse cells, which appear as insulated domains within population-averaged chromosome
contact matrices [2]. Within TADs, intra-domain contacts are enriched by approximately two-fold com-
pared to contacts with neighboring regions at similar genomic distances [2, 3]. TADs are separated by
boundaries, yet the mechanisms underlying their ability to promote intra- over inter-domain interactions
remain incompletely understood. A substantial fraction of these boundaries contain binding sites for the
CTCF insulator protein, which recognizes a non-symmetric DNA motif [2, 3, 4]. Before the discovery
of TADs, the CTCF protein was already known for its ability to block enhancer-promoter communica-
tion [5]. Perturbation or reorganization of CTCF binding sites (CBSs) at TAD boundaries can result
in the formation of ectopic enhancer-promoter contacts (EP-loops) [6, 7]. Thus, TADs and the CBSs
at their boundaries create ”regulatory neighborhoods” that prevent the formation of undesired EP-loops
[3, 8]. Other chromatin-associated factors, such as RNA PolII and the MCM complex, are also capable of
blocking loop extrusion, but their roles in establishing regulatory neighborhoods remain less well under-
stood [9, 10]. The mechanism by which distal CBSs at TAD boundaries block the formation of EP-loops
remains a subject of intense investigation. A key insight into how TADs may function arises from the
observed accumulation of the Cohesin protein complex at CBSs [11, 12]. Initially, Cohesin was recognized
for its role in entrapping sister chromatids during mitosis. However, this function has been extended to
interphase, where the Cohesin complex is proposed to facilitate the organization of intra-chromosomal
DNA loops [13].
Biophysical modeling of polymer behavior has become a powerful tool for investigating the mechanisms,
dynamics, and heterogeneity of chromatin organization (e.g., [14, 13, 15, 16, 17, 18, 19, 20, 21, 22]).
By incorporating chromatin connectivity, the free and confined motion of chromosome fibers, and local
fluctuations across multiple time scales, these models can replicate the structure and dynamics of TADs
observed in Hi-C and other chromatin conformation technologies [23, 24, 25, 26, 27]. Among these ap-
proaches, the Random Cross-Linked (RCL) polymer model [28, 29] has proven particularly effective. In
this framework, TADs are structured by cross-linkers, representing the active process of Cohesin-mediated
loop extrusion, which is subsequently halted at boundary sites. These models not only reproduce TAD
architecture but also provide insights into the dynamic interplay between loop extrusion and boundary
blocking, offering a mechanistic understanding of chromatin organization.
Recent in-vitro single-molecule imaging studies have confirmed the extrusion capacity of the cohesin
complex, supporting the dynamic nature of this process [30, 31]. In contrast, live-cell imaging studies
have suggested that CBSs are inefficient blockers of loop extrusion, making them permeable boundaries
[32, 33, 34]. Indeed, clustered CBSs can be found at many TAD boundaries, where removal of individual
CBSs has a limited impact on the prevention of ectopic EP-loops [35, 36, 37]. The insulation between
neighboring TADs can be improved by a sequential blocking of the extruding Cohesin complex at nearby
CBSs, thereby creating extended genomic domains where insulation gradually increases [38]. Such se-
quential blocking leads to a positive feedback loop, which can guarantee long-time persistence of loops
[39].
Various modeling studies have explored whether neighboring TADs influence each other’s intra-domain
organization [24, 29, 40, 41]. Traditionally, these studies modeled boundaries separating TADs as single,
generic contact points. By advancing the Random Cross-Linker (RCL) polymer model [25, 29, 41], we
address here how clustering of CBSs improves TAD boundary function [38]. Recently, we showed that
the density of intra-TAD cross-linkers modulates intermingling between neighboring domains by inducing
a ”fuzzy” behavior of sequences near boundaries [42]. In this study, we investigate how TAD boundary
composition—specifically the size of the genomic interval where loop extrusion is blocked and the organi-
zation of CBSs within these intervals—affects long-range intra- and inter-TAD organization. To address
this, we developed a multi-scale algorithm to classify TAD boundaries from Hi-C data based on the
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width of their insulation intervals. Using polymer simulations with specific cross-linker distributions at
the boundaries, we successfully reproduced the observed diversity in TAD boundary structure, insulating
capacity, and CBS organization. By intersecting these boundary categories with CTCF binding data and
other chromatin and regulatory features, we uncovered significant differences in their chromatin make-up
and how these differences may influence gene regulation. Furthermore, using mean passage time analysis
[18, 43], we evaluated the impact of TAD boundary width on global TAD organization. Unexpectedly,
we found that wider insulation intervals significantly reduce inter-TAD contacts, even between genomic
regions far from loop extrusion block sites. Extended boundaries not only enhance the local separation
between neighboring TADs by improving loop extrusion blocking but also reduce spurious intermingling
between domains at greater distances. We propose that these direct and indirect effects of boundary
width differentially regulate enhancer-promoter (EP)-loop formation across domains. This suggests that
TAD boundary composition plays a crucial role in modulating genome organization and transcriptional
regulation at multiple scales.

1 Results

1.1 Strategy to classify TAD boundaries based on the width of the insulation interval

To identify and characterize different categories of TAD boundaries, we used a data-driven computational
workflow to determine the width of insulation as outlined in Fig.1. We previously used this approach to
identify the optimal parameters to model the genome-wide average of insulation at TAD boundaries in
mouse embryonic stem cells (mESCs) [38]. Here, we further develop the optimal calibration of this model
and refine its application to characterize different categories of TAD boundaries based on the width of
their insulation interval. Briefly, we reanalyzed population-averaged Hi-C data from mESCs (Fig.1-i,
[44]), followed by the identification of TAD boundaries using an insulation score (IS ) approach (Fig.1-ii,
[38, 45]). For each genomic bin, the number of interactions in a sliding square of 500 kb is determined,
followed by calling of TAD boundaries when local minima in the IS reach below a pre-defined threshold.
Importantly, this approach identifies boundaries irrespective of the type of neighboring domains. Besides
TADs, these may consist of chromatin structures that are not formed by loop extrusion—like the multi-
Megabase Hi-C A/B compartments—although in many cases these domains are present as overlapping
nested domains with shared boundaries [1, 2, 46].
Next, the width of TAD boundaries was ranked by computing the second derivative of the IS (IS”) with
respect to the genomic distance (Fig.1-iii). Using this approach, a narrow TAD boundary is accompanied
by a more negative and narrow IS” signal within its surroundings, whereas a wider boundary has a less
negative and broad signal. To classify TAD boundaries based on the width of their insulation interval, we
applied a k -means clustering algorithm on the IS” with the aim of separating into three generic categories
of boundaries (Fig.1-iv). Finally, we developed a procedure to construct the optimal polymer models,
whereby the insulation score in the simulations mimicked the experimental data. These polymer models
were then used to explore chromatin organization, including about the extent of the boundary regions
themselves and about long-range contacts between TADs (Fig.1-v).

1.2 Stratification of TAD boundaries in three categories of insulation width

Visualization of 10 kb-resolution Hi-C matrices and their corresponding insulation score (IS ) from mESCs
(obtained after reanalysis of data from [44]) reveals examples of boundaries where the separation between
neighboring TADs varies from a sudden drop in the IS score (Fig.2A, left) to more intermediate and
extended states (Fig.2A, middle and right). Plotting of ChIP-seq data confirms that these boundaries
coincide with CBSs and accumulations of Rad21; an essential component of the Cohesin complex that
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Figure 1: Workflow for TAD boundary classification and quantification. (i). Input: genome-wide
chromatin contacts are determined from Hi-C data. (ii). TAD boundaries are identified using the Insulation Score (IS),
where cumulative interaction signal is calculated within a moving square along the diagonal in the Hi-C matrix (example:
green, yellow and purple squares). TAD boundaries correspond to local minima in the graph (valleys) that reach below a
predefined threshold (arrow). Whereas the depth of a valley can be interpreted as the local strength of insulation between
TADs, the width of the valley reveals the size of the region that functions as the boundary. (iii). Quantification of the
width of the boundaries using the second derivative of the IS (IS”). The depth and narrowness of the IS” is a quantitative
proxy for valley size. (iv). Grouping of TAD boundary size using k-means clustering of the IS” allows the identification of
three categories: narrow/intermediate/extended TAD boundaries. (v). Polymer modeling and simulations with boundary
constraints to explore the interface between TADs and the inter-TAD contact dynamics of genomic regions at long distance.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.25.630322doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.25.630322
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

35

10

Hi-C
insulation score

80

0

CTCF ChIP-seq
(Chang et al., 2023)

7.5 8.0chr9

80

0

Rad21 ChIP-seq
(Dowen et al., 2013)

Hi-C (10kb)
(Bonev et al., 2017)

35

10
80

0

55.0 55.5chr15

80

0

35

10
80

0

94.0 94.5chr6

80

0

B

C
Identification of boundary categories

D
Pile-ups of 
boundary categories

Examples of boundary types

n = 419

n = 1467

n = 1768

6

4

2

0

-2

R
el

at
iv

e 
H

i-C
in

su
la

tio
n 

sc
or

e

Insulation score
(signal, IS)

-100 0 100

0

2

4

6

-100 0 100

In
rt

er
m

ed
ia

te
N

ar
ro

w
Ex

te
nd

ed

Distance from boundaries (kb)

2

1

0

-1

-2

Distance from boundaries (kb)

1

-0.5

-1

Narrow boundaries

Intermediate boundaries

Extended boundaries

DO77,&*:7B(F'4@+A

E0!" " 0!"
>-02!)?8&@#$A&3B>&'$()*!#+&CD'E

MN,+(F+F*:7B(F'4@+A
-2.0 -2.2 -2.4 -2.6 -2.8 -3.0

log10(mean)
-1.8

E
Insulation score in 250kb windows around boundaries

-100 0 100
Distance from boundaries (kb)
-100 0 100

-250 0 250

Distance from boundaries (kb)

R
el

at
iv

e 
fir

st
 d

er
iv

at
iv

e
Insulation score

(first derivative, IS’)

1

0

-1

-2

2

-100 0 100

R
el

at
iv

e 
se

co
nd

 d
er

iv
at

iv
e

Insulation score
(second derivative, IS”)

0

-0.5

-1

-100 0 100

-250 0 250

-250 0 250

10

7.5

5

2.5

0

-250 0 250
Distance from boundaries (kb)

R
el

at
iv

e 
H

i-C
in

su
la

tio
n 

sc
or

e

Insulation score
(signal, IS)

R
el

at
iv

e 
fir

st
 d

er
iv

at
iv

e 2

1

0

-1

-2

Insulation score
(first derivative, IS’)

R
el

at
iv

e 
se

co
nd

 d
er

iv
at

iv
e

0

-0.5

-1

Insulation score
(second derivative, IS”)

-250 0 250
Distance from boundaries (kb)

-250 0 250
Distance from boundaries (kb)

Narrow boundary Intermediate boundary Extended boundary

narrow boundaries
intermediate boundaries
extended boundaries

200

20

110

Relative insulation score (IS)

R
el

at
iv

e 
H

i-C
 in

su
la

tio
n

0

8

-100 0 100
Distance from TAD boundary (kb)

width of
boundary

4

Figure 2: Classification of TAD boundaries. (A) Examples of TAD boundaries with different patterns of
insulation. Left: a narrow boundary between TADs. Middle: an intermediate boundary. Right: an extended boundary.
Hi-C data is depicted above. Purple arrowheads indicate the position of the boundary and the blue and yellow rectangles
indicate the up- and downstream domains. Below, tracks for the Hi-C insulation score, CTCF and Rad21 ChIP-seq signal
and computationally inferred width of the boundaries (purple boxes; see below) are shown. (B) Relative insulation score (IS)
in a zoomed-in window of +/- 100 kb from the boundaries shown in panel (a). (C) k -means clustering of TAD boundaries in
mouse ESCs, based on the width of IS interval. Left: relative IS (signal; indicative of the width of the boundary). Middle:
normalized first derivative of the IS (IS’ ), indicative of the discreteness of the IS at the boundary. Right: normalized second
derivative of the IS (IS”), indicative of the steepness of the boundary. Using k -means clustering of IS”, three categories of
insulation score intervals are extracted. Average signal for the three categories in a window of 100 kb up- and downstream of
the boundaries is indicated on top and heatmaps for individual boundaries are depicted below. (D) Averaged Hi-C matrices
for the three categories of TAD boundaries in a window of 250 kb up- and downstream of the boundaries. (E) Average IS
and derivatives for the three categories of TAD boundaries in a zoomed-out window of of +/- 250 kb from the boundaries.
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is responsible for loop extrusion. Moreover, in each example, a strong separation between neighboring
TADs can be observed at larger distances, confirming they constitute bona-fide boundaries. Zooming in
on the normalized IS for these examples (i.e. where the minimum IS is set to 0) further illustrates the
difference in width of the boundaries (Fig.2B). To systematically classify the 3654 TAD boundaries that
we identified in mESCs, we calculated the second derivative IS” for all genomic positions, as proxy for the
steepness of the IS gradient. Subsequent ranking of the IS” around each TAD boundary revealed a wide
diversity in the width of insulation between neighboring domains (Fig.2C). TAD boundaries ranged, in
a continuum, from vary narrow (≈ 10− 20 kb) to highly extended (≥ 100 kb). The separation between
TADs, and in extension the patterns of loop extrusion blocking, are therefore highly diverse and specific
to individual boundaries.
To facilitate downstream analysis, we divided the boundaries into three categories using a k -means
clustering algorithm (Fig.2C, Fig.S1 and Table S1). Narrow boundaries make up the smallest category
(n = 419) and are defined by a sharp transition that coincides with a highly negative and narrow IS”
peak at the center position (Fig.2C). Intermediate boundaries (n = 1467) are defined by a more extended
minimum in the IS, coinciding with more intermediate negative IS” values, yet a clear transition remains
visible in both the IS’ and IS” heatmaps (Fig.2C). Extended boundaries (n = 1768) are defined by a
plateau of low IS signal around the center position, which coincides with shallow and extended reductions
in the IS” (Fig.2C).
Whereas the visualization of the normalized IS within +/- 100 kb from the boundary may suggest that
the three categories are associated with a different degree of separation between the neighboring TADs
(Fig.2C, top), a zoom-out to +/- 250 kb reveals that chromatin interactions and the normalized IS attain
similar values at longer distances, indicating that chromatin organization within and between neighboring
TADs on average does not drastically differ between the categories (Fig. 2D,E).

1.3 Minimization procedure to construct the optimal polymer representation of the
three categories of TAD boundaries

To characterize the three categories of boundaries that we identified, we developed a method to extract
polymer models with optimized heterogeneous cross-linker distribution. In these models, a boundary
and its two neighboring TADs are represented by two Rouse-polymers of 100 connected monomers with
a variable number of randomly positioned cross-linkers (Fig.3A, yellow dashed lines). Essentially, each
of these cross-linkers can be considered as the representation of an extruded intra-TAD loop. A bound-
ary is generated by the preferential positioning of cross-linkers within the same polymer (TAD 1: blue
monomers 0-100 and TAD 2: red monomers 101-200) over cross-linkers between the polymers [41, 47].
Next, to account for the diversity of TAD boundaries in the Hi-C contact maps (Fig.2), linked to the
blocking of loop extrusion within extended genomic intervals, we added further constraints to the distri-
bution of cross-linkers in the polymer (Fig.3B-D). To incorporate the blocking of loop extrusion by CBSs
or other chromatin features at the boundary, we fixed cross-linkers at the monomers directly upstream
and downstream of the boundary (Fig.3B, green dashed lines). To incorporate the clustering of mul-
tiple CBSs within extended boundaries, we included a gap at the boundary that did not interact with
the neighboring TADs (Fig.3C, green monomers). To incorporate the variable nature of loop extrusion
blocking caused by the inefficient blocking capacity of individual CBSs, we allowed the position of the
boundary to move over a defined interval of monomers (Fig.3D, mixed blue/red monomers). Reconstruc-
tion of Hi-C matrices from the average configurations of large numbers of simulations for each model
(focusing on monomers 50-150) results in little fluctuation, keeping a clear separation between neigh-
boring domains as represented by two discrete ’pyramids’ of strong interaction signal (Fig.3B-D, red
signal in simulated Hi-C matrices). Combination of these models and optimization of the parameters for
each constraint allow us to increase the accuracy of the separation between the neighboring TADs in the
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Figure 3: Optimal reconstruction of RCL polymer models to account for the three TAD
boundary categories. (A) Scheme of polymer representation of two TADs using two concatenated Randomly
Cross-Linked (RCL) polymers [41]. Blue monomers belong to TAD 1 and red monomers to TAD 2. Black lines show the
backbone connectivity, while yellow dashed lines indicate random connectors with uniform distributions. (B) Representation
of a polymer with fixed random connectors at both sides of the boundary (connectors in green). (C) Representation of
a polymer with a gap of Ngap monomers (green monomers; variable g) without random connectors separating the two
TADs. (D) Representations of a polymer with a moving boundary position (monomers with mixed blue/red color; variable
m). (E,F,G) Identification of the parameters that optimally reproduce the IS versus monomer location for the narrow,
intermediate and extended boundaries.The matrix at the top shows error estimates, with the green box indicating the range
of parameters that best reproduce the IS obtained from Hi-C data. The * indicates the intersection of parameters where
the error estimates are lowest. All models incorporate fixed connectors at the boundary.
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polymer model. In turn, this allows for the reconstruction of different categories of boundaries followed
by the determination of monomer behavior at the interface and within the two TADs (see below).
A reconstruction of the polymers that best account for the IS at the different categories of TAD boundaries
first requires the identification of the optimal number Nmon of monomers, the number Nc of cross-linkers,
the length of the extended boundary g (gap) and the moving m of the boundary position. Moreover,
the polymers can be optimized with and without the presence of fixed random connectors at the bound-
ary. The variable g consists of adding a small polymer chain of a given length without any connectors,
whereas the variable m accounts for fluctuations among realizations. To identify these parameters, we
chose the following criteria: optimal parameters are those that minimize the difference in the IS between
the simulations based on the polymer model and the experimental Hi-C data, as described by formula:

(Ñmon, Ñc, m̃, g̃) = arg min
{Nmon,Nc,m,g}

1

Nmon

Nmon∑
i=1

|ISsim
i (Nmon, Nc,m, g)− ISdata

i | (1)

Here, we define the insulation score IS as:

ISi =
2

Nw(Nw − 2)

i+Nw∑
j=i−Nw,j ̸=i

Mhic
i,j , (2)

where Mhic is the Hi-C matrix (for data) or the Contact matrix (for simulations) while Nw is the window
size (see section 3.1.1).
To streamline the procedure for finding the optimal parameters for TAD boudnary composition, we re-
duced the search in the four dimensional space by first setting the number Nmon of monomers to 100 for
each TAD [38]. This results in a polymer that encompasses 200 monomers for the two TADs combined,
thereby representing a 2 Mb genomic interval at a 10 kb resolution. Next, we determined the optimal
number Nc of cross-linkers, leading to Ñc = 12, a density that is in a similar range as reported in other
studies [24, 32]. Using the reduction to two parameters, we next simultaneously move the position of the
boundary within the interval m ∈ [0, 10] and varying the size of the gap at the boundary g ∈ [0, 5], with
the further option of adding fixed cross-linkers at the boundary.
We systematically explored the parameter space to identify the values that best reproduced the exper-
imentally obtained insulation score patterns for the three categories of TADs boundaries. For each set
of parameters, we simulated 500 polymer realizations to compute the average contact matrix and the
associated IS. Using formula (1), we compared numerical simulations to experimental Hi-C data, thus
computing the absolute distance between the insulation scores. First, we determined the optimal number
Nc of cross-linkers for each boundary category (not shown), using a similar range of values as previously
determined [38]. By exploring the space, we consistently identified the minimum for the three boundary
categories at Nc = 12: for each category, the optimal solution included having fixed cross-linkers at the
boundary and the following parameters: m = 0 and g = 1 for narrow boundaries, m = 2 and g = 1
for intermediate boundaries and m = 7 and g = 2 for extended boundaries (Fig.3E-G and Fig.S2). To
conclude, the present minimization procedure reproduces the experimental insulation score and allows
to construct polymer models that best represent the three categories of TAD boundaries. These optimal
reconstructions can now be used to extract statistical properties of chromatin organization of the TADs
that surround the different boundary categories, including monomer behaviour at the boundaries and
longer-range intra- and inter-TAD contacts.
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Figure 4: Average enrichment of chromatin and gene regulatory features around the three
categories of TAD boundaries. (A) Average CTCF ChIP-seq signal. (B) Average Rad21 ChIP-seq signal.
(C) Average accessible chromatin signal (ATAC-seq). (D) Average ongoing transcription signal (PRO-seq, with signal
separated on the plus and minus strand). (E) Average number of TSSs within bins for each TAD boundary category. (F)
(left) Fraction of deregulated TSS upon CTCF depletion among all TSS mapping within 100 kb from each TAD boundary
category (CTCF-AID cells). (right) Fraction of up- and downregulated TSS upon CTCF depletion among all deregulated
TSS within the bins (CTCF-AID cells). The origin of each dataset (mouse ESCs) indicated above the panel. Dashed lines
represent the average genome-wide enrichment for each feature. Signal in panels (A-D) is binned to 10 kb and shown in a
window of 100 kb up- and downstream of TAD boundaries. Signal in panel (E) is binned to the combined 10 kb up- and
downstream of the boundary, and shown in a 100 kb window. Signal in panel (F) is binned to the combined 100 kb up- and
downstream of the boundary. The gray bar indicates the genome average. Significance of difference between categories was
determined using a G-test of independence.
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1.4 Different boundary categories are associated with different chromatin and gene
regulatory features

Next, we investigated whether the parameters defining the different boundary categories correlate with
distinct distributions of CTCF binding and other chromatin features, and whether these differences are
associated with varying impacts on gene regulation. First, using reanalyzed ChIP-seq data [38], we found
that CTCF binding is enriched in a large window around all three categories of boundaries (Fig.4A and
Fig.S3A; black dashed line versus signal). Yet, for the group of narrow boundaries, CTCF is particularly
enriched in a narrow window of around 30 kb surrounding the boundary. For intermediate boundaries, the
maximum enrichment is reduced but more gradually decreases over a larger genomic window. CBSs are
therefore spread out within a larger region as compared to narrow boundaries. For extended boundaries,
the enrichment in CTCF binding is relatively minor and spreads out over an even large domain (Fig.4A
and Fig.S3A). Similar patterns are observed for the Rad21 component of the Cohesin complex [48], albeit
with a further reduced enrichment around extended boundaries (Fig.4B and Fig.S3B). The distribution
and range of CTCF and Rad21 enrichment in the region surrounding the different boundary categories
therefore resemble the parameters as extracted using our polymer models.
The transcription machinery, including (paused) RNA PolII, has been reported to directly or indirectly
influence chromatin insulation as well [10, 49, 50]. We therefore determined the enrichment of accessible
chromatin (ATAC-seq), as proxy for active promoters and enhancers, and ongoing transcription (PRO-
seq) around the categories of boundaries [51, 52] (Fig.4C,D and Fig.S3C,D). At narrow and intermediate
boundaries, both features are comparably enriched as compared to CTCF binding, indicating that they
may contribute to the formation of boundaries in these categories as well. In contrast, at extended
boundaries, both features are enriched in a narrower window around the boundaries. Combined with
the more moderate enrichment of CTCF and Rad21, this suggests that these transcription-associated
features contribute more prominently to the formation of this category of TAD boundaries. In line with
our biophysical models, the three categories of TAD boundaries are shaped by regions of different size
where chromatin features with insulating effects are enriched, and with further specificity for CTCF and
other chromatin features.
Having identified the different categories of TAD boundaries and their associated chromatin configura-
tions, we wondered if they could differentially influence gene regulation, for instance through different
enhancer blocking efficiencies. To investigate this possibility, we reused existing RNA-seq data from
mESCs where rapid CTCF depletion caused a dramatic reduction in insulation between neighboring
TADs [53]. In this study, around 5% of genes were called as deregulated after 2 days of CTCF depletion,
with roughly equal numbers being up- or down-regulated. Intersection with our boundary categories con-
firms that the recently reported enrichment of Transcriptional Start Sites (TSSs) close to TAD boundaries
is observed for all categories [54] (Fig.4E). Of note, this enrichment is particularly enriched close to the
boundary itself (i.e. in the bin with the local minimum in the IS, which covers only half the genomic size
as compared to the neighboring bins on either side, or the directly neighboring bins at 10 kb distance).
TSSs that are deregulated upon CTCF depletion are significantly enriched within the 100 kb around all
three categories of boundaries, which is particularly prominent for the narrow category (Fig.4F, left and
Fig.S3E). Moreover, up-regulated TSSs are particularly enriched in all categories (Fig.4F, right). CTCF
binding at all categories of boundaries thus preferentially represses TSS activity, which suggests an en-
riched involvement in the blocking of EP-loops. Interestingly, when investigating these results at higher
resolution, a significant enrichment of downregulated TSSs can be observed in the bins that directly over-
lap with narrow and extended boundaries (Fig.S3F). Whereas this group only includes a small number
of TSSs (6 for narrow boundaries and 12 for extended boundaries), this may suggest that CTCF binding
for this subset of TSSs has an activating function, for instance by structuring EP-loop formation [55].
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Figure 5: Enrichment of CTCF binding features within inferred boundaries. (A) Outline of the
strategy to infer the width of individual boundaries using the relative IS”. Individual boundaries extend from the center bin
up to the first bin on either side that has a value below a cut-off that is defined as the average relative IS” value (IS”) within
the 250 kb up- and downstream of all boundaries that were included in this study (dashed line). Coloured lines represent
the average IS” signal (10 kb bins) for each category of boundaries, with shaded areas indicating the 10%-90% interval of
the signal. (B) Histogram with the distribution of inferred width for individual boundaries in the three previously identified
categories. (C) Visualization strategy for the spacing of CTCF features within and around extended boundaries. For all
boundaries, signal in the two bins at the extremities (grey bins) and 5 first bins in the left and right TAD are determined.
For boundaries that span 3 or more bins, the internal bins are proportionally divided over 2 (narrow boundaries) or 8 bins
(intermediate and extended boundaries). For all resulting bins, the signal is normalized to the number of boundaries for
each category, or to the boundaries that span 3 or more bins (for signal within the boundary). (D) Average number of
CTCF peaks per bin within and around the inferred boundaries. (E) Average CTCF peak signal per bin within and around
the inferred boundaries. (F) Average CTCF motif orientation bias per bin within and around the inferred boundaries. Bias
is determined by substracting the average number of motifs in a positive orientation from the number of motifs in a negative
orientation.
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1.5 CTCF binding is enriched throughout the boundaries but with category-specific
differences

Next, we wanted to obtain a more detailed view of CTCF binding within the different TAD boundary
categories. To address this question, we first developed a strategy to infer the width of individual bound-
aries, using the relative IS” as input (Fig.5A). Despite fluctuations in the IS” value around individual
boundaries, each category returned a distinct distribution for the boundary width (Fig.5B and Table S1).
For narrow boundaries, over 65% of boundaries span 20 kb, with nearly no boundaries that cover more
than 50 kb. The large majority of boundaries in the intermediate category range from 20 kb to 100 kb
(median: 40 kb, mean: 49 kb). For extended boundaries, we could assign a width for 1245 out of 1768
boundaries (see Material and Methods section), with a broad distribution of inferred widths (median: 130
kb; mean: 150 kb). Overall, the distributions of inferred lengths align well with the range of parameters
in our biophysical models for the different boundary categories (combined m and g parameters, 3E-G).
To characterize different features of CTCF binding within the inferred TAD boundaries, we intersected
their individual span with an available list of CTCF peak features in mESCs [38]. To obtain an av-
erage description of CTCF feature spacing around the individual boundaries, we used a visualization
strategy as described in (Fig.5C). Visualization of CTCF peak spacing and the distribution of CTCF
peak signal reveals an elevated signal within the boundaries for the narrow and extended categories as
compared to the immediate surroundings (Fig.5D,E). CBSs can thus be enriched throughout the entire
genomic interval covered by the boundaries (as compared to only at the extremities), which for interme-
diate boundaries can range up to considerable distances. A further analysis of CTCF peak signal reveals
that narrow and intermediate boundaries do not only differ in peak density (Fig.5D), but that peak
signal within intermediate boundaries is globally reduced as well (Fig.S4). In contrast, for the extended
category of boundaries a more diffuse pattern of CTCF distribution is observed, supporting the notion
that other chromatin features may play a more prominent role. Next, we also investigated if boundaries
were associated with a different bias in CTCF motif-orientation (Fig.5F). As expected, CTCF motifs
at the extremities or immediately outside of the boundaries were preferentially orientated away from
the boundary (see e.g. [56, 57]). Interestingly, within the boundaries in the intermediate and extended
categories of boundaries, we observed a bias for a convergent orientation of CTCF motifs (i.e. motifs
that are oriented away from the nearest boundary; Fig.5F). A subset of these boundaries may thus be
organized into domains that share similarities with TADs, but whose insulation is insufficient to appear
as separated boundaries (for example, see the extended boundary in Fig.1A). Further supporting our
biophysical models, this analysis confirms that insulation can spread out all over the regions that are
covered by the boundaries.
Having formally confirmed the enrichment of CTCF binding throughout TAD boundaries, we wondered
if boundary width could become reorganized during cellular differentiation. We thus reanalyzed Hi-C
data from Neural Progenitor Cells (mNPCs) and Cortical Neurons (mCNs), originating from the same
study as the mESC data we used in this study [44]. Visualization of the normalized IS and IS”, similar
to (Fig.2C), revealed highly similar distributions and averages for both measures (Fig.S5A). TAD bound-
ary width therefore appears not drastically remodeled during cellular differentiation. Visual inspection
of the IS nonetheless reveals rare examples of loci where TAD boundary width is reorganized, which
coincide with locus-wide changes in CTCF binding (Fig.S5B). Notably, this includes the Zfp42 pluripo-
tency gene—known as REX-1 in human cells [58]—where an extended TAD boundary that is marked by
multiple CBSs in mESCs is erased in CNs (Fig.S5B, right).
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1.6 TAD intermingling defined by overlapping radius of gyration

Currently, there are no generic approaches to characterize intermingling between neighboring TADs.
Using the outcomes from our biophysical modeling, we can use the gyration radius to determine the
degree of intermingling at the interface between TADs. Essentially, the gyration radius represents the
average distance from the center of mass of the TAD, as determined by averaging all realizations of the
polymer model (Fig.6A). By determining the overlap between the spheres created by the gyration radii
from the two TADs, we can determine the intermingled monomers at the interface (Fig.6A). Indeed, each
TAD can be delimited by a sphere centered at the centers of mass (CM) using the formula:

CMi =
1

ni

ni∑
1

Pi (3)

The radius is the gyration radius:

R2
gi =

1

nj

nj∑
1

(Pj − CMi) (4)

In these formulas, ni is the index of monomers in each TAD (i=1,2).

TADs are then generated by adding randomly distributed connectors.

To determine if the TAD boundaries can have an impact on the overlap of the gyration radius, we
use the three additional components that were defined in (Fig.3B-D): (1) adding fixed connectors at the
boundary, (2) including a gap at the boundary by adding a small Rouse polymer and (3) creating a
heterogeneous boundary by varying the last monomer that belongs to a given TAD (Fig.6B). To obtain
more prominent differences, values m = 10 and g = 10 were used for simulations. Models based on
uniform connectivity, i.e. without additional boundary components, display a degree of intermingling
that is relatively refractory to the number of random connectors Nc (black line). Unexpectedly, the addi-
tion of fixed connectors or the case of fixed connectors with a heterogeneous boundary result in a strong
increase in the number of intermingling monomers at the interface, particularly at low Nc values (Fig.6B;
yellow and orange lines). The incorporation of the parameter that represents loop extrusion blocking
thus actively promotes contacts in the region surrounding the boundary. This increase extends over the
full range of Nc values, which represents the density of extruded loops, indicating that this intermingling
is not directly dependent on the loop extrusion process.
Interestingly, an opposite statistical jump can be observed for all models that incorporate a gap at the
boundary (through the addition of a small polymer between the two TADs. This gap represents the
presence of multiple CBSs within extended boundaries in our model (Fig.6B; light blue, green, purple
and dark blue lines). Here, the number of intermingling monomers is strongly reduced and reaches
nearly 0 at increased Nc values. Although the presence of fixed connectors counters this effect at lower
Nc values (green and dark blue lines), intermingling remains considerably reduced as compared to a
uniform connectivity (black line). Besides their impact on loop extrusion blocking, arrays of CBSs at
TAD boundaries—as represented by the gap—thus reduce the intermingling at the interface between
the TADs. Finally, the addition of heterogeneity in our models, by incorporating a variable boundary
position, did not noticeably impact the degree of intermingling (Fig.6B; red, orange, purple and dark
blue lines) despite its important contribution to the reproduction of the local IS (Fig.3E-G and Fig.S2).
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1.7 Impact of boundary components on inter-TAD Mean First Encounter Time

The radius of gyration analysis provides an estimate of the average number of monomers at the imme-
diate interface between two TADs at steady-state (Fig. 6). However, this approach does not account for
the dynamic and transient behavior of the chromatin fiber, including the possibility that loci at further
away from the boundary may still interact at lower frequencies. To better understand how boundary
components influence the dynamic insulation between neighboring TADs, we performed a Mean First
Encounter Time (MFET) analysis. In this approach, the mean time is computed that it takes for two
monomers within the same or neighboring TAD to come within short distance (as defined by a ball of
radius ϵ) (Fig.7A). This parameter is particularly relevant for regulatory elements in neighboring TADs,
as it can reveal the potential for enhancers and promoters to engage in spurious inter-TAD contacts.
The MFET is determined for all pairs of loci in the two TADs [59, 16]. While the MFET for two
monomers in a Rouse chain [60, 59] depends on the polymer length and the diffusion coefficient only, in
the RCL-polymer it further depends on the number of cross-linkers [28]. In general, the MFET depends
on the local chromatin connectivity [41] and can only be extracted from numerical simulations. Until
now, the MFET for loci positioned in neighboring TADs has not been reported relative to boundaries
with different components. We thus explored for a given monomer m, how the MFET evolves with the
genomic distance in the immediate neighborhood of the monomer m. For this purpose, we first compute
the first encounter time τ ϵm,n for a single realization between monomers m and n and then compute the
mean (MFET) from large numbers of realizations. By definition, the first encounter time τ ϵm,n is the first
time when two monomers m and n enter within a ball of radius ϵ = b/3 (Fig.7A). The ensemble average
⟨τ ϵm,n⟩ is determined over 1000 polymer realizations. We focus our analysis on monomer 75, which is the
center of the 51-100 interval that is the focus of our attention in TAD 1 (Fig.S6A).
Using models with uniform connectivity, i.e. 2 TADs without additional boundary components, the
MFET reaches a plateau after a few monomers that depends on the level of connectivity (Fig.7B for
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number of cross-linkers Nc = 4, .., 12 and Fig.S7B for more exaggerated models with a focus on monomer
25 and a larger range Nc = 10, .., 90). Notably, two different plateaus can be observed: a lower value
MFET with monomers in TAD 1 (left) and a high value MFET with monomers in TAD 2 (right) (Fig.7B).
The transition across the boundary spans around 20 monomers, which represents 10% of the polymer
length. Increasing the number of cross-linkers decreases the absolute difference between the MFET in
the left and right TADs. However, the number of contacts between the two TADs remains 2-3 fold lower
as compared to the steady state within TAD 1.
Next, we determined the impact of adding further constraints to the boundaries. When fixed connectors
are added to the boundary, thereby simulating the blocking of loop extrusion, we observed an unex-
pectedly drastic reduction of the MFET in TAD 2 (Fig.7C-top; monomers 101-200 and Fig.S6 and S7).
Similar to our analysis of boundary intermingling (Fig.6B), this effect is independent of the level of con-
nectivity (i.e. number of cross-linkers). The addition of simulated loop extrusion blocking to the model
thus promotes contacts at larger distance from the boundary as well. Conversely, upon the addition of a
gap between the two TADs, the transition of the MFET between the two TADs is considerably increased
and remains high when additional connectors are added (Fig.7C-middle and Fig.S6 and S7). The pres-
ence of arrays of CBSs to create a more extended boundary thus strongly reduces spurious long-range
inter-TAD contacts, similar to the boundary intermingling as well. Importantly, this difference among
models is consistent for the same number of cross-linkers, indicating that it is a direct effect of adding
a gap at the boundary, rather than differences in polymer organization due to the simulated formation
of intra-TAD loops. To further explore the consequences of heterogeneous separation, we introduced a
moving boundary as well (Fig.7C-bottom and Fig.S6 and S7). Whereas this parameter had an important
impact on the local IS pattern (Fig.3E-G), we found that the MFET is equivalent to the model of uniform
connectivity within the 2 TADs (Fig.7B).
The combination of the boundary characteristics reveals a differential contribution: adding fixed connec-
tors or a gap dominates over the moving boundary (Fig.7D and Fig.S6 and S7). In contrast, the addition
of both fixed connectors and a gap results in a more intermediate inter-TAD MFET value, incorporating
the effect of both parameters (Fig.7D and Fig.S6 and S7). Interestingly, in this latter model the MFET
remains mostly stable over the Nc range, attaining similar values as compared to the 2 TADs with a
uniform cross-linker distribution when the Nc = 12 value is used that we extracted from our simulations
in (Fig.4). Compared to models with fixed connectors alone, representative of narrow boundaries, we
find that the addition of parameters that mimic wider boundaries lead to an increase in the inter-TAD
MFET values by around three-fold.
In summary, besides their involvement in the local blocking of loop extrusion—thereby improving the
reconstruction of the local pattern of insulation score IS (Fig.4)—we find that the different boundary
components have an unexpected influence on more spurious long-range inter-TAD contact probabilities
as well (Fig.6 and 7).

1.8 Determining TAD boundary extent using the Mean First Encounter Time

Analogous to the radius of gyration (Fig.6), the MFET can also be used to determine the extended
nature of boundaries and the behavior of the interface between TADs, while incorporating the dynamic
nature of chromatin organization as well. To characterize intra-TAD contacts and their deviation at the
boundary, we use the following parameters:

• Mean encounter time between two locus m and n ⟨τ ϵm,n⟩, which is obtained by averaging
over polymer realizations for the same random connector configuration.

• Mean encounter time across a TAD ⟨τ ϵm,n⟩tadx, which is computed by averaging ⟨τ ϵm,n⟩ over
the monomer n belonging to TAD x = 1, 2.
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MFET ⟨τ ϵ
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• Mean encounter over a TAD ⟨⟨τ ϵm,n⟩tadx⟩, which is computed by averaging ⟨τ ϵm,n⟩tadx over m,
for all monomers of the polymer.

• Mean encounter gap ⟨∆τm,n⟩ = |⟨τ ϵm,n⟩tad1 − ⟨τ ϵm,n⟩tad2| which represents the difference of the
MFET between the two TADs, thus measuring the asymmetry of encounter from one monomer in
one TAD to a monomer in the other TAD.

To quantify how a centrally located locus (here the monomer at position 50) interacts with its own (TAD
1) and the neighboring TAD (TAD 2), we computed the mean time τ ϵ50,n⟩tad1 and τ ϵ50,n⟩tad2. The locus
shows a constant level of contacts within its own TAD (yellow and orange bars) but has a strong increase
(factor 10) when passing the boundary (Fig.8A; between n=100 and 101). However, when considering a
locus just left of the boundary (n=100), interactions were more evenly spread out over the both TADs
(Fig.8B). Finally, we computed the map for the encounter time of locus n = 150, showing the mirrored
situation of case n = 50 (Fig.8C).
To quantify the insulation for a given monomer n, we use the difference of encounter time ⟨∆τm,n⟩ =
|⟨τ ϵm,n⟩tad1 − ⟨τ ϵm,n⟩tad2|, which quantifies an abstract energy barrier for a locus in one TAD to interact
with any locus in the other TADs. As an illustration, we plotted this energy barrier for the boundary
locus (n=100) when there are 50 connectors in each TAD (Fig.8D). This analysis can next be used to
define the extended nature of the TAD boundary: the standard deviation of the mean encounter time
is computed (Fig.8D, orange shading) and centered around the mean (dashed green line). Loci outside
the orange band are considered to be part of the interface at the boundary (black boxes in Fig.8E).
Using this approach, we then compute the number of loci at the interface after adding different boundary
components and varying the number of cross-linkers Nc (Fig.8F). Using this approach, three groups
emerge:

1. A first group with a gap at the boundary and with or without heterogeneity (Fig.8F; light blue
and purple lines). Here the boundary interface is large at low Nc numbers and reaches a plateau of
boundary size NMFET

i = 16 at higher Nc numbers.

2. A second group that combines fixed connectors with a gap at the boundary (Fig.8F; green and
dark blue lines). Here the size of the boundary interface is less extended at low Nc numbers
(NMFET

i = 21) but remains mostly stable with increased Nc numbers.

3. A third group that contains all models without a gap at the boundary (Fig.8F; black, yellow, red
and orange lines). Here the boundary interface is large at low Nc numbers but reaches a low plateau
of NMFET

i = 5 at higher Nc numbers.

Despite similarly grouping the different boundary components together, the gyration radius and MFET
analyses return different estimates for the boundary size, particularly at higher Nc numbers (Fig.6 and
Fig.8). Yet, at lower Nc numbers, which optimally reproduce local insulation around the boundary
(Fig.3E-G), these differences are less pronounced. To conclude, instead of defining TAD boundaries as
fixed genomic intervals that create insulation, our First Encounter Time analysis reveals that the different
boundary components influence the boundary interface in a more dynamic and variable manner.
To confirm the outcomes of our polymer simulations, we determined the distance-dependent Hi-C contact
signal for the different boundary categories in mESCs (Fig.2C and Fig.8G). Compared to intra-TAD pairs
of loci (black line), the presence of any type of TAD boundary reduces contact signal by about two-fold
over a wide range of distances (one log(2) difference; see also [3]). Yet, differences for the boundary
categories can be observed as well. Narrow boundaries create an elevated separation between loci in
the neighboring TADs at short range (≤ 100 kb), as may be expected from to more discrete nature
of the boundary. Conversely, at intermediate distances (≥ 200 kb), inter-TAD contacts are increased

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2024. ; https://doi.org/10.1101/2024.12.25.630322doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.25.630322
http://creativecommons.org/licenses/by-nc-nd/4.0/


between loci that are separated by narrow boundaries as compared to loci separated by intermediate
and extended boundaries. At distances of (≥ 500 kb, this difference reaches up to 1.2 fold between
narrow and intermediate boundaries, constituting a non-negligible difference at the genome-wide scale
(Fig.8G). Extended boundaries display a similar difference as compared to narrow boundaries, although
less pronounced at distances (≥ 500 kb. TAD boundary width thus directly reduces inter-TAD contact
levels, whereby intermediate boundaries particularly improve separation over long distance (Fig.8G,H
and discussion).
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m,n⟩ varies with the index position m. The mean encounter times ⟨τ ϵ
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encounter time between the two TADs. (D) Determination of the boundary interface using the average mean encounter.
Monomers belonging to a given TAD (red or blue) show a nearly constant average mean encounter. A monomer belongs to
the interface when this value falls outside a threshold defined by the standard deviation standard (orange) from the average
(dashed green line). (E) Visualization of the classification depending on ⟨τ ϵ
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m,n⟩tad2. (F) Boundary interface

defined by the mean number of monomers ⟨NMFET
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connectivity. (G) Genome-wide Hi-C contacts for pairs of loci at varying genomic distances (10 kb resolution). Pairs of
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star indicates the formation of a productive loop.
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2 Discussion

TADs and their boundaries have emerged as major features of mammalian genome organization and the
regulation of EP-loops [2, 3]. Previous studies have reported that TAD boundaries can extend over wider
’zones of transition’ that incorporate multiple instances of CTCF binding and that this can influence
inter-TAD EP-loops [3, 35, 36, 37, 38, 61]. Yet, a genome-wide analysis to determine the diversity of
TAD boundary organization and how this influences local and long-range inter-TAD contacts had not
been reported.
In this study, we show that the ≈ 3500 TAD boundaries in mouse embryonic stem cells form a continuum
that ranges from narrow (20 kb) to highly extended (≥ 100 kb) zones dedicated to the blocking of loop
extrusion (Fig.2). Using optimized cross-linker based polymer simulations, we show that incorporation
of parameters that mimic multiple instances of variable loop extrusion blocking allow the reproduction
of TAD boundaries with different widths. Intersection of these categories of TAD boundaries with other
chromatin and transcriptional features, in combination with a new approach to infer the span of individual
boundaries from the Hi-C matrix, confirms that narrow boundaries coincide with a highly focal enrichment
of CTCF binding, Cohesin accumulation and sites of ongoing transcription. Conversely, more extended
boundaries coincide with wider and less pronounced patterns of enrichment for these chromatin features
(Fig.4 and Fig.5). Moreover, we confirm the enhancer blocking effect of all boundary categories on nearby
genes, which is particularly prominent for narrow boundaries (Fig.5F). Further exploiting our cross-linker
based models, we used analyses based on the radius of gyration and Mean First Encounter Time (MFET)
to determine how TAD organization is influenced by boundary organization. Both analyses identified a
considerable impact on the interface between TADs, which can extend far beyond the boundary region
itself. Unexpectedly, we found that the addition of clustered CBSs at the boundary, represented by a
gap in the model, strongly reduces both the number of monomers at the interface (Fig.6B and Fig.8F;
particularly at more physiologically relevant Nc numbers) and the interaction probability between loci
at further distance from the boundary (Fig.7). This later aspect was mostly insensitive to a range
of physiologically-relevant Nc numbers, indicating that the formation of these inter-TAD contacts is
a spurious process that does not require nearby blocking of loop extrusion. Reanalysis of Hi-C data
confirms this observation, showing that extended TAD boundaries coincide with reduced inter-TAD
contact between the neighboring TADs (Fig.8F).

2.1 Extended TAD boundaries, loop extrusion blocking and inter-TAD encounters

Cohesin and CTCF are essential for TAD formation through their intra-TAD loop extruding activity
and blocking of this process at TAD boundaries, respectively (e.g. [53, 62, 63]). In this study, focusing
on the width of the IS valleys at TAD boundaries, we report that the patterns of loop extrusion block-
ing are diverse and TAD boundary specific. Through the calibration of our cross-linker based polymer
models, aimed at reproducing the IS pattern at each category of boundaries, we confirm the importance
of different components of TAD boundary structure. Whereas blocking of loop extrusion is essential for
all categories of boundaries—as may be expected from the strong enrichment of CBSs at TAD bound-
aries—we particularly identify the heterogeneity aspect as the strongest determinant to explain differences
between boundary categories (Fig.3E-G). As such, the IS pattern around the boundary itself is mostly
dependent on the size of the domain where loop extrusion blocking occurred with varying efficiency. We
envision that narrow boundaries are characterized by a strong loop extrusion blocking activity within
a small genomic interval, whereas at extended boundaries multiple instances of weaker blocking occur
(i.e. with an increased chance for the loop extrusion machinery to read through the blocking site). Such
a model is confirmed by our intersection of the TAD boundaries with other chromatin features, which
reveal a highly punctuated and elevated enrichment at narrow boundaries and a more gradual and less
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pronounced enrichment within and around extended boundaries (Fig.4, Fig.5 and Fig.S4). The latter
was particularly true for the Rad21 component of the Cohesin complex, which suggests not only a more
spread out blocking of loop extrusion, but a generally reduced efficiency as well. Variable configurations
of clustered CBSs, or other chromatin features with blocking capacity, thus will influence the insulating
capacity and permeability of a TAD boundary, which may further modulate genome-associated functions
[38, 61].
As an alternative explanation, we considered the possibility that the width of insulation could be deter-
mined by the chromatin environment, for instance due to the overall activity state of the chromatin (e.g.
overlapping heterochromatin) or the distance from the neighboring boundaries. We therefore assessed
TAD boundary overlap with Hi-C A/B compartments (A compartment: more transcriptionally active
and euchromatin and B compartment: more transcriptionally inactive and heterochromatin), which form
mutually exclusive and generally multi-Megabase domains in the Hi-C matrix [1]. Whereas we find a
small but significant enrichment of extended TAD boundaries within the B compartment, for all cate-
gories the large majority of boundaries is present in the active A compartment (Fig.S8A). Similarly, the
three categories of boundaries localize at comparable distances from their neighboring boundaries, with a
slightly increased median distance for extended boundaries as well (490 kb for extended boundaries ver-
sus 400 kb for narrow and 420 kb for intermediate boundaries; Fig.S8B). TAD boundary width therefore
is strongly influenced by the chromatin surroundings or the distance from the neighboring boundaries.
Interestingly, we did notice an enrichment of narrow boundaries at the transition between A and B com-
partments, suggesting a potential function in separating euchromatin from heterochromatin (Fig.S8A).
Due to the small number of boundaries in the narrow category, their total number at these transitions
remains small relative to the other categories (n = 33 for narrow boundaries versus n = 61 and 63 for
intermediate and extended boundaries, respectively).
Unexpectedly, our biopysical simulations reveal that the blocking of loop extrusion at (narrow) bound-
aries promotes inter-TAD contacts. This effect is observed both for loci close to the boundary (using
our radius of gyration analysis; Fig.6B) and for loci at further distance (MFET analysis for loci at the
equivalent of 250 kb from the boundary; Fig.7). In contrast, the effect was reverted when a wider array
of blocking sites was included (i.e. by adding a gap between the TADs in our models). Although these
inter-TAD encounters decrease when the density of cross-linkers increases (i.e. representing the density
of extruded loops), the difference between boundaries without and with a gap remains relatively stable.
Despite the importance of loop extrusion blocking for the insulation at TAD boundaries, we deduce that
these inter-TAD contacts at further distance from the the boundaries are of a more spurious nature and
an indirect outcome from the process of loop extrusion. Blocking of the Cohesin complex by a CBS
on one side switches the outcome of the loop extrusion process from bi-directional to uni-directional
[24, 34]. Consequently, one-sided blocking of loop extrusion will cause a ’reeling in’ of the chromatin
within the neighboring TAD towards the boundary (Fig.8H, left versus middle). In turn, loci within this
TAD are brought into proximity of the neighboring TAD, thereby promoting the formation of spurious
contacts with loci in the other TAD. The presence of multiple CBSs within extended boundaries, recently
shown to improve the insulation between neighboring TADs through sequential loop extrusion blocking
[38], may counter this effect by adding additional distance between the TADs at further distance from
the boundary (Fig.8H, right). The analysis of Hi-C data confirmed that long-range inter-TAD contacts
(≥ 200 kb) were increased around narrow TAD boundaries.

2.2 TAD boundaries versus TAD boundary interface

Boundaries are ubiquitous entities in sub-cellular biology, where they allow a regional delimitation to
avoid protein or ion mixing (e.g. [64]). However, the term TAD boundaries is commonly used to indicate
sites or zones in the linear genome where loop extrusion is blocked [2, 38, 53]. Our study aimed to
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determine how different types of boundaries within the (linear) genome affect the delimitation between
neighboring TADs. To stay with common nomenclature, we use the term TAD boundary to refer to
genomic regions dedicated to loop extrusion blocking. Instead, when discussing the insulated nature of
TADs and their degree of intermingling, we refer to the (boundary) interface between TADs.
While the boundaries between cells and between the cytoplasm and the nucleus are membrane-based,
the combined insulating effect of active intra-TAD loop extrusion and blocking at dedicated boundaries
is much less stringent. Our models nonetheless identify variables that affect the interface between neigh-
boring TADs, with unexpected distal influence of (linear) boundary composition. Using the radius of
gyration and passage time analysis (MFET) as measures, we confirm a consistent influence of cross-linker
number Nc. In all models, an increased number of cross-linkers restricted the number of monomers in
the region at the interface between the two TADS (Fig.6B). Similarly, the MFET analysis showed that
more cross-linkers reduced the number of monomers around the linear boundaries whose behavior was
affected (Fig.8F). Finally, we reported that the incorporation of extended boundaries, through the addi-
tion of a non cross-linked polymer, restricts the number of monomers at the interface and, unexpectedly,
stabilizes the number of monomers with anomalous behavior. The latter is particularly prominent at
lower Nc numbers, which more closely mimic the numbers we used to replicate insulation at the different
categories of TAD boundaries (Fig.3 and Fig.8F).

2.3 TADs boundaries as modulators of inter-TAD EP-looping

The perturbation of CTCF binding at CBSs can permit the formation of new EP-loops, thereby leading to
ectopic activation in the context of embryogenesis and cancer [6, 7]. Our classification of TAD boundaries
and MFET analysis indicate a dual impact on inter-TAD contacts: blocking of the active process of
Cohesin-mediated loop extrusion at CBSs and the reduction of spurious TAD intermingling by extending
the region where loop extrusion is blocked. Whereas loop extrusion promotes EP-loop formation at
distances of ≥ 100 kb, it is not essential to permit the creation of stable and productive interactions
between high-affinity enhancer-promoter pairs [65, 66, 67]. Spurious intermingling of neighboring TAD
may thus be a non-negligible source of EP-loop formation, particularly in cases where developmental
genes and enhancers on either side of a TAD boundary share mutual affinities (e.g. [54, 68]). The
regulatory impact of clustered CBSs at TAD boundaries thus appears to extend beyond the blocking of
loop extrusion alone, incorporating a possibility for fine-tuning of gene activity through the formation of
more passive EP-contacts. Of note, all previously studied boundaries where arrays of CBSs contribute to
the separation between neighboring TADs are part of the intermediate category of boundaries, suggesting
these boundaries may be particularly optimized for the modulation of EP-loop formation of nearby
developmentally regulated genes (Table S1 versus [38, 35, 36, 37, 68]). In contrast, our analysis of
transcriptional deregulation upon CTCF depletion reveals an enrichment for genes in the direct vicinity
of narrow boundaries, suggesting a more deterministic connection (Fig.4E). Expanding on the observed
impact of local loop density, we envision that the combination of TAD boundary width and a modulation
of local loop density will directly influence cross-boundary contacts both near the TAD boundary and at
further distance. This may for instance be mediated through preferential loading of the Cohesin complex
at regulatory elements or near CBSs [10, 38, 69, 70]. This mix of mechanisms can be particularly
important for inter-TAD regulation of genes located close to a TAD boundary [71].

2.4 Are there limits to the width of TAD boundaries?

Our ranking of TAD boundaries revealed a wide range of widths, which raises the question if there
is a limit to their seize. Based on the fitting of our RCL polymer models, we find that the range
of values for most parameters is quite limited (Nc, Ngap, with the obligatory presence of fixed cross-
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linkers at theboundary). The most variable parameter appears to be the moving boundary position,
which represents the heterogeneous nature of loop extrusion blocking. Our gyration radius and MFET
analyses indicate that this parameter has little impact on TAD intermingling, either close to the boundary
(Fig.6B) or at further distance (Fig.7B,C). More globally, the parameter does not noticeably influence
the spreading of anomalous behaviour away from the boundary (Fig.8F). In contrast, the MFET analysis
confirms the impact on inter-TAD encounters by the extended nature of the boundary and the blocking of
loop extrusion. Yet, these parameters emerge as mostly invariant in the models that replicate the three
boundary categories (Fig.3). Our strategy to infer the width of individual boundaries indicates that
narrow and in intermediate boundaries are limited to ≈ 100 kb (Fig.5B). A potential explanation for this
may be found in the mechanism for loop extrusion itself: wider boundaries may become susceptible to
loading of Cohesin within and thus the formation of intra-boundary loops. Indeed, for both intermediate
and extended boundaries we find a (moderate) enrichment of CBSs with a convergent orientation within
the genomic interval covered by the boundary (Fig.5F), suggesting they may form chromatin structures
that resemble TADs (see Fig.2A, right for an example). Since the process of loop extrusion and EP-loop
formation are closely linked ([54, 66, 67, 69] and this study), we envision that these boundaries may
have unrecognized functions in gene regulation. Future studies that incorporate the linear organization
of blocking sites at individual boundaries, together with the analysis of 3D organization and inter-TAD
insulation, may help to identify such cases of ’super-extended’ boundaries with gene regulatory functions.
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3 Materials and Methods

3.1 Reanalysis of published Hi-C

Hi-C data from mouse ESCs, NPCs and CNs were reused from a previous study [44], using a previously
described strategy [38]. Raw paired-end reads were obtained from https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE96107, followed by mapping to the ENSEMBL Mouse genome assembly
GRCm38.p6 (mm10) and further processing using the HiC-Pro pipeline (v2.9.0) [72] to obtain an ICE
(Iterative Correction and Eigenvector decomposition) normalized interaction matrix at 10kb resolution.
A/B compartments were calculated using the cooltools API (v0.5.2) [73], with manual orienting of the
eigenvector sign per chromosome based on gene content.

3.1.1 Insulation score (IS) and TAD boundaries

Insulation score (IS ) and TAD boundaries for mESCs were computed using TADtool (v0.76) [74] with
a previously used window size of 500kb and a cutoff of 21.75. To avoid bias due to difference in genome
coverage, all downstream analysis was limited to the autosomes, without including the X and Y chro-
mosomes. The list of TAD boundaries used in this study is provided in Table S1. The first and second
derivative of the IS (IS’ and IS”) were computed from the raw IS or the first derivative of the IS by
subtracting each 10kb bin value from its downstream bin.
For an improved comparison between the IS and IS” between mESCs, mNPCs and mCNs (Fig. S5A),
Hi-C matrices were normalized using the Cooler tool (v0.5.2) [73]. The IS was subsequently determined
from the resulting matrices in the cool-format using the FAN-C tool (v0.9.1) [75]. Although TADtool and
FAN-C globally returned similar patterns for the IS, we noticed increased variability in FAN-C signal that
complicated the reliable inference of boundary width (see below). In spite of the need for normalization
between samples, we nonetheless preferred this tool for our comparative analysis. For all analysis, the
TAD boundaries as initially identified from the TADtool analysis were used.
Heatmaps and pileups for the relative IS and its derivatives over a chosen flank distance were computed
and plotted using the computeMatrix and plotHeatmap commands from deepTools2 (v3.5.1) [76]. In
these graphs, the boundary bin is at the center, with an equal number of bins upstream and downstream.
For all boundaries, the center bin for the IS was first normalized to 0 by running the computeMatrix
and plotHeatmap commands to extract the raw IS matrix in a usable format. Next, a second call to the
plotHeatmap command was performed to obtain final plots.
TAD insulation relative to distance and boundary categories were determined using a previously pub-
lished approach [3]. Read pairs spanning 10 kb - 1 Mb were categorized in four categories based on the
absence of a boundary or the presence of one of the three categories of TAD boundaries in-between. Read
pairs separated by more than one boundary were removed. Median interaction signal for all read pairs
in each category was calculated based on the distance.

3.1.2 Classification of TAD boundaries using a K-means algorithm

K-means clustering into three clusters has been performed on the second derivative of the IS using the
--kmeans 3 option of the plotHeatmap command of the deepTools2 suite (v3.5.1) [76]. The same clusters
and order of boundaries were used in all plots. The list of boundaries included in the three categories
is provided in (Table S1). Average Hi-C matrices for the different clusters were computed using the
cooltools API (v0.5.2) [73] (cooltools.pileup with a 250kb flank). Half of the resulting symmetric matrix
is displayed. A/B compartments were computed using the cooltools CLI (v0.5.2) (cooltools eigs-cis
command) and compared using R (v4.2.2) with Bioconductor (v3.17) [77] and package BRGenomics
(v1.12.0) [78].
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3.1.3 Reanalysis of published ChIP-seq, ATAC-seq, PRO-seq and RNA-seq data

For the average enrichment of chromatin features arpund TAD boundary categories, CTCF and Rad21
ChIP-seq data from mESCs were reused from [48, 38] using a previously described strategy [38]. Briefly,
unprocessed data were obtained from https://www.ebi.ac.uk/ena/browser/view/PRJEB44135 and
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33346, followed by mapping to the EN-
SEMBL Mouse genome assembly GRCm38.p6 (mm10) using BWA (v0.7.15) [79] with default parame-
ters. ATAC-seq data from mESCs were reused from a previous study [51]. Unprocessed data were ob-
tained from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138923, followed by map-
ping using bowtie2 (v2.5.1) [80] and processing using SAMtools (v1.17) [81] and deepTools2 (v3.5.1) [76].
PRO-seq data from mESCs were reused from a previous study [52]. Unprocessed data were obtained
from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130691, followed by mapping to
the ENSEMBL Mouse genome assembly GRCm38.p6 (mm10) and further analysis using the proseq2.0
pipeline [82] obtained from https://github.com/Danko-Lab/proseq2.0/. For all datasets, the EN-
CODE blacklist for mouse genome assembly GRCm38.p6 (mm10) was used (available from https:

//github.com/Boyle-Lab/Blacklist/blob/master/lists/mm10-blacklist.v2.bed.gz).
For the preparation of histograms, matrices were computed consisting of mean values in 10kb bins around
each TAD boundary using deepTools2 computeMatrix (v3.5.1) [76]. A maximum threshold of 1000
(--maxThreshold 1000 in the computeMatrix command) was applied to all values, in order to remove
outliers. Genome-wide average signal for ChIP-seq and PRO-seq datasets was determined using the
meanI command from WiggleTools (v1.2) [83] on the bigWig files. For the ATAC-seq dataset, mean
values in 10kb bins were computed using the bedtools suite [84], followed by filtering of bins that overlap
blacklisted regions. The resulting bedGraph file was converted to the bigWig format using the bedgraph-
tobigwig tool (available from http://hgdownload.soe.ucsc.edu/admin/exe/). Genome-wide average
signal was subsequently determined as described for ChIP-seq and PRO-seq data.
Lists of significant ChIP-seq CTCF binding peaks in mESCs, mNPCs and mCNs (used in Fig. S5A) were
reused from [44] (obtained from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96107).
For the enrichment of deregulated TSS around boundaries, a list of deregulated genes in CTCF-AID
mESCs was obtained from Table S3 in [53]. Filtering of gene symbols against the BioMart GRCm38.p6
(mm10) Ensembl 102 gene list (http://nov2020.archive.ensembl.org/Mus_musculus/Info/Index)
returned 21988 genes on the autosomes, where we assigned the start coordinate of each gene as the TSS.
Among the 21988 TSS, 662 were assigned as upregulated after 2 days of Auxin treatment and 579 were
assigned as downregulated [53]. TSS were assigned to 10 kb bins in the genome, followed by filtering
against TAD boundaries in the different categories.

3.1.4 Inference of width for individual boundaries from the IS”

To obtain a measure for the width of individual boundaries, we developed a strategy using on thresholding
of the normalized second derivative of the insulation score (IS”) around identified TAD boundaries.
The normalizerd deepTools2 [76] matrix files for the IS” in 250 kb windows up- and downstream of
the boundaries (51 bins), used for the computing heatmaps and pileups, were taken as input. First,
we determined the average IS” value for all fields in the matrix (all 51 bins for the 3654 identified
boundaries), which served as our cut-off value. For each individual boundary, taking the central bin
(which was normalized to 0) as reference point, we next determined the first bin up- and downstream
with a value below the average IS” value. Boundary width for each individual boundary is subsequently
calculated by taking the boundary bin and the bins on both sides up to (but not including) bins with
values below the average. Subsequently, two additional steps of filtering were implemented. First, if the
normalized IS” value on both sides of the central bin had average values below the cut-off (returning a
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width of 1 bin), we included the bin directly on the left, as we noticed the first derivative of the IS (IS’ )
passed the 0 value in this bin in a considerable fraction of boundaries. Second, if the IS” value in the 25
bins up- or downstream of the boundary did not contain any values below the cut-off, we assigned the
”undefined” status to the boundary. The inferred range for individual boundaries is provided in Table
S1. To determine the distribution of CTCF peaks, peak signal and motif orientation, a detailed list of
CTCF peaks in mESCs was obtained from Supplementary Data file 1 in [38]. Combined peaks were
assigned to 10 kb bins in the genome, with only the orientation of the most significant motif retained
for each peak, and for bins with multiple peaks, their signal combined and the orientation of all peaks
retained. For all boundaries where we could assign a defined width, CTCF features were extracted for
the two bins at the extremities of the boundary and the 5 bins up- and downstream of those bins. For
boundaries that covered 3 bins or more, CTCF features in the internal bins were proportionally divided
over 2 bins (narrow boundaries) or 8 boundaries (intermediate or extended bins). For all bins, signal for
all boundaries in each category was combined after normalization for the total number of boundaries in
the category.

3.2 Modeling and accounting for TAD boundary components

To account for the different types of boundary between two subsequent TADs, we use a block polymer
of Nmon monomers composed by two Random Cross-Linked polymers (RCL) [25, 28]. Each of these is

composed by N
(1)
tad and N

(2)
tad monomers respectively. Monomers belonging to each of the two TADs have

indexes n = 0, 1, 2, .., N
(1)
tad − 1 and n = N

(1)
tad, N

(1)
tad + 1, .., N

(1)
tad + N

(2)
tad − 1 respectively, we consider only

random connector distributions such that only monomers belonging to the same TAD are connected.
To investigate how the non-uniform distribution of random connectors affects the boundary between the
two RCL polymers, we added a dictionary of possible connectivity:

1. Uniform distribution of random connectors within the same block (TAD) of the polymer

where N
(1)
tad = N

(2)
tad;

2. A gap of g monomers without any random connectors, separating two identical RCL blocks,

such that N
(1)
tad +N

(2)
tad + g = Nmon and N

(1)
tad = N

(2)
tad;

3. A random boundary position shift, where N
(1)
tad ∈ [Nmon −m,Nmon +m] is a random integer

number with m > 0 and N
(2)
tad = Nmon − N

(1)
tad, and random connectors can join only monomers

belonging to the same block;

4. Enriched connectivity at the boundary: this is realized by enforcing the presence of two
random connectors with one side lying on the last monomer before the boundary for each of the
two TADs.

The dynamics of the polymer in the solvent is described by the over-dumped limit Langevin’s equation

dR

dt
= −κ

γ
(M +Bζ)R+

√
2D

dωt

dt
(5)

= −d
D

b2
(M +Bζ)R+

√
2D

dωt

dt
(6)

where D =
√

κBT
γ is the diffusion coefficient, T the temperature, γ the friction and ωt is the standard

d-dimensional Gaussian noise with average 0 and standard deviation 1. A random connector joins two
monomers n, m randomly-chosen (where |n−m| > 1). Given a polymer realization, defined by a set ζ of
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Nc random connectors, the interaction among monomers is determined by the interaction matrices M ,
sum of a Rouse matrix [14]

Mm,n =


−1, |m− n| = 1

−
∑

j ̸=mMm,j m = n

0, otherwise

(7)

and the Bζ matrix is defined from the ensemble ζ of connectivity interactions:

Bζ
m,n =


−1, (m,n) ∈ ζ

−
∑

j ̸=mBζ
m,j m = n

0, otherwise.

(8)

In general, we considered polymer composed by Nmon = 200 monomers, with Ntad = 100 monomer for
each TAD. The number of monomers in a gap varies in the range of Ngap ∈ [0, 10] and Nvar ∈ [0, 10]. The
polymer parameters are given by b = 0.18µm, ϵ = 0.06µm, with a diffusion coefficient D = 8 ·10−3µm2/s
[25, 38].
Numerical simulations are performed by integrating the Langevin’s equation 5 with a time step ∆t =
10−2s first for 106 integration steps to reach equilibrium, then for 106 to collect the configurations to
compute the needed statistics reported in this manuscript. Finally we continue the simulations up to
maximum of 108 integration steps to find the mean first encounter time. Ensemble averages are performed
over 103 polymer realizations.
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