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Abstract
Although optimal transport (OT) has recently become very popular in machine learning,

it faces challenges when dealing with high-dimensional data, such as images or omics data.
Current OT approaches for high-dimensional situations rely on projections of the data or
measures onto low-dimensional spaces, which inevitably results in information loss. In this work,
we consider the case of high-dimensional Gaussian distributions with parsimonious covariance
structures and lower intrinsic dimension. We exhibit a simplified closed-form expression of
the 2-Wasserstein distance with an efficient and robust calculation procedure based on a low-
dimensional decomposition of empirical covariance matrices, without relying on data projections.
Furthermore, we provide a closed-form expression for the Monge map, which involves the exact
calculation of the square-root and inverse square-root of the source distribution covariance
matrix. This approach offers analytical and computational advantages, as demonstrated by our
numerical experiments, which quantitatively evaluate these benefits in comparison to existing
methods. In addition to being able to compute both the W 2

2 -distance and the transport
map, our method outperforms model-free methods, in high dimension, even in the case of
non-Gaussian distributions.

1 Introduction

Due to its proven versatility, optimal transport (OT) is becoming more and more popular within the
machine learning community (Peyré et al., 2019). Basically, once the observed data is identified
with a probability distribution (possibly the empirical mass function), optimal transport allows
to consistently assess the similarity between complex instances such as point clouds, images or
graphs. However, as the modern data are increasingly high-dimensional, OT is also now facing an
old problem in optimization and statistical learning: the curse of dimensionality (Bellman, 1957).
Among the OT problems that have to face the high dimensionality of the data, we can mention
as a popular example the calculation of the Frechet inception distance (FID, Heusel et al., 2017)
for comparing the distribution of generated images with the distribution of a set of ground-truth
images, using the Wasserstein distance between two full Gaussian distributions.

1.1 Statistical learning in high-dimensional spaces

In many application domains of machine learning, such as image analysis, genomics, chemometrics
or personalized medicine, the observed data are frequently high-dimensional and learning from such
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data is a challenging problem. Indeed, statistical learning in such high-dimensional spaces is made
difficult both because of estimation biases and numerical problems (Giraud, 2021; Wainwright, 2019).
In particular, when considering the generative (model-based) framework, most learning methods
show a disappointing behavior in high-dimensional spaces. They suffer from the well-known curse
of dimensionality which is mainly due to the fact that generative methods turn to be dramatically
over-parametrized in high-dimensional spaces (Bouveyron et al., 2019). Moreover, even though
many variables are measured to describe the studied phenomenon, only a small subset of these
original variables is in fact relevant for both modeling and learning. In recent years, several works
tried to reduce the data dimensionality or select relevant variables while building a generative
predictor, showing excellent results. In this context, there are two main approaches. On the one
hand, some works assume that the data of each class live in different low-dimensional subspaces.
On the other hand, some other works assume that the classes differ only with respect to some of
the original features. Both approaches present two practical advantages: results are improved by
the removing of non informative features and the result interpretation is eased by the visualization
in the subspaces or the meaning of retained variables. We may recommend to refer to Bouveyron
et al. (2019, Chap. 8) and Bouveyron and Brunet-Saumard (2014) for a full overview in the
contexts of classification, clustering and dimension reduction. As we focus here on the question
of an efficient modeling of high-dimensional distributions, a key work in this context is due to
Tipping and Bishop (1999b) who have shown that the subspace of principal component analysis
(PCA) could be retrieved from the maximum-likelihood estimator of a parameter, in a particular
factor analysis model called probabilistic PCA (PPCA). This probabilistic framework led to diverse
Bayesian analysis of PCA (Bishop, 1999; Minka, 2000) and extensions in various ML situations such
as classification Bouveyron et al. (2007b) and clustering Tipping and Bishop (1999a); Bouveyron
et al. (2007a); McNicholas and Murphy (2008). As it will be shown in this paper, this model will be
once again a game-changer tool, here for the optimal transport between high-dimensional Gaussian
distributions.

1.2 Optimal Transport with Wasserstein distance

Based on the modern formulation of Kantorovich (1942), standard optimal transport generally relies
on the Wasserstein distance. Given two random variables X1 and X2 supported on Rp, with finite
second moments and whose marginal cumulative distribution functions are denoted by µ1 and µ2,
respectively, the squared 2-Wasserstein distance is defined as:

W 2
2 (µ1, µ2) := min

π∈Π(µ1,µ2)
E(X1,X2)∼π||X1 −X2||22, (1)

where Π(µ1, µ2) denotes the set of joint distributions with marginals µ1 and µ2, respectively
and ∥ · ∥2 denotes the standard Euclidean norm. The joint distribution π∗ minimizing the
expectation on the r.h.s. of Eq. (1) is known as optimal coupling or optimal transport plan. As
it can be understood from the above equation, OT lifts a metric defined on some ground space
(here Rp with Euclidean metric) to a metric on the probability distributions supported on that
space. The above definition extends to probability measures with support on more general separable
metric spaces and higher order Wasserstein distances. However, in this paper we only focus on the
2-Wasserstein distance between measures supported on Rp, for some integer p. For an in depth
inspection of Wasserstein distances and their properties the reader is referred to Villani et al. (2009);
Santambrogio (2015); Peyré et al. (2019).
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In the particular where case the random variables X1 and X2 are Gaussian, it was shown that
the Wasserstein distance can be computed in closed form (Dowson and Landau, 1982; Takatsu,
2011). Moreover, in force of the Brenier’s theorem (see for instance Peyré et al., 2019, Theorem
2.1) there exists a unique transport or Monge map T ∗ : Rp → Rp linked to the optimal transport
plan π∗ by the following relation1

E(X1,X2)∼π∗ [h(X1, X2)] = EX1∼µ1 [h(X1, T
∗(X1))] ,

holding for any continuous function h : Rd×Rd → R. Also T ∗ has closed form in the Gaussian case.
If the Gaussian distributions of X1 and X2 must be inferred from the data, i.e. two point clouds in
dimensions Rp, the closed formulas for the Wasserstein distance and the Monge map T ∗ between
µ1 and µ2 can always been computed. However, due to the difficulties in the estimation of the
covariance matrices in high dimension, those formulas lead to poor estimates (shown in Section 3).
The alternative approach, seeking to compute the Wasserstein distance between µ1 and µ2 via
the empirical distributions, is also doomed to failure due to the known instability of OT in high
dimension (Dudley, 1969; Fournier and Guillin, 2015). Among the existing solutions, we can cite
Sliced Wasserstein distances (SWD, see Nguyen and Ho, 2024, and the references therein), which
attack the high-dimensional problem by averaging the optimal OT costs between 1D measures,
obtained by projecting the original measures onto several random directions. Another approach
builds Subspace Robust Wasserstein distances (SRW, Paty and Cuturi, 2019), which are defined by
modifying the 2-Wasserstein cost in such a way to find an optimal matching between projections
of the original measures onto a k-dimensional subspace. However, both SWD and SRW do not
allow to estimate the Monge map T ∗. Still based on the empirical distributions, Muzellec and
Cuturi (2019) introduced in the literature two methods to extend a Monge map which is optimal
on a subspace to one that is nearly optimal on the entire space. However, all those approaches
are non-parametric, meaning that the Gaussianity of the input data is never used (nor the closed
formulas mentioned above).

1.3 Contributions of the paper

This work focuses on the use of the high-dimensional Gaussian (HD-Gaussian) distributions, induced
by the probabilistic PCA (PPCA) model, for the optimal transport between high-dimensional data
distributions. In particular, this paper features the three main contributions:

(i) exhibition of a closed-form expression of the 2-Wasserstein distance between two HD-Gaussian
distributions, with an efficient and robust calculation procedure based on a low-dimensional
subspace decomposition.

(ii) generalization to a less restrictive framework of previous state-of-the-art results, which
considered Gaussian distributions with similar covariance orientations or structures.

(iii) exhibition of a closed-form expression of the Monge map for the transport of a HD-Gaussian
distribution on another one, involving an exact calculation of both the square-root and the
inverse square-root of the covariance matrix of the source distribution, avoiding in turn many
numerical drawbacks in high-dimensional practical situations.

1In a short-hand notation one writes π∗ = (Id, T ∗)♯µ1, where ♯ is the push-forward operator.
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Interestingly, these results remain valid in the case of HD-Gaussian distributions with different
intrinsic dimensions. It is also worth underlying that the proposed approach, named hereafter
OT-HDGauss, is able to compute both the W 2

2 -distance and the transport map for HD-Gaussian
distributions. Furthermore, the analytical and numerical advantages of our approach in high
dimensions allow it to outperform model-free methods in the case of non-Gaussian distributions.
These contributions are supported by numerical experiments that highlight the performance and
robustness of the proposed OT-HDGauss method to both the dimensionality and the sample size,
and this in comparison with the most recent OT approaches.

2 Optimal Transport between HD-Gaussian Distributions

2.1 The HD-Gaussian distribution

To overcome the well-known “curse of the dimensionality” in statistical learning, Tipping and Bishop
(1999b) have proposed a parsimonious Gaussian distribution, induced by a probabilistic view of
PCA, that splits the modelling between a low-dimensional subspace where the data actually live
and a noise component. This HD-Gaussian distribution can be defined as follows.

Definition 2.1. A p-dimensional random vector X ∈ Rp follows a HD-Gaussian distribution
NHD(m,U,Λ, σ2, d) if it exists a low-dimensional latent random vector Y ∈ Rd, of intrinsic
dimensionality d < p, and a p-dimensional noise random vector ε ∈ Rp such that:

X = UY +m+ ε,

Y ∼ N (0,Λ),

ε ∼ N (0, σ2Ip),

where U is a p× d transformation matrix whose columns are orthonormal vectors, m ∈ Rp is the
mean vector, Λ = diag(λ1, . . . , λd) and σ2 > 0.

Under these assumptions, it can be shown that the HD-Gaussian distribution NHD(m,U,Λ, σ2, d)
is a specific Gaussian distribution with a structured covariance matrix.

Proposition 2.2. A p-dimensional random vector X ∈ Rp following a HD-Gaussian distribution
NHD(m,U,Λ, σ2, d) is distributed as:

X ∼ N (m,Q∆Qt),

where Q = [U,R], the p× p matrix made of U and an orthonormal complementary R, and ∆ is a
block-diagonal matrix:

∆ =



δ1 0
. . .

0 δd

0

0

σ2 0
. . .

0 σ2



 d

 (p− d)

with δj = λj + σ2 and δj > σ2 , for j = 1, ..., d.
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Proof. Assuming that X = UY +m+ ε, where Y ∼ N (0,Λ) and ε ∼ N (0, σ2Ip), the conditional
distribution of Y is therefore Gaussian:

X | Y ∼ N (UY+m,σ2Ip),

and the marginal distribution of X is a Gaussian distribution with a specific structured covariance
structure:

X ∼ N (m,Σ),

where Σ = UΛU t + σ2Ip. Introducing Q = [U,R], the p× p matrix made of U and an orthonormal
complementary R, the covariance matrix Σ can be easily rewritten Σ = Q∆Qt where ∆ =
diag

(
δ1, ..., δd, σ

2, ..., , for j=1,...,d.Thisallowstoconclude.
Therefore, the HD-Gaussian distribution is fully parametrized by the set of parameters θ =

{m,U, λj , σ
2, d;∀j = 1, ..., d}.

2.2 Calculation of the 2-Wasserstein distance

Let us now consider two HD-Gaussian probability distributions µ1 ∼ NHD(m1, U1,Λ1, σ
2
1, d1)

and µ2 ∼ NHD(m2, U2,Λ2, σ
2
2, d2) on Rp for which we would like to compute the 2-Wasserstein

distance. The following proposition exhibits a closed-form expression of W2(µ1, µ2), which in turn
yields to numerically efficient and stable calculations.

Proposition 2.3. The 2-Wasserstein distance between two HD-Gaussian distributions µ1 ∼
NHD(m1, U1,Λ1, σ

2
1, d1) and µ2 ∼ NHD(m2, U2,Λ2, σ

2
2, d2) is

W 2
2 (µ1, µ2) = ∥m1 −m2∥22 + trace(Λ1) + trace(Λ2)

+ p(σ2
1 + σ2

2)− 2trace(A
1
2 ),

where A can be expressed as:

A = U1Λ1U
t
1U2Λ2U

t
2 + σ2

1U2Λ2U
t
2 + σ2

2U1Λ1U
t
1 + σ2

1σ
2
2Ip.

Proof. In the case when c(x, y) = ∥x− y∥22, the 2-Wasserstein distance between two Gaussian
distributions µ1 ∼ N (m1,Σ1) and µ2 ∼ N (m1,Σ1), is known to have the following explicit
form (Dowson and Landau, 1982; Takatsu, 2011)

W2(µ1, µ2)
2 = ∥m1 −m2∥22 + trace(Σ1) + trace(Σ2)

− 2trace

[(
Σ

1
2
1Σ2Σ

1
2
1

) 1
2

]
. (2)

Thanks to Proposition 2.2, this result can be extended to two HD-Gaussian distributions µ1 ∼
NHD(m1, U1,Λ1, σ

2
1, d1) and µ2 ∼ NHD(m2, U2,Λ2, σ

2
2, d2), by considering that Σ1 and Σ2 have

specific parsimonious structures, i.e. Σi = UiΛiU
t
i + σ2

i Ip, with Λi = diag(δi1 − σ2
i , ..., δid − σ2

i ),
for i = 1, 2. It is first straightforward to establish that trace(Σ1) = trace(Λ1) + pσ2

1, and similarly
for Σ2.
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Let’s now consider the computation of trace

[(
Σ

1
2
1Σ2Σ

1
2
1

) 1
2

]
. Reminding that trace of matrix

M is equal to the sum of its eigenvalues ω1(M), ..., ωp(M), we can write:

trace

[(
Σ

1
2
1Σ2Σ

1
2
1

) 1
2

]
=

p∑
j=1

ωj

[(
Σ

1
2
1Σ2Σ

1
2
1

) 1
2

]

=

p∑
j=1

ω
1
2
j

[
Σ

1
2
1Σ2Σ

1
2
1

]

=

p∑
j=1

ω
1
2
j [Σ1Σ2] .

This allows us to conclude that trace

[(
Σ

1
2
1Σ2Σ

1
2
1

) 1
2

]
= trace

[
(Σ1Σ2)

1
2

]
. Then, exploiting the

parsimonious structure of both Σ1 and Σ2, one can get a form of Σ1Σ2 that depends only on low
rank matrix calculations:

Σ1Σ2 = (U1Λ1U
t
1 + σ2

1Ip)(U2Λ2U
t
2 + σ2

2Ip)

= U1Λ1U
t
1U2Λ2U

t
2 + σ2

1U2Λ2U
t
2 + σ2

2U1Λ1U
t
1

+ σ2
1σ

2
2Ip.

Combining the different parts above allows us to conclude.

Remark 2.4. It is first important to notice that Proposition 2.3 provides a numerically efficient ways
to compute the 2-Wasserstein distance in high-dimensional spaces. Indeed, the formulae exhibited
above involves the computing of the trace of the square root of a matrix which is expressed only
with low-rank matrix calculations. This will even be more determinant when the different elements
involved need to be estimated from the data, as discussed later in this paper.

Remark 2.5. Let us also notice that Proposition 2.3 is valid even when the intrinsic dimensions d1
and d2 of the two HD-Gaussian distributions are different.

In the specific case where the two distributions share the same subspace, i.e. U1 = U2, the
previous result reduces to an even simpler form of the 2-Wasserstein distance, as stated in the next
proposition.

Proposition 2.6. The 2-Wasserstein distance between two HD-Gaussian distributions µ1 ∼
NHD(m1, U,Λ1, σ

2
1, d) and µ2 ∼ NHD(m2, U,Λ2, σ

2
2, d) is

W 2
2 (µ1, µ2) = ∥m1 −m2∥22 +

d∑
j=1

(√
δ1j −

√
δ2j

)2
+ p (σ1 − σ2)

2 .
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Proof. Starting with the result of Proposition 2.3 and assuming now that U1 = U2 = U , we can
first rewrite (Σ1Σ2)

1
2 as:

[Σ1Σ2]
1
2 =

[
(UΛ1U

t + σ2
1Ip)(UΛ2U

t + σ2
2Ip)

] 1
2

=
[
(Q∆1Q

t)(Q∆2Q
t)
] 1
2

=
[
Q(∆1∆2)Q

t
] 1
2 = Q [∆1∆2]

1
2 Qt

= Qdiag(
√

δ11δ21, ...,
√

δ1dδ2d, σ1σ2, ..., σ1σ2)Q
t.

Therefore, as Q is an orthonormal p× p matrix, trace([Σ1Σ2]
1
2 ) becomes:

trace([Σ1Σ2]
1
2 ) =

d∑
j=1

√
δ1j
√

δ2j + (p− d)σ1σ2.

Reporting this quantity in the final formulation of the 2-Wasserstein distance, we get

W 2
2 (µ1, µ2) = ∥m1 −m2∥22 + trace(Λ1) + trace(Λ2)

+ p(σ2
1 + σ2

2)− 2trace([Σ1Σ2]
1
2 )

= ∥m1 −m2∥22 +
d∑

j=1

(λ1j + λ2j) + p(σ2
1 + σ2

2)

− 2

 d∑
j=1

√
δ1j
√
δ2j + (p− d)σ1σ2

 .

Finally, recalling that δij = λij + σ2
i , we get

W 2
2 (µ1, µ2) = ∥m1 −m2∥22 +

d∑
j=1

(
δ1j + δ2j − 2

√
δ1j
√
δ2j

)
+ (p− d)(σ2

1 + σ2
2 − 2σ1σ2)

= ∥m1 −m2∥22 +
d∑

j=1

(√
δ1j −

√
δ2j

)2
+ (p− d)(σ1 − σ2)

2

This concludes the proof.

Remark 2.7. The above proposition recovers and generalizes results established by several previous
works, including Dowson and Landau (1982), Takatsu (2011) and Peyré et al. (2019). Indeed,
if we set d = d1 = d2 = p − 1, we recover exactly those well-known results. If d < p, and in
particular if d is small compared to p, this new formula is proposing a sort of regularization of the
general expression, which may have an interesting numerical behavior in practical high-dimensional
situations.
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Remark 2.8. Despite the elegant form of the 2-Wasserstein distance in the case U1 = U2, exploiting
this formula is far from being trivial in practice and this is rarely highlighted in the literature. Indeed,
the (statistical) estimation of a common subspace of dimension d of two sets of data distributed as
two different HD-Gaussian distributions is a quite complex problem, that requires the use of iterative
algorithms, such as the Flury-Gautschi algorithm Flury and Gautschi (1986), to solve this problem.

2.3 Calculation of the optimal transport plan

Let us now consider the calculation of the optimal transport plan between two HD-Gaussian
distributions µ1 and µ2. The following proposition exhibits a closed-form expression of the Monge
map for the transport of µ1 toward µ2, involving an exact calculation of the inverse square-root of
the covariance matrix of the source distribution.

Theorem 2.9. The optimal transport map T ∗ between two HD-Gaussian distributions µ1 ∼
NHD(m1, U1,Λ1, σ

2
1, d1) and µ2 ∼ NHD(m2, U2,Λ2, σ

2
2, d2) is

∀x ∈ Rp, T ∗(x) = m2 +Σ
− 1

2
1

[
Σ

1
2
1Σ2Σ

1
2
1

] 1
2

Σ
− 1

2
1 (x−m1),

where both Σ
1
2
1 and Σ

− 1
2

1 have the explicit closed-form formulations

Σ
1
2
1 = σ1Ip + U1C1U

t
1,

with C1 = diag(
√
δ11 − σ1, ...,

√
δ1d − σ1) > 0 and

Σ
− 1

2
1 =

1

σ1

(
Ip − U1D1U

t
1

)
with D1 = diag

(√
δ11−σ1√
δ11

, ...,
√
δ1d−σ1√
δ1d

)
.

Proof. The optimal transport map T ∗ between two Gaussian distributions µ1 ∼ N (m1,Σ1) and
µ2 ∼ N (m2,Σ2) is affine and is given by (Dowson and Landau, 1982; Takatsu, 2011):

∀x ∈ Rp, T ∗(x) = m2 +A−1(x−m1), (3)

where A−1 = Σ
− 1

2
1

[
Σ

1
2
1Σ2Σ

1
2
1

] 1
2

Σ
− 1

2
1 involves difficult computations in high-dimensional spaces.

Assuming that µ1 and µ2 have structured covariance structures of the form of the HD-Gaussian

distribution, i.e. Σi = UiΛiU
t
i + σ2

i Ip, for i = 1, 2, let us first focus on the computation of Σ
1
2
1 . To

do so, we start with Theorem 1.35 of Higham (2008) which expresses the form of f(M) where
M = AB + αIp and f is defined on the spectrum of AB + αIp:

f(M) = f(α)Ip +A(BA)−1 (f(BA+ αId)− f(α)Id)B.

Applying this result to the function f(x) = x
1
2 , we get:

M
1
2 = α

1
2 Ip +A(BA)−1

(
(BA+ αId)

1
2 − α

1
2 Id

)
B.
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Working now with M = Σ1 = U1(Λ1U
t
1) + σ2

1Ip, we get:

Σ
1
2
1 =σ1Ip + U1

(
(Λ1U

t
1)U1

)−1(
(σ2

1Id + (Λ1U
t
1)U1)

1
2 − σ1Id

)
(Λ1U

t
1).

Since U t
1U1 = Id, the equation reduces to:

Σ
1
2
1 = σ1Ip + U1Λ

−1
1

(
(σ2

1Id + Λ1)
1
2 − σ1Id

)
Λ1U

t
1.

Furthermore, as Λ1 = diag(δi1 − σ2
i , ..., δid − σ2

i ), we get (σ2
1Id + Λ1)

1
2 = diag(

√
δ11, ....,

√
δ1d),

which can be reinjected in the above fomula:

Σ
1
2
1 = σ1Ip + U1Λ

−1
1 C1Λ1U

t
1

= σ1Ip + U1C1U
t
1,

where C1 = diag(
√
δ11 − σ1, ....,

√
δ1d − σ1). Let’s now consider the computation of Σ

− 1
2

1 :

Σ
− 1

2
1 =

(
σ1Ip + U1Λ

−1
1 C1Λ1U

t
1

)−1
.

Using now the Woodbury formula, we get:

Σ
− 1

2
1 =

1

σ1
Ip −

1

σ1
U1

(
C−1
1 + U t

1

1

σ1
IdU1

)−1

U t
1

1

σ1
Ip

=
1

σ1

(
Ip −

1

σ1
U1

(
C−1
1 +

1

σ1
Id

)−1

U t
1

)

=
1

σ1

(
Ip −

1

σ1
U1D̃1U1

)
,

where D̃1 =
(
C−1
1 + 1

σ1
Id

)−1
. Taking into account the diagonal structure of C1, we can write:

D̃1 =

(
C−1
1 +

1

σ1
Id

)−1

=

[
diag(

√
δ1j − σ1)

−1
j=1,...d +

1

σ1
Id

]−1

=

[
diag(

1√
δ1j − σ1

+
1

σ1
)j=1,...d

]−1

= σ1diag

(√
δ1j − σ1√

δ1j

)
j=1,...d

.

We finally get:

Σ
− 1

2
1 =

1

σ1
(Ip − U1D1U1) ,

with D1 = diag

(√
δ1j−σ1√
δ1j

)
j=1,...d

.
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Remark 2.10. The computation of the transport map T ∗ usually requires the inversion of a covariance
matrix, which will be rarely of full rank in high-dimensional spaces. In our case, Proposition 2.9
provides an explicit and stable inverse of the square-root of the covariance matrix Σ1 and consequently
an efficient and numerically stable way of computing the transport plan T , even in situations where
Σ1 and Σ2 are not of full rank. In addition, Proposition 2.9 also provides an explicit form of the
square-root of Σ1.

Remark 2.11. Once again, the result of Proposition 2.9 is valid even when d1 and d2 are different.
This is naturally a key point in practical situations where there is no reason to have distributions
with identical intrinsic dimensions.

2.4 Inference and intrinsic dimension estimation

Inference Assuming that two point clouds X(1) and X(2) sampled from HD-Gaussisan distributions
are given and that their intrinsic dimensions d1 and d2 are known, the computation of both the
2-Wasserstein distance and the associated transport map requires the estimation of the parameters
µi, λij , σi and Ui, for i = 1, 2 and j = 1, ..., d. Following Tipping and Bishop (1999b), the maximum
likelihood estimates of those parameters are, for i = 1, 2:

µ̂i =

ni∑
ℓ=1

x
(i)
ℓ /ni, λ̂ij = ωj(Si)− σ̂i

σ̂i =

trace(Si)−
d∑

j=1

ωj(Si)

 /(p− d),

and Ûi is formed by the di leading eigenvectors (i.e. associated with the di largest eigenvalues
ωj(Si)) of Si. Finally, Si = (X(i) − µ̂i)

t(X(i) − µ̂i) is the empirical covariance matrix.

Estimation of the intrinsic dimensions As in practical situations the intrinsic dimensionality
of the data is not known, we also need to estimate d1 and d2 from the data. This question has
been intensively studied in the last two decades and remains a difficult question in general. Among
the possible solutions, we can cite the works of Cattell (1966), Bouveyron et al. (2011), Josse and
Husson (2012) and Bouveyron et al. (2020). Even though intrinsic dimensionality estimation is a
challenging task in general, the effect of some variation on the estimation of the actual dimensions
of the source and target distributions will be limited in our case since we model the data in the
whole high-dimensional space with a parsimonious approach, without effective dimension reduction.
As illustrated in Appendix B, the cross-validation approach of Josse and Husson (2012) for PCA
performs well in a variety of situations and we recommend to use it in practice. This technique will
be used in the following for estimating the intrinsic dimensions of the source and target distributions.

3 Numerical experiments

3.1 Experimental setups and methods

Simulated scenarios For evaluating the proposed method performance in calculating both the
Wasserstein distance and the Monge map, we designed 3 simulation scenarios:

10



i) The first scenario, hereafter referred to as GaussHD, consists in drawing n observations in di-
mension p from two HD-Gaussian distributions, as defined by Definition 2.1. While n and p are
allowed to vary in order to both test the effects “sample size” and “high dimension”, we assumed that
both distributions share d1 = d2 = 5 and that are centered (these requirements, i.e. same intrinsic
dimension and centrality, are needed by some competitor approaches). Moreover, we set σ2

1 = 0.4
and σ2

2 = 0.2 whereas diag(Λ) = {λi, λi, λi, λi, λi}, with i = 1, 2, λ1 = 3.6 and λ2 = 1.8.
ii) The second scenario, called FullGauss, assumes the data are sampled form two centered
Gaussian distributions (d1 = d2 = p). For the source distribution (respectively the destination
distribution) we created a decreasing sequence of p eigenvalues ranging from 3.6 to 0.4 (1.8 to 0.2)
representing the spectrum of the covariance matrix.
iii) The last simulation scenario considers two non Gaussian distributions: the skew-Normal (Azzalini,
2013) and Student distributions. In this case, data are sampled from multivariate (p-dimensional)
skew-Normal and Student distributions where the scaling / correlation matrices of the two distribu-
tions are simulated as for the FullGauss scenario.

State-of-the-art methods Once the source and target point clouds are sampled, in order
to compute the Wasserstein distance (and possibly the Monge map) between the generating
distributions, two global strategies exist, depending the considered approach. Either the parameters
of the distributions are learned from the data and then the Wasserstein distance and Monge
map are computed via the Gaussian closed formulas, otherwise each point is equipped with mass
1/n and the Wasserstein distance (or another OT distance) is learned directly, numerically. We
will compare hereafter the following 9 methods, adopting one or the other strategy: OT-Gauss,
the classical W 2

2 -distance and Monge map computations between 2 Gaussians, OT-GaussReg, its
ridge-regularization, the Earth movers distance EMD, Sinkhorn (Cuturi, 2013), SRW (Paty and
Cuturi, 2019), SWD (Bonneel et al., 2015), MK-dist and MI-dist Muzellec and Cuturi (2019), and
OT-HDGauss, the approach proposed in this work. More details about these approaches are given
in Appendix A. Let us notice that EMD, Sinkhorn, SWD and SRW are limited to the calculation of
OT distances and they cannot compute the Monge map. Consequently, they won’t be used for
comparisons about transport maps.

3.2 Computation of the W 2
2 -distance

In this first experiment, we focus on the numerical computation of the W 2
2 -distance between two

Gaussian distributions (HDGauss and FullGauss scenarios). In particular, we aim to study the
robustness of the considered OT approaches against the data dimensionality p and the sample
size n. To this end, we first simulated data from source and target distributions according to the
HDGauss and FullGauss scenarios, with a fixed sample size n = 50 and varying dimensions of the
observations space p ∈ [10, 150]. We applied the OT methods listed above on these simulated data
to calculate the W 2

2 -distance between the source and target distributions. For methods working
on subspaces, i.e. MK-dist, MI-dist and SRW, we always provided them with the actual intrinsic
dimension d = 5. Same for OT-HDGauss. The performance of these approaches in computing the
W 2

2 -distance between µs and µt is assessed by the absolute-value difference with the exact Gaussian
W 2

2 -distance computed between the true distributions, whose parameters are known. All results are
averaged over 25 replications. Figure 1 presents the performance in computing the W 2

2 -distance for
the different methods, according to the space dimensionality p, and this for both HD-Gaussian and
full Gaussian distributions. In order to keep the exposition uncluttered, we did not report results for
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Figure 1: Absolute value difference between the actual W 2
2 -distance (computed from the true

distributions) and their estimations using the compared methods, with a fixed dimension n = 50 of
the observation space and where the dimension p of the observation space varies: (a) with simulated
HD-Gaussian distributions, (b) with simulated full Gaussian distributions. Results are averaged over
25 replications.

all the methods listed in the previous section. In particular: the behaviour of OT-Gauss is almost
indistinguishable from OT-GaussReg in low-dimension, and stops working for p > n. Same remark
for Sinkhorn and EMD (not reported). Instead, SWD and MI-dist are systematically outperformed
by (for instance) MK-dist and this is reported in Appendix C. From Figure 1, it clearly appears that
EMD, MK-dist and OT-Gauss have a high sensibility to the data dimensionality in both scenarios
and make important errors in the computation of the Wasserstein distance in high-dimensional
spaces. In the case of the HDGauss scenario, SRW and the two OT-HDGauss approaches show a good
robustness to the dimensionality and see their estimations of the Wasserstein distance are little
impacted by the increase of the dimensionality. Not surprisingly, the two OT-HDGauss approaches
only slightly outperform SRW here since the simulation scenario is favorable. This is however not
the case for the FullGauss scenario (Figure 1-b) where the OT-HDGauss approaches outperform
all approaches, including SRW, even though the data are not simulated according to their model.
We also studied the robustness of the considered OT approaches against the sample size n in
high dimensions. For this, we simulated data from source and target distributions according to
the HDGauss and FullGauss scenarios, with a fixed dimension p = 100 and varying sample sizes
n ∈ [20, 250]. Figure 2 presents the performance in computing the W 2

2 -distance for the different
methods, according to the sample size n for both simulation scenarios. One can first notice that
EMD performs badly whatever the sample size. Conversely, MK-dist and OT-Gauss benefit from
the increase of the sample size and significantly improve their performance when the sample size is
clearly larger than the space dimensionality. This experiment also reveals a surprising behavior of
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Figure 2: Absolute value difference between the actual W 2
2 -distance (computed from the true

distributions) and their estimations using the compared methods, with a fixed dimension p = 100
of the observation space and where the sample size n varies: (a) with simulated HD-Gaussian
distributions, (b) with simulated full Gaussian distributions. Results are averaged over 25 replications.

SRW, which was not possible to see in the previous experiment: the performance of SRW decreases
with the increase of the sample size. In the FullGauss scenario OT-HDGauss exhibits the same
behavior and this can be explained by the fact that generative model it is based on is no longer
the true one, thing that emerges for large n. However in the HDGauss scenario the data almost
live in a subspace of dimension d, thing that should favour SRW but apparently it does not. This
is rather counter intuitive and probably linked to the fact that SRW does not compute the exact
Wasserstein distance, but a lower-bound of it. Finally, OT-HDGauss demonstrates here again a clear
robustness to the sample size in high dimensions, in both scenarios. In the FullGauss case, the
OT-HDGauss with the CV procedure to select the intrinsic dimension has to be recommended since
it better adapts to the data.

3.3 Computation of the Monge map

This experiment now focuses on the computation of the transport map, that our approach is also
able to compute. Here again, we aim at studying the the robustness against the data dimensionality
p and the sample size n of the OT approaches allowing the Monge map computation. To this end,
we simulated data from source and target distributions according to the HDGauss and FullGauss
scenarios, first with a fixed sample size n = 50 and varying dimensions of the observations space
p ∈ [10, 150], and second with a fixed dimension p = 100 and varying sample sizes n ∈ [20, 250].
On these simulated data set, we then applied the 3 methods able to compute the transport map. In
order to measure the performance of the transport undertaken, we simulated two point clouds, one
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Figure 3: Mean squared error between the Monge map estimated by the compared methods and the
actual transport on a test data set, with a fixed sample size n = 50 and where the dimension p of
the observation space varies: (a) with simulated HD-Gaussian distributions and (b) with simulated
full Gaussian distributions. Results are averaged over 25 replications.

from a source measure µ1 and the other from a destination measure µ2, both being either Gaussian
or HD-Gaussian distributions. Then, each cloud was split in train and test. We used the source-train
and the destination-train to estimate the Monge map between µ1 and µ2, then we transported the
source-test with the oracle Monge map as well as with the Monge maps estimated by all methods.
Finally the mean squared error (MSE) between the test-transported points (oracle vs. estimated)
was computed. The panels (a) and (b) of Figure 3 present the performance evolution of the best
OT methods according to the space dimensionality (the sample size is fixed to n = 50), for both
the HD-Gaussian and full Gaussian scenarios. In both scenarios, one can first notice that MK-dist
fails to compute the transport map in dimension higher than 80. After this dimension p = 80,
one can also observe a rapid deterioration in performance of OT-Gauss, even with a numerical
regularization. Conversely, the OT-HDGauss and OT-HDGauss (CV) approaches show once again a
good robustness in performance when the space dimensionality increases. Figure 4 presents the
results of the same 4 OT methods when the sample size n varies and for a fixed dimensionality
p = 100 of the observation space. One can observe similar results here, and this for both simulated
scenarios: MK-dist fails to compute the transport map for n smaller than 120 and this sample size
is also a breakpoint for the performance of OT-Gauss. Here again, OT-HDGauss and OT-HDGauss
(CV) turn out to be robust in performance against the sample size, even when n << p.

3.4 Transport of non Gaussian distributions

This last experiment focuses on the transport of non Gaussian distributions. The aim here is to
study the robustness of our approach to deviation from the Gaussian assumption and to compare
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Figure 4: Mean squared error between the Monge map estimated by the compared methods and
the actual transport on a test data set, with a fixed dimension p = 100 of the observation space
and where the sample size n varies: (a) with simulated HD-Gaussian distributions and (b) with
simulated full Gaussian distributions. Results are averaged over 25 replications.

with other transport approaches (MK-dist and MI-dist) that are model-free, in the context of
high-dimensional spaces. To this end, we simulated a point cloud from a source distribution either
multivariate skew Normal or Student distribution for different sample sizes and varying dimensions of
the observation space. Figures 10 and 11 of Appendix D present pairs plots of simulated data from
these non Gaussian distributions. After splitting the source cloud into train and test, we transported
the source-train with a fixed linear map in such a way to leave the transported points centered at
the origin and used the source-train and transported source-train in order to estimate the Monge
maps with the three methods. As before, the MSE between the transported source-test (oracle vs.
estimated) was computed. Figures 5 and 6 present the performance evaluations of the same OT
methods for multivariate Skew Normal and Student distributions respectively according to the space
dimensionality p and the sample size n. The performances of MK-dist and OT-Gauss are similar to
the Gaussian case (previous experiment). Even though its robustness is less impressive than in the
Gaussian case, OT-HDGauss performs here also quite well in general even though the distributions
clearly differ from the Gaussian one, and in any case clearly outperforms all tested OT methods.
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4 Conclusion and discussion

This work has focused on the optimal transport of high-dimensional Gaussian (HD-Gaussian)
distributions, induced by the probabilistic PCA (PPCA) model. In particular, we exhibited of a
closed-form expression of the Wasserstein distance between two HD-Gaussian distributions, with
an efficient and robust calculation procedure based on a low-dimensional subspace decomposition,
and this without relying on data projections. This result also generalizes previous state-of-the-art
results which considered Gaussian distributions with similar covariance orientations or structures.
Furthermore, we provided a closed-form expression of the Monge map for the transport of a HD-
Gaussian distribution on another one, involving an exact calculation of both the square-root and the
inverse square-root of the covariance matrix of the source distribution. This result avoids in turn
many numerical drawbacks in high-dimensional practical situations and remain valid in the case of
HD-Gaussian distributions with different intrinsic dimensions. These contributions are supported by
numerical experiments that highlight the performance and robustness of the proposed OT-HDGauss
procedure to both the dimensionality and the sample size, and this in comparison with the most
recent OT approaches. The numerical experiments also showed that the analytical and numerical
advantages of our approach in high dimensions allow it to also outperform model-free methods in
the case of non-Gaussian distributions. Among the possible further work, it would be interesting to
consider the extension of this approach to mixture models, in particular Gaussian mixture models.
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Appendix

A Details about the competitors used in numerical experiments

We provide below more details about the methods used as competitors in the numerical experiments:
- OT-Gauss: classical W 2

2 -distance and Monge map computations between 2 full Gaussians, using
respectively Eq. (2) and Eq. (3). The computation of the square-root matrices is based on a Schur
decomposition (sqrtm function in R) and the inverse of covariance matrices is performed using the
Moore-Penrose generalized inverse (ginv function).
- OT-GaussReg: classical W 2

2 -distance and Monge map computations (as above), with an additional
regularization of the rank of the covariance matrices (Σ̃i = Σi + γIp, where γ = 1e−3 in the
experiments, i = 1, 2),
- EMD: Earth movers distance as implemented in the Python Optimal Transport (POT Flamary et al.,
2021) library (ot.emd2 function),
- Sinkhorn: Solution of the entropic regularized optimal transport problem, as described in Cuturi
(2013) and implemented in the POT library (ot.sinkhorn2 function),
- SRW: Subspace robust Wasserstein distance of Paty and Cuturi (2019), GitHub code2,
- SWD: Sliced Wasserstein distance as implemented in POT and following Bonneel et al. (2015),
- MK-dist: Monge-Knothe transport plan and relative distance as described in Muzellec and Cuturi
(2019),
- MI-dist: Monge Independent distance as described in Muzellec and Cuturi (2019),
- OT-HDGauss: the approach proposed in this work that implements the computations of the
W 2

2 -distance with Theorem 2.3 and the Monge map with Theorem 2.9. Additionally we denote
by OT-HDGauss (CV) the version of our approach where the intrinsic dimension is selected by
cross-validation as in Josse and Husson (2012).

B Intrinsic dimension estimation

This section aims to compare the performance of methods proposed repectively by Bouveyron et al.
(2011) (hereafter PPCA-ds), Josse and Husson (2012) (PCA-CV) and Cattell (1966) (Catttell) for
estimating the intrinsic dimension of HD-Gaussian distributions. In order to evaluate the effect of
the estimation of the intrinsic dimensions using these techniques, we measured the error made in
computing the Monge map between two HD-Gaussian distributions using our approach (based on
the Theorem 2.9). For this comparison, we simulated two (isotropic) HD-Gaussian distributions
with intrinsic dimensions d1 = d2 = 5, a signal-to-noise ratio of δ/σ2 = 5, in dimensions p = 100
and with varying number of observations (n ∈ 50, 100, 250). The OT-HD approach was used to
compute the optimal transport plan between the two simulated distributions. Figure 7 presents the
mean squared errors (MSE) measured between the two distributions with OT-HD on test data for
different methods for the intrinsic dimension estimation and for different sample sizes of the data
used for learning the transport map. The results are averaged over 25 simulated datasets. The
results clearly show that the PCA-CV approach of Josse and Husson (2012) is the most efficient
one for this task and should be recommended.

2https://github.com/francoispierrepaty/SubspaceRobustWasserstein
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Figure 7: Effect of the choice of the intrinsic dimension estimation method on the mean squared
errors of the transport of test data using OT-HD, for different sample sizes of the source distribution.

C Computation of the W 2
2 -distance: additional results

We report in this section some additional results, visible in Figures 8 and 9, and comparing MI-dist
and SWD with MK-dist. We are in the very same simulated scenarios described in Section 3.3 and,
as it can be seen, MK-dist outperforms the two competitors.

D Transport of Non Gaussian distributions

Figures 10 and 11 present pairs plots of simulated non Gaussian distributions used as source and
target distributions in the experiment on non Gaussian data (Section 3.4).
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Figure 10: Pairs plot of the simulated Student distribution (p = 5) used for the experiment on non
Gaussian data.
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Figure 11: Pairs plot of the simulated Skew Normal distribution (p = 5) used for the experiment on
non Gaussian data.
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