
HAL Id: hal-04930539
https://hal.science/hal-04930539v1

Preprint submitted on 5 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly Detection using Knowledge Graphs: A Survey
for Network Management and Cybersecurity Application

Lionel Tailhardat, Yoan Chabot, Raphaël Troncy

To cite this version:
Lionel Tailhardat, Yoan Chabot, Raphaël Troncy. Anomaly Detection using Knowledge Graphs: A
Survey for Network Management and Cybersecurity Application. 2025. �hal-04930539�

https://hal.science/hal-04930539v1
https://hal.archives-ouvertes.fr


Anomaly Detection using Knowledge Graphs: A

Survey for Network Management and

Cybersecurity Application

Lionel Tailhardat1,2*, Yoan Chabot1 and Raphael Troncy2

1Orange, France.
2EURECOM, France.

*Corresponding author(s). E-mail(s): lionel.tailhardat@orange.com;
Contributing authors: yoan.chabot@orange.com;

raphael.troncy@eurecom.fr;

Abstract

Incident management on telecom and computer networks, whether it is related
to infrastructure or cybersecurity issues, requires the ability to simultaneously
and quickly correlate and interpret a large number of heterogeneous technical
information sources. Drawing on the understanding that knowledge representa-
tion and reasoning are inherently linked, this survey scrutinizes both aspects
in tandem by delving into explicit knowledge representations of networks, and
exploring their direct utilization or integration with artificial intelligence tech-
niques for anomaly model learning and detection. More formally, we map these
two aspects in order to address the question of how to define an anomaly model in
a dynamic technical environment with various interdependencies, and what form
this model should take to be shareable among practitioners (network designers
and administrators, cybersecurity analysts, etc.) and directly usable in anomaly
detection tools and decision support systems. Through our work, we demonstrate
that while data heterogeneity and interrelatedness between data entities (distinct
and persistent units of information) appear to be cornerstones for advancing the
capabilities of Network Monitoring System (NMS) and Security Information and
Event Management (SIEM) systems, several semantic models and algorithmic
methods for anomaly detection share common properties that could help con-
structing a rich representation of networks and their ecosystem that can be used
by one or a combination of several inference techniques.

Keywords: Network operations, Incident management, Semantic Web, Linked data,
Reasoning, Statistical learning
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1 Introduction

When managing large-scale IT and telco networks (broadband international back-
bones, corporate networks, Internet access networks), one is sooner or later involved
into handling complex incident situations, such as general IT service disruption
because of cascading failures or cyber-attacks. For incident management, technical
support teams typically leverage information from decision support tools like Network
Monitoring Systems (NMSs) or Security Information and Event Management (SIEM)
systems. These tools often use an elementary representation of the network infrastruc-
tures and services. Basically, an IT network is a set of computers, routers, and other
devices connected and configured to allow data processing and sharing. Similarly, an
IT service is the usage of this processing and sharing capability for specific purposes,
from the most trivial ones (entertainment, ticket booking, home automation) to more
challenging ones (stock exchange, road lights, or nuclear plant management).

Although obvious at first glance, this level of description is not sufficient to scale up
for maintaining high-standard quality of service on large-scale networks. This is due to
the heterogeneity of the Information and Communications Technology (ICT) systems
that compose them, making incident diagnosis and remediation a challenging task:
to ensure network services function properly, supervision teams need to understand
information from diverse and dynamic technical systems. For example, one can con-
sider a service architecture that combines Virtual Machines (VM) distributed across
data centers, which are interconnected through an IPoDWDM1 network. To achieve
efficiency, it is necessary to integrate and correlate data from various sources. This
includes data from VM management tools, Optical Transport Network (OTN) layer
management tools (which may be managed by a third-party operator), information
about scheduled operations, and contact details for local servicing teams. Given the
interdependencies between services and infrastructure and the inherent complexity of
networks, the importance of a comprehensive and standardized knowledge represen-
tation of network assets and events therefore becomes evident for anyone wishing to
develop a decision support system that can capture and analyze an incident context
in its full complexity.

At the same time, one might be tempted to solve these complexity and opera-
tional efficiency challenges by adding artificial intelligence techniques to monitoring
tools. This is already observed in various commercial and open source products for
alarm grouping, alarm prioritization, alerting on trend breaks (e.g. sudden increase in
network traffic), or alerting on risky user behaviors (e.g. unusually frequent authen-
tication attempts from various sites). It is typically implemented through a business
rules system and an overlay of correlation analysis. This approach is effective in that
the business rules ensure a form of explainability for the generated alerts and recom-
mendations thanks to their explicit and logical form. However, the operational burden

1Internet Protocol (IP) over Dense Wavelength-Division Multiplexing (DWDM).
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remains significant because rule-based systems are complicated to maintain due to a
great number of fine-grained rules and typically react to discrete stimuli, which hin-
ders the generalization of rules for complex networks and often leads to missing the
detection of anomalies (false negatives). Another approach is the use of probabilistic
models derived from machine learning. It is also effective in that it allows for general-
ization to different types of stimuli but sacrifices explainability because of untractable
model representations (e.g. the weight matrices of a deep neural network) and intro-
duces an operational burden due to the need to qualify falsely generated alerts (false
positives). Given that both approaches seem to have complementary advantages and
disadvantages, the question arises of identifying principles that can be shared to meet
the requirements of explainability and generalization, in line with the earlier mentioned
need for standardized representation.

With this survey, we propose to tackle the challenges inherent in ICT systems
operations by exploring the conditions for developing a network and IT monitoring
system with advanced anomaly detection and reasoning capabilities through the lenses
of knowledge representation and reasoning: we provide a comprehensive overview with
perspectives about graph-based knowledge representations, existing anomaly detec-
tion methods, and how these two perspectives can match. Through this, we consider
the possibility of improving operational efficiency in incident management situations
and enhancing the design of complex network architectures by learning an explicit
representation of the context of incidents (i.e. including information about system
configuration and events that have occurred).

The remainder of this article is organized as follows: Section 2 presents a descrip-
tion of the application domain by providing background knowledge on Network Design
and Network Operations and Incident Management. Section 3 defines challenges inher-
ent in ICT systems operations that will guide the remainder of the survey, as well
as a list of associated working hypotheses to help define a potential design project
for next-generation Decision Support Systems (DSSs). Section 4 outlines the research
methodology used for this survey. Section 5 examines DSSs in the Network admin-
istration and Operations (NetOps) and Cybersecurity Operations (SecOps) fields,
and identifies limitations that need to be addressed based on their capabilities and
the expectations of these fields. Section 6 examines semantic models for storing and
managing technical and operational data required for NetOps and SecOps activities.
Section 7 examines algorithmic methods for anomaly detection from the literature,
focusing on application domains close to NetOps and SecOps. It provides an overall
analysis of these methods, considering their principles, practicality within the incident
management process, and the data structures involved. Finally, Section 8 concludes
the survey by summarizing the technological and scientific challenges and suggest-
ing future directions for knowledge graph-based monitoring systems. In Appendix A,
we provide the detailed information that enabled the construction of the analyses in
Section 7.
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2 Background

In this section, we provide background knowledge related to this survey. We first focus
on network design (Section 2.1) by defining what a network is and what characterizes
its dynamics. We then address network operations and incident management (Section
2.2) by defining what anomalies are and how they are managed within a business
process.

2.1 Network Design

What are networks?

An IT network is a set of computers, routers, and other devices connected and config-
ured to allow data processing and sharing. Similarly, an IT service is the usage of this
processing and sharing capability for specific purposes. The standardization efforts in
the telecom and IT industry have led to standards and specifications for data trans-
mission and processing system interfaces, such as the OSI model [1]. The OSI model
allows for a description of network infrastructures and services along horizontal and
vertical axes, representing the technical assets and protocol stack required for data
transmission (Figure 1).

Fig. 1: A flat view of a network with a data flow, and its equivalent in the OSI model.
Top: schematical view of an IT network. The central bubble represents a simplified network consisting of a mesh network
of routers (i.e. network elements that determine and ensure the routing of data packets). The router in the center is an
abstract representation of the redundancy group formed by the mesh of routers. Bottom: data path along the OSI model.
The horizontal axis gives us a lecture of the technical assets (e.g. laptop, ethernet switch, router, firewall, etc.) involved in
handling message data. The vertical axis provides insights into the protocol stack required for data takeover (i.e. encoding,
routing, presentation, etc.). Based on the TISO2930-94/d11 diagram from [1].

According to this framework, routing a payload data unit from point A to B
involves a horizontal data path formed by a set of network elements (Eq. 1, where
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tp stands for transmission path, and ne for network element), such as when Alice is
sending an “hello” message to Bob using an instant messaging service.2

tpA→B = A → ne1 → · · ·nei · · · → neN → B (1)

The vertical perspective considers the protocol stacking within each network ele-
ment, including line coding and error correction services of L1, encapsulation, link
and medium access control of L2 microcode, L3 routing engine, etc., up to L7 if rel-
evant. Combining both axes allows for stack-to-stack connections between protocol
endpoints, such as from the L7 layer on Alice’s terminal to the L7 layer on Bob’s
terminal in Figure 1.

Network dynamics.

The previous description corresponds to a scenario where data flows along a fixed
transmission path. However, considerations for network dependability introduce the
use of a mesh network architecture and failover mechanisms, which bring temporal
reachability concerns. In terms of the horizontal axis, a temporarily unavailable net-
work element is automatically replaced by another, ensuring the continuity of the data
path from the end users’ perspective (Eq. 2), where t1 and t2 are two different instants.(

tpA→B(t1) = A → net11 → · · ·net1i · · · → net1N → B
)

≡
(
tpA→B(t2) = A → net21 → · · ·net2i · · · → net2N → B

) (2)

This leads to a functional object that remains invariant over time, represented by a
pseudo ordered set (Eq. 3), where {nei,j} is a set of network elements that forms a
redundancy group (i.e. assets within tp that are functionally equivalent).

tp∗A→B = A → · · · {nei,j} · · · → B (3)

The dynamics of networks must also be viewed through the multiplexing and
virtualization capabilities offered by the networks. These capabilities are primarily
motivated by considerations of optimal resource allocation and rapid deployment in
relation to the expectations for the network/service functions (e.g. forwarding, fil-
tering, processing) and performance (e.g. throughput, number of simultaneous users,
latency). Multiplexing can involve parallelizing links (tpA→B = A → · · ·

{
tpa1→b1 ∥

· · · ∥ tpaN→bN

}
· · · → B) to increase throughput or path resilience. Multiplex-

ing can also mean partitioning or stacking flows through recursive encapsulation
(
{
tpa1→b1 ∥ · · · ∥ tpaN→bN

}
⊂ tpA→B) to maximize the reuse of a given data transmis-

sion resource. Finally, virtualization enables temporary and mobile processing capacity
based on processing resource sharing ((nei ⊂ nej) ≺ (nei ⊂ nek)), like deploying a
firewall based on user needs or a cache system based on the localization of users.

2Implementation details, such as bidirectional mechanisms for flow control or data link management (e.g.
IP/TCP “SYN/SYN-ACK/ACK” sequence), are not discussed here for simplicity.
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2.2 Network Operations and Incident Management

What is an “anomaly”?

The term “anomaly” commonly refers to a deviation from the normal state that
requires action for recovery. In the context of NetOps, an anomaly is defined with
respect to a supervision process3 where alarms are a logical consequence of errors
(i.e. a deviation of a system from normal operation [3]) caused by persistent fault
causes (i.e. the physical or algorithmic cause of a malfunction [3]). These faults occur
within the atomic functions of network devices [2]. The alarms should be reported to
a Management and Control System, such as a Computerized Maintenance Manage-
ment System or Software Defined Network controller. The logical sequence of these
concepts can be summarized by: Fault ≻ Error ≻ Alarm ≻ AlarmReport.

In the context of SecOps, an anomaly is defined based on a business policy: user
and device activities that comply with the policy are considered legitimate, while
others may be classified as attack4. Errors, alarms and other automated analysis
reports from both the NetOps and SecOps domains serve as input for a behavioral
analysis process that utilizes causal entities such as threats (i.e. entities that can
adversely act on an unwanted asset [5]) and vulnerabilities (i.e. weaknesses of assets
that can be exploited by threats [5]). This analysis helps detecting attacks and inci-
dents (i.e. unwanted events resulting in the loss of confidentiality, integrity, and/or
availability [5]).

Incident management and root cause analysis.

The concept of IT Service Management (ITSM) emerged in the 70s-80s as organi-
zations recognized the importance of Information Technology for their operational
efficiency. Standards and best practices, such as ISO/IEC 20000 [6], ITIL [7], and
FitSM [8], were developed to provide guidance to Information Technology orga-
nizations in aligning their ITSM processes with business needs and international
best practices. These standards emphasize the establishment of a continuous quality
improvement loop, which relies on the observability of ICT systems and the accumu-
lation of knowledge, such as the causes of incidents and the corrective actions taken.
By adhering to these standards, network operators are well-positioned to achieve
and maintain the expected level of quality for end-users, as defined in Service Level
Agreements (SLAs). These SLAs often establish demanding performance or reliabil-
ity requirements, such as achieving “five nines” (99.999%) uptime, which is especially
critical for essential systems like power, transportation, and telecom networks.

Security management standards – such as the ISO/IEC 27000 series [6], ETSI
TVRA [5], NIST SP 800-53 [9] – distinguish between the business policy topic (i.e. rules
for leveraging the information system to detect and track illegitimate activities) and
the security implementation topic (i.e. selecting protocols and mechanisms to enforce
security). These standards provide guidelines for establishing an Information Security
Management System (ISMS), which focuses on risk mitigation through a multilevel

3Quoting [2]: the way in which the actual occurrence of a disturbance or fault is analysed with the purpose
of providing an appropriate indication of performance and/or detected fault condition to maintenance
personnel.

4Quoting [4]: “any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy
information system resources or the information itself.”
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iterative approach, such as a plan-do-check-act cycle. Methodological frameworks, such
as OCTAVE [10], EBIOS RM [11], and NIST SP 800-61 [12], can help organizations
setting up a cybersecurity management organization and aligning it with the ISMS.

The Incident Management Process (IMP) and Incident Response Management
(IRM) processes are designed to meet SLAs and security requirements (Figure 2). The
terms IMP and IRM can be considered interchangeable or have some level of difference
depending on the perspective of the individual [13]. Notably, due to the sensitive nature
of cybersecurity incidents, the SecOps incident lifecycle has a natural inclination to
be seen as an IRM. However, the underlying concepts apply to both the NetOps
and SecOps perspectives. For example, the containment stage in the SecOps context
(e.g. disabling a compromised user account to prevent the attacker from accessing
endpoints and other resources in the network) is similar to the restoration stage in
the NetOps context (e.g. applying a failover activation procedure on a load balancer
cluster to prevent the loss of access to an application). In both cases, the concept of an
incident (impacting the service or its security) is defined from the perspective of the
end user. The decision-making capabilities regarding the actions to be taken for system
restoration, attack containment, incident resolution or repair depend on the diagnostic
stage. Ideally, a Root Cause Analysis (RCA) leads to a clear diagnosis (i.e. to be able
to clearly and unequivocally state which event on which asset is at the origin of the
situation), and consequently, an objectively immediate choice of the repair procedure.

Fig. 2: Incident Management Process (IMP) vs Incident Response Management
(IRM).
Drawing a parallel between the alert and incident management processes for NetOps (ITIL Incident Management [14]) and
SecOps (Management of Information Security and Improvements [15, Annex A 5.24] & Design Basis Threat framework [16])
contexts, showcasing their fundamental stages and temporal milestones. These milestones can serve as metrics for evaluating
process performance and also for modeling and analyzing cyber-physical interactions.

3 Challenges inherent in ICT systems operations

In this section, we detail the objectives of this survey by analyzing the challenges
inherent in ICT systems operations, and we state our working hypotheses.
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Process performance and knowledge capitalization.

To effectively manage network operations, including incident management, it is essen-
tial to have a thorough understanding of the ICT systems’ state and operational rules.
In the absence of such knowledge, it becomes necessary to develop a method to group
and prioritize the multitude of indicators and notifications originating from network
operations, which are reported through NMS and SIEM systems. These notifications
encompass various aspects like system and application logs, performance indicators,
technical alarms, and service alarms, which are associated with spontaneous faults,
configuration changes, normal usage, and malicious activities.

By implementing a systematic approach to managing these information and noti-
fications, several benefits can be realized. For instance, it would allow to highlight
explicit behavioral patterns exhibited by the network, promptly report critical situa-
tions, facilitate tractable analysis of incidents, and identify new instances of faults that
are identical or similar to previously encountered issues. Moreover, this process could
enable the creation of new supervision rules that give priority to relevant notifications
until the root cause is pinpointed, thus establishing a connection with appropriate
remedial actions.

Scale effect.

As networks grow in size and complexity, organizations tend to adopt siloed structures
to maintain high expertise within specialized teams. This dual dynamic leads to Net-
work Operation Center (NOC) and Security Operation Center (SOC) teams becoming
overwhelmed with data analysis and alarms prioritization, considering that a thousand
of events per day and per security engineer is the practical maximum to deal with [17].
Although automatic alarm prioritization solutions are used to assist, they have limi-
tations: rule-based solutions result in false negatives and are hard to maintain, while
machine learning-based solutions lead to false positives and lack explainability.

Another consequence of this dual dynamic is that the knowledge about ICT sys-
tems’ behavior is fragmented across different teams with varying terminologies and
rules, even for similar equipment types. Hence, although the variety of decision support
tools and technical solutions to manage networks is a wealth in itself that corresponds
to the variety of technical or functional scopes to be managed, it is at the same time
a challenge for efficient incident situation understanding: in practice, decision-making
on the remediation action to be taken for a given situation must be based on a mul-
tiplicity of viewpoints stemming from various specialized tools. This diversity also
makes it challenging to consistently and practically account for system behavior, thus
undermining the principle of continuous improvement loop recommended in quality
management standards like the ITIL Incident Management process [14], ISO/IEC
20000 [6] and NIST SP 800-61 [12].

Knowledge representation.

We observe that graph-based technologies are more and more used to monitor complex
systems or help to detect anomalies [18–21]. We posit that using graphs as representa-
tion paradigms can be highly beneficial to network and cybersecurity administrators
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for improving situation understanding and response through User and Entity Behav-
ior Analytics (UEBA) [22] solutions as part of NMS and SIEM. Beyond the fact that
networks are generally represented as graphs for the intuitive value of this representa-
tion mode, employing an association model is crucial because similar network events
can lead to different incidents depending on the technical context in which they occur
(i.e. thinking of network configuration in the broad sense, including network topol-
ogy and equipment and service parameters). In fact, not using graphs eliminates the
possibility of considering an incident event as part of a larger whole that may itself
contribute to more complex events/incidents (e.g. common cause failures, cascading
failures and alarm spreading phenomenon).

Heterogeneity in concepts and data.

At the same time, using graphs necessitates imposing a certain level of consistency
in knowledge representation to ensure effective data utilization. The heterogeneous
nature of network data (e.g. technical characteristics of assets, technical logs and
alarms, performance measurements as time-series, users and organizations), combined
with the fact that graphs are a versatile data structure, may lead to the temptation
of directly recording this diversity of data in the graph, potentially overlooking the
need for generalization for downstream analysis tools (e.g. interpreting network inter-
face state changes consistently, irrespective of the manufacturer providing the textual
notification). Building upon earlier management protocols like SNMP [23], various
modeling languages and data models are now available to tackle this heterogeneity
challenge. For instance, the TM Forum Open APIs [24] offer interoperable definitions
for states and operations in decision support tools, the YANG [25] modeling language
describes configuration and state data of network elements, and several prior studies
in close relation to knowledge graphs [26] and Semantic Web [27] technologies have
shown the value of semantic modeling in network infrastructure monitoring, such as
INDL [28], CRATELO [29], UCO [30], ToCo [31], ACCTP [32], and DevOpsInfra [33].

The use of graphs also opens the door to the use of analysis and inference tools
directly aligned with graph theory (e.g. risk diffusion using shortest path calcula-
tions [34], event clustering using a centrality measure [35]), machine learning (e.g.
fraud analytics using graph isomorphism [36]), or automated reasoning (e.g. identi-
fying computer forensic scenarios using pattern matching [37]). However, introducing
new AI techniques or adapting existing ones for anomaly detection and root cause
analysis within graph structures must prioritize compatibility with this data format.
Challenges may arise, such as handling dynamic graphs [35, 38] or data transfor-
mations with information loss at the models’ input, thus leading to costly inference
pipelines for result recontextualization. Similarly, relying on a single AI technique
may prove inadequate for addressing the wide range of failure or attack scenarios that
can arise. Typically, detection tools and models specialize in specific data types and
detection cases, like using file excerpts to detect viruses by their signatures [39] or IP
packet headers to identify trend disruptions in application usages [40]. However, inci-
dent characterization often involves multiple artifact types or compromise indicators
due to the complex nature of large-scale system failures and the ingenuity of malicious
actors in devising attack scenarios. Therefore, unless an inference model capable of
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handling all data types and detection cases is available, an architecture like synergical
reasoning [41] (cooperative decision making) becomes essential. Such an architecture
could follow a model stacking scheme [42], or incorporate diverse specialized inference
models that collaborate, leveraging each other’s outcomes through mechanisms like
voting, on-demand inference and re-use of previous inference results.

Observability and decision-making.

Finally, since ICT systems are inherently interconnected, any action of modification
(whether it is intended to evolve or repair the system) must be taken with full knowl-
edge of the consequences. Therefore, having precise and complete knowledge of the
system is a desirable ideal, but it is not the general case for various reasons. From a
completeness perspective, typical examples include the absence of measurement means,
encrypted or protected data, or dropped notification data unit by the network. From
a precision perspective, the typical case is the accumulation of layers of data inter-
pretations, each introducing errors that hinder unambiguous decision-making. Taking
inspiration from [43], this phenomenon can typically be represented with Eq. 4:

DT = TH(TS(TP (D))) (4)

where T is an interpretation function, D is the data representing a system state,
measured by a probe P , encoded into the information system S, and then understood
by a human operator H for potential decision-making.

The first drawback arising from this observability context is that the diagnostic
phase corresponds to a special situation of making an inference from vague or fuzzy
premises [44], thus necessitating the inclusion of a belief or confidence indicator with
the results of the RCA (Figure 3). The second drawback is the risk of error in choosing

Fig. 3: Graduated Root Cause Analysis (RCA) computation strategy.
During incident diagnosis, the accuracy of root cause search results determines remediation action selection. In the best
case, actions are deduced from the cause; otherwise, abductive reasoning [45, 46] is used to select probable causes/solutions
or present research hypotheses.

the remediation action. This is theorized in [41] through equation L ≡ C∧Pi → G⟨p⟩,
where L is a logical lemma, C a concept, Pi the ith procedure stored in a knowledge
base, G the goal to be reached (i.e. returning the system to normal operations) and
⟨p⟩ a probabilistic measure of confidence over L.5 The typical approach in this kind of

5The equation can be read as “If the context C appears to hold currently, then if I enact the procedure
P , I can expect to achieve the goal G with certainty p” [41].
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situation is to proceed through trial and error until the system is brought back to a
viable state. This involves making decisions in uncertainty about a system whose state
evolves over time, influenced by its own dynamics and the consequences of attempted
actions for incident recovery (Figure 4).

Fig. 4: Sequential & uncertain decision problem on a hybrid “concrete-conceptual”
model.
Witness 1 interprets the network’s state (a set of state vectors related to structural elements SE at time t) abstractly using
concepts (C) and combinations of concepts (CoC). Each time step has potential future states based on the technical and
conceptual neighborhood of SE (M = malicious actor, Ops = planned operations, etc.), and a state transition model (set
of rules). Witness 2 can predict future state vectors by analyzing transitions or actions on the system, while Witness 3
observes the system with its new set of states and concepts (same as Witness 1) resulting from the application of the state
transition model. Lack of knowledge about state vectors or rules leads to considering the inference process (e.g. alerting on
undesirable user/system trajectory, predicting next user/system action for corrective maintenance) as a sequential decision-
making problem under uncertainty, where states and transitions represent the system’s dynamics.

Working Hypotheses.

Considering the aforementioned challenges, we aim to provide a constructivist frame-
work towards mastering the complexity of ICT systems behavior in the context of
network operations and incident management. Therefore, we propose the following
main assumptions or working hypotheses for guiding this survey.
Hypothesis 1. The fundamental model for representing ICT systems and their
dynamics is a dynamic graph (network topology + notifications = dynamic graph).
Hypothesis 2. Alarm spreading and cascading failures are bounded in terms of both
time and location.
Hypothesis 3. The functioning logic of ICT systems can be (partially) inferred or
learned by observing both network topology and notifications.
Hypothesis 4. The state trajectory of ICT systems reflects the course of action,
including malicious usage.
Hypothesis 5. The state trajectory of ICT systems can be mapped to a logic-based
abstracted representation of the situation.
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Ultimately, by leveraging diverse data sources and drawing insights from domain
experts, the research community, and shared/private data models, the framework
based on these hypotheses could facilitate understanding the behavior of a complex
technical system. This understanding could then be used to reason about the system’s
trajectory in a transparent manner through a fundamental data flow abstraction (Eq.
5), enabling applications such as anomaly detection and optimal design calculations.

E e.t.l.−−−→ K⟲r infer.−−−−→ P (5)

where E is the Environment (i.e. primary and secondary data describing the network)6,
K is the Knowledge (i.e. information about the network behavior and business rules
guiding network administration tasks), P are the Propositions (i.e. explained infer-
ences about the network states and behavior), e.t.l. is an Extract-Transform-Load
process or alike, r is a reasoning process (i.e. an “internal” inference process aimed at
producing facts and knowledge from basic facts present in K) and infer. an inference
process.

4 Research Methodology

In this section, we explain the methodology used for creating this survey. Considering
anomaly detection for ICT systems as an end-to-end research topic, we followed a
two-step research methodology to collect and analyze relevant scholar and technical
articles.

Firstly, in relation to the challenges discussed in Section 3, we broke down the
field into the four following research axes to establish a framework for exploration and
analysis: Knowledge Representation (KR) as the capability to store and process
heterogeneous data; CompleXity (CX) as the capability to (efficiently) handle and
process data streams as well as older/static stored data; Anomaly Detection (AD)
as the capability to contextualize events and use them as a basis for complex anomaly
detection; eXPlainability (XP) as the capability to provide feedback to the decision
support system users about the reasoning process that led to a given alert.

Next, we conducted a keyword/topic-based systematic bibliographic research
across various sources including peer-reviewed scholar venues, standardization bod-
ies and well-known organizations such as Gartner or CISCO, filtering on the targeted
application domains (e.g. networks and data centers management, software engi-
neering, cybersecurity, cyber-physical systems). We also considered the co-citation
network, adoption degree, and the availability of implementations. In order to address
the subject comprehensively, our initial set of keywords included “anomaly detec-
tion”, “failure detection”, “availability”, “dependability”, “self-healing”, and “process
modeling and comparison”. Then, regarding the knowledge representation axis, we fur-
ther looked for data structures and knowledge representations commonly used in the
ITSM and cybersecurity domains with more specific keywords: “network and system

6We use a general definition of primary data (data directly collected on the source, may be in raw format
or that have been normalized for future processing steps) and secondary data (data that has already been
collected, processed, or even aggregated).
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topology/functional description”, “event/fault/signaling notification”, “asset manage-
ment”, “communication protocol definition”. This included scrutinizing telco and IT
standards, user manuals of products, and code analysis from the research community
projects. As graphs have a natural affinity with ICT system diagrams, we primarily
targeted knowledge representations with native support for graph structures, notably
knowledge graphs [26] based on Semantic Web technologies [27] for their knowledge
interoperability and inference capabilities. We also expanded our exploration to more
traditional data structures such as relational tables in database management systems,
decision trees, and Bayesian networks [47], as translations between these structures
and graphs can be made back and forth with help of additional tools.

Using this method, we have selected ∼ 270 references that have been further ana-
lyzed according to the specific criteria for the three sections that follow: in Section
5 (capabilities of DSSs), we examined a corpus made of approximately 65 industrial
tools, file formats, and data exchange standards; in Section 6 (semantic models), we
examined 97 references that were published between 2004 and 2025; in Section 7
(algorithmic methods for anomaly detection), we examined 106 references that were
published between 1999 and 2024. Note that some references may address more than
one research focus. For example, FOLIO [48] describes the development of knowledge-
based anomaly detection techniques that is typically associated with the development
of a semantic model that allows for representation and reasoning in the discourse
domain.

5 Detecting Anomalies and Malicious Activity: a
Cartography of Industrial Tools

Designing a data processing architecture for incident management of ICT systems
involves various research and technical domains, such as data transformation and
wrangling, storage and processing architectures, decision making, and business process
management. In this section, we review related work focusing on the current archi-
tectures of Network Monitoring System (NMS) and Security Information and Event
Management (SIEM) systems. First, we examine high-level requirements from the eye
of NetOps and SecOps in Section 5.1. Then, we analyze the well-established capa-
bilities of these tools in Section 5.2. Finally, we discuss the remaining limitations in
Section 5.3.

5.1 What Do Experts Need To Ask Monitoring Tools and
Decision Support Systems?

As mentioned in Section 2.2, recommendations apply to both the NetOps and SecOps
domains in terms of organization and tooling. These recommendations aim to achieve
the dual objective of maximizing service quality/security and minimizing anomaly
detection/correction times. In both domains, the incident management process is
described as a sequence of iterative steps including the diagnosis of the situation and
leading to the remediation and correction of an undesirable situation. As such, it is akin
to an “action-observation-reward-goal” process model [49] with the following scenario:
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1) a failure (issue) on an asset induces events and alarms on the asset’s neighborhood;
2) responding to a trouble ticket (an alert), a network or security administrator ana-
lyzes events and alarms to distinguish primary events (causes) from secondary events
(effects); 3) contextualizing events and alarms with respect to “in policy” or “out
of policy” activity models enables the administrator to select a remediation action;
4) based on the remediation action results, the administrator closes the trouble ticket
(the issue) or loops back for further analysis and corrective actions.

When engaged in this four-step scenario, experts wish to get an accurate insight
about some specific event occurring over the network and be able to answer fundamen-
tal questions such as: “what are the objects involved?”, “what are the observations?”,
“what can we infer from a set of observations and why can we infer this?”, “what are
the causes / consequences?” and “what is the remedy?”.

It is noteworthy that these questions follow an incremental situation understanding
task scheme, i.e. from elementary queries on a knowledge base (e.g. using SPARQL
queries [50], the DROOLs [51] engine) to queries combined with specialized inference
modules (e.g. rule-based, entailment [52], classification, what if model [53], digital
twin simulation [54, 55]). It is also noteworthy that these questions lead to secondary
requirements in terms of reasoning capabilities upon situations: dependency calculus
(e.g. what services are at risk whenever this host fails?); causality inference (e.g. is this
log related to some other log?), situation awareness (e.g. is this set of log anecdotal
evidence of an attack course of action?). These questions and remarks themselves are
guides for the expectations of NetOps and SecOps teams regarding monitoring tools
and DSSs.

5.2 What Are the Well Established Capabilities of Those
Tools?

Umbrella systems for centralized situation understanding.

To support network and security administrators in their task, numerous tools and
procedures are available for diagnosing the state of ICT systems (remote access to
devices [56], on-site measurements and indicators from probing systems [57], decision
support tools such as NMSs [58, 59] or SIEMs [60, 61]), monitoring the life cycle of
incidents, and capitalizing on knowledge of the causes and solutions to incidents (help
desk ticketing systems [62], knowledge bases [63]). This variety of tools and solutions
is a wealth in itself that corresponds to the variety of technical or functional scopes
to be managed (e.g. network traffic analysis [64, 65] vs malware signature in files [39],
IPoDWDM international backbone network vs distribution and access data center
network). However, this is at the same time a challenge for a unified approach to the
diagnostic stage: in practice, decision-making on the remediation action to be taken
for a given situation must be based on a multiplicity of viewpoints stemming from
various specialized tools. NMS and SIEM platforms play a crucial role in addressing
this challenge, as their typical role is to centralize and present all technical information
and alerts from networks.
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Log recording/management and notification analysis.

NMSs and SIEMs are two different product lines due to the nature of the data pro-
cessed and the expectations regarding the incident management processes in which
they are involved. For telecommunication networks, alarms (i.e. a durable or non
fugitive fault that happens on an atomic function, as discussed in Section 2.2) are
first class citizens that should be reported to a MCS for performance analysis and
service impairment detection. For cybersecurity, technical logs need to be combined
with vulnerabilities and threat intelligence in a Log Collection → Log Normaliza-
tion → Notifications and Alerts → Security Incident Detection component chain for
threat response management [17]. Both product lines show two main functional blocks:
log recording/management and notification analysis, with the second block depen-
dent on the first. Figure 5 illustrates this for SIEMs, highlighting the characteristic
sub-functions of each block. It also shows that the implementation of the record-
ing/management block primarily involves technical solutions, while the analysis block
primarily involves algorithmic solutions.

Fig. 5: SIEM technical and functional capabilities.
Use case analysis for SIEMs, based on [17], using the UML representation standard. Dotted lines indicate a functional
dependency, and diamond lines represent a composition relationship. The light blue use cases (top ellipses) are technical-
focused use cases, while the other use cases are primarily algorithmic-based.

Handling heterogeneous data and short/long-term analysis.

As ICT event data falls into the category of big data (e.g. high volume, variety, and
velocity characteristics) [66], design choices for the implementation of the record-
ing/management and analysis features are influenced by the need for efficient data
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ingestion, processing performance, and data retention. These design choices aim
to enable both near-real-time anomaly detection (e.g. event correlation indicating
the propagation of malware) and long-term behavior analysis of the systems (e.g.
calculation of the characteristic propagation method of a given malware).

In both NMS and SIEM contexts (e.g. ZenOSS [67], NetWitness [68]), data pro-
cessing architectures generally follow the producer/consumer design pattern (a.k.a.
observer pattern [69]) and inspirations from distributed computing (i.e. hubs + aggre-
gator).7 This type of architecture indeed offers a level of modularity that allows for
managing the integration of data sources with varied persistence and dynamics charac-
teristics through specialized modules that operate independently. This is particularly
the case when monitored systems are heterogeneous, such as a High-Performance Com-
puting (HPC) platform with a data transfer and processing service offer vs an Internet
service provider with communication service and Platform as a Service (PaaS) offers.

The architectures used also allow for combining multiple storage solutions. The
general trend is to maximize Input/Output (I/O) performance and minimize storage
footprint, subject to both data semantics and persistence/dynamics characteristics:
1) daemons and web applications (e.g. dedicated filesystem for raw logs, binaries and
libraries); 2) events and node information (e.g. PostgreSQL8 for structured notifica-
tions and characteristics); 3) performance data (e.g. RRD9 for throughput or CPU
usage time series). When not combining storage solutions, alternative approaches are
to apply rule-based data normalization before storage (e.g. ManageEngine’s Event-
Log Analyzer10), store raw logs/events then normalize data before applying rule-based
analysis modules (e.g. SolarWinds’s Security Event Manager11), or apply in-memory
real-time analysis of data streams and process the resulting information (e.g. OSSEC
Foundation’s OSSEC HIDS12, IBM’s QRadar13). It is noteworthy that durable stor-
age formats mainly correspond to relational database management systems or time
series databases, rather than graph formats, except for new entrants in the market
(e.g. Luatix’s OpenCTI14, EXFO’s Nova Context15). Overall, the proposed approaches
are a compromise between two related trends: how data is conceptually stored and
managed, and how hardware/software handle data.

Information correlation and shared services.

Log centralization in NMS and SIEM systems allows network administrators to focus
their monitoring and analysis activities on a single tool. An additional strategy imple-
mented by monitoring tools and DSSs to minimize (cognitive) resources required for
analyzing alarms and logs when presented to the operator is based on the concept of

7The TM Forum’s Open Digital Architecture (ODA) aims to improve user experience and Information
System (IS) interoperability in the ICT industry beyond general best-practice approaches for Decision
Support Systems design.

8https://www.postgresql.org/
9http://www.rrdtool.org/
10https://www.manageengine.com/
11https://www.solarwinds.com/
12https://www.ossec.net/
13https://www.ibm.com/qradar
14https://www.opencti.io/
15https://www.exfo.com/
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semantic distance (i.e. the distance between the goal aimed by the user and the action-
s/objects of the user interface [70]). Various complementary approaches are observed
in this regard, among which notification contextualization through rendering and noti-
fication rewriting and enriching are playing a significant role and typically leverage the
DSS operators’ skills through implicit characterization of the notification. Regarding
rendering, classic examples include flashing a shape on a network map and displaying
the alarm in text form alongside other information related to the equipment or service
affected by the alarm. For rewriting and enriching, examples include mapping an alarm
to a basic supervision category16 and annotating it with probableCause [3] attribute
value or confidence score based on inference services (Figure 6), thereby relating the
notification to the fault interpretation domain and the context for assessment.

Another strategy involves grouping and hierarchically prioritizing notifications to
facilitate RCA and decision-making for remediation actions. RCA for alarm spreading
phenomenon in ICT systems is typically approached as an inductive process that
distinguishes between primary failures (i.e. a failure that directly indicates the fault
location and initiate a repair action, e.g. a broken cable or a misconnection) and
secondary failures (i.e. a consequential failure, e.g. an upper level service that is gone
down) [2, Section 7.1.1.1]. Therefore, the cause of a data transmission impairment is
sought in the first alarming network element of a datapath, and redundant Alarm
Indication Signal (AIS) can be silenced using an alarm suppression function or linked
to a parent notification using a correlatedNotifications [3] attribute.

Similarly, for non-hierarchical or more complex systems, UEBA is typically
approached through a doubt removal process using dependency graphs or decision
trees. Applied examples of this model-based approach are present in NMSs/SIEMs
where it is assumed that the network topology and transaction records (i.e. a sequence
of one or more operations – reads or writes – which reflects a single real-world tran-
sition [75]) are a model for causality relationships about network elements, services
and applications. As this kind of feature is a key differentiator for commercial tools,
few detailed papers are freely available about this but online blog posts for demon-
stration purposes. For examples, we refer to the Zenoss “Layer 2 ZenPack” [76], the
Riverbed “APM” [77] or the Cisco AppDynamics “Cognition Engine” [78]. In the
absence of algorithmic solutions, doubt removal is typically achieved in DSSs by facil-
itating an exploratory approach to data through the use of hyperlinks for navigating
between information elements, display filters, a query system on the DSS database,
and even interactive annotation (e.g. IBM “i2 Enterprise Insight Analysis” [79]) and
event sharing among the supervision staff.

5.3 What Are the Remaining Limitations?

Although NMSs/SIEMs are a data focal point for network element characteristics and
operational states, it is noteworthy that automated contextualization of notifications
does not (or minimally) take into account network topology information (e.g. network

16As per [2, Section 7.1.1] for telecommunication networks: transmission (management of the transmis-
sion resources in the network), quality of service (degradation in the performance), processing (software or
software processing fault), equipment (fault localization and repair of the equipment itself) and environ-
ment (ambient conditions within an enclosure in which the equipment reside). In the cybersecurity domain:
Confidentiality, Integrity, Availability (a.k.a. the CIA triad).
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Fig. 6: Cybersecurity tools relationships.
This entity-relationship diagram shows how specialized cybersecurity applications like SIEM (e.g. OpenCTI) or Cybersecurity
Threat Intelligence (CTI) tools (e.g. VirusTotal) can compose, with help from shared services (e.g. NVD [71], MISP [72],
Maltego [73]) or exchange formats (e.g. STIX [74]), in order to provide contextualized information over detection tools (e.g.
SNORT [64], YARA [39]). Regarding relationships around SIEMs, emphasis is placed on the OpenCTI tool due to the easy
accessibility of its detailed features, as it is an open source tool. Relationships around the UCO [30] component showcase
the data sources and exchange formats used for knowledge discovery and After Action Report (AAR) annotation tasks as
mentioned in [30], providing insights into the functional domains covered by the UCO project. The method used to construct
this survey consisted of distinguishing, within the exchange formats, the aspects from those that rely on specific analysis
tools, and then tracking the interrelationships between these tools.

links, data flows, routing tables, failover mechanisms, location), network operation
information (i.e. current and past trouble tickets or scheduled operations), agreed-
upon work methods (e.g. equipment upgrade or IP address blacklisting procedures),
or information regarding services provided to users (e.g. contractual data, business
functions affected by a network service). Instead, it is rather the principles of User
Interface/User eXperience (UI/UX) ergonomics and easy access to complementary (ad
hoc) tools (e.g. search engine of Operations Support Systems (OSS), network diagram
inference from traffic dumps, queries to third-party CTI tools) that are deployed,
trusting that the DSS user will have and know how to mobilize the necessary skills to
perform diagnostics.

Part of the reasons for this state of affairs comes from the fact that networks are
complex and open systems (i.e. no a priori knowledge of the behavior of users and con-
nected neighboring systems) are constantly evolving (e.g. new customers, new devices,
new services). This, in turn, leads to an administrative effort in managing DSSs, defin-
ing alert rules, and ensuring data coherence, with costs exceeding regular operational
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expenses. For example, regarding the RCA and UEBA techniques evoked in Section
5.1, it is indeed necessary to consider that learning and using causal models rely on
the idea of having complete knowledge of the ICT systems. This requires a complex
technological ecosystem composed of network discovery protocols (e.g. LLDP [80]),
cross-vendors definitions of managed objects (e.g. non vendor-specific branch in a
SNMP Management Information Base or in a YANG model [81]), active network mon-
itoring systems (e.g. flow monitoring with an IPFIX [82] compliant system) running
over an in-production network, and even information sharing between network produc-
tion and operation stakeholders. Regarding information sharing, functional alignment
issues can be observed between the data models and vocabularies implemented and
used by network production and operation stakeholders, thus entailing poor interop-
erability (e.g. challenges in interpreting potentially similar facts and concepts) and
further complicating the implementation of RCA and UEBA techniques (i.e. causal
relationships filtering for unseen yet failure modes or incident situation is generally
unavailable unless explicitly implemented by NetOps and SecOps experts responsible
for a specific network). Table 1 illustrates this with data exchange formats in the field
of cybersecurity, along with the existence of numerous cybersecurity taxonomies from
various sources: European Commission [83, 84], NIST Computer Security Research
Center17, IEEE18, IFIP19, ECSO20, cyberwatching.eu21, and so on.

Although interoperability of data representations and exchange formats is a cor-
nerstone of current limitations, the heart of the problem lies in the ability of DSSs
to effectively support the diagnostic steps performed by experts by providing full and
reliable contextualization of events occurring on the ICT systems. According to Cyber-
netics [86], processing a notification alone cannot increase its informational content,
but enhancing the precision of the knowledge about the situation in which it occurs
can be valuable, even in ambiguous situations. Similarly, time psychomechanics [87]
suggests that a complete understanding of an object involves considering not only its
current state but also the various states it has gone through. Based on these princi-
ples, a natural approach to enhance the capabilities of NMSs/SIEMs is for analysis
algorithms to rely on a comprehensive and integrated view of ICT systems and their
ecosystem, rather than aggregating inference results from several algorithms, each
using a subset of data. The means to implement this proposal are analyzed in the fol-
lowing sections, starting with the knowledge representation and reasoning perspectives
in Section 6, and then the anomaly detection perspective in Section 7. Ultimately, as
insights from NetOps can benefit SecOps and vice versa, NMSs and SIEMs could then
be considered as part of the same DSS solution.

17https://csrc.nist.gov/
18https://standards.ieee.org/practices/foundational/cybersecurity-standards-projects/
19https://www.ifipsec.org/
20https://ecs-org.eu
21https://www.cyberwatching.eu/
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Table 1: Cybersecurity vocabularies and featured application
domains.
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CAPEC ✓ ✓ ✓ ✓ ✓

CCE ✓ ✓ ✓ ✓ ✓ ✓

CCSS ✓ ✓ ✓

CEE ✓ ✓ ✓ ✓

CPE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVRF ✓

CVSS ✓ ✓ ✓ ✓ ✓ ✓ ✓

CWE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CWSS ✓ ✓ ✓

CYBEX ✓

CYBOX ✓ ✓ ✓ ✓ ✓ ✓

IODEF ✓ ✓

MAEC ✓ ✓ ✓ ✓ ✓ ✓ ✓

OCIL ✓ ✓ ✓ ✓ ✓ ✓

OVAL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SBVR ✓
STIX ✓ ✓ ✓ ✓ ✓

SWID ✓ ✓ ✓ ✓ ✓ ✓

XCCDF ✓ ✓ ✓ ✓ ✓ ✓ ✓

Comparison of the application domains for well-established cybersecurities vocab-
ularies, based on [85].

6 Knowledge Representation and Reasoning: a
Cartography of Semantic Models

In order to represent data in graphs for NMSs and SIEMs, the remaining limitations
discussed in Section 5.3 highlight the need to combine various facets of knowledge.
Ontologies – as explicit representations of a discourse domain through concepts and
relationships – and their instantiation as knowledge graphs [26], enable data analysis
and inference techniques to handle heterogeneous data and reason about the context
of represented objects. In this section, we provide a summary of the ontologies we
have collected during our systematic literature review, starting with the definition of
evaluation criteria in Section 6.1, and reporting on our analysis in Section 6.2.
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6.1 Evaluation Criteria

The data collected and evaluation criteria used to analyze the ontologies are as follows:
• Name. The name of the ontology or, if not available, the title of the document

describing it (e.g. research paper, specification, website).
• Primary application domain. The domain or field of application that origi-

nated the ontology, based on the indications provided by the authors, or if not
available, deduced by us.

• Bibliographic document category. We categorize reference documents dis-
cussing the data model based on a detailed reading to estimate the effort
required for understanding, using, or implementing the model. The six cate-
gories are: “position” (analyzing domain issues and expressing intentions for
future work), “overview” (providing a high-level description and use cases), “spec-
ification” (formally describing the design methodology and model), “dataset”
(primarily presenting a dataset), “documentation” (providing context and usage
information), and “no access to paper” (due to broken links or access restrictions).

• Main concepts and relations. We sample concepts and relationships from
the data model, either from its implementation or the authors’ description. We
focus on top-level concepts and their relationships, and sometimes second-level
concepts if there are few top-level ones. In complex models with many top/second-
level concepts and shallow hierarchy, we consider the centrality of concepts. This
centrality indicates their importance in the domain’s conceptualization and can be
inferred from graph diagrams in ontology reference documents (research papers,
documentation).

• Availability and location. We assess availability of data model implementa-
tion: “yes” (publicly accessible), “broken link” (unavailable despite reference),
“empty content” (reachable but empty), “no reference provided” (location not
indicated or explicitly stated as unpublished), or “not relevant” (not related to
Semantic Web or data model). If implemented, we record URL and serialization
used.

• Bibliographic citation count. We evaluate the usage or consideration of the
proposed data model based on the number of citations of the research paper or
reference document describing it. The citation count is obtained from Google
Scholar22, and the corresponding URL is recorded.23

• Ontology metrics. We gather the characteristics of the data models, including
the number of classes, object properties, data properties, individuals, and Descrip-
tion Logic [52] expressivity. This information is collected using the Protégé 5.1
tool [88] or, if we do not have access to the implementation of the model, based on
the details provided by the authors (in research papers or online documentation
describing the data models).

• Best practice compliance. We assess the quality of implemented data models
using best practices described in [89] and the related OOPS! tool24. To do this,

22https://scholar.google.com/
23To fully understand ontology adoption, detailed usage information such as the number of instantiated

classes and its evolution over time would be valuable. However, this information is generally not available.
24https://oops.linkeddata.es/
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we obtain a copy of the data model (from references in research papers, online
documentation, or by contacting authors), normalize it into RDF/XML format
using Protégé 5.1, send it to the OOPS! Web service for analysis, and aggregate
the results. For modular models, we merge the ontologies into a single file using
Protégé before analysis with OOPS!.

• Conceptual facets coverage. We analyze the capability of data models to
encompass the four facets of the discourse domain – as established in [90] by
considering dynamic ICT systems with constrained and multi-level functional
behavior (Figure 7) – that are essential for representing networks and their
dynamics: structural (network assets such as servers and links), functional (net-
work services and flows), dynamic (events and states changes) and procedural
(processes and actions). We evaluate this by examining main concepts and rela-
tions of the data models using a subset of competency questions (Table 2) derived
from NetOps and SecOps expert panel interviews conducted in [90].25

Fig. 7: ICT system state transition model and four-faceted knowledge domain.
The representation of a network can be divided into four facets: structural, functional (the blue path indicates an operational
data flow, the red path a faulty flow), dynamic, and procedural (logged events are related to cybersecurity attack tactics from
the MITRE ATT&CK matrix [92]). Tau stands for state transition, O(t) for observed state at time t, and p for state
prediction. Figure and caption from [90].

6.2 Semantic Models

In this section, we present the identified data models from the literature review, their
categorization, and evaluation based on the previous criteria. Out of 99 references
analyzed, 52 had an implementation using Semantic Web technologies [27] (i.e. using
a RDF-related serialization [93] or OWL functional syntax [94]), while the remaining
47 did not have an implementation. In the following, we focus on the models with
available implementations. The complete analysis and resources are open source and
can be found at https://w3id.org/noria/docs/sota.

25We acknowledge that automatic topic modeling could help qualifying a data model for facets. However,
based on our experience (e.g. using the ZeSTE tool [91]), we find that it is possible but not reliable due to
its dependence on concept naming and description, which is influenced by ontology author bias.
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Table 2: Competency questions for analyzing the conceptual facets coverage.

St. Fu. Dy. Pr. Competency Questions

✓ ✓ What assets are shared by a given asset chain?
✓ ✓ Which entity (resource/application/site) is concerned by a given incident?
✓ ✓ On which resource did this sequence of events take place and in which order?

✓ What corrective actions have been carried out so far for a given incident
(who, what, where)?

✓ What interventions were carried out on this resource that could have caused
the incident?

✓ What operation plan (automations, operating procedures, etc.) could help
us solve the incident?

✓ Given all the corrective actions carried out so far for the incident, what
possible actions could we still take?

The four knowledge facets to represent (St.: structural, Fu.: functional, Dy.: dynamic, Pr.: procedural)
map to a subset of competency questions (i.e. user queries expressed in natural language) derived
from NetOps and SecOps expert panel interviews, as described in [90]. This panel consisted of 16
experts from Orange26, an international network infrastructure and service provider, who collectively
represent 150 operations team members.

Table 3 provides a list of data models. We observe that the models cluster into six
primary application domains (theme), with varying proportions of available models
and model characteristics. Table 4 summarizes to what extent the set of models for
each application domain theoretically aligns with the four-faceted targeted discourse
domain, as defined in Section 6.1 and illustrated in Figure 7. From the proportion of
models with identified facets in Table 4, we observe that the models developed in the
domains of Process modeling and Smart Environment and Smart Industry (SE-SI)
are the most represented. This suggests the significance of modeling efforts in repre-
senting networks and their dynamics in these domains. However, the models in these
domains generally exhibit disparities in terms of the targeted concepts, as revealed
by the fact that process mining models focus on the dynamic and procedural facets
without significant overlap with the structural and functional facets, which are pri-
marily addressed by models in the SE-SI domain. Similarly, the proportion of models
simultaneously covering multiple facets (i.e. Fx% columns in Table 4) indicates that
models in the CyberSec domain seek to cover the maximum of facets simultaneously.
This suggests a greater expressiveness and complexity of this group of models (e.g. in
terms of the number of concepts and relationships between them).

In this line of thought, regarding the low coupling between facets and poten-
tial difficulties in precisely allowing for reasoning on the interplay between network
architecture and its operation, a detailed analysis of the data models reveals various
opportunities for enrichment, improvement, or linking of the models. For example,
the combination of the SEAS and PEP [117, 136] models enables the representation
of communication links between technical assets and facilitates the analysis of assets’
state changes by tracking commands and results. However, SEAS mainly targets the
Internet of Things (IoT) domain and end-user devices, and the semantics of PEP
relates to computer process. The DevOpsInfra [33] ontology enables the provision-
ing of data processing services and tracking computer resources hosting capabilities.
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Table 4: Number of semantic models and facet coverage ratios by application domain.

Theme MC St. % Fu. % Dy. % Pr. % F0 % F1 % F2 % F3 % F4 %

Generic 18 0,0 11,1 55,6 38,9 33,3 33,3 27,8 5,6 0,0
CyberSec 12 50,0 50,00 58,3 83,3 0,0 41,7 16,7 0,0 41,7
SE-SI 9 88,9 66,7 55,6 44,4 0,0 11,1 44,4 22,2 22,2
Net-IT 8 71,4 42,9 28,6 28,6 0,0 37,5 42,9 14,3 0,0
Process modeling 4 50,0 25,0 75,0 100,0 0,0 25,0 25,0 25,0 25,0
Health Science 1 100,0 0,0 0,0 100,0 0,0 0,0 100,0 0,0 0,0

Overall 52 44,2 36,5 53,8 55,8 11,5 30,8 30,8 9,6 17,3

This table summarizes Table 3 from the perspective of the number of models (MC) and the use of facets
by primary application domain (Theme). The columns St.% , Fu.%, Dy.%, and Pr.% correspond to the
proportion of models for which the facet has been identified. The columns Fx% account for the expres-
siveness of the models by comparing the proportion of models that meet 0, 1, 2, 3, or 4 facets. Italicized
values for the Health Science theme indicate that they may not be representative due to the inclusion of
only one model from this family in the sample.

However, concepts are missing for a finer grained description of the network topol-
ogy. Additionally, the ontology mainly focuses on the provisioning activity and is not
aligned with other well-known models such as SOSA [133] for sensors and probing
systems, and the TM Forum Open API [24] for interoperable definitions of states and
operations between DSSs.

The NORIA-O [90] model enables representing network infrastructures and their
events – such as alarms and incident tickets – and connects to third-party models for
diverse analytical perspectives. However, its generality necessitates careful considera-
tion of how to integrate different technical architectures into a coherent framework for
multi-domain analyses. The CRATELO [29] and PACO [137] models enable the repre-
sentation and classification of network traffic. However, they lack concepts for network
topology and operations, which are necessary for contextualizing network traffic ses-
sions within the network topology itself and day-to-day operations. Regarding the
representation of procedural knowledge, the detailed analysis of the data models also
reveals that Semantic Web-based models have less presence in modeling capabilities
for knowledge about processes with conditional branching (e.g. IF-THEN-ELSE deci-
sion making) compared to sequential and relatedness knowledge. This suggests that
representing networks using the available models or through the knowledge graphs
formalism may not be self-sufficient for interpreting their dynamics, unless relying
on external knowledge and reasoning tools as proposed by FOLIO [126] through the
Failure Mode and Effect Analysis (FMEA) approach and the use of a rule engine
(e.g. leveraging the Semantic Web Rule Language (SWRL) [138] or the SPARQL
Inferencing Notation (SPIN) [139]).

Finally, regarding the compliance with best practices, all models exhibit non-
conformance to varying degrees across application domains, in terms of both quantity
and severity. However, it is worth noting that the number of non-conformance generally
increases with the size of the model.

Table 5 highlights the top five implementation pitfalls found in the set of seman-
tic models listed in Table 3. The relatively low severity of these non-conformance
(three “Minor”, two “Important”), as well as their nature (i.e. primarily related to the
characterization of relationships and the description of concepts and relationships),
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suggest that the proposed models are generally ready for short-term integration into a
knowledge graph-based solution. However, it is important to note that their inference
capabilities may need to be adjusted based on experiments with practical cases.

Table 5: Most common implementation pitfalls in semantic models.

Code Importance Level Description Count

P13 Minor Inverse relationships not explicitly declared 43
P11 Important Missing domain or range in properties 42
P08 Minor Missing annotations 41
P04 Minor Creating unconnected ontology elements 29
P10 Important Missing disjointness 20

This table highlights the top five implementation pitfalls found in the set of seman-
tic models listed in Table 3, as reported by the OOPS! tool.

7 Anomaly Detection: a Cartography of Algorithmic
Methods

NMSs and SIEMs, described in Section 5.2 as umbrella systems for centralized sit-
uation understanding, already enable significant operational efficiency for incident
management. However, the remaining limitations discussed in Section 5.3 show room
for improvement in their automated analysis functions towards greater explainability,
notification contextualization, and notification grouping and prioritizing. With the aim
of enabling these improvements, we provide in this section a summary of the anomaly
detection methods we found in our systematic literature review, starting with the def-
inition of evaluation criteria in Section 7.1, and reporting on our analysis in Section
7.2.

7.1 Evaluation Criteria

The data collected and evaluation criteria used to analyze the anomaly detection
methods are as follows:

• Name. The name of the anomaly detection method or, if not available, the title of
the document describing it (e.g. research paper, blog post, tool documentation).

• Primary application domain. The domain or field of application that origi-
nated the anomaly detection method, based on the indications provided by the
authors, or if not available, deduced by us.

• Approach. A short description of the method, and a categorization of the
method summarizing its core principle.

• Usage step. The typical stage of the incident management process – as discussed
in Section 2.2 and Figure 2 – to which the use of the method corresponds, based on
the information provided by the authors, or deduced by us otherwise. We define
the following three macro stages: design (i.e. techniques providing prior knowledge
of system operation and enabling optimal deployment based on safety criteria or
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potential re-engineering to meet these criteria), detection and classification (i.e.
techniques analyzing artifacts related to the system lifecycle to generate an alert
for an undesirable situation), and diagnostic aid (i.e. techniques enabling the
characterization of a given situation).

• Data structure. The main data structure(s) used within the algorithmic method
for its model learning and inference stages. This data structure may differ from
that of the input data due to the specificities of the method (e.g. aggregation
of heterogeneous data into a knowledge graph, semantic annotation of natural
language documents).

7.2 Algorithmic Methods

In this section, we present the identified algorithmic methods from the literature
review, and their categorization based on the previous criteria. Out of 106 references
analyzed, 57 emerged with both a primary application domain close to the NetOps
and SecOps fields and practicality falling into an incident management stage. We ana-
lyze these 57 references in the following paragraphs, providing an overall analysis from
the point of view of approaches, usage stage, and data structures. Statistics on the
primary application domain are as follows: CyberSec = 22, Net-IT = 17, Generic = 5,
Industry 4.0 = 5, Energy systems = 4, Smart-Cities and Smart-Homes (SC-SH) = 2,
Business process = 1, and Software engineering = 1. For complete details on these 57
references, including a summary of each approach, we refer to Tables A1 to A4.27

Logic for design and diagnosis vs probabilities for detection.

Analyzing the references highlights six families of approaches: graph-based where
the processing relies on the structure and characteristics of data represented in a
graph, with principles drawing from graph theory [140] or message passing [141];
knowledge-based where deductive28 and abductive29 reasoning leverages domain
knowledge organized in taxonomies or ontologies; Markov model [142] where a
probabilistic model describing the potential state transitions of a system is used for
inference; ML-based where the probabilistic model used for inference leverages cor-
relations between multiple observational variables as an indicator; model checking
where a behavioral model in the form of a Finite State Automaton (FSA) [75, 143] is
used for inference; rule-based where deductive reasoning applies leveraging a set of
business rules typically of the IF-THEN-ELSE form. Table 6 shows the distribution
of references across these approach families given the three usage stages defined in
Section 7.1. The proportions reported in this table indicate a predominance of works
applicable to the detection and classification stage. Additionally, there is a preva-
lence of logic-based approaches in the design and diagnostic aid stages, as opposed to
correlation-based approaches in the detection and classification stage. These trends

27Note that some references discuss multiple approaches, which results in the total number of identified
approaches exceeding the number of references.

28In an inference process, the formation of a conclusion is based on generally accepted statements or facts
(i.e. from general or universal premises).

29In an inference process, observational facts (major premise) are evident, but the cause (minor premise)
and therefore the conclusion are only probable. Backward chaining on a rule set [51] is a typical
implementation of this process, where the system checks if an hypothesis is true or not.
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suggest a current focus for anomaly detection on the ability to capture complex situa-
tions without necessarily leveraging prior or expert knowledge of the ICT systems. This
contrast also suggests a limited current capability for coupling between logic-based
and probabilistic approaches. However, the presence of the graph-based approach in
all three usage stages suggests that a significant portion of the addressed problems
involves the interconnected nature of the data.

Table 6: Approach family and incident management
stage in analyzed papers.

Approach
System
Design

Detection &
Classification

Diagnostic
Aid

Rule-based 1 5 0
Model checking 1 3 1
Knowledge-based 2 8 6

Markov model 0 1 0
Graph-based 1 10 5
ML-based 0 15 0

Overall 5 (8,5 %) 42 (71,2 %) 12 (20,3 %)

This table provides information on the distribution (in num-
ber and proportion) of the analyzed papers, based on the
approach family (the middle line serves as an arbitrary sepa-
ration between logic-based and correlation-based approaches)
and the stage of the incident management process involved.
Values in bold highlight the most representative approach for
a given stage of the incident management process.

Partially ordered sets and graphs as key data structures.

Table 7 shows the distribution of data structures used in algorithmic solutions, as a
function of the solution’s approach family and usage stage. The following five types
of structures emerge from our analysis: data with an order relation, which includes
timestamped sequential data such as event logs and alarms, network traffic captures,
and time series for regularly sampled measurements such as data throughput or tem-
perature; graph (static or streaming) such as network topology; tabular data, such as
a list of assets with their characteristics; multi-dimensional data points; and so-called
mixed approaches that simultaneously use a combination of the aforementioned struc-
tures. From the proportions in Table 7, we observe that data with an order relation
are generally predominant across all usage stages. In the detection and classification
usage stage, approaches primarily utilize data structures – in descending order of pref-
erence – such as ordered data, graphs, and tables, with a prevalence of ordered data for
ML-based approaches. In the diagnostic aid usage stage, approaches make the most
use of mixed structures. These observations suggest a general tendency for detection
and classification approaches to focus on the temporal evolution of systems, while
diagnostic aid approaches tend to focus on a broader context of the system’s state.
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8 Conclusion

With the aim of facilitating the capture and interpretation of complex situations occur-
ring on networks, we have proposed a review of NMS and SIEM DSSs capabilities,
semantic models, and algorithmic solutions that, through their individual improvement
or combination, could allow to achieve both crisp and approximate reasoning on the
interplay between a large-scale ICT system architecture and its operation. Table 8 sum-
marizes our key findings. It highlights that NMS and SIEM DSSs are well-established
tools that simplify the analysis of diverse data sources (e.g. assets database, logs
and alarms from IPoDWDM and VM management systems, vulnerability scans, etc.).
However, their effectiveness is hindered by the implicit heterogeneity of these sources,
which limits the ability to contextualize network and service failures and implement
comprehensive analysis solutions that consider a broader range of information, includ-
ing network topology. Furthermore, while there are semantic models that align with
the discourse domain of NetOps and SecOps, enabling the utilization of knowledge
graphs for knowledge representation, they do not individually – except for a few excep-
tions – fully cover the necessary discourse domain. Additionally, they do not inherently
support reasoning about system state changes related to procedures with conditional
branching in decision-making processes. Finally, various algorithmic methods exist to
address key steps in the incident management process. However, individually, they do
not capture and analyze phenomena that involve temporal, structural, logical, and
probabilistic aspects simultaneously.

Advancing through knowledge engineering and massive data integration.

Data heterogeneity and interrelatedness between data entities (i.e. distinct and per-
sistent units of information) appear to be cornerstones for advancing the capabilities
of DSSs. In this survey, we assumed that knowledge graphs naturally align with these
two notions in the sense that they bring an abstraction level for standard interpre-
tation and logical reasoning over heterogeneous data. Sketching a next-generation
NMS/SIEM therefore leads to understand how to bring knowledge graphs to such a
system, while considering that NMSs and SIEMs systems rely on a multitude of both
streamed and static data sources.

Several tools have been proposed in different application domains for Knowledge
Graph Construction (KGC). For streamed data: RMLStreamer [144] applies declar-
ative mapping on the fly to structured data streams (e.g. file, Kafka topic) with
RDF Mapping Language (RML) [145] rules; StreamingMASSIF [146] uses basic string
substitution for mapping, and allows for real-time reasoning (e.g. SPARQL query pro-
cessing, Complex Event Time processing); C-SPARQL [147] extends the SPARQL
query language for continuous reasoning within a publisher/subscriber platform. For
static data: RMLMapper [145] enables data fetching and declarative mapping with
RML rules; Ontop [148] creates a virtual graph representation of various data sources
via SPARQL queries; and SLOGERT [101] orchestrates log modeling and annotation
with Cybersecurity Threat Intelligence (CTI) tags30.

30As for SLOGERT v0.9.1: with MITRE CEE categories from http://cee.mitre.org/language/1.0-alpha/
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Table 8: Key findings from the survey.

KR CX AD XP

Decision Support System – Section 5

• Data is generally
recorded in a struc-
ture close to its
original format, typ-
ically in a tabular
structure, without
annotations.

• Data normalization
can be performed at
different stages of
the data ingestion
process, depending
on the design choices
of the DSS.

• The data record-
ing/management
block utilizes a
combination of stor-
age technologies
and often follows
a hub/aggregator
architecture.

• The analysis block
can utilize internal
resources and/or
external services.

• Correlation-based
analysis on top of
rule-based character-
ization is common.

• Automated contex-
tualization may not
consider network
topology or network
operation informa-
tion.

• Explainability
is addressed by
contextualizing noti-
fications through
rendering, rewriting,
and enriching.

Semantic models – Section 6

• There are many
models with good
overall quality, but
none fully cover all
aspects required for
reasoning on the
interplay between
network architecture
and its operation.

• Some models
describe network
topology but at a
high level or for spe-
cific domains.

• Current data models
reveal various oppor-
tunities for enrich-
ment, improvement,
or linking of the mod-
els.

• Inference capabil-
ities may need to
be adjusted based
on experiments with
practical cases.

• Anomaly detec-
tion with semantic
models currently
generally rely on
graph traversal or
rule-based tech-
niques.

• Semantic Web-based
models have limited
capabilities for con-
ditional branching
knowledge.

• Explainability is
naturally addressed
for semantic models
due to their explicit
knowledge represen-
tation, roots in logic,
and utilization of
shared vocabularies.

Algorithmic methods – Section 7

• Data with an order
relation is generally
predominant across
all usage stages.

• In the detection and
classification stage,
approaches primarily
use ordered data,
graphs, and tables,
with a prevalence
of ordered data for
machine learning-
based approaches.

• Detection and clas-
sification approaches
focus on the tempo-
ral evolution of sys-
tems, while diagnos-
tic aid approaches
consider a broader
context of the sys-
tem’s state (typically
using mixed struc-
tures).

• There are few
solutions directly
designed for
streamed analysis,
and they generally
require a training
phase.

• Focus on detection
and classification
in current works on
anomaly detection.

• Focus on the capa-
bility to capture
complex situations
without relying heav-
ily on prior or expert
knowledge of ICT
systems in current
works on anomaly
detection.

• Interconnected
data (e.g. graphs)
is important, but
its usage is not
widespread.

• Explainability is nat-
urally addressed for
algorithmic methods
with roots in logic.

• Limited current
capability for cou-
pling between
logic-based and prob-
abilistic approaches.

Summary of the key messages from the capabilities of DSSs, semantic models, and algorithmic methods
for anomaly detection aspects according to the research axes Knowledge Representation (KR), CompleXity
(CX), Anomaly Detection (AD), and eXPlainability (XP) defined in Section 4.
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These solutions provide a foundation towards a Knowledge Graph-based
NMS/SIEM. However, additional research effort is required to achieve an end-to-end
solution design that bridges the Semantic Web tools with the design patterns observed
in industrial DSSs. It includes satisfying requirements for distributed processing, sepa-
ration of concerns, data sketching (i.e. enabling both early and posterior reasoning on
data), openness to third-party databases/tools, and re-use of well-established frame-
works (e.g. declarative data transformation, message passing). Indeed, in end-to-end
frameworks [149–152], the KGC step is never considered singular, initial or terminal,
but rather is the subject of multiple instances of a similar tool/principle within pro-
cessing flows depending on the application field. In addition, this step is always placed
between heterogeneous non-RDF data and a knowledge graph working sometimes as
a main data storage, and sometimes as a support for third-party inference processes.
This variety of options in itself constitutes a field of exploration to be pursued.

Regarding the standardized interpretation of data, the variety of available seman-
tic models encourages understanding how to leverage existing implementations of
vocabularies without introducing complexity. This can be achieved by avoiding using
vocabularies with loosely coupled semantics to the application domain, avoiding the
introduction of a new ontology that lacks interoperability with other standard vocab-
ularies, and preventing the creation of an ontology network that would unnecessarily
lengthen reasoning paths. Various knowledge engineering methodologies allow for
approaching this research, whether it be general approaches such as practical guides
to semantic modelling [153] and ontology design patterns [154], or more focused
approaches: Competency Questions [155], Dichoscope [156], DOE [157], NeOn [158],
OntoClean [159], ontology design with Formal Concept Analysis (FCA) [160], auto-
mated ontology learning from raw data with Text2Onto [161], automated derivation
of class taxonomies from an already existing knowledge graph [162], and translation
of formal models to an ontology [163–165].

Advancing in anomaly detection and explainability.

Put simply, anomaly detection methods in the context of NetOps and SecOps aim to
identify deviations from normal behavior and flag potentially undesirable/suspicious
activities at both the ICT system and user level. While various approaches have been
proposed, as discussed in Section 7, only a few of them simultaneously combine intrin-
sic explainability through the use of explicit representations (e.g. knowledge graphs,
FSAs, Petri nets) and the ability to handle interconnected multi-dimensional data,
including the temporal dimension. Assuming the use of knowledge graphs as a founda-
tional formalism for NMS/SIEM DSSs, this prompts us to understand to what extent
the existing algorithmic solutions are suited to it.

Focusing on activity modeling and analysis, trace-based reasoning [166] shows
opportunities in creating tools for semantically interpreting digital services arti-
facts using controlled vocabularies and semantic models. Indeed, the representation
of events and activities within knowledge graphs is implemented across a range
of data models, encompassing both domain-independent and domain-specific con-
texts: process modeling and execution (BBO [167], Petri nets-related [168, 169],
HTTPinRDF [123, 170]); causal analysis (FARO [108]); cyber-security and network
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operations (UCO [30], MITRE D3FEND [92], NORIA-O [90]); smart cities (iCity
ActivityOntology [171]).

At the same time, User and Entity Behavior Analytics (UEBA) corresponds to
the temporal dimension of the knowledge graph, which further motivates the search
for how an anomaly context capture (e.g. a subgraph centered around the undesirable
event) [172] can accommodate historical graphs [173] or a graph that evolves over time.
Graph embeddings [174] typically allow for capturing the context of graph entities.
However, since learning embeddings (i.e. a vector representation of the subgraph that
enables similarity calculations) is a potentially time-consuming process performed on
a snapshot of the graph, using such an approach requires defining the content of the
subgraphs to capture [175], particularly in relation to the speed of graph evolution.
Moreover, since such an approach may also not be generalizable, the simultaneous
implementation of various approaches can prove useful, whether by following the prin-
ciples of cooperative decision making [41] (i.e. a heuristic approach for problem-solving
by using results obtained from complementary inference techniques) or by combining
properties of inference models into a single one [176–179] (e.g. by including the power
of logical reasoning into ML-based models).

References

[1] ITU-T: X.200 : Information Technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model. Recommendation X.200 (07/94),
International Telecommunication Union (ITU) (1994)

[2] ITU-T: G.7710: Common Equipment Management Function Requirements. Rec-
ommendation G.7710/Y.1701, International Telecommunication Union (ITU)
(2020)

[3] ITU-T/CCITT: ITU-T Rec. X.733 (02/92) Information technology - Open
Systems Interconnection - Systems Management: Alarm reporting function.
Recommendation, International Telecommunication Union (ITU) (1992)

[4] CNSS Glossary Working Group: CNSSI 4009. Technical Report CNSSI No. 4009,
Committee on National Security Systems (CNSS) (2015)

[5] ETSI: Method and pro Forma for Threat, Vulnerability, Risk Analysis (TVRA).
Technical Specification ETSI TS 102 165-1 V5.2.3 (2017-10), ETSI (2017)

[6] ISO/IEC JTC 1/SC 40: Information technology – Service management – Part
1: Service management system requirements. Technical Report 20000-1:2018,
International Organization for Standardization/International Electrotechnical
Commission (2018)

[7] Alison Cartlidge, Ashley Hanna, Colin Rudd, Ivor Macfarlane, John Windebank,
Stuart Rance: An Introductory Overview of ITIL V3. The UK Chapter of the
itSMF, Bracknell, UK (2007)

33



[8] ITEMO: Standards for lightweight IT service management (FitSM). https://
www.fitsm.eu/ (2022)

[9] Joint Task Force: Security and Privacy Controls for Information Systems
and Organizations. Technical Report NIST SP 800-53r5, National Institute of
Standards and Technology (2020). https://doi.org/10.6028/NIST.SP.800-53r5

[10] Richard Caralli, James F. Stevens, Lisa R. Young, William R. Wilson: Intro-
ducing OCTAVE Allegro: Improving the Information Security Risk Assessment
Process. Technical report, Carnegie Mellon University (2007). https://doi.org/
10.1184/R1/6574790.V1

[11] ANSSI: EBIOS Risk Manager. Technical Report ANSSI-PA-048, Agence
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[46] Eyke Hüllermeier: Case-Based Approximate Reasoning. Theory and Decision
Library B. Springer, Cham (2007). https://doi.org/10.1007/1-4020-5695-8

[47] Dan Geiger, Judea Pearl: Logical and Algorithmic Properties of Independence
and Their Application to Bayesian Networks. Annals of Mathematics and
Artificial Intelligence (1990) https://doi.org/10.1007/BF01531004

[48] Bram Steenwinckel: IBCNServices/Folio-Ontology. https://github.com/
IBCNServices/Folio-Ontology (2019)

[49] Andreas M. Hein, Stephen Baxter: Artificial Intelligence for Interstellar Travel
(2018)

[50] W3C SPARQL Working Group: SPARQL Protocol and RDF Query Language
1.1 (SPARQL). W3C Recommendation, W3C (2013)

[51] Mark Proctor: Drools: A Rule Engine for Complex Event Processing. In: Appli-
cations of Graph Transformations with Industrial Relevance. Springer, Cham
(2012). https://doi.org/10.1007/978-3-642-34176-2 2

[52] Franz Baader, Deborah L. McGuinness, Daniele Nardi, Peter F. Patel-Schneider:
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, UK (2003)

[53] Miguel Hernan, Jamie Robins: Causal Inference: What If. Harvard College,
Cambridge, USA (2020). https://www.hsph.harvard.edu/miguel-hernan/causal-
inference-book/

[54] Erkuden Rios, Eider Iturbe, Angel Rego, Nicolas Ferry, Jean-Yves Tigli,

37

https://doi.org/10.2991/978-94-6239-027-0
https://doi.org/10.2991/978-94-6239-027-0
https://doi.org/10.1145/1455258.1455259
https://doi.org/10.1145/1455258.1455259
https://doi.org/10.1016/S0020-7373(83)80063-7
https://doi.org/10.1016/S0020-7373(83)80063-7
https://doi.org/10.1007/1-4020-5695-8
https://doi.org/10.1007/BF01531004
https://github.com/IBCNServices/Folio-Ontology
https://github.com/IBCNServices/Folio-Ontology
https://doi.org/10.1007/978-3-642-34176-2_2
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[88] Mark A. Musen: The Protégé Project: A Look Back and a Look Forward. AI
matters (2015) https://doi.org/10.1145/2757001.2757003
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[166] Amélie Cordier, Marie Lefevre, Pierre-Antoine Champin, Olivier Georgeon,
Alain Mille: Trace-Based Reasoning - Modeling Interaction Traces for Reasoning
on Experiences. In: The 26th International FLAIRS Conference (2013)

[167] Amina Annane, Nathalie Aussenac-Gilles, Mouna Kamel: BBO: BPMN 2.0
Based Ontology for Business Process Representation. In: 20th European Con-
ference on Knowledge Management (ECKM). Academic Conferences and
publishing limited, Lisbon, Portugal (2019)

47

https://doi.org/10.1007/978-3-642-24794-1_2
https://doi.org/10.1007/978-3-642-24794-1_2
https://doi.org/10.1007/978-3-540-92673-3_9
https://doi.org/10.1007/11428817_21
https://doi.org/10.1007/978-3-030-49461-2_4
https://doi.org/10.1007/978-3-030-49461-2_4
https://doi.org/10.1007/978-3-642-16101-8_9
https://doi.org/10.1007/978-3-642-16101-8_9
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des relations et détection d’anomalies sur les traces de navigation Web capturées
sous forme de graphes de connaissances. In: Plate-Forme Intelligence Artificielle
(PFIA), IC Track, July 01-05, 2024, La Rochelle, France (2024)

[215] Vern Paxson: Bro: A System for Detecting Network Intruders in Real-Time.
Computer Networks (1999) https://doi.org/10.1016/S1389-1286(99)00112-7

[216] Pedro Alipio, Paulo Carvalho, José Neves: Using CLIPS to Detect Network
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Appendix A State of the Art – Detailed Materials

This section includes Tables A1 to A4, which provide comprehensive details on the
shortlist of 57 references from the literature review on anomaly detection techniques in
Section 7, including summaries of each approach. These details support the analyses
conducted in that section. Note that some references discuss multiple approaches,
which results in the total number of identified approaches exceeding the number of
references.
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